1
|
Rochlin I, Kenney J, Little E, Molaei G. Public health significance of the white-tailed deer (Odocoileus virginianus) and its role in the eco-epidemiology of tick- and mosquito-borne diseases in North America. Parasit Vectors 2025; 18:43. [PMID: 39915849 PMCID: PMC11803971 DOI: 10.1186/s13071-025-06674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/17/2025] [Indexed: 02/09/2025] Open
Abstract
White-tailed deer (Odocoileus virginianus) are a ubiquitous species in North America. Their high reproductive potential leads to rapid population growth, and they exhibit a wide range of biological adaptations that influence their interactions with vectors and pathogens. This review aims to characterize the intricate interplay between white-tailed deer and the transmission cycles of various tick- and mosquito-borne pathogens across their range in the eastern United States and southeastern Canada. The first part offers insights into the biological characteristics of white-tailed deer, their population dynamics, and the consequential impacts on both the environment and public health. This contextual backdrop sets the stage for the two subsequent sections, which delve into specific examples of pathogen transmission involving white-tailed deer categorized by tick and mosquito vectors into tick-borne and mosquito-borne diseases. This classification is essential, as ticks and mosquitoes serve as pivotal elements in the eco-epidemiology of vector-borne diseases, intricately linking hosts, the environment, and pathogens. Through elucidating these associations, this paper highlights the crucial role of white-tailed deer in the transmission dynamics of tick- and mosquito-borne diseases. Understanding the interactions between white-tailed deer, vectors, and pathogens is essential for effective disease management and public health interventions.
Collapse
Affiliation(s)
| | - Joan Kenney
- Centers for Disease Control and Prevention, Fort Collins, CO, USA
| | - Eliza Little
- Connecticut Department of Public Health, Hartford, CT, USA
| | - Goudarz Molaei
- Connecticut Agricultural Experiment Station, New Haven, CT, USA.
- Yale Uinversity, New Haven, CT, USA.
| |
Collapse
|
2
|
Bakhiyi B, Irace-Cima A, Ludwig A, Rakotoarinia MR, Therrien C, Dusfour I, Adam-Poupart A. Public health contributions of entomological surveillance of West Nile virus (WNV) and other mosquito-borne arboviruses in a context of climate change. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2024; 50:294-304. [PMID: 39257840 PMCID: PMC11383429 DOI: 10.14745/ccdr.v50i09a02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Background Climate change is likely to increase the risk of human transmission of arboviruses endemic to Canada, including West Nile virus (WNV), Eastern equine encephalitis virus (EEEV) and California serogroup virus (CSV), calling for enhanced surveillance, including entomological surveillance targeting mosquito vectors. A scoping review was carried out to document the public health contributions of entomological surveillance of arboviruses of importance in Canada. Methods The Ovid® and EBSCO platforms and the grey literature were searched to identify documents published between 2009 and 2023, in English or French, dealing with entomological surveillance of arboviruses of interest, conducted annually for human health purposes under the aegis of a government authority, with specified public health objectives and actions. Results The 42 selected publications mainly reported two public health objectives of adult mosquito surveillance: early warning of viral circulation and assessment of the level of risk of human transmission. Recommended actions included clinical preparedness, risk communication, promotion of personal protection measures and vector control. The main objectives of immature mosquito surveillance were to identify sites with high larval densities, in order to reduce/eliminate them and target the application of larvicides. Conclusion In a context of climate change favouring the spread of arboviruses, this study highlights the potential public health contributions of regular entomological surveillance of endemic arboviruses of importance in Canada. It helps support concrete actions to protect the health of the population from the risks of arboviral transmission.
Collapse
Affiliation(s)
- Bouchra Bakhiyi
- Department of Biological Risks, Institut national de santé publique du Québec (INSPQ), Montréal, QC
| | - Alejandra Irace-Cima
- Department of Biological Risks, Institut national de santé publique du Québec (INSPQ), Montréal, QC
- School of Public Health of the Université de Montréal (ESPUM), Université de Montréal, Montréal, QC
| | - Antoinette Ludwig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Saint-Hyacinthe, QC
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC
| | - Miarisoa Rindra Rakotoarinia
- Department of Biological Risks, Institut national de santé publique du Québec (INSPQ), Montréal, QC
- Research Group on Epidemiology of Zoonoses and Public Health, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, QC
| | - Christian Therrien
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de- Bellevue, QC
| | | | - Ariane Adam-Poupart
- Department of Biological Risks, Institut national de santé publique du Québec (INSPQ), Montréal, QC
- School of Public Health of the Université de Montréal (ESPUM), Université de Montréal, Montréal, QC
| |
Collapse
|
3
|
Zubair AS, McAlpine LS, Gobeske KT. Virology, ecology, epidemiology, pathology, and treatment of eastern equine encephalitis. J Neurol Sci 2024; 457:122886. [PMID: 38278094 DOI: 10.1016/j.jns.2024.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Eastern equine encephalitis (EEE) was one of the first-recognized neuroinvasive arboviral diseases in North America, and it remains the most lethal. Although EEE is known to have periodic spikes in infection rates, there is increasing evidence that it may be undergoing a change in its prevalence and its public health burden. Numerous factors shape the scope of EEE in humans, and there are important similarities with other emergent viral diseases that have surfaced or strengthened in recent years. Because environmental and ecological conditions that broadly influence the epidemiology of arboviral diseases also are changing, and the frequency, severity, and scope of outbreaks are expected to worsen, an expanded understanding of EEE will have untold importance in coming years. Here we review the factors shaping EEE transmission cycles and the conditions leading to outbreaks in humans from an updated, multidomain perspective. We also provide special consideration of factors shaping the virology, host-vector-environment relationships, and mechanisms of pathology and treatment as a reference for broadening audiences.
Collapse
Affiliation(s)
- Adeel S Zubair
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Kevin T Gobeske
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. A Systematic Review on the Viruses of Anopheles Mosquitoes: The Potential Importance for Public Health. Trop Med Infect Dis 2023; 8:459. [PMID: 37888587 PMCID: PMC10610971 DOI: 10.3390/tropicalmed8100459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Anopheles mosquitoes are the vectors of Plasmodium, the etiological agent of malaria. In addition, Anopheles funestus and Anopheles gambiae are the main vectors of the O'nyong-nyong virus. However, research on the viruses carried by Anopheles is scarce; thus, the possible transmission of viruses by Anopheles is still unexplored. This systematic review was carried out to identify studies that report viruses in natural populations of Anopheles or virus infection and transmission in laboratory-reared mosquitoes. The databases reviewed were EBSCO-Host, Google Scholar, Science Direct, Scopus and PubMed. After the identification and screening of candidate articles, a total of 203 original studies were included that reported on a variety of viruses detected in Anopheles natural populations. In total, 161 viruses in 54 species from 41 countries worldwide were registered. In laboratory studies, 28 viruses in 15 Anopheles species were evaluated for mosquito viral transmission capacity or viral infection. The viruses reported in Anopheles encompassed 25 viral families and included arboviruses, probable arboviruses and Insect-Specific Viruses (ISVs). Insights after performing this review include the need for (1) a better understanding of Anopheles-viral interactions, (2) characterizing the Anopheles virome-considering the public health importance of the viruses potentially transmitted by Anopheles and the significance of finding viruses with biological control activity-and (3) performing virological surveillance in natural populations of Anopheles, especially in the current context of environmental modifications that may potentiate the expansion of the Anopheles species distribution.
Collapse
Affiliation(s)
- Juan C. Hernandez-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Paola Muñoz-Laiton
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Giovan F. Gómez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| |
Collapse
|
5
|
Hill V, Koch RT, Bialosuknia SM, Ngo K, Zink SD, Koetzner CA, Maffei JG, Dupuis AP, Backenson PB, Oliver J, Bransfield AB, Misencik MJ, Petruff TA, Shepard JJ, Warren JL, Gill MS, Baele G, Vogels CBF, Gallagher G, Burns P, Hentoff A, Smole S, Brown C, Osborne M, Kramer LD, Armstrong PM, Ciota AT, Grubaugh ND. Dynamics of eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. Curr Biol 2023; 33:2515-2527.e6. [PMID: 37295427 PMCID: PMC10316540 DOI: 10.1016/j.cub.2023.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, similar to previous years, cases were driven by multiple independent but short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019, although the ecology of EEEV is complex and further data is required to explore these in more detail. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| | - Robert T Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sean M Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Steven D Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Cheri A Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Joseph G Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - Alan P Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY 12237, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY 13202, USA; Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY 13408, USA
| | - Angela B Bransfield
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Michael J Misencik
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Tanya A Petruff
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - John J Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA
| | - Joshua L Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; Public Health Modeling Unit, Yale School of Public Health, New Haven, CT 06510, USA
| | - Mandev S Gill
- Department of Statistics, University of Georgia, Athens, GA 30602, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven BE-3000, Belgium
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA
| | - Glen Gallagher
- Massachusetts Department of Public Health, Boston, MA 02108, USA; Rhode Island State Health Laboratory, Rhode Island Department of Health, Providence, RI 02904, USA
| | - Paul Burns
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Aaron Hentoff
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Catherine Brown
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Matthew Osborne
- Massachusetts Department of Public Health, Boston, MA 02108, USA
| | - Laura D Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12237, USA
| | - Philip M Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY 13408, USA.
| | - Alexander T Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY 12237, USA.
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA; Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
6
|
Ludwig A, Rousseu F, Kotchi SO, Allostry J, Fournier RA. Mapping the abundance of endemic mosquito-borne diseases vectors in southern Quebec. BMC Public Health 2023; 23:924. [PMID: 37217931 DOI: 10.1186/s12889-023-15773-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Climate change is increasing the dispersion of mosquitoes and the spread of viruses of which some mosquitoes are the main vectors. In Quebec, the surveillance and management of endemic mosquito-borne diseases, such as West Nile virus or Eastern equine encephalitis, could be improved by mapping the areas of risk supporting vector populations. However, there is currently no active tool tailored to Quebec that can predict mosquito population abundances, and we propose, with this work, to help fill this gap. METHODS Four species of mosquitos were studied in this project for the period from 2003 to 2016 for the southern part of the province of Quebec: Aedes vexans (VEX), Coquillettidia perturbans (CQP), Culex pipiens-restuans group (CPR) and Ochlerotatus stimulans group (SMG) species. We used a negative binomial regression approach, including a spatial component, to model the abundances of each species or species group as a function of meteorological and land-cover variables. We tested several sets of variables combination, regional and local scale variables for landcover and different lag period for the day of capture for weather variables, to finally select one best model for each species. RESULTS Models selected showed the importance of the spatial component, independently of the environmental variables, at the larger spatial scale. In these models, the most important land-cover predictors that favored CQP and VEX were 'forest', and 'agriculture' (for VEX only). Land-cover 'urban' had negative impact on SMG and CQP. The weather conditions on the trapping day and previous weather conditions summarized over 30 or 90 days were preferred over a shorter period of seven days, suggesting current and long-term previous weather conditions effects on mosquito abundance. CONCLUSIONS The strength of the spatial component highlights the difficulties in modelling the abundance of mosquito species and the model selection shows the importance of selecting the right environmental predictors, especially when choosing the temporal and spatial scale of these variables. Climate and landscape variables were important for each species or species group, suggesting it is possible to consider their use in predicting long-term spatial variationsin the abundance of mosquitoes potentially harmful to public health in southern Quebec.
Collapse
Affiliation(s)
- Antoinette Ludwig
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Rue Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada.
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, Saint Hyacinthe, QC, J2S 2M2, Canada.
| | - François Rousseu
- Department of Biology/Centre d'étude de la forêt, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Serge Olivier Kotchi
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, 3200 Rue Sicotte, Saint-Hyacinthe, QC, J2S 2M2, Canada
- Groupe de recherche en épidémiologie des zoonoses et santé publique, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, Saint Hyacinthe, QC, J2S 2M2, Canada
| | - Julie Allostry
- GéoMont - Agence géomatique montérégienne, 166, rue Cowie, suite 105, Granby, QC, J2G 3V3, Canada
| | - Richard A Fournier
- Department of Applied Geomatics, Centre d'Applications et de Recherches en Télédétection, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| |
Collapse
|
7
|
Hill V, Koch RT, Bialosuknia SM, Ngo K, Zink SD, Koetzner CA, Maffei JG, Dupuis AP, Backenson PB, Oliver J, Bransfield AB, Misencik MJ, Petruff TA, Shepard JJ, Warren JL, Gill MS, Baele G, Vogels CB, Gallagher G, Burns P, Hentoff A, Smole S, Brown C, Osborne M, Kramer LD, Armstrong PM, Ciota AT, Grubaugh ND. Dynamics of Eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286851. [PMID: 36945576 PMCID: PMC10029029 DOI: 10.1101/2023.03.06.23286851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Robert T. Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Steven D. Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Cheri A. Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Joseph G. Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Alan P. Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - P. Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Angela B. Bransfield
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Michael J. Misencik
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Tanya A. Petruff
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - John J. Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Mandev S. Gill
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Glen Gallagher
- Massachusetts Department of Public Health, Boston, MA, USA
- Rhode Island State Health Laboratory, Rhode Island Department of Health, Providence, RI, USA
| | - Paul Burns
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Aaron Hentoff
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | | | - Laura D. Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Philip M. Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Maddison MD, Li Z, Miley KM, Poole CB, Carlow CKS, Unnasch TR. Development and Validation of a Colorimetric Reverse Transcriptase Loop-Mediated Isothermal Amplification Assay for Detection of Eastern Equine Encephalitis Virus in Mosquitoes. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2022; 38:7-18. [PMID: 35276729 DOI: 10.2987/21-7047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Eastern equine encephalitis virus (EEEV) is a highly pathogenic alphavirus that causes periodic outbreaks in the eastern USA. Mosquito abatement programs are faced with various challenges with surveillance and control of EEEV and other mosquito-borne illnesses. Environmental sampling of mosquito populations can be technically complex. Here we report the identification of biomarkers, development and validation of a colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for the detection of EEEV. Positive samples are easily visualized by a color change from pink to yellow. The assay was validated using EEEV from viral culture, experimentally spiked mosquito pools, and previously tested mosquito pools. The RT-LAMP assay detected viral titers down to approximately 10% of what would be present in a single infectious mosquito, based upon EEEV viral titers determined by previous competency studies. The RT-LAMP assay efficiently detected EEEV in combined aliquots from previously homogenized pools of mosquitoes, allowing up to 250 individual mosquitoes to be tested in a single reaction. No false positive results were obtained from RNA prepared from negative mosquito pools acquired from known and potential EEEV vectors. The colorimetric RT-LAMP assay is highly accurate, technically simple, and does not require sophisticated equipment, making it a cost-effective alternative to real time reverse transcriptase-polymerase chain reaction (RT-PCR) for vector surveillance.
Collapse
|
9
|
Dieme C, Maffei JG, Diarra M, Koetzner CA, Kuo L, Ngo KA, Dupuis AP, Zink SD, Bryon Backenson P, Kramer LD, Ciota AT. Aedes albopictus and Cache Valley virus: a new threat for virus transmission in New York State. Emerg Microbes Infect 2022; 11:741-748. [PMID: 35179429 PMCID: PMC8903793 DOI: 10.1080/22221751.2022.2044733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report surveillance results of Cache Valley virus (CVV; Peribunyaviridae, Orthobunyavirus) from 2017 to 2020 in New York State (NYS). Infection rates were calculated using the maximum likelihood estimation (MLE) method by year, region, and mosquito species. The highest infection rates were identified among Anopheles spp. mosquitoes and we detected the virus in Aedes albopictus for the first time in NYS. Based on our previous Anopheles quadrimaculatus vector competence results for nine CVV strains, we selected among them three stains for further characterization. These include two CVV reassortants (PA and 15041084) and one CVV lineage 2 strain (Hu-2011). We analyzed full genomes, compared in vitro growth kinetics and assessed vector competence of Aedes albopictus. Sequence analysis of the two reassortant strains (PA and 15041084) revealed 0.3%, 0.4%, and 0.3% divergence; and 1, 10, and 6 amino acid differences for the S, M, and L segments, respectively. We additionally found that the PA strain was attenuated in vertebrate (Vero) and mosquito (C6/36) cell culture. Furthemore, Ae. albopictus mosquitoes are competent vectors for CVV Hu-2011 (16.7–62.1% transmission rates) and CVV 15041084 (27.3–48.0% transmission rates), but not for the human reassortant (PA) isolate, which did not disseminate from the mosquito midgut. Together, our results demonstrate significant phenotypic variability among strains and highlight the capacity for Ae. albopictus to act as a vector of CVV.
Collapse
Affiliation(s)
- Constentin Dieme
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Joseph G Maffei
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Maryam Diarra
- Institut Pasteur de Dakar, Dakar, Senegal (M. Diarra)
| | - Cheri A Koetzner
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Lili Kuo
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Kiet A Ngo
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Alan P Dupuis
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - Steven D Zink
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota)
| | - P Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, New York (P.B. Backenson)
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota).,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA (L.D. Kramer, and A.T. Ciota)
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA (C. Dieme, J.G. Maffei, C.A Koetzner, L. Kuo, K.A. Ngo, A.P. Dupuis II, S.D. Zink, L.D. Kramer, and A.T. Ciota).,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA (L.D. Kramer, and A.T. Ciota)
| |
Collapse
|
10
|
Dieme C, Ngo KA, Tyler S, Maffei JG, Zink SD, Dupuis AP, Koetzner CA, Shultis C, Stout J, Payne AF, Backenson PB, Kuo L, Drebot MA, Ciota AT, Kramer LD. Role of Anopheles Mosquitoes in Cache Valley Virus Lineage Displacement, New York, USA. Emerg Infect Dis 2022; 28:303-313. [PMID: 35075998 PMCID: PMC8798675 DOI: 10.3201/eid2802.203810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cache Valley virus (CVV) is a mosquitoborne virus that infects livestock and humans. We report results of surveillance for CVV in New York, USA, during 2000–2016; full-genome analysis of selected CVV isolates from sheep, horse, humans, and mosquitoes from New York and Canada; and phenotypic characterization of selected strains. We calculated infection rates by using the maximum-likelihood estimation method by year, region, month, and mosquito species. The highest maximum-likelihood estimations were for Anopheles spp. mosquitoes. Our phylogenetic analysis identified 2 lineages and found evidence of segment reassortment. Furthermore, our data suggest displacement of CVV lineage 1 by lineage 2 in New York and Canada. Finally, we showed increased vector competence of An. quadrimaculatus mosquitoes for lineage 2 strains of CVV compared with lineage 1 strains.
Collapse
|
11
|
Armstrong PM, Andreadis TG. Ecology and Epidemiology of Eastern Equine Encephalitis Virus in the Northeastern United States: An Historical Perspective. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1-13. [PMID: 34734628 PMCID: PMC8755988 DOI: 10.1093/jme/tjab077] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 05/10/2023]
Abstract
In the current review, we examine the regional history, ecology, and epidemiology of eastern equine encephalitis virus (EEEV) to investigate the major drivers of disease outbreaks in the northeastern United States. EEEV was first recognized as a public health threat during an outbreak in eastern Massachusetts in 1938, but historical evidence for equine epizootics date back to the 1800s. Since then, sporadic disease outbreaks have reoccurred in the Northeast with increasing frequency and northward expansion of human cases during the last 20 yr. Culiseta melanura (Coquillett) (Diptera: Culicidae) serves as the main enzootic vector that drives EEEV transmission among wild birds, but this mosquito species will occasionally feed on mammals. Several species have been implicated as bridge vectors to horses and humans, with Coquilletstidia perturbans (Walker) as a leading suspect based on its opportunistic feeding behavior, vector competence, and high infection rates during recent disease outbreaks. A diversity of bird species are reservoir competent, exposed to EEEV, and serve as hosts for Cs. melanura, with a few species, including the wood thrush (Hlocichia mustelina) and the American robin (Turdus migratorius), contributing disproportionately to virus transmission based on available evidence. The major factors responsible for the sustained resurgence of EEEV are considered and may be linked to regional landscape and climate changes that support higher mosquito densities and more intense virus transmission.
Collapse
Affiliation(s)
- Philip M Armstrong
- Center for Vector Biology and Zoonotic Diseases, Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, P.O. Box 1106. 123 Huntington Street, New Haven, CT 06504, USA
| | - Theodore G Andreadis
- Center for Vector Biology and Zoonotic Diseases, Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, P.O. Box 1106. 123 Huntington Street, New Haven, CT 06504, USA
| |
Collapse
|
12
|
Stobierski MG, Signs K, Dinh E, Cooley TM, Melotti J, Schalow M, Patterson JS, Bolin SR, Walker ED. Eastern Equine Encephalomyelitis in Michigan: Historical Review of Equine, Human, and Wildlife Involvement, Epidemiology, Vector Associations, and Factors Contributing to Endemicity. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:27-40. [PMID: 34734638 PMCID: PMC8755995 DOI: 10.1093/jme/tjab153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 05/28/2023]
Abstract
Eastern equine encephalomyelitis (EEE) is a mosquito-borne viral disease that is an emerging public health concern in the state of Michigan. Although Michigan has one of the highest incidence rates of EEE in the United States, much of the information known about cases in humans, equines, and other animals residing in Michigan is unpublished. This article summarizes such information and explores spatial trends in the historic distribution of EEE in Michigan. Outbreaks in Michigan have occurred over an 80-yr interval, involving only horses in 1942-1943 and 1973-1976, and then episodically from 1980 to 2020, and involving horses, humans, and wild and domestic animals. An estimated 1,036 equine cases (confirmed and suspected) and 36 confirmed human cases have occurred, including 10 in 2019 (6 deaths) and 4 in 2020 (2 deaths). Human cases ranged in age from 1 to 81 yr; 70% were male, and fatality rate of 34.3%. Equine and human cases occurred from July to October, peaked in August, and cluster in space in southwestern and southeastern lower Michigan. Cases occurred in glacial outwash and ice-contact landscapes in glacial interlobate zones. EEE virus (EEEV) was recovered from Culiseta melanura, Coquillettidia perturbans, five species of Aedes, and other mosquito species near horse and human case sites. Virus isolations or presence of neutralizing antibodies in several passerine species of birds suggest broad EEEV-bird associations. White-tailed deer and other wildlife were also affected. Geographic spread to northern areas of the state suggests expansion of this disease system into new and unsuspected foci.
Collapse
Affiliation(s)
- Mary Grace Stobierski
- Michigan Department of Health and Human Services, 333 S. Grand Avenue, Lansing, MI 48933, USA
| | - Kimberly Signs
- Michigan Department of Health and Human Services, 333 S. Grand Avenue, Lansing, MI 48933, USA
| | - Emily Dinh
- Michigan Department of Health and Human Services, 333 S. Grand Avenue, Lansing, MI 48933, USA
| | - Thomas M Cooley
- Michigan Department of Natural Resources, Wildlife Disease Laboratory, 4125 Beaumont Road, Room 250, Lansing, MI 48917, USA
| | - Julie Melotti
- Michigan Department of Natural Resources, Wildlife Disease Laboratory, 4125 Beaumont Road, Room 250, Lansing, MI 48917, USA
| | - Michele Schalow
- Michigan Department of Agriculture and Rural Development, P.O. Box 30017, Lansing, MI 48909, USA
| | - Jon S Patterson
- College of Veterinary Medicine, Veterinary Diagnostic Laboratory, Michigan State University, 4125 Beaumont Road, Lansing, MI 48910, USA
| | - Steven R Bolin
- College of Veterinary Medicine, Veterinary Diagnostic Laboratory, Michigan State University, 4125 Beaumont Road, Lansing, MI 48910, USA
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
13
|
Pierson BC, Cardile AP, Okwesili AC, Downs IL, Reisler RB, Boudreau EF, Kortepeter MG, Koca CD, Ranadive MV, Petitt PL, Kanesa-Thasan N, Rivard RG, Liggett DL, Haller JM, Norris SL, Purcell BK, Pittman PR, Saunders DL, Keshtkar Jahromi M. Safety and immunogenicity of an inactivated eastern equine encephalitis virus vaccine. Vaccine 2021; 39:2780-2790. [PMID: 33888325 DOI: 10.1016/j.vaccine.2021.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Eastern equine encephalitis virus (EEEV) is a mosquito borne alphavirus spread primarily in Atlantic and Gulf Coast regions of the United States. EEEV is the causative agent of a devastating meningoencephalitis syndrome, with approximately 30% mortality and significant morbidity. There is no licensed human vaccine against EEEV. An inactivated EEEV vaccine has been offered under investigational new drug (IND) protocols at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) since 1976. METHODS Healthy at-risk laboratory personnel received inactivated PE-6 strain EEEV (TSI-GSD 104) vaccine under two separate IND protocols. Protocol FY 99-11 (2002-2008) had a primary series consisting of doses on day 0, 7, and 28. Protocol FY 06-31 (2008-2016) utilized a primary series with doses on day 0 and 28, and month 6. Participants with an inadequate immune response, plaque reduction neutralization test with 80% cut-off (PRNT80) titer < 40, received booster vaccination. Volunteers with prior EEEV vaccination were eligible to enroll for booster doses based on annual titer evaluation. RESULTS The FY06-31 dosing schema resulted in significantly greater post-primary series immune response (PRNT80 ≥ 40) rates (84% vs 54%) and geometric mean titers (184.1 vs 39.4). The FY 06-31 dosing schema also resulted in significantly greater cumulative annual immune response rates from 1 to up to 7 years post vaccination (75% vs 59%) and geometric mean of titers (60.1 vs 43.0). The majority of probably or definitely related adverse events were mild and local; there were no probably or definitely related serious adverse events. CONCLUSIONS Inactivated PE-6 EEEV vaccine is safe and immunogenic in at-risk laboratory personnel. A prolonged primary series, with month 6 dose, significantly improved vaccine immunogenicity both post-primary series and longitudinally on annual titers. Despite decades of safe use under IND, full licensure is not planned due to manufacturing constraints, and ongoing development of alternatives.
Collapse
Affiliation(s)
- Benjamin C Pierson
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States.
| | - Anthony P Cardile
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Arthur C Okwesili
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Isaac L Downs
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Ronald B Reisler
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Ellen F Boudreau
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Mark G Kortepeter
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Craig D Koca
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Manmohan V Ranadive
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Patricia L Petitt
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Niranjan Kanesa-Thasan
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Robert G Rivard
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Dani L Liggett
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Jeannine M Haller
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Sarah L Norris
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Bret K Purcell
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Phillip R Pittman
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - David L Saunders
- Division of Medicine, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Frederick, MD 21702, United States
| | - Maryam Keshtkar Jahromi
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, United States
| |
Collapse
|
14
|
Muñoz-Gamba AS, Laiton-Donato K, Perdomo-Balaguera E, Castro LR, Usme-Ciro JA, Parra-Henao G. Molecular characterization of mosquitoes (Diptera: Culicidae) from the Colombian rainforest. Rev Inst Med Trop Sao Paulo 2021; 63:e24. [PMID: 33787744 PMCID: PMC7997665 DOI: 10.1590/s1678-9946202163024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
A few studies have carried out the taxonomic and molecular characterization of
sylvatic mosquito species in Latin America, where some species have been
incriminated as vectors for arboviruses and parasites transmission. The present
study reports the molecular characterization of mosquito species in the Sierra
Nevada de Santa Marta, a natural ecosystem in the Northern coast of Colombia.
Manual capture methods were used to collect mosquitoes, and the specimens were
identified via classical taxonomy. The COI marker was used for
species confirmation, and phylogenetic analysis was performed using the
neighbor-joining method, with the Kimura-2-Parameters model. Aedes
serratus , Psorophora ferox , Johnbelkinia
ulopus , Sabethes chloropterus , Sabethes
cyaneus , Wyeomyia aporonoma , Wyeomyia
pseudopecten , Wyeomyia ulocoma and
Wyeomyia luteoventralis were identified. We assessed the
genetic variability of mosquitoes in this area and phylogenetic reconstructions
allowed the identification at the species level. Classical and molecular
taxonomy demonstrated to be useful and complementary when morphological
characteristics are not well preserved, or the taxonomic group is not
represented in public molecular databases.
Collapse
Affiliation(s)
- Andrew S Muñoz-Gamba
- Universidad Cooperativa de Colombia, Centro de Investigación en Salud para el Trópico, Santa Marta, Colombia.,Universidad de La Salle, Departamento de Ciencias Básicas, Programa de Biología, Bogotá, Colombia
| | - Katherine Laiton-Donato
- Instituto Nacional de Salud, Dirección de Redes en Salud Pública, Grupo de Virología, Bogotá, Colombia
| | - Erick Perdomo-Balaguera
- Secretaría de Salud Distrital, Programa de Enfermedades Transmitidas por Vectores, Santa Marta, Colombia
| | - Lyda R Castro
- Universidad del Magdalena, Grupo de Investigación Evolución, Sistemática y Ecología Molecular, Santa Marta, Colombia
| | - José A Usme-Ciro
- Universidad Cooperativa de Colombia, Centro de Investigación en Salud para el Trópico, Santa Marta, Colombia
| | - Gabriel Parra-Henao
- Universidad Cooperativa de Colombia, Centro de Investigación en Salud para el Trópico, Santa Marta, Colombia.,Instituto Nacional de Salud, Subdirección de Innovación en Salud Publica, Bogotá, Colombia
| |
Collapse
|
15
|
Dupuis AP, Prusinski MA, Russell A, O'Connor C, Maffei JG, Oliver J, Howard JJ, Sherwood JA, Tober K, Rochlin I, Cucura M, Backenson B, Kramer LD. Serologic Survey of Mosquito-Borne Viruses in Hunter-Harvested White-Tailed Deer ( Odocoileus virginianus), New York State. Am J Trop Med Hyg 2020; 104:593-603. [PMID: 33350367 DOI: 10.4269/ajtmh.20-1090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/13/2020] [Indexed: 11/07/2022] Open
Abstract
Sera from white-tailed deer (WTD, Odocoileus virginianus) hunter-harvested throughout New York State (NYS), 2007-2015, were tested by plaque reduction neutralization for antibodies against nine mosquito-borne viruses from the families Peribunyaviridae, Flaviviridae, and Togaviridae. Overall, 76.1% (373/490) of sampled WTD were seropositive against at least one virus, and 38.8% were exposed to multiple viruses. The seropositivity rate in adult WTD (78.0%) was significantly greater (P < 0.0001) than that in fawns (47.7%). Neutralizing antibodies against California serogroup viruses were most common in WTD sampled across all regions (67.1%), followed by the Bunyamwera serogroup (BUN) (37.6%). Jamestown Canyon and Cache Valley orthobunyaviruses were responsible for most California and BUN infections, respectively. Seroprevalence rates to West Nile virus were higher in samples originating from Long Island (LI) (19.0%) than in those originating from the central (7.3%), western (5.0%), and Hudson Valley (4.4%) regions of NYS. Antibodies to Eastern equine encephalitis virus were seen primarily in WTD from central NYS (5.1%), where annual enzootic activity occurs, but low rates were documented in western NYS (1.4%) and LI (1.7%). Low rates of Potosi and LaCrosse orthobunyavirus, and Highlands J virus antibodies were detected over the course of this investigation. St. Louis encephalitis virus (or a closely related virus) antibodies were detected in samples collected from central and western NYS, suggesting local virus transmission despite a lack of evidence from routine mosquito surveillance. Serologic results demonstrate the value of WTD in NYS as an indicator of arbovirus distribution and recent transmission on a relatively fine spatial scale.
Collapse
Affiliation(s)
- Alan P Dupuis
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, New York
| | - Melissa A Prusinski
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, New York
| | - Alexis Russell
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, New York
| | - Collin O'Connor
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, New York
| | - Joseph G Maffei
- New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, New York
| | - JoAnne Oliver
- New York State Department of Health, Central New York Regional Office, Syracuse, New York
| | - John J Howard
- New York State Department of Health, Central New York Regional Office, Syracuse, New York
| | - James A Sherwood
- New York State Department of Health, Central New York Regional Office, Syracuse, New York
| | - Keith Tober
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, New York
| | - Ilia Rochlin
- Division of Vector Control, Suffolk County Department of Public Works, Yaphank, New York
| | - Moses Cucura
- Division of Vector Control, Suffolk County Department of Public Works, Yaphank, New York
| | - Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, New York
| | - Laura D Kramer
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York.,New York State Department of Health, The Arbovirus Laboratory, Wadsworth Center, Slingerlands, New York
| |
Collapse
|
16
|
Oliver J, Tan Y, Haight JD, Tober KJ, Gall WK, Zink SD, Kramer LD, Campbell SR, Howard JJ, Das SR, Sherwood JA. Spatial and temporal expansions of Eastern equine encephalitis virus and phylogenetic groups isolated from mosquitoes and mammalian cases in New York State from 2013 to 2019. Emerg Microbes Infect 2020; 9:1638-1650. [PMID: 32672516 PMCID: PMC7473153 DOI: 10.1080/22221751.2020.1774426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/03/2020] [Indexed: 11/15/2022]
Abstract
Surveillance for the emerging infectious disease Eastern equine encephalitis, and its causative virus in mosquitoes, continued within New York State from 2013 to 2019. There were increases in geographic area and number of consecutive years, with cases in four mammalian species, and virus in 11 mosquito species. The first cases in a goat and in an emu were reported. The first detection of virus in Aedes cinereus was reported. Virus in phylogenetic group NY4 was isolated from a horse and from mosquitoes 6 kilometers and 13 days apart in 2013. Phylogenetic groups NY4 and NY5 were found 15 days apart in two towns 280 kilometers distant in 2013. Within four adjacent counties there was a pattern of overlap, where four had NY5, two adjacent counties had NY6, two adjacent counties had NY7, and one county had NY5, NY6, and NY7, reducible to a Euler diagram. Virus in phylogenetic group NY5, found within an 11-kilometer wide area in New York State, was related to FL4 found in Florida 1,398 kilometers distant. This was consistent with a phylogenetic group originating in Florida, then being moved to a specific location in New York State, by migratory birds in consecutive years 2013 and 2014.
Collapse
Affiliation(s)
- JoAnne Oliver
- Central New York Regional Office, Department of Health, State of New York, Syracuse, NY, USA
- Department of Environmental Sciences, School of Agriculture and Natural Resources, College of Agriculture and Technology, State University of New York, Morrisville, NY, USA
| | - Yi Tan
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie D. Haight
- Vector Surveillance Unit, Bureau of Communicable Diseases, Department of Health, State of New York, Falconer, NY, USA
| | - Keith J. Tober
- Vector Surveillance Unit, Bureau of Communicable Diseases, Department of Health, State of New York, at State University of New York, Buffalo, NY, USA
| | - Wayne K. Gall
- Animal and Plant Health Inspection Service, United States Department of Agriculture, Buffalo, NY, USA
| | - Steven D. Zink
- Arbovirus Laboratory, Wadsworth Center, Department of Health, State of New York, Slingerlands, NY, USA
| | - Laura D. Kramer
- Arbovirus Laboratory, Wadsworth Center, Department of Health, State of New York, Slingerlands, NY, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York, Rensselaer, NY, USA
| | - Scott R. Campbell
- Arthropod-Borne Disease Laboratory, Suffolk County Department of Health Services, Yaphank, NY, USA
| | - John J. Howard
- Central New York Regional Office, Department of Health, State of New York, Syracuse, NY, USA
| | - Suman R. Das
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James A. Sherwood
- Central New York Regional Office, Department of Health, State of New York, Syracuse, NY, USA
| |
Collapse
|
17
|
Cases of Eastern equine encephalitis in humans associated with Aedes canadensis, Coquillettidia perturbans and Culiseta melanura mosquitoes with the virus in New York State from 1971 to 2012 by analysis of aggregated published data. Epidemiol Infect 2020; 148:e72. [PMID: 32234110 PMCID: PMC7118715 DOI: 10.1017/s0950268820000308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
From 1971 to 2012, in New York State, years with human Eastern equine encephalitis (EEE) were more strongly associated with the presence of Aedes canadensis, Coquillettidia perturbans and Culiseta melanura mosquitoes infected with the EEE virus (Fisher's exact test, one-sided P = 0.005, 0.03, 0.03) than with Culiseta morsitans, Aedes vexans, Culex pipiens-restuans, Anopheles quadrimaculatus or Anopheles punctipennis (P = 0.05, 0.40, 0.33, 1.00, 1.00). The estimated relative risk of a case in a year in which the virus was detected vs. not detected was 14.67 for Ae. canadensis, 6.38 for Cq. perturbans and 5.50 for Cs. morsitans. In all 5 years with a case, Cs. melanura with the virus was detected. In no year was there a case in the absence of Cs. melanura with the virus. There were 18 years with no case in the presence of Cs. melanura with the virus. Such observations may identify the time of increased risk, and when the methods may be used to prevent or reduce exposure to vector mosquito species in this geographic region.
Collapse
|
18
|
Batovska J, Mee PT, Lynch SE, Sawbridge TI, Rodoni BC. Sensitivity and specificity of metatranscriptomics as an arbovirus surveillance tool. Sci Rep 2019; 9:19398. [PMID: 31852942 PMCID: PMC6920425 DOI: 10.1038/s41598-019-55741-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 01/30/2023] Open
Abstract
The ability to identify all the viruses within a sample makes metatranscriptomic sequencing an attractive tool to screen mosquitoes for arboviruses. Practical application of this technique, however, requires a clear understanding of its analytical sensitivity and specificity. To assess this, five dilutions (1:1, 1:20, 1:400, 1:8,000 and 1:160,000) of Ross River virus (RRV) and Umatilla virus (UMAV) isolates were spiked into subsamples of a pool of 100 Culex australicus mosquitoes. The 1:1 dilution represented the viral load of one RRV-infected mosquito in a pool of 100 mosquitoes. The subsamples underwent nucleic acid extraction, mosquito-specific ribosomal RNA depletion, and Illumina HiSeq sequencing. The viral load of the subsamples was also measured using reverse transcription droplet digital PCR (RT-ddPCR) and quantitative PCR (RT-qPCR). Metatranscriptomic sequencing detected both RRV and UMAV in the 1:1, 1:20 and 1:400 subsamples. A high specificity was achieved, with 100% of RRV and 99.6% of UMAV assembled contigs correctly identified. Metatranscriptomic sequencing was not as sensitive as RT-qPCR or RT-ddPCR; however, it recovered whole genome information and detected 19 other viruses, including four first detections for Australia. These findings will assist arbovirus surveillance programs in utilising metatranscriptomics in routine surveillance activities to enhance arbovirus detection.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia.
| | - Tim I Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|