1
|
Vada R, Zanet S, Occhibove F, Trisciuoglio A, Varzandi AR, Ferroglio E. Assessing zoonotic risk in a fenced natural park in northwestern Italy: integrating camera traps for a vector-host approach to investigate tick-borne pathogens. Front Vet Sci 2025; 12:1536260. [PMID: 40098889 PMCID: PMC11911494 DOI: 10.3389/fvets.2025.1536260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/29/2025] [Indexed: 03/19/2025] Open
Abstract
Tick-borne diseases are among the major widespread emerging zoonotic diseases, and their circulation in the environment is influenced by a broad range of abiotic and biotic factors, including the abundance of vectors and vertebrate hosts. In this study, we estimated the prevalence of tick-borne pathogens and the impact of wildlife head count on their circulation in a lowland natural area in northwestern Italy. We collected ticks and camera trap pictures from 14 sampling points every 2 weeks for 1 year and identified pathogens through molecular analyses: Babesia capreoli, B. microti-like, Borrelia burgdorferi sensu lato (s.l.), Rickettsia of the spotted fever group (SFG), Theileria capreoli, and Anaplasma phagocytophilum. We modeled the presence of B. capreoli, B. microti-like, B. burgdorferi s.l., and SFG Rickettsia on head counts of wild ungulates and mesocarnivores. We tested a global model including all collected ticks, as well as a model focusing solely on Ixodes ricinus nymphs, the species, and the developmental stage most associated with zoonotic infection risk. The highest prevalence was obtained for B. microti-like (13%) and SFG Rickettsia (11%), and, for most pathogens, no differences were detected among tick species and their developmental stages. Mesocarnivores showed an additive effect on B. microti-like and B. burgdorferi s.l., while wild ungulates, non-competent for transmission of our target pathogens, showed a dilutive effect. These findings confirm the circulation of relevant tick-borne pathogens in the study area and show the use of camera trap data in predicting tick-borne pathogens' risk by targeting host species which may have an indirect impact and are more easily addressed by monitoring and control strategies.
Collapse
Affiliation(s)
- Rachele Vada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
2
|
Calchi AC, Duarte JMB, Castro-Santiago AC, Bassini-Silva R, Barros-Battesti DM, Machado RZ, André MR. Genetic diversity of Theileria spp. in deer (Artiodactyla: Cervidae) from Brazil. Parasitol Res 2024; 123:384. [PMID: 39549126 DOI: 10.1007/s00436-024-08398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
Babesia spp. and Theileria spp. are tick-borne apicomplexan protozoa that can cause disease in animals and humans. Deer are considered reservoirs for a wide variety of Piroplasmida species, including some potentially zoonotic. This study aimed to investigate the occurrence and genetic diversity of piroplasmids in wild deer sampled in four Brazilian states (São Paulo, Mato Grosso do Sul, Paraná and Goiás). For this purpose, extracted DNA samples from 181 deer buffy coat samples (138 Blastocerus dichotomus, 26 Subulo gouazoubira, 4 Mazama jucunda, 3 Mazama rufa and 10 Ozotocerus bezoarticus) were subjected to a nested PCR (nPCR) assay based on the 18S rRNA gene in order to perform a screening for piroplasmids and characterized based on the near-complete 18S rRNA, hsp70 and cox-3 genes. As a result, 75.14% (136/181) samples were positive for piroplasmids. Of these, 108 (79.41%), 101 (74.26%) and 67 (49.26%) were positive to near complete 18S rRNA, hsp70 and cox-3 genes, respectively. Phylogenetic analyses based on three molecular markers showed similar topology to each other. All sequences obtained in the present study were positioned into the Theileria sensu stricto clade, forming a distinct clade, albeit close to T. cervi. Most sequences grouped together into a large clade divided into subclades, which were often related to deer genus/species, showing that Theileria lineages seemed to show specificity according to deer genus/species. Two 18S rRNA sequences (one obtained from S. gouazoubira and another from M. jucunda) were positioned into a different clade, apart from other sequences detected in this study, indicating that different species of Theileria occur in deer from Brazil. Two subclusters were observed in the phylogenetic analysis based on the hsp70 gene: the first containing only sequences detected in marsh deer and the second grouping sequences detected in brocket deer (Mazama spp. and S. gouazoubira). The latter was also divided into smaller clades that grouped Theileria genotypes according to deer species (M. jucunda, M. rufa and S. gouazoubira). This study provides the first molecular evidence of Theileria infection in M. jucunda, as well as co-infection by distinct Theileria (sub)species/genotypes in the same deer was evidenced. Finally, this study expanded the knowledge on the diversity of Theileria spp. infecting deer from South America.
Collapse
Affiliation(s)
- Ana Cláudia Calchi
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, CEP, Jaboticabal, São Paulo, 14884-900, Brazil
| | | | - Ana Carolina Castro-Santiago
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science of University of São Paulo (FMVZ-USP), São Paulo, SP, Brazil
| | | | - Darci Moraes Barros-Battesti
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, CEP, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, CEP, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castellane, S/N, Zona Rural, CEP, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
3
|
Chen YQ, Zhang QX, Cheng ZB, Shan YF, Pu TC, Liu T, Guo QY, Zhang P, Song XL, Yang CS, Zhong ZY, Bai JD. First screening for tick-borne pathogens in Chinese Milu deer (Elaphurus davidianus). Ticks Tick Borne Dis 2024; 15:102293. [PMID: 38086248 DOI: 10.1016/j.ttbdis.2023.102293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/03/2023] [Indexed: 02/12/2024]
Abstract
Ticks are primary vectors for many tick-borne pathogens (TBPs) and pose a serious threat to veterinary and public health. Information on the presence of TBPs in Chinese Milu deer (Elaphurus davidianus) is limited. In this study, a total of 102 Chinese Milu deer blood samples were examined for Anaplasma spp., Theileria spp., Babesia spp., Rickettsia spp., and Borrelia spp., and three TBPs were identified: Anaplasma phagocytophilum (48; 47.1 %), Candidatus Anaplasma boleense (47; 46.1%), and Theileria capreoli (8; 7.8 %). Genetic and phylogenetic analysis of the 16S rRNA and 18S rRNA confirmed their identity with corresponding TBPs. To our knowledge, this is the first report on Candidatus A. boleense and T. capreoli detection in Chinese Milu deer. A high prevalence of A. phagocytophilum with veterinary and medical significance was identified in endangered Chinese Milu deer, which could act as potential zoonotic reservoirs. The identification of the TBPs in Chinese Milu deer provides useful information for the prevention and control of tick-borne diseases.
Collapse
Affiliation(s)
- Ya-Qian Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China; Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing, China
| | - Qing-Xun Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing, China
| | - Zhi-Bin Cheng
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing, China
| | - Yun-Fang Shan
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing, China
| | - Tian-Chun Pu
- Beijing Key Laboratory of Captive Wildlife Technologies in Beijing Zoo, Beijing, China
| | - Tian Liu
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing, China
| | - Qing-Yun Guo
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing, China
| | - Pan Zhang
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing, China
| | - Xing-Long Song
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China
| | - Cong-Shan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, China.
| | - Zhen-Yu Zhong
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing, China
| | - Jia-De Bai
- Beijing Milu Ecological Research Center, Beijing Academy of Science and Technology, Beijing, China
| |
Collapse
|
4
|
Wang BH, Du LF, Zhang MZ, Xia LY, Li C, Lin ZT, Wang N, Gao WY, Ye RZ, Liu JY, Han XY, Shi WQ, Shi XY, Jiang JF, Jia N, Cui XM, Zhao L, Cao WC. Genomic Characterization of Theileria luwenshuni Strain Cheeloo. Microbiol Spectr 2023; 11:e0030123. [PMID: 37260375 PMCID: PMC10434005 DOI: 10.1128/spectrum.00301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Theileria, a tick-borne intracellular protozoan, can cause infections of various livestock and wildlife around the world, posing a threat to veterinary health. Although more and more Theileria species have been identified, genomes have been available only from four Theileria species to date. Here, we assembled a whole genome of Theileria luwenshuni, an emerging Theileria, through next-generation sequencing of purified erythrocytes from the blood of a naturally infected goat. We designated it T. luwenshuni str. Cheeloo because its genome was assembled by the researchers at Cheeloo College of Medicine, Shandong University, China. The genome of T. lunwenshuni str. Cheeloo was the smallest in comparison with the other four Theileria species. T. luwenshuni str. Cheeloo possessed the fewest gene gains and gene family expansion. The protein count of each category was always comparable between T. luwenshuni str. Cheeloo and T. orientalis str. Shintoku in the Eukaryote Orthologs annotation, though there were remarkable differences in genome size. T. luwenshuni str. Cheeloo had lower counts than the other four Theileria species in most categories at level 3 of Gene Ontology annotation. Kyoto Encyclopedia of Genes and Genomes annotation revealed a loss of the c-Myb in T. luwenshuni str. Cheeloo. The infection rate of T. luwenshuni str. Cheeloo was up to 81.5% in a total of 54 goats from three flocks. The phylogenetic analyses based on both 18S rRNA and cox1 genes indicated that T. luwenshuni had relatively low diversity. The first characterization of the T. luwenshuni genome will promote better understanding of the emerging Theileria. IMPORTANCE Theileria has led to substantial economic losses in animal husbandry. Whole-genome sequencing data of the genus Theileria are currently limited, which has prohibited us from further understanding their molecular features. This work depicted whole-genome sequences of T. luwenshuni str. Cheeloo, an emerging Theileria species, and reported a high prevalence of T. luwenshuni str. Cheeloo infection in goats. The first assembly and characterization of T. luwenshuni genome will benefit exploring the infective and pathogenic mechanisms of the emerging Theileria to provide scientific basis for future control strategies of theileriosis.
Collapse
Affiliation(s)
- Bai-Hui Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jin-Yue Liu
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Wen-Qiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
5
|
El-Alfy ES, Abbas I, Elseadawy R, Saleh S, Elmishmishy B, El-Sayed SAES, Rizk MA. Global prevalence and species diversity of tick-borne pathogens in buffaloes worldwide: a systematic review and meta-analysis. Parasit Vectors 2023; 16:115. [PMID: 36998029 PMCID: PMC10061416 DOI: 10.1186/s13071-023-05727-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND Buffaloes are important contributors to the livestock economy in many countries, particularly in Asia, and tick-borne pathogens (TBPs) commonly infect buffaloes, giving rise to serious pathologies other than their zoonotic potential. METHODS The present investigation focuses on the prevalence of TBPs infecting buffaloes worldwide. All published global data on TBPs in buffaloes were collected from different databases (e.g., PubMed, Scopus, ScienceDirect, and Google Scholar) and subjected to various meta-analyses using OpenMeta[Analyst] software, and all analyses were conducted based on a 95% confidence interval. RESULTS Over 100 articles discussing the prevalence and species diversity of TBPs in buffaloes were retrieved. Most of these reports focused on water buffaloes (Bubalus bubalis), whereas a few reports on TBPs in African buffaloes (Syncerus caffer) had been published. The pooled global prevalence of the apicomplexan parasites Babesia and Theileria, as well as the bacterial pathogens Anaplasma, Coxiella burnetii, Borrelia, Bartonella, and Ehrlichia in addition to Crimean-Congo hemorrhagic fever virus, were all evaluated based on the detection methods and 95% confidence intervals. Interestingly, no Rickettsia spp. were detected in buffaloes with scarce data. TBPs of buffaloes displayed a fairly high species diversity, which underlines the high infection risk to other animals, especially cattle. Babesia bovis, B. bigemina, B. orientalis, B. occultans and B. naoakii, Theileria annulata, T. orientalis complex (orientalis/sergenti/buffeli), T. parva, T. mutans, T. sinensis, T. velifera, T. lestoquardi-like, T. taurotragi, T. sp. (buffalo) and T. ovis, and Anaplasma marginale, A. centrale, A. platys, A. platys-like and "Candidatus Anaplasma boleense" were all were identified from naturally infected buffaloes. CONCLUSIONS Several important aspects were highlighted for the status of TBPs, which have serious economic implications for the buffalo as well as cattle industries, particularly in Asian and African countries, which should aid in the development and implementation of prevention and control methods for veterinary care practitioners, and animal owners.
Collapse
Affiliation(s)
- El-Sayed El-Alfy
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Ibrahim Abbas
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Rana Elseadawy
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Somaya Saleh
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Bassem Elmishmishy
- grid.10251.370000000103426662Parasitology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Shimaa Abd El-Salam El-Sayed
- grid.10251.370000000103426662Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| | - Mohamed Abdo Rizk
- grid.10251.370000000103426662Department of Internal Medicine, Infectious and Fish Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516 Egypt
| |
Collapse
|
6
|
Huaman JL, Pacioni C, Forsyth DM, Pople A, Hampton JO, Helbig KJ, Carvalho TG. Evaluation of haemoparasite and Sarcocystis infections in Australian wild deer. Int J Parasitol Parasites Wildl 2021; 15:262-269. [PMID: 34277336 PMCID: PMC8261462 DOI: 10.1016/j.ijppaw.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Wild animals are natural reservoir hosts for a variety of pathogens that can be transmitted to other wildlife, livestock, other domestic animals, and humans. Wild deer (family Cervidae) in Europe, Asia, and North and South America have been reported to be infected with gastrointestinal and vector-borne parasites. In Australia, wild deer populations have expanded considerably in recent years, yet there is little information regarding which pathogens are present and whether these pathogens pose biosecurity threats to humans, wildlife, livestock, or other domestic animals. To address this knowledge gap, PCR-based screening for five parasitic genera was conducted in blood samples (n = 243) sourced from chital deer (Axis axis), fallow deer (Dama dama), rusa deer (Rusa timorensis) and sambar deer (Rusa unicolor) sampled in eastern Australia. These blood samples were tested for the presence of DNA from Plasmodium spp., Trypanosoma spp., Babesia spp., Theileria spp. and Sarcocystis spp. Further, the presence of antibodies against Babesia bovis was investigated in serum samples (n = 105) by immunofluorescence. In this study, neither parasite DNA nor antibodies were detected for any of the five genera investigated. These results indicate that wild deer are not currently host reservoirs for Plasmodium, Trypanosoma, Babesia, Theileria or Sarcocystis parasites in eastern Australia. We conclude that in eastern Australia, wild deer do not currently play a significant role in the transmission of these parasites. This survey represents the first large-scale molecular study of its type in Australian wild deer and provides important baseline information about the parasitic infection status of these animals. The expanding populations of wild deer throughout Australia warrant similar surveys in other parts of the country and surveillance efforts to continually assess the level of threat wild deer could pose to humans, wildlife, livestock and other domestic animals.
Collapse
Affiliation(s)
- Jose L. Huaman
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Carlo Pacioni
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Victoria, 3084, Australia
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - David M. Forsyth
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, New South Wales, 2800, Australia
| | - Anthony Pople
- Invasive Plants & Animals Research, Biosecurity Queensland, Department of Agriculture and Fisheries, Ecosciences Precinct, Brisbane, Queensland, 4102, Australia
| | - Jordan O. Hampton
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
- Ecotone Wildlife, PO Box 76, Inverloch, Victoria, 3996, Australia
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Teresa G. Carvalho
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
7
|
Yang J, Wang X, Wang J, Liu Z, Niu Q, Mukhtar MU, Guan G, Yin H. Molecular Survey of Tick-Borne Pathogens Reveals Diversity and Novel Organisms With Veterinary and Public Health Significance in Wildlife From a National Nature Reserve of China. Front Vet Sci 2021; 8:682963. [PMID: 34322535 PMCID: PMC8311164 DOI: 10.3389/fvets.2021.682963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Wildlife is involved in the maintenance and transmission of various tick-borne pathogens. The objective of the present study was to determine the occurrence and diversity of tick-borne pathogens in free-ranging wild animals collected from Tangjiahe National Nature Reserve of China. Blood or liver samples from 13 wild animals (5 takin, 3 Himalayan goral, 3 Reeves' muntjac, 1 forest musk deer, and 1 wild boar) were collected and screened for piroplasm, Anaplasma spp., Ehrlichia spp., and spotted fever group (SFG) rickettsiae by PCR-based on different gene loci. Three Theileria species, a potential novel Theileria parasite (Theileria sp. T4) and two Anaplasma species were identified in those wildlife. Theileria capreoli was found in Himalayan goral, Reeves' muntjac, and forest musk deer; Theileria luwenshuni, Theileria uilenbergi, and a potential novel, Theileria parasite (Theileria sp. T4), were identified in takin. Meanwhile, Anaplasma bovis was identified in Himalayan goral, takin, Reeves' muntjac, forest musk deer, and wild boar; Anaplasma phagocytophilum and related strains was found in takin, Reeves' muntjac, and forest musk deer. All wildlife included in this study was negative for Babesia, Anaplasma ovis, Anaplasma marginale, Ehrlichia, and SFG rickettsiae. Moreover, coinfection involving Theileria spp. and Anaplasma spp. was observed in eight wild animals. This study provided the first evidence of tick-borne pathogens in free-ranging wild animals from the nature reserve, where contact between domestic and wild animals rarely occurs.
Collapse
Affiliation(s)
- Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaojun Wang
- Tangjiahe National Nature Reserve, Qingchuan, China
| | - Jinming Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qingli Niu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Muhammad Uzair Mukhtar
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guiquan Guan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
8
|
Novel Protozoans in Austria Revealed through the Use of Dogs as Sentinels for Ticks and Tick-Borne Pathogens. Microorganisms 2021; 9:microorganisms9071392. [PMID: 34203236 PMCID: PMC8306317 DOI: 10.3390/microorganisms9071392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022] Open
Abstract
We previously isolated and cultivated the novel Rickettsia raoultii strain Jongejan. This prompted us to ask whether this strain is unique or more widely present in Austria. To assess this issue, we retrospectively screened ticks collected from dogs in 2008. Of these collected ticks, we randomly selected 75 (47 females and 28 males) Dermacentor reticulatus, 44 (21 females, 7 males, and 16 nymphs) Haemaphysalis concinna, and 55 (52 females and 3 males) ticks of the Ixodes ricinus complex. Subsequently, these ticks were individually screened for the presence of tick-borne pathogens using the reverse line blot hybridization assay. In our current study, we detected DNA from the following microbes in D. reticulatus: Anaplasma phagocytophilum, Borrelia lusitaniae, Borrelia spielmanii, Borrelia valaisiana, and R. raoultii, all of which were R. raoultii strain Jongejan. In H. concinna, we found DNA of a Babesia sp., Rickettsia helvetica, and an organism closely related to Theileria capreoli. Lastly, I. ricinus was positive for Anaplasma phagocytophilum, Borrelia afzelii, Borrelia burgdorferi sensu stricto, Borrelia garinii/Borrelia bavariensis, B. lusitaniae, B. spielmanii, B. valaisiana, Candidatus Neoehrlichia mikurensis, Rickettsia helvetica, Rickettsia monacensis, and Theileria (Babesia) microti DNA. The detection of DNA of the Babesia sp. and an organism closely related to Theileria capreoli, both found in H. concinna ticks, is novel for Austria.
Collapse
|
9
|
Díaz-Cao JM, Adaszek Ł, Dzięgiel B, Paniagua J, Caballero-Gómez J, Winiarczyk S, Winiarczyk D, Cano-Terriza D, García-Bocanegra I. Prevalence of selected tick-borne pathogens in wild ungulates and ticks in southern Spain. Transbound Emerg Dis 2021; 69:1084-1094. [PMID: 33686775 DOI: 10.1111/tbed.14065] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/06/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022]
Abstract
A survey study was carried out to assess the occurrence of selected tick-borne pathogens (TBP) in wild ungulates in Mediterranean ecosystems in southern Spain. Spleen samples were collected from 1,132 wild ungulates, including 578 red deer, 269 wild boar, 135 mouflon, 121 fallow deer and 29 roe deer, between 2009 and 2015. Eighty-nine ticks collected from TBP-positive animals were also analysed. Samples were tested by PCR and sequenced whenever possible. TBP DNA was detected in 127 of 863 wild ruminants (14.7%; 95% CI: 12.4-17.3) including the following: Anaplasma phagocytophilum (9.2%), Babesia divergens (2.9%), Theileria sp. OT3 (1.7%), Borrelia afzelii (0.7%) and Theileria capreoli (0.2%), but no positive samples were detected in wild boar (0/269). All the strains from mouflon were identified as Theileria sp. OT3, while B. divergens and T. capreoli were mainly found in red deer. Co-infection with A. phagocytophilum and B. divergens, and A. phagocytophilum and Theileria spp. was detected in red deer and mouflon, respectively. The risk factor analysis showed that the prevalences of A. phagocytophilum and piroplasms were species-related. Eighty-nine tick specimens collected from ungulates found to be infected with the selected TBP were identified as Hyalomma lusitanicum (95.5%) and Ixodes ricinus (4.5%). Thirty ticks were positive for Anaplasma/Ehrlichia spp. (33.7%), 25 for Babesia/Theileria (28.1%) and two for B. burgdorferi s.l. (2.3%). Eleven specimens showed co-infections with Anaplasma/Ehrlichia and Babesia/Theileria (10.1%) or Anaplasma/Ehrlichia and B. burgdorferi s.l. (2.3%). The estimated prevalences obtained in the present study suggest the possible contribution of wild ruminants to the maintenance of some selected TBP in Mediterranean ecosystems in southern Spain, while the role of wild boar in the epidemiology of these pathogens seems to be limited in this region.
Collapse
Affiliation(s)
- José Manuel Díaz-Cao
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Łukasz Adaszek
- Department of Epizootiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Beata Dzięgiel
- Department of Epizootiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Jorge Paniagua
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Javier Caballero-Gómez
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain.,Infectious Diseases Unit, Clinical Virology and Zoonoses research group, Reina Sofia University Hospital, Maimonides Biomedical Research Insitute of Cordoba (IMIBIC), University of Cordoba, Cordoba, Spain
| | - Stanislaw Winiarczyk
- Department of Epizootiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Dagmara Winiarczyk
- Department of Epizootiology and Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - David Cano-Terriza
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| | - Ignacio García-Bocanegra
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, Faculty of Veterinary Medicine, University of Cordoba, Cordoba, Spain
| |
Collapse
|
10
|
DNA of Theileria orientalis, T. equi and T. capreoli in stable flies (Stomoxys calcitrans). Parasit Vectors 2020; 13:186. [PMID: 32272968 PMCID: PMC7144340 DOI: 10.1186/s13071-020-04041-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background From a veterinary-medical point of view, the stable fly, Stomoxys calcitrans, is perhaps the economically most important blood-sucking muscoid fly species (Diptera: Muscidae), owing to its worldwide occurrence, frequently high local abundance, direct harm caused to livestock, pet animals and humans, as well as its vector role. Considering the latter in the context of protozoan parasites, the stable fly is a mechanical vector of trypanosomes and Besnoitia besnoiti. However, its role as a vector of piroplasms appears to be seldom studied, despite old data suggesting mechanical transmission of babesiae by dipteran flies. Methods In this study 395 stable flies (and one Haematobia stimulans) were collected at a cattle farm with known history of bovine theileriosis, and at further nine, randomly chosen locations in Hungary. These flies were separated according to sex (30 of them also cut into two parts: the head with mouthparts and the thorax-abdomen), followed by individual DNA extraction, then screening for piroplasms by PCR and sequencing. Results In stable flies, Theileria orientalis and T. capreoli were identified at the cattle farm and T. equi was identified in three other locations. At the cattle farm, significantly more male stable flies carried piroplasm DNA than females. There was no significant difference between the ratio of PCR-positive flies between the stable (void of cattle for at least two hours) and the pen on the pasture with cattle at the time of sampling. Among dissected flies (29 S. calcitrans and 1 H. stimulans), exclusively the thoracic-abdominal parts were PCR-positive, whereas the head and mouthparts remained negative. Conclusions Theileria DNA is detectable in stable flies, in the case of T. orientalis at least for two hours after blood-feeding, and in the case of T. capreoli also in the absence of infected hosts (i.e. roe deer). Male flies rather than females, and thoracic-abdominal (most likely crop) contents rather than mouthparts may pose a risk of mechanical transmission. These data suggest that it is worth to study further the vector role of stable flies in the epidemiology of theilerioses, in which not the immediate, but rather the delayed type transmission seems possible.![]()
Collapse
|
11
|
Hrazdilová K, Rybářová M, Široký P, Votýpka J, Zintl A, Burgess H, Steinbauer V, Žákovčík V, Modrý D. Diversity of Babesia spp. in cervid ungulates based on the 18S rDNA and cytochrome c oxidase subunit I phylogenies. INFECTION GENETICS AND EVOLUTION 2019; 77:104060. [PMID: 31678240 DOI: 10.1016/j.meegid.2019.104060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/06/2019] [Accepted: 10/01/2019] [Indexed: 11/17/2022]
Abstract
Free ranging ungulates, represented in Europe mostly by several deer species, are important hosts for ticks and reservoirs of tick-borne infections. A number of studies have focused on the prevalence of tick borne pathogens in deer chiefly with the aim to determine their potential role as reservoir hosts for important human and livestock pathogens. However, genetic similarity of Babesia spp. forming a group commonly termed as a clade VI that accommodates the deer piroplasms, complicates this task and has led to the description of a bewildering array of poorly characterised strains. This study aims to resolve this issue by using two independent genetic loci, nuclear 18S rRNA and mitochondrial cytochrome c oxidase subunit I genes, used in parallel to identify Babesia isolates in free-ranging red, sika, and roe deer in two areas of their co-occurrence in the Czech Republic. The COX1 loci, in contrast to 18S rRNA gene, shows a clear difference between interspecific and intraspecific variation at the nucleotide level. The findings confirm B. divergens, Babesia sp. EU1 and B. capreoli in studied deer species as well as common presence of another unnamed species that matches a taxon previously referred to as Babesia sp. or Babesia cf. odocoilei or Babesia CH1 group in several other sites throughout Europe. The invasive sika deers enter the life cycle of at least three piroplasmid species detected in native deer fauna. The presence of B. divergens in both sika and red deer in an area where bovine babesiosis is apparently absent raises important questions regarding the epidemiology, host specificity and taxonomic status of the parasite.
Collapse
Affiliation(s)
- Kristýna Hrazdilová
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic; Department of Virology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic.
| | - Markéta Rybářová
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Pavel Široký
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Annetta Zintl
- UCD Veterinary Sciences Centre, University College, Dublin, Belfield, Dublin 4, Ireland
| | - Hilary Burgess
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Dr, Saskatoon, SK S7N 5B4, Canada
| | - Vladimír Steinbauer
- Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | - Vladimír Žákovčík
- Military Veterinary Institute, Opavská 29, 748 01 Hlučín, Czech Republic
| | - David Modrý
- CEITEC-VFU, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Department of Pathological Morphology and Parasitology, University of Veterinary and Pharmaceutical Sciences, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
12
|
Remesar S, Díaz P, Prieto A, Markina F, Díaz Cao JM, López-Lorenzo G, Fernández G, López CM, Panadero R, Díez-Baños P, Morrondo P. Prevalence and distribution of Babesia and Theileria species in roe deer from Spain. Int J Parasitol Parasites Wildl 2019; 9:195-201. [PMID: 31193911 PMCID: PMC6545327 DOI: 10.1016/j.ijppaw.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Babesiosis and Theileriosis are important worldwide-distributed tick-borne diseases for human and animals. Their presence in a particular area depends on the presence of suitable tick-vector and host species as well as competent reservoirs such as roe deer, one of the most abundant wild cervids in Spain. Spleen samples from 174 roe deer hunted in Spain were analysed to determine the prevalence of Babesia and Theileria species. DNA of both piroplasms was firstly detected using a commercial qPCR. Then, positive samples were molecularly characterized at the 18S rRNA and ITS1 genes of Babesia spp. and Theileria spp. The possible influence of some factors such as ecological area, age and sex was also assessed. Overall, 89.7% of roe deer were positive to any of the two piroplasms. Theileria spp. was more prevalent (60.9%) than Babesia spp. (19.0%); species identification could not be achieved in 17.3% of positive samples. Babesia prevalence was significantly higher in young animals and in roe deer from Oceanic regions, in contrast to Theileria spp. Five species were identified: Theileria sp. OT3 (60.3%), Babesia capreoli (15.5%), Babesia venatorum (2.9%), Theileria sp. 3185/02 (0.6%) and Babesia bigemina (0.6%). The coinfection B. capreoli/T. sp. OT3 was the most common (4.6%) followed by B. venatorum/T. sp. OT3 (0.6%) and B. bigemina/T. sp. OT3 (0.6%). Our results reveal that Theileria spp. and Babesia spp. are prevalent piroplasms in roe deer from Spain. These cervids can act as reservoirs for several Babesia and Theileria species, including the zoonotic B. venatorum. This study represents the first description of B. venatorum and B. bigemina in roe deer from Spain.
Collapse
Affiliation(s)
- Susana Remesar
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díaz
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Alberto Prieto
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | | | - Jose Manuel Díaz Cao
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Gonzalo López-Lorenzo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Gonzalo Fernández
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Ceferino M. López
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Rosario Panadero
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Pablo Díez-Baños
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| | - Patrocinio Morrondo
- Investigación en Sanidad Animal: Galicia (Grupo INVESAGA), Facultade de Veterinaria, Universidade de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
13
|
Wang H, Yang J, Mukhtar MU, Liu Z, Zhang M, Wang X. Molecular detection and identification of tick-borne bacteria and protozoans in goats and wild Siberian roe deer (Capreolus pygargus) from Heilongjiang Province, northeastern China. Parasit Vectors 2019; 12:296. [PMID: 31196180 PMCID: PMC6567649 DOI: 10.1186/s13071-019-3553-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 06/05/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Small ruminants are important hosts for various tick species and tick-associated organisms, many of which are zoonotic. The aim of the present study was to determine the presence of tick-borne protozoans and bacteria of public health and veterinary significance in goats and wild Siberian roe deer (Capreolus pygargus) from Heilongjiang Province, northeastern China. METHODS The occurrence of piroplasms, Anaplasma phagocytophilum, A. bovis, A. marginale, A. capra, A. ovis, Ehrlichia spp. and spotted fever group rickettsiae was molecularly investigated and analyzed in 134 goats and 9 free ranging C. pygargus living in close proximity. RESULTS Piroplasm DNA was detected in 16 (11.9%) goats and 5 C. pygargus. Sequence analysis of 18S rRNA sequences identified 3 Theileria species (T. luwenshuni, T. capreoli and T. cervi). Four Anaplasma species (A. ovis, A. phagocytophilum, A. bovis and A. capra) were identified in goats and C. pygargus. Anaplasma ovis and A. bovis were detected in 11 (8.2%) and 6 (4.5%) goats, respectively; A. phagocytophilum, A. bovis and A. capra were found in 3, 7 and 3 C. pygargus, respectively. Sequence analysis of 16S rRNA sequences revealed the presence of 5 different genetic variants of A. bovis in goats and C. pygargus, while the analysis of 16S rRNA and gltA sequence data showed that A. capra isolates identified from C. pygargus were closely related to the genotype identified from sheep and Haemaphysalis qinghaiensis, but differed with the genotype from humans. Anaplasma/Theileria mixed infection was observed in 2 (1.5%) goats and 5 C. pygargus, and co-existence involving potential zoonotic organisms (A. phagocytophilum and A. capra) was found in 2 C. pygargus. All samples were negative for A. marginale, Ehrlichia spp. and SFG rickettsiae. CONCLUSIONS These findings report the tick-borne pathogens in goats and C. pygargus, and a greater diversity of these pathogens were observed in wild animals. Three Theileria (T. luwenshuni, T. capreoli and T. cervi) and four Anaplasma species (A. ovis, A. phagocytophilum, A. bovis and A. capra) with veterinary and medical significance were identified in small domestic and wild ruminants. The contact between wild and domestic animals may increase the potential risk of spread and transmission of tick-borne diseases.
Collapse
Affiliation(s)
- Haoning Wang
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Jifei Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China.
| | - Muhammad Uzair Mukhtar
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Zhijie Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, 730046, Gansu, People's Republic of China
| | - Minghai Zhang
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China
| | - Xiaolong Wang
- College of Wildlife Resource, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China. .,Center of Conservation Medicine & Ecological Safety, Northeast Forestry University, Harbin, 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
14
|
Víchová B, Bona M, Miterpáková M, Kraljik J, Čabanová V, Nemčíková G, Hurníková Z, Oravec M. Fleas and Ticks of Red Foxes as Vectors of Canine Bacterial and Parasitic Pathogens, in Slovakia, Central Europe. Vector Borne Zoonotic Dis 2018; 18:611-619. [DOI: 10.1089/vbz.2018.2314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bronislava Víchová
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Martin Bona
- Pavol Jozef Šafárik University, Department of Anatomy, Košice, Slovakia
| | - Martina Miterpáková
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | - Jasna Kraljik
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viktória Čabanová
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | | | - Zuzana Hurníková
- Department of Vector-Borne Diseases, Institute of Parasitology, Slovak Academy of Sciences, Košice, Slovakia
| | | |
Collapse
|
15
|
Kazimírová M, Hamšíková Z, Špitalská E, Minichová L, Mahríková L, Caban R, Sprong H, Fonville M, Schnittger L, Kocianová E. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasit Vectors 2018; 11:495. [PMID: 30176908 PMCID: PMC6122462 DOI: 10.1186/s13071-018-3068-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Free-living ungulates are hosts of ixodid ticks and reservoirs of tick-borne microorganisms in central Europe and many regions around the world. Tissue samples and engorged ticks were obtained from roe deer, red deer, fallow deer, mouflon, and wild boar hunted in deciduous forests of south-western Slovakia. DNA isolated from these samples was screened for the presence of tick-borne microorganisms by PCR-based methods. RESULTS Ticks were found to infest all examined ungulate species. The principal infesting tick was Ixodes ricinus, identified on 90.4% of wildlife, and included all developmental stages. Larvae and nymphs of Haemaphysalis concinna were feeding on 9.6% of wildlife. Two specimens of Dermacentor reticulatus were also identified. Ungulates were positive for A. phagocytophilum and Theileria spp. Anaplasma phagocytophilum was found to infect 96.1% of cervids, 88.9% of mouflon, and 28.2% of wild boar, whereas Theileria spp. was detected only in cervids (94.6%). Importantly, a high rate of cervids (89%) showed mixed infections with both these microorganisms. In addition to A. phagocytophilum and Theileria spp., Rickettsia helvetica, R. monacensis, unidentified Rickettsia sp., Coxiella burnetii, "Candidatus Neoehrlichia mikurensis", Borrelia burgdorferi (s.l.) and Babesia venatorum were identified in engorged I. ricinus. Furthermore, A. phagocytophilum, Babesia spp. and Theileria spp. were detected in engorged H. concinna. Analysis of 16S rRNA and groEL gene sequences revealed the presence of five and two A. phagocytophilum variants, respectively, among which sequences identified in wild boar showed identity to the sequence of the causative agent of human granulocytic anaplasmosis (HGA). Phylogenetic analysis of Theileria 18S rRNA gene sequences amplified from cervids and engorged I. ricinus ticks segregated jointly with sequences of T. capreoli isolates into a moderately supported monophyletic clade. CONCLUSIONS The findings indicate that free-living ungulates are reservoirs for A. phagocytophilum and Theileria spp. and engorged ixodid ticks attached to ungulates are good sentinels for the presence of agents of public and veterinary concern. Further analyses of the A. phagocytophilum genetic variants and Theileria species and their associations with vector ticks and free-living ungulates are required.
Collapse
Affiliation(s)
- Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | - Eva Špitalská
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Lenka Minichová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia
| | | | - Hein Sprong
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Manoj Fonville
- Laboratory for Zoonoses and Environmental Microbiology, National Institute for Public Health and Environment, 9 Antonie van Leeuwenhoeklaan, P.O. Box 1, Bilthoven, The Netherlands
| | - Leonhard Schnittger
- Instituto de Patobiologia, CICVyA, INTA-Castelar, 1686 Hurlingham, Prov. de Buenos Aires Argentina
- CONICET, C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Elena Kocianová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia
| |
Collapse
|