1
|
Polyzois H, Nguyen HT, Roberto de Alvarenga Junior B, Taylor LS. Amorphous Solid Dispersion Formation for Enhanced Release Performance of Racemic and Enantiopure Praziquantel. Mol Pharm 2024; 21:5285-5296. [PMID: 39292641 PMCID: PMC11462518 DOI: 10.1021/acs.molpharmaceut.4c00711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024]
Abstract
Praziquantel (PZQ) is the treatment of choice for schistosomiasis, which affects more than 250 million people globally. Commercial tablets contain the crystalline racemic compound (RS-PZQ) which limits drug dissolution and oral bioavailability and can lead to unwanted side effects and poor patient compliance due to the presence of the S-enantiomer. While many approaches have been explored for improving PZQ's dissolution and oral bioavailability, studies focusing on investigating its release from amorphous solid dispersions (ASDs) have been limited. In this work, nucleation induction time experiments were performed to identify suitable polymers for preparing ASDs using RS-PZQ and R-PZQ, the therapeutically active enantiomer. Cellulose-based polymers, hydroxypropyl methylcellulose acetate succinate (HPMCAS, MF grade) and hydroxypropyl methylcellulose (HPMC, E5 LV grade), were the best crystallization inhibitors for RS-PZQ in aqueous media and were selected for ASD preparation using solvent evaporation (SE) and hot-melt extrusion (HME). ASDs prepared experimentally were subjected to X-ray powder diffraction to verify their amorphous nature and a selected number of ASDs were monitored and found to remain physically stable following several months of storage under accelerated-stability testing conditions. SE HPMCAS-MF ASDs of RS-PZQ and R-PZQ showed faster release than HPMC E5 LV ASDs and maintained good performance with an increase in drug loading (DL). HME ASDs of RS-PZQ formulated using HPMCAS-MF exhibited slightly enhanced release compared to that of SE ASDs. SE HPMCAS-MF ASDs showed a maximum release increase of the order of 6 times compared to generic and branded (Biltricide) PZQ tablets. More importantly, SE R-PZQ ASDs with HPMCAS-MF released the drug as effectively as RS-PZQ or better, depending on the DL used. These findings have significant implications for the development of commercial PZQ formulations comprised solely of the R-enantiomer, which can result in mitigation of the biopharmaceutical and compliance issues associated with current commercial tablets.
Collapse
Affiliation(s)
- Hector Polyzois
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Hanh Thuy Nguyen
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| | | | - Lynne S. Taylor
- Department of Industrial and Molecular
Pharmaceutics, College of Pharmacy, Purdue
University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Balogun EO, Joseph GI, Olabode SC, Dayaso NA, Danazumi AU, Bashford-Rogers R, Mckerrow JH, Jeelani G, Caffrey CR. Computational Workflow to Design Novel Vaccine Candidates and Small-Molecule Therapeutics for Schistosomiasis. Pathogens 2024; 13:850. [PMID: 39452722 PMCID: PMC11509903 DOI: 10.3390/pathogens13100850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/22/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024] Open
Abstract
Human schistosomiasis, caused by the Schistosoma trematode, is a neglected parasitic disease affecting over 250 million people worldwide. There is no vaccine, and the single available drug is threatened by drug resistance. This study presents a computational approach to designing multiepitope vaccines (MEVs) targeting the cercarial (CMEV) and schistosomular (SMEV) stages of schistosomes, and identifies potential schistosomicidal compounds from the Medicine for Malaria Ventures (MMV) and SuperNatural Database (SND) libraries. The designed vaccines (CMEV and SMEV) are engineered to provoke robust immune responses by incorporating a blend of T- and B-cell epitopes. Structural and immunoinformatics evaluations predicted robust interactions of CMEV and SMEV with key immune receptors and prolonged immune responses. In addition, molecular docking identified several compounds from the MMV and SND libraries with strong binding affinities to vital Schistosoma cathepsin proteases, indicating their potential as schistosomicidal agents. Our findings contribute to the potential development of effective vaccines and drugs against schistosomiasis.
Collapse
Affiliation(s)
- Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria; (S.C.O.)
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA 92093, USA
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gideon Ibrahim Joseph
- Department of Biochemistry, Federal University of Technology, Minna PMB 65, Niger, Nigeria;
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna PMB 65, Niger, Nigeria
| | - Samuel Charles Olabode
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria; (S.C.O.)
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria
| | - Naziru Abdulkadir Dayaso
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria; (S.C.O.)
- Africa Center of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria
| | - Ammar Usman Danazumi
- Department of Biochemistry, Ahmadu Bello University, Zaria 810001, Kaduna, Nigeria; (S.C.O.)
| | | | - James H. Mckerrow
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA 92093, USA
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, MC0657, La Jolla, CA 92093, USA
| |
Collapse
|
3
|
Villamizar-Monsalve MA, López-Abán J, Vicente B, Peláez R, Muro A. Current drug strategies for the treatment and control of schistosomiasis. Expert Opin Pharmacother 2024; 25:409-420. [PMID: 38511392 DOI: 10.1080/14656566.2024.2333372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Schistosomiasis, one of the current Neglected Tropical Diseases (NTDs) affects over 230 million people globally, with nearly 700 million at risk in more than 74 countries. Praziquantel (PZQ) has served as the primary treatment for the past four decades; however, its effectiveness is limited as it solely eliminates adult worms. In regions where infections are frequent, PZQ exhibits only temporary efficacy and has restricted potential to disrupt the prolonged transmission of the disease. AREAS COVERED A comprehensive exploration using the PubMed database was conducted to review current pharmacotherapy approaches for schistosomiasis. This review also encompasses recent research findings related to potential novel therapeutics and the repurposing of existing drugs. EXPERT OPINION Current schistosoma treatment strategies, primarily relying on PZQ, face challenges like temporary effectiveness and limited impact on disease transmission. Drug repurposing, due to economic constraints, is decisive for NTDs. Despite PZQ's efficacy, its failure to prevent reinfection highlights the need for complementary strategies, especially in regions with persistent environmental foci. Integrating therapies against diverse schistosome stages boosts efficacy and impedes resistance. Uncovering novel agents is essential to address resistance concerns in tackling this neglected tropical disease. Integrated strategies present a comprehensive approach to navigate the complex challenges.
Collapse
Affiliation(s)
- María Alejandra Villamizar-Monsalve
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Belén Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Rafael Peláez
- Organic and Pharmaceutical Chemistry Department, Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Salamanca, Spain
| |
Collapse
|
4
|
Marchant JS. Progress interrogating TRPMPZQ as the target of praziquantel. PLoS Negl Trop Dis 2024; 18:e0011929. [PMID: 38358948 PMCID: PMC10868838 DOI: 10.1371/journal.pntd.0011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
The drug praziquantel (PZQ) has served as the long-standing drug therapy for treatment of infections caused by parasitic flatworms. These encompass diseases caused by parasitic blood, lung, and liver flukes, as well as various tapeworm infections. Despite a history of clinical usage spanning over 4 decades, the parasite target of PZQ has long resisted identification. However, a flatworm transient receptor potential ion channel from the melastatin subfamily (TRPMPZQ) was recently identified as a target for PZQ action. Here, recent experimental progress interrogating TRPMPZQ is evaluated, encompassing biochemical, pharmacological, genetic, and comparative phylogenetic data that highlight the properties of this ion channel. Various lines of evidence that support TRPMPZQ being the therapeutic target of PZQ are presented, together with additional priorities for further research into the mechanism of action of this important clinical drug.
Collapse
Affiliation(s)
- Jonathan S. Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
5
|
D’Abbrunzo I, Procida G, Perissutti B. Praziquantel Fifty Years on: A Comprehensive Overview of Its Solid State. Pharmaceutics 2023; 16:27. [PMID: 38258039 PMCID: PMC10821272 DOI: 10.3390/pharmaceutics16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review discusses the entire progress made on the anthelmintic drug praziquantel, focusing on the solid state and, therefore, on anhydrous crystalline polymorphs, amorphous forms, and multicomponent systems (i.e., hydrates, solvates, and cocrystals). Despite having been extensively studied over the last 50 years, new polymorphs and the greater part of their cocrystals have only been identified in the past decade. Progress in crystal engineering science (e.g., the use of mechanochemistry as a solid form screening tool and more strategic structure-based methods), along with the development of analytical techniques, including Synchrotron X-ray analyses, spectroscopy, and microscopy, have furthered the identification of unknown crystal structures of the drug. Also, computational modeling has significantly contributed to the prediction and design of new cocrystals by considering structural conformations and interactions energy. Whilst the insights on praziquantel polymorphs discussed in the present review will give a significant contribution to controlling their formation during manufacturing and drug formulation, the detailed multicomponent forms will help in designing and implementing future praziquantel-based functional materials. The latter will hopefully overcome praziquantel's numerous drawbacks and exploit its potential in the field of neglected tropical diseases.
Collapse
Affiliation(s)
| | | | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (G.P.)
| |
Collapse
|
6
|
Sprague DJ, Kaethner M, Park SK, Rohr CM, Harris JL, Maillard D, Spangenberg T, Lundström-Stadelmann B, Marchant JS. The Anthelmintic Activity of Praziquantel Analogs Correlates with Structure-Activity Relationships at TRPM PZQ Orthologs. ACS Med Chem Lett 2023; 14:1537-1543. [PMID: 37970586 PMCID: PMC10641913 DOI: 10.1021/acsmedchemlett.3c00350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/17/2023] Open
Abstract
The anthelmintic drug praziquantel remains a key clinical therapy for treating various diseases caused by parasitic flatworms. The parasite target of praziquantel has remained undefined despite longstanding usage in the clinic, although a candidate ion channel target, named TRPMPZQ, has recently been identified. Intriguingly, certain praziquantel derivatives show different activities against different parasites: for example, some praziquantel analogs are considerably more active against cestodes than against schistosomes. Here we interrogate whether the different activities of praziquantel analogs against different parasites are also reflected by unique structure-activity relationships at the TRPMPZQ channels found in these different organisms. To do this, several praziquantel analogs were synthesized and functionally profiled against schistosome and cestode TRPMPZQ channels. Data demonstrate that structure-activity relationships are closely mirrored between parasites and their TRPMPZQ orthologs, providing further support for TRPMPZQ as the therapeutically relevant target of praziquantel.
Collapse
Affiliation(s)
- Daniel J. Sprague
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
- Program
in Chemical Biology, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Marc Kaethner
- Institute
of Parasitology, Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Berne, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, 3012 Berne, Switzerland
| | - Sang-Kyu Park
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Claudia M. Rohr
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - Jade L. Harris
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| | - David Maillard
- Central
Process Development - Downstream Processing Services, Merck Electronics KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Thomas Spangenberg
- Global Health
Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt, Germany, 1262 Eysins, Switzerland
| | - Britta Lundström-Stadelmann
- Institute
of Parasitology, Department of Infectious Diseases and Pathobiology,
Vetsuisse Faculty, University of Bern, 3012 Berne, Switzerland
- Multidisciplinary
Center for Infectious Diseases, University
of Bern, 3012 Berne, Switzerland
| | - Jonathan S. Marchant
- Department
of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
7
|
Friedrich L, Park SK, Ballard P, Ho Baeurle TH, Maillard D, Bödding M, Keiser J, Marchant JS, Spangenberg T. Metabolism of (R)-Praziquantel versus the Activation of a Parasite Transient Receptor Potential Melastatin Ion Channel. ChemMedChem 2023; 18:e202300140. [PMID: 37272317 PMCID: PMC10530395 DOI: 10.1002/cmdc.202300140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Praziquantel (PZQ) is an essential anthelmintic drug recently established to be an activator of a Transient Receptor Potential Melastatin (TRPMPZQ ) ion channel in trematode worms. Bioinformatic, mutagenesis and drug metabolism work indicate that the cyclohexyl ring of PZQ is a key pharmacophore for activation of trematode TRPMPZQ , as well as serving as the primary site of oxidative metabolism which results in PZQ being a short-lived drug. Based on our recent findings, the hydrophobic cleft in schistosome TRPMPZQ defined by three hydrophobic residues surrounding the cyclohexyl ring has little tolerance for polarity. Here we evaluate the in vitro and in vivo activities of PZQ analogues with improved metabolic stability relative to the challenge of maintaining activity on the channel. Finally, an estimation of the respective contribution to the overall activity of both the parent and the main metabolite of PZQ in humans is reported.
Collapse
Affiliation(s)
- Lukas Friedrich
- Global Research & Development, Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Sang-Kyu Park
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI, 53226, USA
| | | | | | - David Maillard
- Central Process Development-Downstream Processing Services, Merck Electronics KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Matthias Bödding
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Kreuzstr. 2, 4123, Allschwil, Switzerland
- Helminth Drug Development Unit, University of Basel, Basel, Switzerland
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee WI, 53226, USA
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA, Darmstadt Germany, 1262, Eysins, Switzerland
| |
Collapse
|
8
|
Zhang M, Zhang F, Qiu J, Shu X, Zhou T, Liu S, Wang Y, Liu R, Zheng X, He L. Stereoselective Pharmacokinetics and Residue Depletion of Praziquantel and Its Metabolites, 4-Hydroxypraziquantel Enantiomers, in Swine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12061-12069. [PMID: 37524372 DOI: 10.1021/acs.jafc.3c03546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Praziquantel (PZQ) is administered as a racemic mixture during swine production to treat parasitic diseases. Despite its widespread application, the pharmacokinetics, residue depletion, bioactivity, and toxicity of PZQ enantiomers in swine remain largely unknown. In this study, a systematic investigation of the pharmacokinetics, tissue distribution, and residue depletion of PZQ, its major metabolites (trans- and cis-4-OH-PZQ), and their enantiomers was conducted in swine. The findings indicated that PZQ was absorbed and metabolized rapidly. In swine plasma, the concentrations of S-PZQ, S-trans-4-OH-PZQ, and R-cis-4-OH-PZQ were higher than those of their respective enantiomers. The three analytes exhibited significant tissue distribution and stereoselectivity in 10 swine tissues. Notably, the two enantiomers of PZQ demonstrated comparable tissue concentrations except in the liver and lung. Moreover, the concentrations of S-trans-4-OH-PZQ and R-cis-4-OH-PZQ were higher than those of their respective enantiomers in the 10 tissues. This study has significant implications for the development of rational dosing strategies, reducing drug usage, and minimizing side effects, as well as accurately assessing the risks associated with PZQ administration and, by extension, other chiral drugs. Furthermore, it lays a theoretical foundation for the future use of the active enantiomer, R-PZQ.
Collapse
Affiliation(s)
- Meiyu Zhang
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
| | - Fangyu Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jingli Qiu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaogui Shu
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Sijia Liu
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
| | - Yaxin Wang
- College of Animal Science and Technology, Guangdong Polytechnic of Science and Trade, Guangzhou 510430, China
| | - Rong Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiantong Zheng
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Limin He
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
N'Goran EK, Odiere MR, Assandé Aka R, Ouattara M, Aka NAD, Ogutu B, Rawago F, Bagchus WM, Bödding M, Kourany-Lefoll E, Tappert A, Yin X, Bezuidenhout D, Badenhorst H, Huber E, Dälken B, Haj-Ali Saflo O. Efficacy, safety, and palatability of arpraziquantel (L-praziquantel) orodispersible tablets in children aged 3 months to 6 years infected with Schistosoma in Côte d'Ivoire and Kenya: an open-label, partly randomised, phase 3 trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:867-876. [PMID: 36893784 DOI: 10.1016/s1473-3099(23)00048-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND WHO has underlined the need for a child-friendly treatment for schistosomiasis, a prevalent parasitic disease in low-income and middle-income countries. After successful phase 1 and 2 trials, we aimed to evaluate the efficacy, safety, palatability, and pharmacokinetics of arpraziquantel (L-praziquantel) orodispersible tablets for preschool-aged children. METHODS This open-label, partly randomised, phase 3 study was conducted at two hospitals in Côte d'Ivoire and Kenya. Children with a minimum bodyweight of 5 kg in those aged 3 months to 2 years and 8 kg in those aged 2-6 years were eligible. In cohort 1, participants aged 4-6 years infected with Schistosoma mansoni were randomly assigned (2:1) to receive a single dose of oral arpraziquantel 50 mg/kg (cohort 1a) or oral praziquantel 40 mg/kg (cohort 1b) using a computer-generated randomisation list. Cohorts 2 (aged 2-3 years) and 3 (aged 3 months to 2 years) infected with S mansoni, and the first 30 participants in cohort 4a (aged 3 months to 6 years) infected with Schistosoma haematobium, received a single dose of oral arpraziquantel 50 mg/kg. After follow-up assessments, arpraziquantel was increased to 60 mg/kg (cohort 4b). Laboratory personnel were masked to the treatment group, screening, and baseline values. S mansoni was detected using a point-of-care circulating cathodic antigen urine cassette test and confirmed using the Kato-Katz method. The primary efficacy endpoint was clinical cure rate at 17-21 days after treatment in cohorts 1a and 1b, measured in the modified intention-to-treat population and calculated using the Clopper-Pearson method. This study is registered with ClinicalTrials.gov, NCT03845140. FINDINGS Between Sept 2, 2019, and Aug 7, 2021, 2663 participants were prescreened and 326 were diagnosed with S mansoni or S haematobium. 288 were enrolled (n=100 in cohort 1a, n=50 in cohort 1b, n=30 in cohort 2, n=18 in cohort 3, n=30 in cohort 4a, and n=60 in cohort 4b), but eight participants received antimalarial drugs and were excluded from the efficacy analyses. The median age was 5·1 years (IQR 4·1-6·0) and 132 (47%) of 280 participants were female and 148 (53%) were male. Cure rates with arpraziquantel were similar to those with praziquantel (87·8% [95% CI 79·6-93·5] in cohort 1a vs 81·3% [67·4-91·1] in cohort 1b). No safety concerns were identified during the study. The most common drug-related treatment-emergent adverse events were abdominal pain (41 [14%] of 288 participants), diarrhoea (27 [9%]), vomiting (16 [6%]), and somnolence (21 [7%]). INTERPRETATION Arpraziquantel, a first-line orodispersible tablet, showed high efficacy and favourable safety in preschool-aged children with schistosomiasis. FUNDING The Global Health Innovative Technology Fund, the European and Developing Countries Clinical Trials Partnership, and the healthcare business of Merck KGaA, Darmstadt, Germany (CrossRef Funder ID: 10.13039/100009945).
Collapse
Affiliation(s)
- Eliézer K N'Goran
- Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire, Kisumu, Kenya
| | - Maurice R Odiere
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | | | - Mamadou Ouattara
- Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire, Kisumu, Kenya
| | - N A David Aka
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Bernhards Ogutu
- Kenya Medical Research Institute, Centre for Clinical Research, Nairobi, Kenya
| | - Fredrick Rawago
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Wilhelmina M Bagchus
- Merck Institute of Pharmacometrics, Merck Serono SA (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | | | - Elly Kourany-Lefoll
- Ares Trading SA (an affiliate of Merck KGaA, Darmstadt, Germany), Eysins, Switzerland
| | - Aliona Tappert
- The healthcare business of Merck KGaA, Darmstadt, Germany
| | - Xiaoyan Yin
- EMD Serono Research and Development Institute Inc (an affiliate of Merck KGaA, Darmstadt, Germany), Billerica, MA, USA
| | - Deon Bezuidenhout
- Merck Pty Ltd (an affiliate of Merck KGaA, Darmstadt, Germany), Modderfontein, South Africa
| | - Henk Badenhorst
- Merck Pty Ltd (an affiliate of Merck KGaA, Darmstadt, Germany), Modderfontein, South Africa
| | - Eric Huber
- Department of Medicine, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | | | - Okba Haj-Ali Saflo
- Merck SLU (an affiliate of Merck KGaA, Darmstadt, Germany), Madrid, Spain
| |
Collapse
|
10
|
Waechtler A, Cezanne B, Maillard D, Sun R, Wang S, Wang J, Harder A. Praziquantel - 50 Years of Research. ChemMedChem 2023; 18:e202300154. [PMID: 37009677 DOI: 10.1002/cmdc.202300154] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/04/2023]
Abstract
Investigations on praziquantel (PZQ) started fifty years ago by a cooperation between Bayer AG and Merck KGaA. Until today PZQ is the drug of choice for schistosomiasis in human medicine and used in many combinations with antinematode drugs in veterinary medicine. The Sm.TRPMPZQ , a Ca2+ -permeable transient receptor potential (TRP) channel, has been discovered as primary target of PZQ during the last decade. Furthermore, there is a short overview of routes of large-scale synthesis of racemic and pure (R)-PZQ. Until now racemic PZQ is used in veterinary and human medicine. In 2012 the Pediatric Praziquantel Consortium started PZQ chemistry and process development of pure (R)-PZQ for human application. It is hoped that (R)-PZQ will become available for pediatric use soon. The knowledge of the binding pocket of PZQ in Sm.TRPMPZQ allows to design synthesis of PZQ-derivatives of the next generation for a target-site directed screening. A similar screening should also be started for Fasciola hepatica TRPMPZQ .
Collapse
Affiliation(s)
- Andreas Waechtler
- Central Process Development Department (EL-OTS) Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Bertram Cezanne
- Central Process Development Department (EL-OTS) Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - David Maillard
- Central Process Development Department (EL-OTS) Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Rui Sun
- R&D Department, Valiant Pharmaceutical Co. Ltd., Taiyuan Road No. 60, YEDA, Yantai, Shandong, 264006, China
| | - Shaofang Wang
- Technical Department, Valiant Corporation Ltd., Wuzhishan Road No. 11, YEDA, Yantai, Shandong, 264006, China
| | - Jihua Wang
- Technical Department, Valiant Corporation Ltd., Wuzhishan Road No. 11, YEDA, Yantai, Shandong, 264006, China
| | - Achim Harder
- Department WE Biology, Institute of Biology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
11
|
Barry A, Kabatende J, Telele NF, Mnkugwe RH, Mugisha M, Ntirenganya L, Bienvenu E, Aklillu E. Effect of pharmacogenetic variations on praziquantel plasma concentration and safety outcomes among school children in Rwanda. Sci Rep 2023; 13:1446. [PMID: 36702944 PMCID: PMC9879930 DOI: 10.1038/s41598-023-28641-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
School-based mass drug administration (MDA) of Praziquantel (PZQ) is the global intervention strategy for elimination of schistosomiasis. Genetic variations in drug metabolizing enzymes and transporter proteins influences drug exposure and treatment outcomes, but data on PZQ pharmacokinetics and safety outcomes are scarce. We investigated the effect of pharmacogenetics variations on PZQ plasma concentrations and safety outcomes among 462 Rwandan schoolchildren who received single dose PZQ and albendazole in MDA. Genotyping for common functional variant alleles CYP3A4*1B, CYP3A5 (*3, *6, *7), CYP2C19 (*2, *3, *17), CYP2C9 (*2, *3) and CYP2J2*7 were done. Plasma concentration of PZQ, cis-4-OH-PZQ and trans-4-OH-PZQ were measured using LC/MS/MS. Active safety monitoring was done on days 1, 2, and 7 post-MDA. CYP2C9 and CYP2C19 genotypes were significantly associated with PZQ plasma concentrations and its cis- and trans-4-OH-PZQ/PZQ metabolic ratios (MR). CYP2C9*2 and CYP2C9*3 carriers had significantly higher PZQ concentration (p = 0.02), lower trans-4-OH-PZQ/PZQ (p < 0.001), and cis-4-OH-PZQ/PZQ (p = 0.02) MR. CYP2C19 (*2, *3) carriers had significantly higher plasma PZQ concentration than CYP2C19 *1/*1 and CYP2C19 *17 carriers (*1/*17 or *17/*17) (p < 0.001). CYP3A4 was significantly associated with cis-4-OH-PZQ MR (p = 0.04). Lower cis-4-OH-PZQ/PZQ MR (p < 0.0001) was a predictor of MDA-associated adverse events, but no significant association with genotypes were found. In conclusion, CYP2C9 and CYP2C19 genotypes significantly influence the plasma PZQ concentration and its MR. Lower cis-4-OH-PZQ/PZQ MR is significant predictor of adverse events following MDA.
Collapse
Affiliation(s)
- Abbie Barry
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Joseph Kabatende
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden.,Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Nigus Fikrie Telele
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Rajabu Hussein Mnkugwe
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Michael Mugisha
- College of Medicine and Health Sciences, University of Rwanda, KK 737, Kigali, Rwanda
| | - Lazare Ntirenganya
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emile Bienvenu
- Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda.,College of Medicine and Health Sciences, University of Rwanda, KK 737, Kigali, Rwanda
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
12
|
Nogueira RA, Lira MGS, Licá ICL, Frazão GCCG, Dos Santos VAF, Filho ACCM, Rodrigues JGM, Miranda GS, Carvalho RC, Nascimento FRF. Praziquantel: An update on the mechanism of its action against schistosomiasis and new therapeutic perspectives. Mol Biochem Parasitol 2022; 252:111531. [PMID: 36375598 DOI: 10.1016/j.molbiopara.2022.111531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Praziquantel (PZQ) is the drug of choice for the treatment of all forms of schistosomiasis, although its mechanisms of action are not completely understood. PZQ acts largely on adult worms. This narrative literature review describes what is known about the mechanisms of action of PZQ against schistosomes from in vitro and in vivo studies and highlights the molecular targets in parasites and immune responses induced in definitive hosts by this drug. Moreover, new therapeutic uses of PZQ are discussed. Studies have demonstrated that in addition to impacting voltage-operated Ca2 + channels, PZQ may interact with other schistosome molecules, such as myosin regulatory light chain, glutathione S-transferase, and transient receptor potential channels. Following PZQ administration, increased T regulatory type 1 (Tr1) cell differentiation and decreased inflammation were observed, indicating that PZQ promotes immunoregulatory pathways. Although PZQ is widely used in mass drug administration schemes, the existence of resistant parasites has not been proven; however, it is a concern that should be constantly investigated in human populations. In addition, we discuss studies that evaluate health applications of PZQ (other than helminth infection), such as its effect in cancer therapy and its adjuvant action in vaccines against viruses.
Collapse
Affiliation(s)
- Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Education, Federal Institute of Education, Science and Technology of Maranhão, Zé Doca, MA, Brazil
| | - Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - Vitor Augusto Ferreira Dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | | | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Guilherme Silva Miranda
- Department of Education, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, MA, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil; Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| |
Collapse
|
13
|
Summers S, Bhattacharyya T, Allan F, Stothard JR, Edielu A, Webster BL, Miles MA, Bustinduy AL. A review of the genetic determinants of praziquantel resistance in Schistosoma mansoni: Is praziquantel and intestinal schistosomiasis a perfect match? FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.933097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease (NTD) caused by parasitic trematodes belonging to the Schistosoma genus. The mainstay of schistosomiasis control is the delivery of a single dose of praziquantel (PZQ) through mass drug administration (MDA) programs. These programs have been successful in reducing the prevalence and intensity of infections. Due to the success of MDA programs, the disease has recently been targeted for elimination as a public health problem in some endemic settings. The new World Health Organization (WHO) treatment guidelines aim to provide equitable access to PZQ for individuals above two years old in targeted areas. The scale up of MDA programs may heighten the drug selection pressures on Schistosoma parasites, which could lead to the emergence of PZQ resistant schistosomes. The reliance on a single drug to treat a disease of this magnitude is worrying should drug resistance develop. Therefore, there is a need to detect and track resistant schistosomes to counteract the threat of drug resistance to the WHO 2030 NTD roadmap targets. Until recently, drug resistance studies have been hindered by the lack of molecular markers associated with PZQ resistance. This review discusses recent significant advances in understanding the molecular basis of PZQ action in S. mansoni and proposes additional genetic determinants associated with PZQ resistance. PZQ resistance will also be analyzed in the context of alternative factors that may decrease efficacy within endemic field settings, and the most recent treatment guidelines recommended by the WHO.
Collapse
|
14
|
Cavalcante dos Santos R, Cunha FC, Marcellos CFC, de Mello MSL, Tavares FW, Pereira N, Gomes Barreto A. Adsorption of Praziquantel Enantiomers on Chiral Cellulose tris 3-chloro, 4-methylphenylcarbamate by Frontal Analysis: Fisherian and Bayesian Parameter Estimation and Inference. J Chromatogr A 2022; 1676:463200. [DOI: 10.1016/j.chroma.2022.463200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022]
|
15
|
Rosenberger L, Jenniches J, von Essen C, Khutia A, Kühn C, Marx A, Georgi K, Hirsch AKH, Hartmann RW, Badolo L. Metabolic Profiling of S-praziquantel: Structure Elucidation Using the Crystalline Sponge Method in Combination with Mass Spectrometry and Nuclear Magnetic Resonance. Drug Metab Dispos 2022; 50:320-326. [PMID: 35115299 DOI: 10.1124/dmd.121.000663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/15/2022] [Indexed: 11/22/2022] Open
Abstract
Praziquantel (PZQ) is the drug of choice for treatment of the neglected tropical disease schistosomiasis. Although the drug has been extensively used over several decades and its metabolism well studied (several oxidative metabolites are known from literature), the knowledge of the complete structure of some of its metabolites remains elusive. Conventional techniques, such as nuclear magnetic resonance or liquid chromatography mass spectrometry were used in the past to investigate phase I and phase II metabolites of PZQ. These techniques are either limited to provide the complete molecular structure (liquid chromatography mass spectrometry) or require large amount of sample material (NMR), which are not always available when in vitro systems are used for investigation of the metabolites. In this study, we describe new structures of S-PZQ metabolites generated in vitro from human liver microsomes using the crystalline sponge method. After chromatographic separation and purification of the oxidative metabolites, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis was conducted to narrow down the position of oxidation to a certain part of the molecule. To determine the exact position of hydroxylation, singe-crystal X-ray diffraction analysis of the crystalline sponges and absorbed analyte was used to identify the structure of S-PZQ and its metabolites. The crystalline sponge method allowed for complete structure elucidation of the known metabolites S-trans-4'-hydroxy-PZQ (M1), S-cis-4'-hydroxy-PZQ (M2) and S-/R-11b-hydroxy-PZQ (M6) as well as the unknown metabolites S-9-hydroxy-PZQ (M3) and S-7-hydroxy-S-PZQ (M4). For comparison of structural elucidation techniques, one metabolite (M3) was additionally analyzed using NMR. SIGNIFICANCE STATEMENT: The information content of the metabolic pathway of praziquantel is still limited. The crystalline sponge method allowed the complete structural elucidation of three known and two unknown metabolites of S-praziquantel, using only trace amounts of analyte material, as demonstrated in this study.
Collapse
Affiliation(s)
- Lara Rosenberger
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| | - Judith Jenniches
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| | - Carolina von Essen
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| | - Anupam Khutia
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| | - Clemens Kühn
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| | - Andreas Marx
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| | - Katrin Georgi
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| | - Anna K H Hirsch
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| | - Rolf W Hartmann
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| | - Lassina Badolo
- Merck KGaA, Darmstadt, Germany (L.R., J.J., C.v.E., A.K., C.K., A.M., K.G., L.B.); Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.); and Department of Pharmacy, Saarland University, Saarbrücken, Germany (L.R., A.K.H.H., R.W.H.)
| |
Collapse
|
16
|
Ding TY, Shu XG, Xiong RP, Qiu JL, Li L, He LM. Simultaneous determination of praziquantel and its main metabolites in the tissues of black goats and their residue depletion. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:666-677. [PMID: 35394409 DOI: 10.1080/19440049.2022.2032380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Praziquantel (PZQ) is a pyrazino-isoquinoline compound with broad spectrum of activity against parasitic trematodes and cestodes, and a key veterinary drug in the parasitic disease control field. However, PZQ residues caused by non-conforming or excessive use in food-producing animals may pose a serious threat to human health. Herein, a simple, sensitive and reproducible LC-MS/MS method was developed for the simultaneous determination of praziquantel and trans- and cis-4-hydroxypraziquantel in black goat tissues to guide the reasonable use of PZQ. The mean recoveries for three target analytes were 71.2 ∼ 117.6%, and the limits of quantification were 1.0 μg/kg. Twenty-five healthy black goats were administered a single dose of praziquantel tablets at a dose of 35 mg/kg of body weight for residue elimination study, The results revealed that praziquantel and 4-hydroxypraziquantel were rapidly depleted in goat tissues and the elimination half-lives did not exceed 1 day in all tissues except for muscle and lung. It provides guidance for the establishment of maximum residue limit of praziquantel in goat.
Collapse
Affiliation(s)
- Tong-Yan Ding
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiao-Gui Shu
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ren-Ping Xiong
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jing-Li Qiu
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lu Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics, Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
| | - Li-Min He
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
17
|
Praziquantel-encapsulated niosomes against Schistosoma mansoni with reduced sensitivity to praziquantel. BIOMÉDICA 2022; 42:67-84. [PMID: 35471171 PMCID: PMC9059922 DOI: 10.7705/biomedica.5913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/21/2022]
Abstract
Introduction: Praziquantel (PZQ) is the only commercially available drug for schistosomiasis. The current shortage of alternative effective drugs and the lack of successful preventive measures enhance its value. The increase in the prevalence of PZQ resistance under sustained drug pressure is, therefore, an upcoming issue. Objective: To overcome the tolerance to PZQ using nanotechnology after laboratory induction of a Schistosoma mansoni isolate with reduced sensitivity to the drug during the intramolluscan phase. Materials and methods: Shedding snails were treated with PZQ doses of 200 mg/kg twice/ week followed by an interval of one week and then repeated twice in the same manner. The success of inducing reduced sensitivity was confirmed in vitro via the reduction of cercarial response to PZQ regarding their swimming activity and death percentage at different examination times. Results: Oral treatment with a single PZQ dose of 500 mg/kg in mice infected with cercariae with reduced sensitivity to PZQ revealed a non-significant reduction (35.1%) of total worm burden compared to non-treated control mice. Orally inoculated PZQ- encapsulated niosomes against S. mansoni with reduced sensitivity to PZQ successfully regained the pathogen’s sensitivity to PZQ as evidenced by measuring different parameters in comparison to the non-treated infected animals with parasites with reduced sensitivity to PZQ. The mean total worm load was 1.33 ± 0.52 with a statistically significant reduction of 94.09% and complete eradication of male worms. We obtained a remarkable increase in the percentage reduction of tissue egg counts in the liver and intestine (97.68% and 98.56%, respectively) associated with a massive increase in dead eggs and the complete absence of immature stages. Conclusion: PZQ-encapsulated niosomes restored the drug sensitivity against laboratory- induced S. mansoni adult worms with reduced sensitivity to PZQ.
Collapse
|
18
|
Silva Torres D, Alves de Oliveira B, Souza D Silveira L, Paulo da Silva M, Rodrigues Durães Pereira V, Moraes J, Rúbia Costa Couri M, Fortini Grenfell E Queiroz R, Martins Parreiras P, Roberto Silva M, Azevedo Alves L, Carius de Souza V, Vanessa Zabala Capriles Goliatt P, Gomes Vasconcelos E, Alves da Silva Filho A, de Faria Pinto P. Synthetic Aurones: New Features for Schistosoma mansoni Therapy. Chem Biodivers 2021; 18:e2100439. [PMID: 34665914 DOI: 10.1002/cbdv.202100439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022]
Abstract
In this work, two synthetic aurones revealed moderate schistosomicidal potential in in vitro and in vivo assays. Aurones (1) and (2) promoted changes in tegument integrity and motor activity, leading to death of adult Schistosoma mansoni worms in in vitro assays. When administered orally (two doses of 50 mg/kg) in experimentally infected animals, synthetic aurones (1) and (2) promoted reductions of 56.20 % and 57.61 % of the parasite load and stimulated the displacement towards the liver of the remaining adult worms. The oogram analysis revealed that the treatment with both aurones interferes with the egg development kinetics in the intestinal tissue. Seeking an action target for compounds (1) and (2), the connection with NTPDases enzymes, recognized as important therapeutic targets for S. mansoni, was evaluated. Molecular docking studies have shown promising results. The dataset reveals the anthelmintic character of these compounds, which can be used in the development of new therapies for schistosomiasis.
Collapse
Affiliation(s)
- Daniel Silva Torres
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Bruna Alves de Oliveira
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Marcos Paulo da Silva
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | | | - Josué Moraes
- Núcleo de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, SP, Brazil
| | | | | | - Patrícia Martins Parreiras
- Laboratório de Esquistossomose, Centro de Pesquisas René Rachou, Fundação Oswaldo, Cruz, FIOCRUZ, Belo Horizonte, MG, Brazil
| | | | - Lara Azevedo Alves
- Grupo de Modelagem Computacional Aplicada (GMCA), Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Vinícius Carius de Souza
- Grupo de Modelagem Computacional Aplicada (GMCA), Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Eveline Gomes Vasconcelos
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ademar Alves da Silva Filho
- Faculdade de Farmácia, Departamento de Ciências Farmacêuticas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Priscila de Faria Pinto
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| |
Collapse
|
19
|
Mnkugwe RH, Minzi O, Kinung'hi S, Kamuhabwa A, Aklillu E. Effect of Pharmacogenetics Variations on Praziquantel Plasma Concentrations and Schistosomiasis Treatment Outcomes Among Infected School-Aged Children in Tanzania. Front Pharmacol 2021; 12:712084. [PMID: 34531744 PMCID: PMC8438567 DOI: 10.3389/fphar.2021.712084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Studies on pharmacogenetics of praziquantel (PZQ) and its relevance on plasma drug concentrations and schistosomiasis treatment outcomes are lacking. We investigated the effect of pharmacogenetics variations of PZQ on plasma drug levels and schistosomiasis treatment outcomes among infected Tanzanian school-aged children. A total of 340 Schistosoma mansoni infected children were enrolled and treated with single-dose PZQ. Stool samples analysis was done by thick smear Kato-Katz technique, and treatment efficacy was assessed at 3-weeks post-treatment. Safety was assessed within 4 h after PZQ intake. Plasma samples were collected at 4 h post-dose, and PZQ and trans-4-OH-PZQ concentrations were quantified using UPLCMS/MS. Genotyping for CYP3A4*1B, CYP3A5 (*3, *6, *7), CYP2C19 (*2, *3, *17), and CYP2C9 (*2, *3) were done by Real-Time PCR. The median age (range) of the study participants was 12 years (7-17). There was a significant association of CYP2C19 genotypes with PZQ concentrations and its metabolic ratio (trans-4-OH-PZQ/PZQ). PZQ concentration was significantly higher among CYP2C19 (*2, *3) carriers than CYP2C19 *1/*1 and CYP2C19 *17 carriers (ultra-rapid metabolizers) (p = 0.04). The metabolic ratio was significantly higher among CYP2C19*17 carriers than CYP2C19 (*2, *3) carriers (p = 0.01). No significant effect of CYP3A4, CYP3A5, CYP2C19, and CYP2C9 genotypes on treatment efficacy or adverse events were observed. Baseline infection intensity and CYP3A5 genotype were significant predictors of treatment associated-adverse events. In conclusion, CYP2C19 genotype significantly affects plasma PZQ concentration and its metabolic ratio. For the first time, we report the importance of pharmacogenetic variation for the treatment of schistosomiasis, a neglected tropical disease.
Collapse
Affiliation(s)
- Rajabu Hussein Mnkugwe
- Department of Clinical Pharmacology, School of Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.,Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Omary Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Safari Kinung'hi
- National Institute for Medical Research (NIMR), Mwanza Research Centre, Mwanza, Tanzania
| | - Appolinary Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Optimal single sampling time-point for monitoring of praziquantel exposure in children. Sci Rep 2021; 11:17955. [PMID: 34504222 PMCID: PMC8429641 DOI: 10.1038/s41598-021-97409-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
Praziquantel pharmacokinetics studies in schistosomiasis infected children are scarce partly due to the challenges/complexity of intensive blood sampling in the target population. This study was aimed to investigate the optimal single sampling time-point for monitoring praziquantel exposure. This was intensive pharmacokinetic study conducted among 32 Schistosoma mansoni infected children treated with an oral standard single-dose 40 mg/kg praziquantel. Plasma samples were collected at 0, 1, 2, 4, 6 and 8 h post-praziquantel administration. Quantification of praziquantel and its enantiomers (R- and S-praziquantel) concentrations was done by Liquid chromatography-tandem mass spectrometer (LC-MS/MS). The correlation between area under the plasma concentration-time curve from 0 to 8 h (AUC8) and plasma concentrations at each specific sampling time-point was determined by Pearson's correlation coefficient (r2). The median age (range) of the study population was 12.5 years (10-17). The study participants were 17 males and 15 females. Both total praziquantel and its enantiomers (R- and S-praziquantel) displayed a wide inter-individual pharmacokinetic variability. Regression analysis indicated that, plasma concentrations collected at 4 h post-dose had a significantly highest correlation with the AUC8 for both total praziquantel (r2 = 0.81, p < 0.001) and S-praziquantel (r2 = 0.84, p < 0.001) than any other sampling time-point; while for R-praziquantel, plasma concentrations collected at 6 h sampling time-point had a significantly highest correlation with the AUC8 (r2 = 0.79, p < 0.001) than any other sampling time-point. Four hours sampling time-point post-praziquantel administration is ideal optimal single sampling time-point for therapeutic monitoring of total praziquantel exposure while 6 h sampling time-point is suitable for monitoring of a pharmacologically active R-praziquantel enantiomer.
Collapse
|
21
|
Mitochondria as a potential target for the development of prophylactic and therapeutic drugs against Schistosoma mansoni infection. Antimicrob Agents Chemother 2021; 65:e0041821. [PMID: 34339272 DOI: 10.1128/aac.00418-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emergence of parasites resistant to praziquantel, the only therapeutic agent, and its ineffectiveness as a prophylactic agent (inactive against the migratory/juvenile Schistosoma mansoni), makes the development of new antischistosomal drugs urgent. The parasite's mitochondrion is an attractive target for drug development because this organelle is essential for survival throughout the parasite's life cycle. We investigated the effects of 116 compounds against Schistosoma mansoni cercariae motility that have been reported to affect mitochondria-related processes in other organisms. Next, eight compounds plus two controls (mefloquine and praziquantel) were selected and assayed against motility of schistosomula (in vitro) and adults (ex vivo). Prophylactic and therapeutic assays were performed using infected mouse models. Inhibition of oxygen consumption rate (OCR) was assayed using Seahorse XFe24 Analyzer. All selected compounds showed excellent prophylactic activity, reducing the worm burden in the lungs to less than 15% that obtained in the vehicle control. Notably, ascofuranone showed the highest activity with a 98% reduction of the worm burden, suggesting the potential for development of ascofuranone as a prophylactic agent. The worm burden of infected mice with S. mansoni at the adult stage was reduced by more than 50% in mice treated with mefloquine, nitazoxanide, amiodarone, ascofuranone, pyrvinium pamoate, or plumbagin. Moreover, adult mitochondrial OCR was severely inhibited by ascofuranone, atovaquone, and nitazoxanide, while pyrvinium pamoate inhibited both mitochondrial and non-mitochondrial OCRs. These results demonstrate that the mitochondria of S. mansoni are feasible target for drug development.
Collapse
|
22
|
Meng R, Zhang X, Wang H, Zhang D, Zhao X. Different Inductive Effects of Praziquantel Racemate and its Enantiomers on the Enzyme CYP3A4 Mediated by Pregnane X Receptor and its Variants. Curr Drug Metab 2021; 22:232-239. [PMID: 33397228 DOI: 10.2174/1389200221999210104204057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Praziquantel (PZQ), which possesses an asymmetric center, is classified as a pyrazinoisoquinoline and has been the mainstay in the treatment of schistosomiasis since 1980. PZQ undergoes a pronounced first-pass metabolism in the liver through the CYP450 system which could be mediated by nuclear receptors. OBJECTIVE The purpose of this study was to investigate the possible different induction effects of CYP3A4 by PZQ racemate and enantiomers via the pregnane X receptor (PXR) and the effect of PXR polymorphism on the induction potency of PZQs. METHODS The dual-luciferase reporter gene systems constructed in HepG2 cells were used to measure the abilities of PZQs to induce CYP3A4 expression mediated by PXR. The mRNA and protein levels of CYP3A4 were evaluated by polymerase chain reaction (PCR) and western blotting, respectively. RESULTS In HepG2 cells transfected with PXRwt, PXR158, PXR163, PXR370 or PXR403 expression plasmids, PZQ racemate and its enantiomers up-regulated the luciferase activity in a concentration-dependent manner, while reaching saturation after transfected with PXR379 expression plasmids. The mRNA and protein expression of CYP3A4 was effectively activated in PXR-transfected HepG2 cells. The induction ability of CYP3A4 mediated by PXR activation by PZQ racemate and its enantiomers were statistically different between the same PXR group and different PXR groups. CONCLUSION The enantioselective induction effects of PZQs on CYP3A4 were related to the enantioselective activations of PXR by PZQs and were influenced by the PXR gene polymorphism. These findings provide a basis for further understanding the enantiomeric metabolism and the variable efficacy of PZQs.
Collapse
Affiliation(s)
- Ran Meng
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xueli Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haina Wang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Danlu Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Zhao
- School of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
23
|
Ying P, Yu J, Su W. Liquid‐Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001245] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ping Ying
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
24
|
Shou H, He Z, Peng G, Su W, Yu J. Two approaches for the synthesis of levo-praziquantel. Org Biomol Chem 2021; 19:4507-4514. [PMID: 33908985 DOI: 10.1039/d1ob00453k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report herein the development of two pathways for the preparation of levo-praziquantel (R-PZQ), which involves three-/four-step processes of a mechanochemical (asymmetric) aza-Henry/acylation reaction, a hydrogenation reaction, (chiral resolution) and a solvent-free acylation-ring closing reaction. The key intermediate (R)-1-aminomethyl tetrahydroisoquinoline could be obtained either by chiral resolution with a rational reuse of the S-isomer or by mechanochemical enantioselective synthesis that refrained from using a bulky toxic solvent. The efficiency and scalability of both the developed routes were demonstrated and desired target product was obtained in a satisfactory yield with excellent enantiopurity (>99%), offering practical, concise and environmentally friendly alternatives to access R-PZQ.
Collapse
Affiliation(s)
- Haowen Shou
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Zhaoting He
- Beijing Fukangren Bio-pharm Tech Co., Ltd, 102627, P. R. China
| | - Gang Peng
- Huadong Medicine Co., Ltd, Hangzhou 310011, P. R. China
| | - Weike Su
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Jingbo Yu
- National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
25
|
Kapungu NN, Li X, Nhachi C, Masimirembwa C, Thelingwani RS. In vitro and in vivo human metabolism and pharmacokinetics of S- and R-praziquantel. Pharmacol Res Perspect 2020; 8:e00618. [PMID: 32700798 PMCID: PMC7376644 DOI: 10.1002/prp2.618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/11/2022] Open
Abstract
Racemic praziquantel (PZQ) is the drug of choice for the treatment of schistosomiasis. R-Praziquantel (R-PZQ) has been shown as the therapeutic form, whereas S-PZQ is less efficacious and responsible for the bitter taste of the tablet. This study aimed at investigating the metabolism of R- and S-PZQ as this could have implications on efficacy and safety of racemate and R-PZQ specific formulations under development. In vitro CYP reaction phenotyping assay using 10 recombinant CYP (rCYP) isoenzymes showed hepatic CYP1A2, 2C19, 2D6, 3A4, and 3A5 were the major enzymes involved in metabolism of PZQ. Enzyme kinetic studies were performed by substrate depletion and metabolite formation methods, by incubating PZQ and its R- or S-enantiomers in human liver microsomes (HLM) and the rCYP enzymes. The effect of selective CYP inhibitors on PZQ metabolism was assessed in HLM. CYP1A2, 2C19, and 3A4 exhibited different catalytic activity toward PZQ, R- and S-enantiomers. Metabolism of R-PZQ was mainly catalyzed by CYP1A2 and CYP2C19, whereas metabolism of S-PZQ was mainly by CYP2C19 and CYP3A4. Based on metabolic CLint obtained through formation of hydroxylated metabolites, CYP3A4 was estimated to contribute 89.88% to metabolism of S-PZQ using SIMCYP® IVIVE prediction. Reanalysis of samples from a human PZQ-ketoconazole (KTZ) drug-drug interaction pharmacokinetic study confirmed these findings in that KTZ, a potent inhibitor of CYP3A, selectively increased area under the curve of S-PZQ by 68% and that of R-PZQ by just 9%. Knowledge of enantioselective metabolism will enable better understanding of variable efficacy of PZQ in patients and the R-PZQ formulation under development.
Collapse
Affiliation(s)
- Nyasha Nicole Kapungu
- African Institute of Biomedical Science and Technology (AiBST)HarareZimbabwe
- Department of Clinical PharmacologyUniversity of Zimbabwe (UZ)HarareZimbabwe
| | - Xueqing Li
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Charles Nhachi
- Department of Clinical PharmacologyUniversity of Zimbabwe (UZ)HarareZimbabwe
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology (AiBST)HarareZimbabwe
| | | |
Collapse
|
26
|
Harder A. Activation of transient receptor potential channel Sm.(Schistosoma mansoni)TRPM PZQ by PZQ, enhanced Ca ++ influx, spastic paralysis, and tegumental disrupture-the deadly cascade in parasitic schistosomes, other trematodes, and cestodes. Parasitol Res 2020; 119:2371-2382. [PMID: 32607709 PMCID: PMC7366562 DOI: 10.1007/s00436-020-06763-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/07/2020] [Indexed: 12/28/2022]
Abstract
After almost 50 years of praziquantel (PZQ) research, Park and Marchant (Trends Parasitol 36:182-194, 2020) described the Ca++-permeable transient receptor potential (TRP) channel Sm.TRPMPZQ in Schistosoma mansoni as target of PZQ. Here we describe the deadly cascade in schistosomes which is induced by the (R)-PZQ enantiomer that includes contemporaneous stereoselective activation of Sm.TRPMPZQ-mediated Ca++ influx, disturbed Ca++ homeostasis, Ca++-dependent spastic paralysis, and Ca++- and PZQ-dependent disruption of parasitic teguments. Under normal conditions, there is a reversible balance between bilayer, isotropic, and HII phases in biological membranes (Jouhet 2013). In vitro, we could observe an irreversible but not stereoselective transition to the HII phase in liposomes consisting of phosphatidylethanolamine (PE) and phosphatidylserine (PS), two naturally occurring phospholipids in schistosomes, by the concerted action of Ca++ and PZQ (Harder 2013). HII structures are a prerequisite for induction of fusion processes (Jouhet 2013), which, indeed, become visible as blebs, vacuolation processes, and large balloon-like surface exudates in a large variety of PZQ-sensitive parasitic flukes and cestodes after PZQ treatment. These tegument damages are irreversible. As homologs of Sm.TRPMPZQ are also present in the other trematodes S. japonicum, S. haematobium, or Clonorchis sinensis and cestodes Taenia solium, Echinococcus multilocularis, or Hymenolepis microstoma (Park and Marchant, Trends Parasitol 36:182-194, 2020), it is suggested that a similar deadly cascade will be operating generally in PZQ-sensitive parasites.
Collapse
Affiliation(s)
- Achim Harder
- WE Biology, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
27
|
Duguet TB, Glebov A, Hussain A, Kulkarni S, Mochalkin I, Geary TG, Rashid M, Spangenberg T, Ribeiro P. Identification of annotated bioactive molecules that impair motility of the blood fluke Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:73-88. [PMID: 32531750 PMCID: PMC7284125 DOI: 10.1016/j.ijpddr.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/21/2023]
Abstract
Neglected tropical diseases are of growing worldwide concern and schistosomiasis, caused by parasitic flatworms, continues to be a major threat with more than 200 million people requiring preventive treatment. As praziquantel (PZQ) remains the treatment of choice, an urgent need for alternative treatments motivates research to identify new lead compounds that would complement PZQ by filling the therapeutic gaps associated with this treatment. Because impairing parasite neurotransmission remains a core strategy for control of parasitic helminths, we screened a library of 708 compounds with validated biological activity in humans on the blood fluke Schistosoma mansoni, measuring their effect on the motility on schistosomulae and adult worms. The primary phenotypic screen performed on schistosomulae identified 70 compounds that induced changes in viability and/or motility. Screening different concentrations and incubation times identified molecules with fast onset of activity on both life stages at low concentration (1 μM). To complement this study, similar assays were performed with chemical analogs of the cholinomimetic drug arecoline and the calcilytic molecule NPS-2143, two compounds that rapidly inhibited schistosome motility; 17 arecoline and 302 NPS-2143 analogs were tested to enlarge the pool of schistosomicidal molecules. Finally, validated hit compounds were tested on three functionally-validated neuroregulatory S. mansoni G-protein coupled receptors (GPCRs): Sm5HTR (serotonin-sensitive), SmGPR2 (histamine) and SmD2 (dopamine), revealing NPS-2143 and analogs as potent inhibitors of dopamine/epinine responses on both human and S. mansoni GPCRs. This study highlights the potential for repurposing known human therapeutic agents for potential schistosomicidal effects and expands the list of hits for further progression.
Collapse
Affiliation(s)
- Thomas B Duguet
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| | - Anastasia Glebov
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Asimah Hussain
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | | | - Igor Mochalkin
- EMD Serono Research and Development Institute, Billerica, MA, USA
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Mohammed Rashid
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Thomas Spangenberg
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), Eysins, Switzerland.
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
28
|
Effect of Praziquantel on Schistosoma mekongi Proteome and Phosphoproteome. Pathogens 2020; 9:pathogens9060417. [PMID: 32471184 PMCID: PMC7350297 DOI: 10.3390/pathogens9060417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/11/2023] Open
Abstract
Schistosoma mekongi causes schistosomiasis in southeast Asia, against which praziquantel (PZQ) is the only treatment option. PZQ resistance has been reported, thus increasing the requirement to understand mechanism of PZQ. Herein, this study aimed to assess differences in proteome and phosphoproteome of S. mekongi after PZQ treatment for elucidating its action. Furthermore, key kinases related to PZQ effects were predicted to identify alternative targets for novel drug development. Proteomes of S. mekongi were profiled after PZQ treatment at half maximal inhibitory concentration and compared with untreated worms. A total of 144 proteins were differentially expressed after treatment. In parallel, immunohistochemistry indicated a reduction of phosphorylation, with 43 phosphoproteins showing reduced phosphorylation, as identified by phosphoproteomic approach. Pathway analysis of mass spectrometric data showed that calcium homeostasis, worm antigen, and oxidative stress pathways were influenced by PZQ treatment. Interestingly, two novel mechanisms related to protein folding and proteolysis through endoplasmic reticulum-associated degradation pathways were indicated as a parasiticidal mechanism of PZQ. According to kinase–substrate predictions with bioinformatic tools, Src kinase was highlighted as the major kinase related to the alteration of phosphorylation by PZQ. Interfering with these pathways or applying Src kinase inhibitors could be alternative approaches for further antischistosomal drug development.
Collapse
|
29
|
Dziwornu GA, Attram HD, Gachuhi S, Chibale K. Chemotherapy for human schistosomiasis: how far have we come? What's new? Where do we go from here? RSC Med Chem 2020; 11:455-490. [PMID: 33479649 PMCID: PMC7593896 DOI: 10.1039/d0md00062k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/22/2020] [Indexed: 01/11/2023] Open
Abstract
Globally, schistosomiasis threatens more than 700 million lives, mostly children, in poor localities of tropical and sub-tropical areas with morbidity due to acute and chronic pathological manifestations of the disease. After a century since the first antimonial-based drugs were introduced to treat the disease, anti-schistosomiasis drug development is again at a bottleneck with only one drug, praziquantel, available for treatment purposes. This review focuses on promising chemotypes as potential starting points in a drug discovery effort to meet the urgent need for new schistosomicides.
Collapse
Affiliation(s)
- Godwin Akpeko Dziwornu
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Henrietta Dede Attram
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Samuel Gachuhi
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
| | - Kelly Chibale
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa . ; Tel: +27 21 6502553
- Drug Discovery and Development Centre (H3D) , University of Cape Town , Rondebosch 7701 , South Africa
- Institute of Infectious Disease and Molecular Medicine , University of Cape Town , Rondebosch 7701 , South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit , University of Cape Town , Rondebosch 7701 , South Africa
| |
Collapse
|
30
|
Zanolla D, Hasa D, Arhangelskis M, Schneider-Rauber G, Chierotti MR, Keiser J, Voinovich D, Jones W, Perissutti B. Mechanochemical Formation of Racemic Praziquantel Hemihydrate with Improved Biopharmaceutical Properties. Pharmaceutics 2020; 12:pharmaceutics12030289. [PMID: 32210129 PMCID: PMC7151222 DOI: 10.3390/pharmaceutics12030289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 11/16/2022] Open
Abstract
Praziquantel (PZQ) is the first-line drug used against schistosomiasis, one of the most common parasitic diseases in the world. A series of crystalline structures including two new polymorphs of the pure drug and a series of cocrystals of PZQ have been discovered and deposited in the Cambridge Structural Database (CSD). This work adds to the list of multicomponent forms of PZQ a relevant example of a racemic hemihydrate (PZQ-HH), obtainable from commercial PZQ (polymorphic Form A) through mechanochemistry. Noteworthy, the formation of the new hemihydrate strongly depends on the initial polymorphic form of PZQ and on the experimental conditions used. The new PZQ-HH has been fully characterized by means of HPLC, Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Hot-Stage Microscopy (SEM), Powder X-Ray Diffraction (PXRD), Scanning Electron Microscopy (SEM), FT-IR, polarimetry, solid-state NMR (SS-NMR), solubility and intrinsic dissolution rate (IDR), and in vitro tests on Schistosoma mansoni adults. The crystal structure was solved from the powder X-ray diffraction pattern and validated by periodic-DFT calculations. The new bioactive hemihydrate was physically stable for three months and showed peculiar biopharmaceutical features including enhanced solubility and a double intrinsic dissolution rate in water in comparison to the commercially available PZQ Form A.
Collapse
Affiliation(s)
- Debora Zanolla
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
| | - Mihails Arhangelskis
- Faculty of Chemistry, University of Warsaw, 1 Pasteura Street, 02-093 Warsaw, Poland;
| | - Gabriela Schneider-Rauber
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2-1EW Cambridge, UK; (G.S.-R.); (W.J.)
| | - Michele R. Chierotti
- Department of Chemistry and NIS Centre, University of Torino, V. Giuria 7, 10125 Torino, Italy;
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002 Basel; Switzerland;
- Universität Basel, Petersplatz 1, P.O. Box, CH-4001 Basel, Switzerland
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
- Correspondence: (D.V.); (B.P.); Tel.: +39-040-558-3106 (D.V. & B.P.)
| | - William Jones
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2-1EW Cambridge, UK; (G.S.-R.); (W.J.)
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, P.le Europa 1, 34127 Trieste, Italy; (D.Z.); (D.H.)
- Correspondence: (D.V.); (B.P.); Tel.: +39-040-558-3106 (D.V. & B.P.)
| |
Collapse
|
31
|
Effectiveness of Repeated Administration of Praziquantel with Disodium Glycyrrhizinate and Two Enantiomers of Praziquantel on Opisthorchis felineus (Rivolta, 1884). Acta Parasitol 2020; 65:156-164. [PMID: 31797191 DOI: 10.2478/s11686-019-00149-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/15/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND Nowadays, it is still important to develop effective anti-opisthorchiasis agents. In this work, we tested a complex of praziquantel (PZQ) with a plant origin compound-disodium glycyrrhizinate-in the ratio 1:10 PZQ:Na2GA, containing 11-fold less of the active ingredient. Our aim was to study various ways to treat trematode Opisthorchis felineus with this complex in vitro. Additionally, an in vitro comparison of the anthelmintic action was made among racemic-PZQ, (R)-PZQ, and (S)-PZQ on juvenile and adult maritae of O. felineus. METHODS Worms extracted from the hamsters were subjected to various regimens of administration of the complex: once a day for 3 days or three times within 1 day. Moreover, mature maritae and juvenile worms of O. felineus were subjected to the comparison the anthelmintic effectiveness of racemic-PZQ, (R)-PZQ, and (S)-PZQ. RESULTS The O. felineus maritae that received PZQ:Na2GA (1:10) thrice within 1 day were most strongly affected by the drug. Their motility substantially decreased already on the second day after the last dose, and the percentage of live worms by the end of the experimental period was the lowest. These results indicate a cumulative anthelmintic effect of this substance under the regimen "three times within 1 day." For the first time, we report that among the three substances (racemic-PZQ and two enantiomers), (R)-PZQ has the highest anthelmintic activity, toward both juvenile and sexually mature maritae of O. felineus. CONCLUSION These findings suggest that the development of a supramolecular complex of (R)-PZQ with disodium glycyrrhizinate and administration of this complex three times within 1 day are promising approaches.
Collapse
|
32
|
Huang Z, Guo D, Fan J, Zhong Y, Zhang M, He L, Zhang W. HPLC semi-preparative separation of diclazuril enantiomers and racemization in solution. J Sep Sci 2020; 43:1240-1247. [PMID: 31909564 DOI: 10.1002/jssc.201901201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 01/20/2023]
Abstract
Diclazuril has been widely used in poultry feed for prevention and treatment of coccidiosis, and its chiral separation is rarely reported. Herein, semi-preparative separation method of diclazuril enantiomers has been developed through normal-phase high-performance liquid chromatography. Effects of chiral stationary phases, alcoholic modifiers, and column temperature on separation of diclazuril were discussed in detail. Both the single-urea-bound 4-chlorophenylcarbamoylated β-cyclodextrin and amylose tris(3,5-dimethylphenylcarbamate)-coated chiral stationary phases showed strong ability in separation of diclazuril by using n-hexane-trifluoroacetic acid-ethanol. Then, semi-preparative separation of diclazuril was carried out through stacked injection, and the "enantiomeric excess" purities of two fractions were over 98%. Next, the electronic circular dichroism profiles of these two fractions in ethanol solution displayed the mirror image of each other in the range 360-200 nm. Moreover, effects of acidic/basic additive, time, and temperature on racemization of diclazuril enantiomers in ethanol solution have been studied in detail through normal-phase high-performance liquid chromatography. Racemization of diclazuril enantiomers was remarkably accelerated through adding triethylamine at high temperature. We envision that this systematic investigation of diclazuril at an enantiomeric level would provide valuable information in future studies involving enantioselective bioactive, metabolic, and toxicological activities.
Collapse
Affiliation(s)
- Zhan Huang
- School of Chemistry, South China Normal University, Guangzhou, P. R. China
| | - Dong Guo
- School of Chemistry, South China Normal University, Guangzhou, P. R. China.,Guangzhou Research & Creativity Biotechnology Co. Ltd., Guangzhou, P. R. China
| | - Jun Fan
- School of Chemistry, South China Normal University, Guangzhou, P. R. China
| | - Yujing Zhong
- School of Chemistry, South China Normal University, Guangzhou, P. R. China
| | - Meiyu Zhang
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Limin He
- National Reference Laboratory of Veterinary Drug Residues, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Weiguang Zhang
- School of Chemistry, South China Normal University, Guangzhou, P. R. China
| |
Collapse
|
33
|
Ellakany AR, Elgendy DI, Alshenawy HA, Abdel Ghaffar AE. Assessment of the potential therapeutic effects of omeprazole in Schistosoma mansoni infected mice. Parasitol Res 2019; 118:3399-3408. [PMID: 31655904 DOI: 10.1007/s00436-019-06465-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 09/22/2019] [Indexed: 01/26/2023]
Abstract
Schistosomiasis is a neglected chronic parasitic disease with a significant lasting morbidity. Currently, praziquantel (PZQ) is the most efficient drug for schistosomiasis worldwide. However, the possibility of the occurrence of resistance to PZQ is increasing. Therefore, there is a vital need to find new antischistosomal drugs or to increase the efficacy of the existing ones. Omeprazole is a proton pump inhibitor which is reported to have antiparasitic properties. Thus, the aim of this study was to assess the potential therapeutic effects of omeprazole in experimental Schistosoma mansoni infection either alone or in combination with PZQ. For this aim, 80 laboratory bred mice were divided into 3 groups; uninfected control, infected untreated control, and infected and treated at tenth week P.I. The last group was divided into three subgroups that received either PZQ alone, omeprazole alone, or both drugs. The effectiveness of treatment was assessed by adult worm counts, liver egg count, scanning electron microscopy of adult worms, histopathological, and immunohistochemical (GFAP) examination. There was significant reduction of adult worm counts, liver egg counts, size, diameter of hepatic granulomas, hepatic fibrosis, and GFAP expression in the group that received combined treatment as compared to PZQ group. Moreover, the tegumental changes were more evident in the group that received combined treatment. In conclusion, the administration of omeprazole with PZQ improved the efficacy of PZQ in the treatment of Schistosomiasis mansoni.
Collapse
Affiliation(s)
- Asmaa R Ellakany
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina I Elgendy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt.
| | - Hanan A Alshenawy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira E Abdel Ghaffar
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
34
|
Park SK, Gunaratne GS, Chulkov EG, Moehring F, McCusker P, Dosa PI, Chan JD, Stucky CL, Marchant JS. The anthelmintic drug praziquantel activates a schistosome transient receptor potential channel. J Biol Chem 2019; 294:18873-18880. [PMID: 31653697 PMCID: PMC6901322 DOI: 10.1074/jbc.ac119.011093] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/24/2019] [Indexed: 11/06/2022] Open
Abstract
The anthelmintic drug praziquantel (PZQ) is used to treat schistosomiasis, a neglected tropical disease that affects over 200 million people worldwide. PZQ causes Ca2+ influx and spastic paralysis of adult worms and rapid vacuolization of the worm surface. However, the mechanism of action of PZQ remains unknown even after 40 years of clinical use. Here, we demonstrate that PZQ activates a schistosome transient receptor potential (TRP) channel, christened SmTRPMPZQ, present in parasitic schistosomes and other PZQ-sensitive parasites. Several properties of SmTRPMPZQ were consistent with known effects of PZQ on schistosomes, including (i) nanomolar sensitivity to PZQ; (ii) stereoselectivity toward (R)-PZQ; (iii) mediation of sustained Ca2+ signals in response to PZQ; and (iv) a pharmacological profile that mirrors the well-known effects of PZQ on muscle contraction and tegumental disruption. We anticipate that these findings will spur development of novel therapeutic interventions to manage schistosome infections and broader interest in PZQ, which is finally unmasked as a potent flatworm TRP channel activator.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Gihan S Gunaratne
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Evgeny G Chulkov
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Francie Moehring
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Paul McCusker
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Peter I Dosa
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414
| | - John D Chan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
35
|
Lombardo FC, Perissutti B, Keiser J. Activity and pharmacokinetics of a praziquantel crystalline polymorph in the Schistosoma mansoni mouse model. Eur J Pharm Biopharm 2019; 142:240-246. [PMID: 31265895 DOI: 10.1016/j.ejpb.2019.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/03/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023]
Abstract
Schistosomiasis is a global disease of significant public health relevance. Only one racemic drug, praziquantel, characterized by low bioavailability, low water solubility and extensive first pass metabolism, is currently available. We studied a new praziquantel formulation (polymorph B), which is based on a racemic praziquantel crystalline polymorph (TELCEU01). Its in vitro activity was tested on newly transformed schistosomula (NTS) and adult Schistosoma mansoni. In vivo studies were conducted in mice harboring chronic S. mansoni infections. Pharmacokinetic (PK) profiles of R- and S-praziquantel and R- and S- polymorph B following oral administration with both formulations were generated by sampling mice at 30, 60, 240 min and 24 h post-treatment, followed by LC-MS/MS analysis. PK parameters were calculated using a non-compartmental analysis with a linear trapezoidal model. In vitro, commercial praziquantel and the polymorph B performed similarly on both NTS (IC50 = 2.58 and 2.40 µg/mL at 72 h) and adults (IC50 = 0.05 and 0.07 µg/mL at 72 h). Praziquantel showed higher in vivo efficacy with an ED50 of 58.75 mg/kg compared to an ED50 of 122.61 mg/kg for the polymorph B. The PK profiles of the two drugs exhibited differences: R-praziquantel showed an overall 40% higher area under the plasma drug concentration-time curve (AUC0→24) (R-praziquantel = 3.42; R-polymorph B = 2.05 h*µg/mL) and an overall 30% lower apparent clearance (Cl/F) (R-praziquantel = 70.68 and R-polymorph B = 97.63 (mg)/(µg/mL)/h). Despite the lack of improved activity and PK properties of polymorph B against S. mansoni, here presented; research on pharmaceutical polymorphism remains a valid and cost-effective option for the development of new praziquantel formulations with enhanced properties such as increased solubility and/or dissolution.
Collapse
Affiliation(s)
- Flavio C Lombardo
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; Universität Basel, Petersplatz 1, CH-4001 Basel, Switzerland
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, p.le Europa 1, 34127 Trieste, Italy
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4002 Basel, Switzerland; Universität Basel, Petersplatz 1, CH-4001 Basel, Switzerland.
| |
Collapse
|
36
|
The ABL kinase inhibitor imatinib causes phenotypic changes and lethality in adult Schistosoma japonicum. Parasitol Res 2019; 118:881-890. [PMID: 30729300 DOI: 10.1007/s00436-019-06224-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/17/2019] [Indexed: 12/11/2022]
Abstract
Schistosomiasis caused by different species of schistosome parasites is one of the most debilitating helminthic diseases of humans worldwide. For decades, chemotherapy is the main method of controlling schistosomiasis. However, the fear of drug resistance has motivated the search for alternatives. It has been demonstrated that the ABL kinase inhibitor imatinib affected the development and survival of Schistosoma mansoni in vitro; however, there is still lack of information on whether imatinib also affects other schistosome species such as Schistosoma japonicum. In the present study, the anti-schistosomal potency of imatinib on adult S. japonicum was investigated in vitro, and the results showed that imatinib had a significant impact on various physiological processes of S. japonicum adult worms. Besides its negative effects on worm motility, pairing stability, and gonad development, imatinib caused pathological changes in the gastrodermis as well as the death of the parasite. Our findings suggest that imatinib is an intriguing candidate for further development as an option to fight S. japonicum.
Collapse
|
37
|
Pasche V, Laleu B, Keiser J. Early Antischistosomal Leads Identified from in Vitro and in Vivo Screening of the Medicines for Malaria Venture Pathogen Box. ACS Infect Dis 2019; 5:102-110. [PMID: 30398059 DOI: 10.1021/acsinfecdis.8b00220] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As part of the control and elimination strategy of human schistosomiasis, preventive chemotherapy relies on a single drug, praziquantel. Facing an almost dry drug development pipeline, screening the Pathogen Box from the Medicines for Malaria Venture (MMV), provides a unique opportunity to possibly expand the pool of potent molecules against schistosomiasis. The activity of 400 compounds from this open-access library was first screened in vitro on the larval stage of Schistosoma mansoni. The hits were then tested on adult worms. Eleven leads were identified and tested for albumin-binding and activity on adult S. haematobium. In parallel, a rudimental structure-activity relationship analysis was performed on the 112 available analogues of three leads, yielding another 30 molecules active against both larval and adult stages of S. mansoni. Seven leads, selected on druglikeness, pharmacokinetic properties, and availability, plus auranofin were tested in mice harboring a chronic S. mansoni infection. MMV022029 and MMV022478 revealed the highest worm burden reductions of 67.8 and 70.7%, respectively. This study provided a series of new potent scaffolds and pharmacophores that could be used to design and develop suitable alternative(s) to praziquantel.
Collapse
Affiliation(s)
- Valérian Pasche
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture (MMV), Geneva, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
38
|
Bais S, Greenberg RM. TRP channels as potential targets for antischistosomals. Int J Parasitol Drugs Drug Resist 2018; 8:511-517. [PMID: 30224169 PMCID: PMC6287577 DOI: 10.1016/j.ijpddr.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Ion channels are membrane protein complexes that underlie electrical excitability in cells, allowing ions to diffuse through cell membranes in a regulated fashion. They are essential for normal functioning of the neuromusculature and other tissues. Ion channels are also validated targets for many current anthelmintics, yet the properties of only a small subset of ion channels in parasitic helminths have been explored in any detail. Transient receptor potential (TRP) channels comprise a widely diverse superfamily of ion channels with important roles in sensory signaling, regulation of ion homeostasis, organellar trafficking, and other functions. There are several subtypes of TRP channels, including TRPA1 and TRPV1 channels, both of which are involved in, among other functions, sensory, nociceptive, and inflammatory signaling in mammals. Several lines of evidence indicate that TRPA1-like channels in schistosomes exhibit pharmacological sensitivities that differ from their mammalian counterparts and that may signify unique physiological properties as well. Thus, in addition to responding to TRPA1 modulators, schistosome TRPA1-like channels also respond to compounds that in other organisms modulate TRPV1 channels. Notably, TRPV channel genes are not found in schistosome genomes. Here, we review the evidence leading to these conclusions and examine potential implications. We also discuss recent results showing that praziquantel, the current drug of choice against schistosomiasis, selectively targets host TRP channels in addition to its likely primary targets in the parasite. The results we discuss add weight to the notion that schistosome TRP channels are worthy of investigation as candidate therapeutic targets.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia PA 19104, USA.
| |
Collapse
|
39
|
Panic G, Keiser J. Acting beyond 2020: better characterization of praziquantel and promising antischistosomal leads. Curr Opin Pharmacol 2018; 42:27-33. [DOI: 10.1016/j.coph.2018.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/01/2022]
|
40
|
Bonate PL, Wang T, Passier P, Bagchus W, Burt H, Lüpfert C, Abla N, Kovac J, Keiser J. Extrapolation of praziquantel pharmacokinetics to a pediatric population: a cautionary tale. J Pharmacokinet Pharmacodyn 2018; 45:747-762. [PMID: 30218416 PMCID: PMC6182730 DOI: 10.1007/s10928-018-9601-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 07/13/2018] [Indexed: 11/29/2022]
Abstract
L-praziquantel (PZQ) pharmacokinetic data were analyzed from two relative bioavailability Phase 1 studies in adult, healthy subjects with two new oral dispersion tablet (ODT) formulations of L-PZQ administered under various combinations of co-administration with food, water, and/or crushing. Linear mixed effects models adequately characterized the noncompartmental estimates of the pharmacokinetic profiles in both studies. Dose, food, and formulation were found to significantly affect L-PZQ exposure in both studies. The model for AUC was then extrapolated to children 2–5 years old accounting for enzyme maturation and weight. The predicted exposures were compared to an external Phase 1 study conducted by the Swiss Tropical and Public Health Institute using a currently marketed formulation (Cesol 600 mg immediate-release tablets) and found to be substantially lower than observed. A root cause analysis was completed to identify the reason for failure of the models. Various scenarios were proposed and tested. Two possible reasons for the failure were identified. One reason was that the model did not account for the reduced hepatic clearance seen in patients compared to the healthy volunteer population used to build the model. The second possible reason was that PZQ absorption appears sensitive to meal composition and the model did not account for differences in meals between a standardized Phase 1 unit and clinical sites in Africa. Further studies are needed to confirm our hypotheses.
Collapse
Affiliation(s)
| | - Tianli Wang
- Astellas, 1 Astellas Way, Northbrook, IL, 60062, USA.,Alkermes, Waltham, MA, 02451, USA
| | - Paul Passier
- Astellas, 1 Astellas Way, Northbrook, IL, 60062, USA.,Galapagos BV, Zernikedreef 16, Leiden, The Netherlands
| | - Wilhelmina Bagchus
- Merck Serono SA, Merck Institute for Pharmacometrics (A Subsidiary of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | - Howard Burt
- Simcyp (a Certara company), Blades Enterprise Centre, John Street, Sheffield, S2 4SU, UK
| | - Christian Lüpfert
- Merck KGaA, Translational Quantitative Pharmacology, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Nada Abla
- Merck Global Health Institute, Ares Trading S.A. (A Subsidiary of Merck KGaA, Darmstadt, Germany), 1262, Eysins, Switzerland
| | - Jana Kovac
- Swiss Tropical and Public Health Institute, Socinstr. 57, CH-4002, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstr. 57, CH-4002, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
41
|
Pharmacokinetics of Praziquantel in Schistosoma mansoni- and Schistosoma haematobium-Infected School- and Preschool-Aged Children. Antimicrob Agents Chemother 2018; 62:AAC.02253-17. [PMID: 29866859 DOI: 10.1128/aac.02253-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/18/2018] [Indexed: 02/06/2023] Open
Abstract
There is a growing consensus to include preschool-aged children in preventive chemotherapy programs with praziquantel to improve schistosomiasis control. However, pharmacokinetic data, crucial to establish a safe and effective dose for this age group, are sparse. The objective of this study was to establish and compare the pharmacokinetic parameters of praziquantel in preschool- and school-aged children with schistosomiasis. Two pharmacokinetic trials in school- and preschool-aged children infected with Schistosoma mansoni or S. haematobium were conducted in Côte d'Ivoire. Dried blood spot samples were taken from 492 children at 10 time points following a single oral dose of 20, 40, or 60 mg/kg of body weight of praziquantel and analyzed using liquid chromatography-mass spectrometry. Noncompartmental analysis (NCA) was performed to obtain the pharmacokinetic parameters of R-praziquantel (RPZQ), S-praziquantel (SPZQ), and R-trans-4-hydroxy-praziquantel. No significant differences in pharmacokinetic parameters between species-specific infections were observed. While pharmacokinetic parameters differed significantly between age groups for S. mansoni, this trend was not observed with S. haematobium Neither the area under the curve (AUC) nor the maximal blood concentration (Cmax) presented clear dose proportionality for R- and SPZQ. Logistic regression indicated a relationship between the RPZQ AUC and Cmax and the probability of cure. Praziquantel is subject to complex metabolic processes following erratic absorption. While the results of NCA are a very informative base for a better understanding of the drug, a more targeted approach in the form of population modeling is needed to quantify the factors influencing metabolic processes and draw conclusions.
Collapse
|
42
|
Gunaratne GS, Yahya NA, Dosa PI, Marchant JS. Activation of host transient receptor potential (TRP) channels by praziquantel stereoisomers. PLoS Negl Trop Dis 2018; 12:e0006420. [PMID: 29668703 PMCID: PMC5927461 DOI: 10.1371/journal.pntd.0006420] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/30/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
The anthelmintic praziquantel (±PZQ) serves as a highly effective antischistosomal therapy. ±PZQ causes a rapid paralysis of adult schistosome worms and deleterious effects on the worm tegument. In addition to these activities against the parasite, ±PZQ also modulates host vascular tone in blood vessels where the adult worms reside. In resting mesenteric arteries ±PZQ causes a constriction of basal tone, an effect mediated by (R)-PZQ activation of endogenous serotoninergic G protein coupled receptors (GPCRs). Here, we demonstrate a novel vasodilatory action of ±PZQ in mesenteric vessels that are precontracted by high potassium-evoked depolarization, an effect previously reported to be associated with agonists of the transient receptor potential melastatin 8 channel (TRPM8). Pharmacological profiling a panel of 17 human TRPs demonstrated ±PZQ activity against a subset of human TRP channels. Several host TRP channels (hTRPA1, hTRPC3, hTRPC7) were activated by both (R)-PZQ and (S)-PZQ over a micromolar range whereas hTRPM8 showed stereoselective activation by (S)-PZQ. The relaxant effect of ±PZQ in mesenteric arteries was caused by (S)-PZQ, and mimicked by TRPM8 agonists. However, persistence of both (S)-PZQ and TRPM8 agonist evoked vessel relaxation in TRPM8 knockout tissue suggested that canonical TRPM8 does not mediate this (S)-PZQ effect. We conclude that (S)-PZQ is vasoactive over the micromolar range in mesenteric arteries although the molecular mediators of this effect remain to be identified. These data expand our knowledge of the polypharmacology and host vascular efficacy of this clinically important anthelmintic.
Collapse
Affiliation(s)
- Gihan S. Gunaratne
- Department of Pharmacology, University of Minnesota, Minneapolis, United States of America
| | - Nawal A. Yahya
- Department of Pharmacology, University of Minnesota, Minneapolis, United States of America
| | - Peter I. Dosa
- Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, United States of America
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota, Minneapolis, United States of America
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States of America
| |
Collapse
|
43
|
Hong ST. Albendazole and Praziquantel: Review and Safety Monitoring in Korea. Infect Chemother 2018; 50:1-10. [PMID: 29637747 PMCID: PMC5895825 DOI: 10.3947/ic.2018.50.1.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Indexed: 01/04/2023] Open
Abstract
Albendazole (ADZ) and praziquantel (PZQT) have been used as anthelmintics for over 30 years. Worldwide, hundreds of millions tablets are administered to people and livestock every year. ADZ is poorly orally absorbed (<5%), and its uptake is enhanced by high-fat meals, while PZQT is well absorbed (>75%) and uptake is enhanced by carbohydrate-rich meals. Both ADZ and PZQT are safe, but not recommended for children <2 years or for women in the first trimester of pregnancy. Serious adverse events occur following high dose and prolonged administration of these drugs for treatment of echinococcosis or neurocysticercosis, especially in patients with poor liver function. The adverse events may be induced by the drugs, or by the dead worms themselves. The Korea Institute of Drug Safety & Risk Management monitors drug-related adverse events in Korea, and its database included 256 probable or possible ADZ-associated events and 108 PZQT-associated events between 2006 and 2015. Such low incidence rates in Korea are due to the low single dose treatments of ADZ, and the short-term use of PZQT. The number of serious adverse events due to drug interaction induced by ADZ and PZQT were six and two, respectively. We conclude that ADZ and PZQT are generally safe drugs, but they must be used with caution in people with poor liver function or those being comedicated for gastroesophageal reflux disease.
Collapse
Affiliation(s)
- Sung Tae Hong
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|