1
|
Mwiinde AM, Simuunza M, Namangala B, Chama-Chiliba CM, Machila N, Anderson NE, Atkinson PM, Welburn SC. Healthcare Management of Human African Trypanosomiasis Cases in the Eastern, Muchinga and Lusaka Provinces of Zambia. Trop Med Infect Dis 2022; 7:270. [PMID: 36288011 PMCID: PMC9607271 DOI: 10.3390/tropicalmed7100270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/26/2022] Open
Abstract
Human African trypanosomiasis (HAT) is a neglected tropical disease that has not received much attention in Zambia and most of the countries in which it occurs. In this study, we assessed the adequacy of the healthcare delivery system in diagnosis and management of rHAT cases, the environmental factors associated with transmission, the population at risk and the geographical location of rHAT cases. Structured questionnaires, focus group discussions and key informant interviews were conducted among the affected communities and health workers. The study identified 64 cases of rHAT, of which 26 were identified through active surveillance and 38 through passive surveillance. We identified a significant association between knowledge of the vector for rHAT and knowledge of rHAT transmission (p < 0.028). In all four districts, late or poor diagnosis occurred due to a lack of qualified laboratory technicians and diagnostic equipment. This study reveals that the current Zambian healthcare system is not able to adequately handle rHAT cases. Targeted policies to improve staff training in rHAT disease detection and management are needed to ensure that sustainable elimination of this public health problem is achieved in line with global targets.
Collapse
Affiliation(s)
- Allan Mayaba Mwiinde
- Department of Public Health, Mazabuka Municipal Council, Mazabuka P.O. Box 620033, Zambia
- School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Martin Simuunza
- School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Boniface Namangala
- School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | | | - Noreen Machila
- School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 50110, Zambia
- School of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Neil E. Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, 49 Little France Crescent, Edinburgh EH25 9RG, UK
| | - Peter M. Atkinson
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, UK
| | - Susan C. Welburn
- School of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, International Campus, 718 East Haizhou Road, Haining 314400, China
| |
Collapse
|
2
|
Glebskiy Y, Acosta-Gutiérrez R, Cano-Santana Z. Effect of urbanization on the opossum Didelphis virginiana health and implications for zoonotic diseases. JOURNAL OF URBAN ECOLOGY 2022. [DOI: 10.1093/jue/juac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Urban animals can be an important threat to human health as possible hosts of zoonotic diseases and their susceptibility to these diseases can depend on their overall health conditions. Thus, it is important to understand the factors that determine their health conditions. For this, we studied Virginia opossums (Didelphis virginiana) in six locations with different urbanization levels and types in Mexico City, Mexico. We trapped opossums and measured eight health-related characteristics (number of ectoparasites and tartar severity, among others) and estimated the percentage of area covered by the four main types of terrain (natural vegetation, managed vegetation, impermeable terrain and constructions). Data were analyzed by a canonical correspondence analysis. We found that impermeable terrain was related to negative health characteristics, while the constructions were opposite to impermeable terrain and mostly related to good health characteristics. At the same, time constructed areas held a smaller population than the natural areas. This suggests that constructed areas provide few shelters, but opossums are healthier there, while impermeable areas provide more shelter but cause more health problems to the animals, thus increasing the chances of zoonotic diseases. We recommend reducing the impermeable areas in city planning to contribute to a better health of the urban animals and therefore reduce risks of zoonotic diseases with potentially disastrous results.
Collapse
Affiliation(s)
- Yury Glebskiy
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, UNAM , Ciudad de Mexico, Mexico , 04510
- Posgrado en Ciencias Biológicas, UNAM , Ciudad de Mexico, Mexico , 04510
| | - Roxana Acosta-Gutiérrez
- Museo de Zoología “Alfonso L. Herrera”, Facultad de Ciencias, UNAM , Ciudad de Mexico, Mexico , 04510
| | - Zenón Cano-Santana
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, UNAM , Ciudad de Mexico, Mexico , 04510
| |
Collapse
|
3
|
Policy and Linkages in the Application of a One Health System for Reporting and Controlling African Trypanosomiasis and Other Zoonotic Diseases in Zambia. Pathogens 2021; 11:pathogens11010030. [PMID: 35055978 PMCID: PMC8781336 DOI: 10.3390/pathogens11010030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 12/02/2022] Open
Abstract
The capacity to detect, control and manage emerging and re-emerging zoonotic diseases in Africa has been limited by a lack of utilisation of available reporting structures and policies to support programmes at national and local levels. This study explored the impact of the Zambian government policies on animal and human disease reporting and management and on One Health opportunities. An in-depth review and analysis of strengths, weaknesses, opportunities, and threats in the existing policies and reporting structures in the departments responsible for Veterinary Services, Health, and Wildlife, was conducted. According to our findings, sub-optimal implementation of existing policies related to the control of zoonotic diseases was impacting disease reporting, and reporting structures play an important role in effective and sustainable reporting of zoonotic diseases. Further, the study explored capacities and strategies in trypanosomiasis control as a case study that could prompt effective adoption of a One Health approach, and as such, the study suggests measures that could help to assess the performance of a One Health system in the control of African trypanosomiasis and other zoonotic diseases.
Collapse
|
4
|
Kasozi KI, Zirintunda G, Ssempijja F, Buyinza B, Alzahrani KJ, Matama K, Nakimbugwe HN, Alkazmi L, Onanyang D, Bogere P, Ochieng JJ, Islam S, Matovu W, Nalumenya DP, Batiha GES, Osuwat LO, Abdelhamid M, Shen T, Omadang L, Welburn SC. Epidemiology of Trypanosomiasis in Wildlife-Implications for Humans at the Wildlife Interface in Africa. Front Vet Sci 2021; 8:621699. [PMID: 34222391 PMCID: PMC8248802 DOI: 10.3389/fvets.2021.621699] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
While both human and animal trypanosomiasis continue to present as major human and animal public health constraints globally, detailed analyses of trypanosome wildlife reservoir hosts remain sparse. African animal trypanosomiasis (AAT) affects both livestock and wildlife carrying a significant risk of spillover and cross-transmission of species and strains between populations. Increased human activity together with pressure on land resources is increasing wildlife–livestock–human infections. Increasing proximity between human settlements and grazing lands to wildlife reserves and game parks only serves to exacerbate zoonotic risk. Communities living and maintaining livestock on the fringes of wildlife-rich ecosystems require to have in place methods of vector control for prevention of AAT transmission and for the treatment of their livestock. Major Trypanosoma spp. include Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma cruzi, pathogenic for humans, and Trypanosoma vivax, Trypanosoma congolense, Trypanosoma evansi, Trypanosoma brucei brucei, Trypanosoma dionisii, Trypanosoma thomasbancrofti, Trypanosma elephantis, Trypanosoma vegrandis, Trypanosoma copemani, Trypanosoma irwini, Trypanosoma copemani, Trypanosoma gilletti, Trypanosoma theileri, Trypanosoma godfreyi, Trypansoma simiae, and Trypanosoma (Megatrypanum) pestanai. Wildlife hosts for the trypansomatidae include subfamilies of Bovinae, Suidae, Pantherinae, Equidae, Alcephinae, Cercopithecinae, Crocodilinae, Pteropodidae, Peramelidae, Sigmodontidae, and Meliphagidae. Wildlife species are generally considered tolerant to trypanosome infection following centuries of coexistence of vectors and wildlife hosts. Tolerance is influenced by age, sex, species, and physiological condition and parasite challenge. Cyclic transmission through Glossina species occurs for T. congolense, T. simiae, T. vivax, T. brucei, and T. b. rhodesiense, T. b. gambiense, and within Reduviid bugs for T. cruzi. T. evansi is mechanically transmitted, and T. vixax is also commonly transmitted by biting flies including tsetse. Wildlife animal species serve as long-term reservoirs of infection, but the delicate acquired balance between trypanotolerance and trypanosome challenge can be disrupted by an increase in challenge and/or the introduction of new more virulent species into the ecosystem. There is a need to protect wildlife, animal, and human populations from the infectious consequences of encroachment to preserve and protect these populations. In this review, we explore the ecology and epidemiology of Trypanosoma spp. in wildlife.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Scotland, United Kingdom.,School of Medicine, Kabale University, Kabale, Uganda
| | - Gerald Zirintunda
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Fred Ssempijja
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Bridget Buyinza
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Kevin Matama
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Helen N Nakimbugwe
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda.,Department of Agriculture, Faculty of Vocational Studies, Kyambogo University, Kampala, Uganda
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - David Onanyang
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Paul Bogere
- Faculty of Agriculture and Environmental Science, Muni University, Arua, Uganda
| | - Juma John Ochieng
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Saher Islam
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wycliff Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - David Paul Nalumenya
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Tianren Shen
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Scotland, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Leonard Omadang
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Scotland, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
5
|
Chilongo K, Manyangadze T, Samson M. Human-associated scarcity of hosts for tsetse flies (Diptera: Glossinidae) is related to an increase in prevalence of trypanosome infection in flies in north-eastern Zambia. Trop Anim Health Prod 2021; 53:305. [PMID: 33950335 DOI: 10.1007/s11250-021-02749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Occurrence of nutritional stress (due to depletion of fat reserves) in tsetse flies, associated with inadequate levels of access to blood meals, enhances susceptibility of the flies to trypanosome infection. Thus, in a tsetse-infested area, a spatial gradient of reducing tsetse habitat quality is potentially a gradient of increasing prospects for occurrence of stress in tsetse flies. This study investigated prevalence of trypanosome infection in Glossina morsitans morsitans and G. pallidipes along a transect line hypothesised to represent such a gradient, in relation to the edge of the tsetse belt and distribution of human settlements. This was undertaken in three sites located in Lundazi, Mpika and Rufunsa districts, respectively, in north-eastern Zambia. Human settlement was concentrated at the edge of the tsetse belt in the Mpika and Rufunsa sites and evenly distributed along transect line in the Lundazi site. Tsetse fly samples were collected using black-screen fly rounds and Epsilon traps. Detection of trypanosome infection was by dissection and microscopy in Lundazi and Mpika sites and loop-mediated isothermal amplification (LAMP) test in Rufunsa site. Multiple logistic regression models were applied to determine whether the following factors, 'change in distance from edge of tsetse belt', 'tsetse sampling method' and 'sex of tsetse fly', had effect on 'prevalence of trypanosome infection' in the tsetse flies. Only 'increase in distance from the edge of tsetse belt' for G. m. morsitans was significantly associated with 'prevalence of trypanosome infection' in the flies, in the Mpika and Rufunsa sites. Distance was associated with reduced likelihood of infection with 'one or more subgenera of trypanosomes' and with 'Nannomonas trypanosomes', in the case of 'all sites collectively', 'Lundazi and Mpika sites collectively', Mpika site alone, and Rufunsa site alone. Per site, increase in distance entailed reduced prospects for Trypanozoon infection but only in the Mpika and Rufunsa sites. We conclude that in the Mpika and Rufunsa sites, increase in distance from human settlements entailed reduced likelihood of trypanosome infection, likely due to reducing tsetse habitat degradation, increasing availability of hosts, and hence increasing levels of nutrition and fat reserves, thus enhancing tsetse immunity against trypanosome infection.
Collapse
Affiliation(s)
- Kalinga Chilongo
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa.,Department of Veterinary Services, Ministry of Fisheries and Livestock, Lusaka, Zambia
| | - Tawanda Manyangadze
- College of Health Sciences, Department of Public Health, Howard College, University of KwaZulu-Natal, Durban, 4041, South Africa.,Faculty of Science and Engineering, Geography Department, Bindura University of Science Education, Bag, 1020, Bindura, Zimbabwe
| | - Mukaratirwa Samson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa. .,One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St Kitts, Basseterre, Saint Kitts and Nevis.
| |
Collapse
|
6
|
Chilongo K, Manyangadze T, Mukaratirwa S. Effects of Human Settlements and Spatial Distribution of Wing Vein Length, Wing Fray Categories and Hunger Stages in Glossina morsitans morsitans (Diptera: Glossinidae) and Glossina pallidipes (Diptera: Glossinidae) in Areas Devoid of Cattle in North-Eastern Zambia. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:891-899. [PMID: 33118036 PMCID: PMC7954107 DOI: 10.1093/jme/tjaa228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The effect of human-associated habitat degradation on tsetse populations is well established. However, more insights are needed into how gradual human encroachment into tsetse fly belts affect tsetse populations. This study investigated how wing vein length, wing fray categories, and hunger stages, taken as indicators of body size, age, and levels of access to hosts, respectively, in Glossina morsitans morsitans Westwood (Diptera: Glossinidae) and Glossina pallidipes Austen (Diptera: Glossinidae), varied along a transect from the edge into inner parts of the tsetse belt, in sites that had human settlement either concentrated at the edge of belt or evenly distributed along transect line, in north-eastern Zambia. Black-screen fly round and Epsilon traps were used in a cross-sectional survey on tsetse flies at three sites, following a transect line marked by a road running from the edge into the inner parts of the tsetse belt, per site. Two sites had human settlement concentrated at or close to the edge of the tsetse belt, whereas the third had human settlement evenly distributed along the transect line. Where settlements were concentrated at the edge of tsetse belt, increase in distance from the settlements was associated with increase in wing vein length and a reduction in the proportion of older, and hungry, tsetse flies. Increase in distance from human settlements was associated with improved tsetse well-being, likely due to increase in habitat quality due to decrease in effects of human activities.
Collapse
Affiliation(s)
- Kalinga Chilongo
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tawanda Manyangadze
- Department of Public Health, College of Health Sciences, University of KwaZulu-Natal, Howard College, Durban, South Africa
- Geography Department, Faculty of Science and Engineering, Bindura University of Science Education, Bindura, Zimbabwe
| | - Samson Mukaratirwa
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, St Kitts, Basseterre, West Indies
| |
Collapse
|
7
|
Haines LR, Vale GA, Barreaux AMG, Ellstrand NC, Hargrove JW, English S. Big Baby, Little Mother: Tsetse Flies Are Exceptions to the Juvenile Small Size Principle. Bioessays 2020; 42:e2000049. [DOI: 10.1002/bies.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Lee R. Haines
- Vector Biology Department Liverpool School of Tropical Medicine Liverpool L3 5QA UK
| | - Glyn A. Vale
- DSI‐NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA) University of Stellenbosch Stellenbosch 7602 South Africa
- Natural Resources Institute University of Greenwich Chatham ME4 4TB UK
| | | | - Norman C. Ellstrand
- Department of Botany and Plant Sciences University of California Riverside CA 92521 USA
| | - John W. Hargrove
- DSI‐NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA) University of Stellenbosch Stellenbosch 7602 South Africa
| | - Sinead English
- School of Biological Sciences University of Bristol Bristol BS8 1TQ UK
| |
Collapse
|
8
|
Mulenga GM, Henning L, Chilongo K, Mubamba C, Namangala B, Gummow B. Insights into the Control and Management of Human and Bovine African Trypanosomiasis in Zambia between 2009 and 2019-A Review. Trop Med Infect Dis 2020; 5:E115. [PMID: 32664551 PMCID: PMC7559803 DOI: 10.3390/tropicalmed5030115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse transmitted trypanosomiasis is a fatal disease commonly known as Nagana in cattle and sleeping sickness in humans. The disease threatens food security and has severe economic impact in Africa including most parts of Zambia. The level of effectiveness of commonly used African trypanosomiasis control methods has been reported in several studies. However, there have been no review studies on African trypanosomiasis control and management conducted in the context of One Health. This paper therefore seeks to fill this knowledge gap. A review of studies that have been conducted on African trypanosomiasis in Zambia between 2009 and 2019, with a focus on the control and management of trypanosomiasis was conducted. A total of 2238 articles were screened, with application of the search engines PubMed, PubMed Central and One Search. Out of these articles, 18 matched the required criteria and constituted the basis for the paper. An in-depth analysis of the 18 articles was conducted to identify knowledge gaps and evidence for best practices. Findings from this review provide stakeholders and health workers with a basis for prioritisation of African trypanosomiasis as an important neglected disease in Zambia and for formulation of One Health strategies for better control and/or management of the disease.
Collapse
Affiliation(s)
- Gloria M. Mulenga
- Department of Veterinary Services, Kakumbi Tsetse and Trypanosomiasis Research Station, P.O Box 70, Mfuwe 10101, Zambia
- Ministry of Fisheries and Livestock, Department of Veterinary Services, Lusaka 10101, Zambia; (K.C.); (C.M.)
- College of Public Health Medical and Veterinary Services, James Cook University, Townsville, Queensland 4814, Australia; (L.H.); (B.G.)
| | - Lars Henning
- College of Public Health Medical and Veterinary Services, James Cook University, Townsville, Queensland 4814, Australia; (L.H.); (B.G.)
| | - Kalinga Chilongo
- Ministry of Fisheries and Livestock, Department of Veterinary Services, Lusaka 10101, Zambia; (K.C.); (C.M.)
| | - Chrisborn Mubamba
- Ministry of Fisheries and Livestock, Department of Veterinary Services, Lusaka 10101, Zambia; (K.C.); (C.M.)
| | - Boniface Namangala
- Institute of distance learning, The University of Zambia, Lusaka 10101, Zambia;
| | - Bruce Gummow
- College of Public Health Medical and Veterinary Services, James Cook University, Townsville, Queensland 4814, Australia; (L.H.); (B.G.)
- Faculty of Veterinary Science, University of Pretoria, 0028 Pretoria, South Africa
| |
Collapse
|
9
|
Squarre D, Hayashida K, Gaithuma A, Chambaro H, Kawai N, Moonga L, Namangala B, Sugimoto C, Yamagishi J. Diversity of trypanosomes in wildlife of the Kafue ecosystem, Zambia. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2020; 12:34-41. [PMID: 32420023 PMCID: PMC7215119 DOI: 10.1016/j.ijppaw.2020.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 11/07/2022]
Abstract
The Kafue ecosystem is a vast conservation protected area comprising the Kafue National Park (KNP) and the Game Management Areas (GMA) that act as a buffer around the national park. The KNP has been neglected as a potential foci for rhodesiense sleeping sickness despite the widespread presence of the tsetse vector and abundant wildlife reservoirs. The aim of this study was to generate information on circulating trypanosomes and their eminent threat/risk to public health and livestock production of a steadily growing human and livestock population surrounding the park. We detected various trypanosomes circulating in different mammalian wildlife species in KNP in Zambia by applying a high throughput ITS1-polymerase chain reaction (PCR)/nanopore sequencing method in combination with serum resistant associated-PCR/Sanger sequencing method. The prevalence rates of trypanosomes in hartebeest, sable antelope, buffalo, warthog, impala and lechwe were 6.4%, 37.2%, 13.2%, 11.8%, 2.8% and 11.1%, respectively. A total of six trypanosomes species or subspecies were detected in the wildlife examined, including Trypanosoma brucei brucei, T. godfreyi, T. congolense, T. simiae and T. theileri. Importantly we detected human infective T. b. rhodesiense in buffalo and sable antelope with a prevalence of 9.4% and 12.5%, respectively. In addition, T. b. rhodesiense was found in the only vervet monkey analyzed. The study thus reaffirmed that the Kafue ecosystem is a genuine neglected and re-emerging foci for human African trypanosomiasis. This is the first assessment of the trypanosome diversity circulating in free-ranging wildlife of the KNP. Detected six African trypanosomes in wildlife species of Kafue National Park using ITS1-PCR and Nanopore sequencing method. Confirmed presence of Trypanosoma brucei rhodesiense using SRA PCR. Identified unique divergence of SRA sequence of Trypanosoma brucei rhodesiense from buffalo, sable and vervet monkey.
Collapse
Affiliation(s)
- David Squarre
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.,Wildlife Veterinary Unit, Department of National Parks and Wildlife, P/Bag 1, Chilanga, Zambia.,The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, EH25 9RG, UK, United Kingdom
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Alex Gaithuma
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Herman Chambaro
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.,Central Veterinary Research Institute, P.O Box, 33980, Chilanga, Zambia
| | - Naoko Kawai
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Ladslav Moonga
- Department of Paraclinical Studies, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Boniface Namangala
- Department of Paraclinical Studies, University of Zambia, P.O. Box 32379, Lusaka, 10101, Zambia
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Hokkaido, 001-0020, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Kita-ku, Sapporo, Hokkaido, 001-0020, Japan
| |
Collapse
|
10
|
Alderton S, Macleod ET, Anderson NE, Machila N, Simuunza M, Welburn SC, Atkinson PM. Exploring the effect of human and animal population growth on vector-borne disease transmission with an agent-based model of Rhodesian human African trypanosomiasis in eastern province, Zambia. PLoS Negl Trop Dis 2018; 12:e0006905. [PMID: 30408045 PMCID: PMC6224050 DOI: 10.1371/journal.pntd.0006905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022] Open
Abstract
This paper presents the development of an agent-based model (ABM) to investigate Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) disease transmission. The ABM model, fitted at a fine spatial scale, was used to explore the impact of a growing host population on the spread of disease along a 75 km transect in the Luangwa Valley, Zambia. The model was used to gain a greater understanding of how increases in human and domestic animal population could impact the contact network between vector and host, the subsequent transmission patterns, and disease incidence outcomes in the region. Modelled incidence rates showed increases in rHAT transmission in both humans and cattle. The primary demographic attribution of infection switched dramatically from young children of both sexes attending school, to adult women performing activities with shorter but more frequent trips, such as water and firewood collection, with men more protected due to the presence of cattle in their routines. The interpretation of model output provides a plausible insight into both population development and disease transmission in the near future in the region and such techniques could aid well-targeted mitigation strategies in the future. African trypanosomiasis is a parasitic disease which affects humans and other animals in 36 sub-Saharan African countries. The disease is transmitted by the tsetse fly, and the human form of the disease is known as sleeping sickness. With human and animal populations growing across Africa, demand for space to settle is on the rise, and people are being forced to occupy increasingly marginal spaces. This behaviour has the potential to increase exposure to pre-existing biological hazards, including vector-borne diseases. This investigation utilises agent-based modelling techniques to investigate the implications of a growing and spreading human and animal population in a region affected by Rhodesian human African trypanosomiasis. The model incorporates previously developed spatial data for the Luangwa Valley case study in Zambia, along with demographic data for its current inhabitants, and a detailed, seasonally-driven tsetse lifecycle. Tsetse and potential human and animal hosts are modelled at the individual level, allowing each contact and infection to be recorded through time. By modelling at a fine-scale, we can incorporate detailed mechanisms for tsetse birth, feeding, reproduction and death, as well as a realistic theoretical human and domestic animal population increase, before considering the possible spatial and demographic impact.
Collapse
Affiliation(s)
- Simon Alderton
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Ewan T. Macleod
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, 1 George Square, Edinburgh, United Kingdom
| | - Neil E. Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Noreen Machila
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, 1 George Square, Edinburgh, United Kingdom
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Susan C. Welburn
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, 1 George Square, Edinburgh, United Kingdom
| | - Peter M. Atkinson
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Northern Ireland, United Kingdom
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Elephant Crop Damage: Subsistence Farmers’ Social Vulnerability, Livelihood Sustainability and Elephant Conservation. SUSTAINABILITY 2018. [DOI: 10.3390/su10103572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
African elephants (Loxodonta africana) induce considerable crop damage risks, shocks and stresses on subsistence farmers at the wildlife-agriculture interface. In this study, we explored the social dimensions of human-elephant interactions in the wildlife-agrarian landscape. The study aimed at unraveling the associated hazardous conditions and nature of the subsistence farmers’ social vulnerability and practices with respect to elephant crop damage, subsistence farmers’ livelihoods, and elephant conservation. Applying qualitative thematic content analysis, the sustainable livelihood framework (SLF) and additive generalized linear models (GLMs), this study revealed that the status of relational social capital influences human-elephant conflict (HEC) management and subsistence farmers’ responses, regardless of the farmers’ social learning and environmental values about the social-ecological system. The strengthening of multiple local stakeholder participation, institutional governance and access to livelihoods assets are needed for human food security and elephant conservation. Adoption of more effective nuanced crop protection counter-measures against elephants at farm level is urgently needed.
Collapse
|
12
|
Abstract
This paper discusses the sustainability of livestock systems, emphasising bidirectional relations with animal health. We review conventional and contrarian thinking on sustainability and argue that in the most common approaches to understanding sustainability, health aspects have been under-examined. Literature review reveals deep concerns over the sustainability of livestock systems; we recognise that interventions are required to shift to more sustainable trajectories, and explore approaches to prioritising in different systems, focusing on interventions that lead to better health. A previously proposed three-tiered categorisation of 'hot spots', 'cold spots' and 'worried well' animal health trajectories provides a mental model that, by taking into consideration the different animal health status, animal health risks, service response needs and key drivers in each system, can help identify and implement interventions. Combining sustainability concepts with animal health trajectories allows for a richer analysis, and we apply this to three case studies drawn from North Africa and the Middle East; Bangladesh; and the Eastern Cape of South Africa. We conclude that the quest for sustainability of livestock production systems from the perspective of human and animal health is elusive and difficult to reconcile with the massive anticipated growth in demand for livestock products, mainly in low- and middle-income countries, as well as the aspirations of poor livestock keepers for better lives. Nevertheless, improving the health of livestock can contribute to health sustainability both through reducing negative health impacts of livestock and increasing efficiency of production. However, the choice of the most appropriate options must be under-pinned by an understanding of agro-ecology, economy and values. We argue that a new pillar of One Health should be added to the three traditional sustainability pillars of economics, society and environment when addressing livestock systems.
Collapse
|
13
|
Leach M, Bett B, Said M, Bukachi S, Sang R, Anderson N, Machila N, Kuleszo J, Schaten K, Dzingirai V, Mangwanya L, Ntiamoa-Baidu Y, Lawson E, Amponsah-Mensah K, Moses LM, Wilkinson A, Grant DS, Koninga J. Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0163. [PMID: 28584171 PMCID: PMC5468688 DOI: 10.1098/rstb.2016.0163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2017] [Indexed: 12/16/2022] Open
Abstract
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human–ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples’ interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform ‘One Health’ approaches towards managing ecosystems in ways that reduce disease risks and burdens. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’.
Collapse
Affiliation(s)
- Melissa Leach
- Institute for Development Studies, University of Sussex, Brighton BN1 9RE, UK
| | - Bernard Bett
- International Livestock Research Institute, Nairobi, Kenya
| | - M Said
- International Livestock Research Institute, Nairobi, Kenya
| | | | | | - Neil Anderson
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Noreen Machila
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | - Joanna Kuleszo
- Geography and Environment, University of Southampton, Southampton, UK
| | | | | | | | | | | | | | - Lina M Moses
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | - Annie Wilkinson
- Institute for Development Studies, University of Sussex, Brighton BN1 9RE, UK
| | | | | |
Collapse
|
14
|
Alderton S, Macleod ET, Anderson NE, Palmer G, Machila N, Simuunza M, Welburn SC, Atkinson PM. An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates. PLoS Negl Trop Dis 2018; 12:e0006188. [PMID: 29425200 PMCID: PMC5806852 DOI: 10.1371/journal.pntd.0006188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This paper presents the development of an agent-based model (ABM) to incorporate climatic drivers which affect tsetse fly (G. m. morsitans) population dynamics, and ultimately disease transmission. The model was used to gain a greater understanding of how tsetse populations fluctuate seasonally, and investigate any response observed in Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) disease transmission, with a view to gaining a greater understanding of disease dynamics. Such an understanding is essential for the development of appropriate, well-targeted mitigation strategies in the future. METHODS The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The model incorporates climatic factors that affect pupal mortality, pupal development, birth rate, and death rate. In combination with fine scale demographic data such as ethnicity, age and gender for the human population in the region, as well as an animal census and a sample of daily routines, we create a detailed, plausible simulation model to explore tsetse population and disease transmission dynamics. RESULTS The seasonally-driven model suggests that the number of infections reported annually in the simulation is likely to be a reasonable representation of reality, taking into account the high levels of under-detection observed. Similar infection rates were observed in human (0.355 per 1000 person-years (SE = 0.013)), and cattle (0.281 per 1000 cattle-years (SE = 0.025)) populations, likely due to the sparsity of cattle close to the tsetse interface. The model suggests that immigrant tribes and school children are at greatest risk of infection, a result that derives from the bottom-up nature of the ABM and conditioning on multiple constraints. This result could not be inferred using alternative population-level modelling approaches. CONCLUSIONS In producing a model which models the tsetse population at a very fine resolution, we were able to analyse and evaluate specific elements of the output, such as pupal development and the progression of the teneral population, allowing the development of our understanding of the tsetse population as a whole. This is an important step in the production of a more accurate transmission model for rHAT which can, in turn, help us to gain a greater understanding of the transmission system as a whole.
Collapse
Affiliation(s)
- Simon Alderton
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | - Ewan T. Macleod
- Division of Infection and Pathway Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Neil E. Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Gwen Palmer
- Independent Researcher, Leyland, Lancashire, United Kingdom
| | - Noreen Machila
- Division of Infection and Pathway Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Susan C. Welburn
- Division of Infection and Pathway Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Peter M. Atkinson
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Northern Ireland, United Kingdom
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Bardosh KL, Ryan SJ, Ebi K, Welburn S, Singer B. Addressing vulnerability, building resilience: community-based adaptation to vector-borne diseases in the context of global change. Infect Dis Poverty 2017; 6:166. [PMID: 29228986 PMCID: PMC5725972 DOI: 10.1186/s40249-017-0375-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/15/2017] [Indexed: 11/14/2022] Open
Abstract
Background The threat of a rapidly changing planet – of coupled social, environmental and climatic change – pose new conceptual and practical challenges in responding to vector-borne diseases. These include non-linear and uncertain spatial-temporal change dynamics associated with climate, animals, land, water, food, settlement, conflict, ecology and human socio-cultural, economic and political-institutional systems. To date, research efforts have been dominated by disease modeling, which has provided limited practical advice to policymakers and practitioners in developing policies and programmes on the ground. Main body In this paper, we provide an alternative biosocial perspective grounded in social science insights, drawing upon concepts of vulnerability, resilience, participation and community-based adaptation. Our analysis was informed by a realist review (provided in the Additional file 2) focused on seven major climate-sensitive vector-borne diseases: malaria, schistosomiasis, dengue, leishmaniasis, sleeping sickness, chagas disease, and rift valley fever. Here, we situate our analysis of existing community-based interventions within the context of global change processes and the wider social science literature. We identify and discuss best practices and conceptual principles that should guide future community-based efforts to mitigate human vulnerability to vector-borne diseases. We argue that more focused attention and investments are needed in meaningful public participation, appropriate technologies, the strengthening of health systems, sustainable development, wider institutional changes and attention to the social determinants of health, including the drivers of co-infection. Conclusion In order to respond effectively to uncertain future scenarios for vector-borne disease in a changing world, more attention needs to be given to building resilient and equitable systems in the present. Electronic supplementary material The online version of this article (doi: 10.1186/s40249-017-0375-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kevin Louis Bardosh
- Department of Anthropology, University of Florida, Gainesville, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, USA.
| | - Sadie J Ryan
- Emerging Pathogens Institute, University of Florida, Gainesville, USA.,Department of Geography, University of Florida, Gainesville, USA
| | - Kris Ebi
- Department of Global Health, University of Washington, Seattle, USA
| | - Susan Welburn
- Centre of Infectious Disease, University of Edinburgh, Edinburgh, UK
| | - Burton Singer
- Emerging Pathogens Institute, University of Florida, Gainesville, USA
| |
Collapse
|
16
|
Simwango M, Ngonyoka A, Nnko HJ, Salekwa LP, Ole-Neselle M, Kimera SI, Gwakisa PS. Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania. Parasit Vectors 2017; 10:507. [PMID: 29061160 PMCID: PMC5654092 DOI: 10.1186/s13071-017-2411-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Background African trypanosomosis is a disease of public health and economic importance that poses a major threat to the livelihoods of people living in the Maasai Steppe, where there is a significant interaction between people, livestock and wildlife. The vulnerability of the Maasai people to the disease is enhanced by the interaction of their cattle, which act as vehicles for trypanosomes, and tsetse flies close to wildlife in protected areas. This study was aimed at identification of trypanosome infections circulating in cattle and tsetse flies in order to understand their distribution and prevalence in livestock/wildlife interface areas in the Maasai Steppe. Methods A total of 1002 cattle and 886 tsetse flies were sampled from June 2015 to February 2016 in five villages and PCR was conducted to amplify the internal transcribed spacer 1 (ITS1) from trypanosomes. All Trypanosoma brucei-positive samples were further tested for the presence of the serum resistance-associated (SRA) gene found in human-infective trypanosomes using the SRA-LAMP technique. Results The overall prevalence of trypanosome infections was 17.2% in cattle and 3.4% in tsetse flies. Using a nested PCR, prevalence and abundance of five trypanosome species, Trypanosoma vivax, T. brucei, T. simiae, T. theileri and T. congolense, were determined, which varied with season and location. The highest prevalence of the identified trypanosome species was recorded at the end of wet season with an exception of T. brucei which was high at the beginning of the wet season. No human-infective trypanosomes were detected in both cattle and tsetse fly DNA. Conclusions This study confirms that seasonality and location have a significant contribution to the prevalence of trypanosome species in both mammalian and vector hosts. These results are important for designing of community-wide vector and disease control interventions and planning of sustainable regimes for reduction of the burden of trypanosomosis in endemic pastoral areas, such as the Maasai Steppe in northern Tanzania.
Collapse
Affiliation(s)
- Mary Simwango
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture (SUA), P.O box 3015, Morogoro, Tanzania.
| | - Anibariki Ngonyoka
- Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Bioengineering, P. O. Box 447, Arusha, Tanzania.,Department of Geography and Environmental Studies, University of Dodoma, P. O. Box 395, Dodoma, Tanzania
| | - Happiness J Nnko
- Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Bioengineering, P. O. Box 447, Arusha, Tanzania.,Department of Geography and Environmental Studies, University of Dodoma, P. O. Box 395, Dodoma, Tanzania
| | - Linda P Salekwa
- Genome Sciences Centre, Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Moses Ole-Neselle
- FAO Emergency Centre for Transboundary Animal Disease (ECTAD), P.O Box 2, Dar es Salaam, Tanzania
| | - Sharadhuli I Kimera
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture (SUA), P.O box 3015, Morogoro, Tanzania
| | - Paul S Gwakisa
- Genome Sciences Centre, Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
17
|
Franco JR, Cecchi G, Priotto G, Paone M, Diarra A, Grout L, Mattioli RC, Argaw D. Monitoring the elimination of human African trypanosomiasis: Update to 2014. PLoS Negl Trop Dis 2017; 11:e0005585. [PMID: 28531222 PMCID: PMC5456402 DOI: 10.1371/journal.pntd.0005585] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 06/02/2017] [Accepted: 04/20/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The World Health Organization (WHO) has targeted the elimination of Human African trypanosomiasis (HAT) 'as a public health problem' by 2020. The selected indicators of elimination should be monitored every two years, and we provide here a comprehensive update to 2014. The monitoring system is underpinned by the Atlas of HAT. RESULTS With 3,797 reported cases in 2014, the corresponding milestone (5,000 cases) was surpassed, and the 2020 global target of 'fewer than 2,000 reported cases per year' seems within reach. The areas where HAT is still a public health problem (i.e. > 1 HAT reported case per 10,000 people per year) have halved in less than a decade, and in 2014 they corresponded to 350 thousand km2. The number and potential coverage of fixed health facilities offering diagnosis and treatment for HAT has expanded, and approximately 1,000 are now operating in 23 endemic countries. The observed trends are supported by sustained surveillance and improved reporting. DISCUSSION HAT elimination appears to be on track. For gambiense HAT, still accounting for the vast majority of reported cases, progress continues unabated in a context of sustained intensity of screening activities. For rhodesiense HAT, a slow-down was observed in the last few years. Looking beyond the 2020 target, innovative tools and approaches will be increasingly needed. Coordination, through the WHO network for HAT elimination, will remain crucial to overcome the foreseeable and unforeseeable challenges that an elimination process will inevitably pose.
Collapse
Affiliation(s)
- José R. Franco
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations, Sub-regional Office for Eastern Africa, Addis Ababa, Ethiopia
| | - Gerardo Priotto
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| | - Massimo Paone
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Abdoulaye Diarra
- World Health Organization, Regional Office for Africa, Communicable Disease Unit, Brazzaville, Congo
| | - Lise Grout
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| | - Raffaele C. Mattioli
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Daniel Argaw
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| |
Collapse
|
18
|
Armstrong AJ, Blackmore A. Tsetse flies should remain in protected areas in KwaZulu-Natal. KOEDOE: AFRICAN PROTECTED AREA CONSERVATION AND SCIENCE 2017. [DOI: 10.4102/koedoe.v59i1.1432] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The proposal to eradicate tsetse flies from South Africa, including its protected areas, via the sequential aerosol technique combined with the sterile insect technique to reduce trypanosomiasis in cattle did not present an appropriate analysis of the impacts that implementation of the proposal would have on biodiversity. Not only would the implementation of the proposal be contrary to South African laws protecting and conserving biodiversity, but it would also have negative consequences for the conservation of biodiversity. Some of the negative consequences are reviewed, including extirpations and negative impacts on ecological and ecosystem processes and services. Alternative strategies to control trypanosomiasis in cattle effectively in a more environment-friendly manner are presently available and others will almost certainly become available in the not-too-distant future.Conservation implications: Environmental protection, promotion of conservation and sustainable use of the environment are all deeply seated in South Africa’s law. Rural livestock husbandry considerations and biodiversity conservation are not mutually exclusive and the importance of one cannot supersede the other. The eradication proposal is seen to be environmentally damaging and therefore it is concluded that the purpose of this proposed eradication exercise is unconstitutional, contrary to various multilateral agreements South Africa has entered into and contrary to good environmental governance.
Collapse
|
19
|
Auty H, Morrison LJ, Torr SJ, Lord J. Transmission Dynamics of Rhodesian Sleeping Sickness at the Interface of Wildlife and Livestock Areas. Trends Parasitol 2016; 32:608-621. [PMID: 27262917 DOI: 10.1016/j.pt.2016.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/31/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Many wilderness areas of East and Southern Africa are foci for Rhodesian sleeping sickness, a fatal zoonotic disease caused by trypanosomes transmitted by tsetse flies. Although transmission in these foci is traditionally driven by wildlife reservoirs, rising human and livestock populations may increase the role of livestock in transmission cycles. Deciphering transmission dynamics at wildlife and livestock interface areas is key to developing appropriate control. Data are lacking for key parameters, including host distributions, tsetse density, and mortality rates, and the relative roles of livestock and wildlife as hosts in fragmented habitats, limiting the development of meaningful models to assist in the assessment and implementation of control strategies.
Collapse
Affiliation(s)
- Harriet Auty
- Epidemiology Research Unit, SRUC, An Lòchran, Inverness Campus, Inverness, UK.
| | - Liam J Morrison
- Roslin Institute, R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Stephen J Torr
- Liverpool School of Tropical Medicine, Liverpool, UK; Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Jennifer Lord
- Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
20
|
Squarre D, Kabongo I, Munyeme M, Mumba C, Mwasinga W, Hachaambwa L, Sugimoto C, Namangala B. Human African Trypanosomiasis in the Kafue National Park, Zambia. PLoS Negl Trop Dis 2016; 10:e0004567. [PMID: 27196336 PMCID: PMC4873190 DOI: 10.1371/journal.pntd.0004567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- David Squarre
- Zambia Wildlife Authority (ZAWA), Chilanga, Zambia
- * E-mail:
| | - Ilunga Kabongo
- Care for Business (CFB) Medical Center and Hospital, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Chisoni Mumba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Wizaso Mwasinga
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | | | - Chihiro Sugimoto
- Research Centre for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Japan
| | - Boniface Namangala
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|