1
|
Baliova M, Jursky F. Manganese- and zinc-coordinated interaction of Schistosoma japonicum glutathione S-transferase with neurotransmitter transporters GlyT1 and GAT3 in vitro. Exp Parasitol 2024; 259:108721. [PMID: 38369179 DOI: 10.1016/j.exppara.2024.108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Glutathione S-transferases (GSTs) are a family of multifunctional isoenzymes involved in the neutralization of toxic compounds, drug resistance and several other cellular functions. The glutathione S-transferase enzyme of Schistosoma japonicum (SjGST-26) plays a role in human schistosomiasis and is also a frequently used fusion partner in mammalian and bacterial expression and pull-down systems. GSTs seem not to be naturally associated with metal ions. Exceptionally, in vitro, metal binding sites have been previously described in some schistosome GSTs; however, their possible physiological role is unclear. Molecules of several neurotransmitter transporters also contain a regulatory zinc binding site, which affects their transport cycle. Here we show that among several metals, manganese and zinc are able to induce a specific protein interaction of SjGST-26 with the glycine transporter GlyT1 and the GABA transporter GAT3 in vitro. The results suggest that metal-binding sites on SjGST-26 and neurotransmitter transporters might function in metal-coordinated interactions with other metalloproteins. Our results additionally indicate that the presence of metal ions in SjGST-26-based GST protein pull-down assays may lead to a false-positive interaction if the potential interacting target is the metalloprotein.
Collapse
Affiliation(s)
- Martina Baliova
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovakia
| | - Frantisek Jursky
- Laboratory of Neurobiology, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska Cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
2
|
Abou-El-Naga IF, Mogahed NMFH. Immuno-molecular profile for Biomphalaria glabrata/Schistosoma mansoni interaction. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105083. [PMID: 37852455 DOI: 10.1016/j.dci.2023.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
The complex innate immune defense of Biomphalaria glabrata, the intermediate host of Schistosoma mansoni, governs the successful development of the intramolluscan stages of the parasite. The interaction between the snail and the parasite involves a complex immune molecular crosstalk between several parasite antigens and the snail immune recognition receptors, evoking different signals and effector molecules. This work seeks to discuss the immune-related molecules that influence compatibility in Biomphalaria glabrata/Schistosoma mansoni interaction and the differential expression of these molecules between resistant and susceptible snails. It also includes the current understanding of the immune molecular determinants that govern the compatibility in sympatric and allopatric interactions, and the expression of these molecules after immune priming and the secondary immune response. Herein, the differences in the immune-related molecules in the interaction of other Biomphalaria species with Schistosoma mansoni compared to the Biomphalaria glabrata model snail are highlighted. Understanding the diverse immune molecular determinants in the snail/schistosome interaction can lead to alternative control strategies for schistosomiasis.
Collapse
|
3
|
Du X, McManus DP, French JD, Sivakumaran H, Johnston RL, Kondrashova O, Fogarty CE, Jones MK, You H. Lentiviral Transduction-based CRISPR/Cas9 Editing of Schistosoma mansoni Acetylcholinesterase. Curr Genomics 2023; 24:155-170. [PMID: 38178986 PMCID: PMC10761339 DOI: 10.2174/1389202924666230823094608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 01/06/2024] Open
Abstract
Background Recent studies on CRISPR/Cas9-mediated gene editing in Schistosoma mansoni have shed new light on the study and control of this parasitic helminth. However, the gene editing efficiency in this parasite is modest. Methods To improve the efficiency of CRISPR/Cas9 genome editing in schistosomes, we used lentivirus, which has been effectively used for gene editing in mammalian cells, to deliver plasmid DNA encoding Cas9 nuclease, a sgRNA targeting acetylcholinesterase (SmAChE) and a mCherry fluorescence marker into schistosomes. Results MCherry fluorescence was observed in transduced eggs, schistosomula, and adult worms, indicating that the CRISPR components had been delivered into these parasite stages by lentivirus. In addition, clearly changed phenotypes were observed in SmAChE-edited parasites, including decreased SmAChE activity, reduced hatching ability of edited eggs, and altered behavior of miracidia hatched from edited eggs. Next-generation sequencing analysis demonstrated that the lentiviral transduction-based CRISPR/Cas9 gene modifications in SmAChE-edited schistosomes were homology-directed repair predominant but with much lower efficiency than that obtained using electroporation (data previously published by our laboratory) for the delivery of CRISPR components. Conclusion Taken together, electroporation is more efficient than lentiviral transduction in the delivery of CRISPR/Cas9 into schistosomes for programmed genome editing. The exploration of tactics for enhancing CRISPR/Cas9 gene editing provides the basis for the future improvement of programmed genome editing in S. mansoni.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Juliet D. French
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Haran Sivakumaran
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Rebecca L. Johnston
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Olga Kondrashova
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Conor E. Fogarty
- Centre for Bioinnovation, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| |
Collapse
|
4
|
Abramov T, Suwansa-ard S, da Silva PM, Wang T, Dove M, O’Connor W, Parker L, Russell FD, Lovejoy DA, Cummins SF, Elizur A. A novel role for Teneurin C-terminal Associated Peptide (TCAP) in the regulation of cardiac activity in the Sydney rock oyster, Saccostrea glomerata. Front Endocrinol (Lausanne) 2023; 14:1020368. [PMID: 36814576 PMCID: PMC9939839 DOI: 10.3389/fendo.2023.1020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Teneurin C-terminal associated peptide (TCAP) is an ancient bioactive peptide that is highly conserved in metazoans. TCAP administration reduces cellular and behavioural stress in vertebrate and urochordate models, yet despite numerous studies in higher animals, there is limited knowledge of its role in invertebrates. In particular, there are no studies on TCAP's effects on the heart of any metazoan, which is a critical organ in the stress response. We used the Sydney rock oyster (SRO) as an invertebrate model to investigate a potential role for sroTCAP in regulating cardiac activity, including during stress. sroTCAP is localized to the neural innervation network of the SRO heart, and suggested binding with various heart proteins related to metabolism and stress, including SOD, GAPDH and metabotropic glutamate receptor. Intramuscular injection of sroTCAP (10 pmol) significantly altered the expression of heart genes that are known to regulate remodelling processes under different conditions, and modulated several gene families responsible for stress mitigation. sroTCAP (1 and 10 pmol) was shown to cause transient bradycardia (heart rate was reduced by up to 63% and for up to 40 min post-administration), indicative of an unstressed state. In summary, this study has established a role for a TCAP in the regulation of cardiac activity through modulation of physiological and molecular components associated with energy conservation, stress and adaptation. This represents a novel function for TCAP and may have implications for higher-order metazoans.
Collapse
Affiliation(s)
- Tomer Abramov
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Michael Dove
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute Taylors Beach, Port Stephens NSW, Australia
| | - Wayne O’Connor
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute Taylors Beach, Port Stephens NSW, Australia
| | - Laura Parker
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW, Australia
| | - Fraser D. Russell
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - David A. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
5
|
Du X, McManus DP, French JD, Collinson N, Sivakumaran H, MacGregor SR, Fogarty CE, Jones MK, You H. CRISPR interference for sequence-specific regulation of fibroblast growth factor receptor A in Schistosoma mansoni. Front Immunol 2023; 13:1105719. [PMID: 36713455 PMCID: PMC9880433 DOI: 10.3389/fimmu.2022.1105719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Employing the flatworm parasite Schistosoma mansoni as a model, we report the first application of CRISPR interference (CRISPRi) in parasitic helminths for loss-of-function studies targeting the SmfgfrA gene which encodes the stem cell marker, fibroblast growth factor receptor A (FGFRA). SmFGFRA is essential for maintaining schistosome stem cells and critical in the schistosome-host interplay. The SmfgfrA gene was targeted in S. mansoni adult worms, eggs and schistosomula using a catalytically dead Cas9 (dCas9) fused to a transcriptional repressor KRAB. We showed that SmfgfrA repression resulted in considerable phenotypic differences in the modulated parasites compared with controls, including reduced levels of SmfgfrA transcription and decreased protein expression of SmFGFRA, a decline in EdU (thymidine analog 5-ethynyl-2'-deoxyuridine, which specifically stains schistosome stem cells) signal, and an increase in cell apoptosis. Notably, reduced SmfgfrA transcription was evident in miracidia hatched from SmfgfrA-repressed eggs, and resulted in a significant change in miracidial behavior, indicative of a durable repression effect caused by CRISPRi. Intravenous injection of mice with SmfgfrA-repressed eggs resulted in granulomas that were markedly reduced in size and a decline in the level of serum IgE, emphasizing the importance of SmFGFRA in regulating the host immune response induced during schistosome infection. Our findings show the feasibility of applying CRISPRi for effective, targeted transcriptional repression in schistosomes, and provide the basis for employing CRISPRi to selectively perturb gene expression in parasitic helminths on a genome-wide scale.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Juliet D. French
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Natasha Collinson
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Haran Sivakumaran
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Skye R. MacGregor
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Conor E. Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia,*Correspondence: Hong You,
| |
Collapse
|
6
|
Fogarty CE, Zhao M, McManus DP, Duke MG, Cummins SF, Wang T. Correction to: Comparative study of excretory–secretory proteins released by Schistosoma mansoni-resistant, susceptible and naïve Biomphalaria glabrata. Parasit Vectors 2022; 15:421. [PMID: 36368998 PMCID: PMC9652980 DOI: 10.1186/s13071-022-05439-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Fogarty CE, Phan P, Duke MG, McManus DP, Wyeth RC, Cummins SF, Wang T. Identification of Schistosoma mansoni miracidia attractant candidates in infected Biomphalaria glabrata using behaviour-guided comparative proteomics. Front Immunol 2022; 13:954282. [PMID: 36300127 PMCID: PMC9589101 DOI: 10.3389/fimmu.2022.954282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
Schistosomiasis, caused by infection with Schistosoma digenetic trematodes, is one of the deadliest neglected tropical diseases in the world. The Schistosoma lifecycle involves the miracidial infection of an intermediate freshwater snail host, such as Biomphalaria glabrata. Dispersing snail host-derived Schistosoma miracidia attractants has been considered a method of minimising intermediate host infections and, by extension, human schistosomiasis. The attractiveness of B. glabrata to miracidia is known to be reduced following infection; however, the relationship between duration of infection and attractiveness is unclear. Excretory-secretory proteins (ESPs) most abundant in attractive snail conditioned water (SCW) are key candidates to function as miracidia attractants. This study analysed SCW from B. glabrata that were naïve (uninfected) and at different time-points post-miracidia exposure (PME; 16h, 1-week, 2-weeks and 3-weeks PME) to identify candidate ESPs mediating Schistosoma mansoni miracidia behaviour change, including aggregation and chemoklinokinesis behaviour (random motion, including slowdown and increased turning rate and magnitude). Miracidia behaviour change was only observed post-addition of naïve and 3W-PME SCW, with other treatments inducing significantly weaker behaviour changes. Therefore, ESPs were considered attractant candidates if they were shared between naïve and 3W-PME SCW (or exclusive to the former), contained a predicted N-terminal signal peptide and displayed low identity (<50%) to known proteins outside of the Biomphalaria genus. Using these criteria, a total of 6 ESP attractant candidates were identified, including acetylcholine binding protein-like proteins and uncharacterised proteins. Tissue-specific RNA-seq analysis of the genes encoding these 6 ESPs indicated relatively high gene expression within various B. glabrata tissues, including the foot, mantle and kidney. Acetylcholine binding protein-like proteins were highly promising due to their high abundance in naïve and 3W-PME SCW, high specificity to B. glabrata and high expression in the ovotestis, from which attractants have been previously identified. In summary, this study used proteomics, guided by behavioural assays, to identify miracidia attractant candidates that should be further investigated as potential biocontrols to disrupt miracidia infection and minimise schistosomiasis.
Collapse
Affiliation(s)
- Conor E. Fogarty
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QL, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QL, Australia
| | - Phong Phan
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QL, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QL, Australia
| | - Mary G. Duke
- Infection and Inflammation Program, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QL, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Brisbane, QL, Australia
| | - Russell C. Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, NS, Canada
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QL, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QL, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QL, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QL, Australia
- *Correspondence: Tianfang Wang,
| |
Collapse
|
8
|
Fogarty CE, Suwansa-ard S, Phan P, McManus DP, Duke MG, Wyeth RC, Cummins SF, Wang T. Identification of Putative Neuropeptides That Alter the Behaviour of Schistosoma mansoni Cercariae. BIOLOGY 2022; 11:biology11091344. [PMID: 36138823 PMCID: PMC9495596 DOI: 10.3390/biology11091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022]
Abstract
Elucidating the infectivity of Schistosoma mansoni, one of the main etiological agents of human schistosomiasis, requires an improved understanding of the behavioural mechanisms of cercariae, the non-feeding mammalian infective stage. This study investigated the presence and effect of cercariae-derived putative neuropeptides on cercarial behaviour when applied externally. Cercariae were peptidomically analysed and 11 neuropeptide precursor proteins, all of which were specific to the Schistosoma genus and most of which highly expressed in the cercarial stage, were identified in cercariae for the first time. Protein–protein interaction analysis predicted the interaction of various neuropeptide precursors (e.g., Sm-npp-30, Sm-npp-33, Sm-npp-35) with cercarial structural proteins (e.g., myosin heavy chain and titin). In total, nine putative neuropeptides, selected based on their high hydrophobicity and small size (~1 kilodalton), were tested on cercariae (3 mg/mL) in acute exposure (1 min) and prolonged exposure (360 min) behavioural bioassays. The peptides AAYMDLPW-NH2, NRKIDQSFYSYY-NH2, FLLALPSP-OH, and NYLWDTRL-NH2 stimulated acute increases in cercarial spinning, stopping, and directional change during active states. However, only NRKIDQSFYSYY-NH2 caused the same behavioural changes at a lower concentration (0.1 mg/mL). After prolonged exposure, AAYMDLPW-NH2 and NYLWDTRL-NH2 caused increasing passive behaviour and NRKIDQSFYSYY-NH2 caused increasing body-first and head-pulling movements. These findings characterise behaviour-altering novel putative neuropeptides, which may inform future biocontrol innovations to prevent human schistosomiasis.
Collapse
Affiliation(s)
- Conor E. Fogarty
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Phong Phan
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Mary G. Duke
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Russell C. Wyeth
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4556, Australia
- Correspondence:
| |
Collapse
|
9
|
Du X, McManus DP, Fogarty CE, Jones MK, You H. Schistosoma mansoni Fibroblast Growth Factor Receptor A Orchestrates Multiple Functions in Schistosome Biology and in the Host-Parasite Interplay. Front Immunol 2022; 13:868077. [PMID: 35812433 PMCID: PMC9257043 DOI: 10.3389/fimmu.2022.868077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cells play significant roles in driving the complex life cycle of Schistosoma mansoni. Fibroblast growth factor (FGF) receptor A (SmFGFRA) is essential for maintaining the integrity of schistosome stem cells. Using immunolocalization, we demonstrated that SmFGFRA was distributed abundantly in germinal/stem cells of different S. mansoni life stages including eggs, miracidia, cercariae, schistosomula and adult worms. Indeed, SmFGFRA was also localized amply in embryonic cells and in the perinuclear region of immature eggs; von Lichtenberg's layer and the neural mass of mature eggs; the ciliated surface and neural mass of miracidia; the tegument cytosol of cercariae, schistosomula and adult worms; and was present in abundance in the testis and vitellaria of adult worms of S. mansoni. The distribution pattern of SmFGFRA illustrates the importance of this molecule in maintaining stem cells, development of the nervous and reproductive system of schistosomes, and in the host-parasite interplay. We showed SmFGFRA can bind human FGFs, activating the mitogen activated protein kinase (MAPK) pathway of adult worms in vitro. Inhibition of FGF signaling by the specific tyrosine kinase inhibitor BIBF 1120 significantly reduced egg hatching ability and affected the behavior of miracidia hatched from the treated eggs, emphasizing the importance of FGF signaling in driving the life cycle of S. mansoni. Our findings provide increased understanding of the complex schistosome life cycle and host-parasite interactions, indicating components of the FGF signaling pathway may represent promising targets for developing new interventions against schistosomiasis.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Conor E. Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Analysis of rhodopsin G protein-coupled receptor orthologs reveals semiochemical peptides for parasite (Schistosoma mansoni) and host (Biomphalaria glabrata) interplay. Sci Rep 2022; 12:8243. [PMID: 35581232 PMCID: PMC9114394 DOI: 10.1038/s41598-022-11996-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis is a medically significant disease caused by helminth parasites of the genus Schistosoma. The schistosome life cycle requires chemically mediated interactions with an intermediate (aquatic snail) and definitive (human) host. Blocking parasite development within the snail stage requires improved understanding of the interactions between the snail host and the Schistosoma water-borne free-living form (miracidium). Innovations in snail genomics and aquatic chemical communication provide an ideal opportunity to explore snail-parasite coevolution at the molecular level. Rhodopsin G protein-coupled receptors (GPCRs) are of particular interest in studying how trematode parasites navigate towards their snail hosts. The potential role of GPCRs in parasites makes them candidate targets for new antihelminthics that disrupt the intermediate host life-cycle stages, thus preventing subsequent human infections. A genomic-bioinformatic approach was used to identify GPCR orthologs between the snail Biomphalaria glabrata and miracidia of its obligate parasite Schistosoma mansoni. We show that 8 S. mansoni rhodopsin GPCRs expressed within the miracidial stage share overall amino acid similarity with 8 different B. glabrata rhodopsin GPCRs, particularly within transmembrane domains, suggesting conserved structural features. These GPCRs include an orphan peptide receptor as well as several with strong sequence homologies with rhabdomeric opsin receptors, a serotonin receptor, a sulfakinin (SK) receptor, an allatostatin-A (buccalin) receptor and an FMRFamide receptor. Buccalin and FMRFa peptides were identified in water conditioned by B. glabrata, and we show synthetic buccalin and FMRFa can stimulate significant rates of change of direction and turn-back responses in S. mansoni miracidia. Ortholog GPCRs were identified in S. mansoni miracidia and B. glabrata. These GPCRs may detect similar ligands, including snail-derived odorants that could facilitate miracidial host finding. These results lay the foundation for future research elucidating the mechanisms by which GPCRs mediate host finding which can lead to the potential development of novel anti-schistosome interventions.
Collapse
|
11
|
Laidemitt MR, Gleichsner AM, Ingram CD, Gay SD, Reinhart EM, Mutuku MW, Oraro P, Minchella DJ, Mkoji GM, Loker ES, Steinauer ML. Host preference of field‐derived
Schistosoma mansoni
is influenced by snail host compatibility and infection status. Ecosphere 2022; 13. [PMID: 36285193 PMCID: PMC9592064 DOI: 10.1002/ecs2.4004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schistosome parasites cause a chronic inflammatory disease in humans, and recent studies have emphasized the importance of control programs for understanding the aquatic phases of schistosomiasis transmission. The host-seeking behavior of larval schistosomes (miracidia) for their snail intermediate hosts plays a critical role in parasite transmission. Using field-derived strains of Kenyan snails and parasites, we tested two main hypotheses: (1) Parasites prefer the most compatible host, and (2) parasites avoid hosts that are already infected. We tested preference to three Biomphalaria host snail taxa (B. pfeifferi, B. sudanica, and B. choanomphala), using allopatric and sympatric Schistosoma mansoni isolates and two different nonhost snail species that co-occur with Biomphalaria, Bulinus globosus, and Physa acuta. We also tested whether schistosomes avoid snail hosts that are already infected by another trematode species and whether competitive dominance played a role in their behavior. Preference was assessed using two-way choice chambers and by visually counting parasites that moved toward competing stimuli. In pairwise comparisons, we found that S. mansoni did not always prefer the more compatible snail taxon, but never favored an incompatible host over a compatible host. While parasites preferred B. pfeifferi to the nonhost species B. globosus, they did not significantly prefer B. pfeifferi versus P. acuta, an introduced species in Kenya. Finally, we demonstrated that parasites avoid infected snails if the resident parasite was competitively dominant (Patagifer sp.), and preferred snails infected with subordinates (xiphidiocercariae) to uninfected snails. These results provide evidence of “fine tuning” in the ability of schistosome miracidia to detect hosts; however, they did not always select hosts that would maximize fitness. Appreciating such discriminatory abilities could lead to a better understanding of how ecosystem host and parasite diversity influences disease transmission and could provide novel control mechanisms to improve human health.
Collapse
Affiliation(s)
- Martina R. Laidemitt
- Center for Evolutionary and Theoretical Immunology, Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Alyssa M. Gleichsner
- Department of Biological Sciences State University of New York, College at Plattsburgh Plattsburgh New York USA
| | - Christopher D. Ingram
- College of Osteopathic Medicine of the Pacific Northwest Western University of Health Sciences Lebanon Oregon USA
| | - Steven D. Gay
- College of Osteopathic Medicine of the Pacific Northwest Western University of Health Sciences Lebanon Oregon USA
| | | | - Martin W. Mutuku
- Center for Biotechnology Research and Development Kenya Medical Research Institute (KEMRI) Nairobi Kenya
| | - Polycup Oraro
- Center for Biotechnology Research and Development Kenya Medical Research Institute (KEMRI) Nairobi Kenya
| | - Dennis J. Minchella
- Department of Biological Sciences Purdue University West Lafayette Indiana USA
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development Kenya Medical Research Institute (KEMRI) Nairobi Kenya
| | - Eric S. Loker
- Center for Evolutionary and Theoretical Immunology, Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Michelle L. Steinauer
- College of Osteopathic Medicine of the Pacific Northwest Western University of Health Sciences Lebanon Oregon USA
| |
Collapse
|
12
|
Young ND, Stroehlein AJ, Wang T, Korhonen PK, Mentink-Kane M, Stothard JR, Rollinson D, Gasser RB. Nuclear genome of Bulinus truncatus, an intermediate host of the carcinogenic human blood fluke Schistosoma haematobium. Nat Commun 2022; 13:977. [PMID: 35190553 PMCID: PMC8861042 DOI: 10.1038/s41467-022-28634-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Some snails act as intermediate hosts (vectors) for parasitic flatworms (flukes) that cause neglected tropical diseases, such as schistosomiases. Schistosoma haematobium is a blood fluke that causes urogenital schistosomiasis and induces bladder cancer and increased risk of HIV infection. Understanding the molecular biology of the snail and its relationship with the parasite could guide development of an intervention approach that interrupts transmission. Here, we define the genome for a key intermediate host of S. haematobium-called Bulinus truncatus-and explore protein groups inferred to play an integral role in the snail's biology and its relationship with the schistosome parasite. Bu. truncatus shared many orthologous protein groups with Biomphalaria glabrata-the key snail vector for S. mansoni which causes hepatointestinal schistosomiasis in people. Conspicuous were expansions in signalling and membrane trafficking proteins, peptidases and their inhibitors as well as gene families linked to immune response regulation, such as a large repertoire of lectin-like molecules. This work provides a sound basis for further studies of snail-parasite interactions in the search for targets to block schistosomiasis transmission.
Collapse
Affiliation(s)
- Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Andreas J Stroehlein
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tao Wang
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Pasi K Korhonen
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Margaret Mentink-Kane
- NIH-NIAID Schistosomiasis Resource Center, Biomedical Research Institute (BRI), Rockville, MD, USA
| | - J Russell Stothard
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David Rollinson
- Department of Life Sciences, Natural History Museum, London, UK
- London Centre for Neglected Tropical Disease Research, London, UK
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
13
|
Abramov T, Suwansa-ard S, da Silva PM, Wang T, Dove M, O’Connor W, Parker L, Lovejoy DA, Cummins SF, Elizur A. Teneurin and TCAP Phylogeny and Physiology: Molecular Analysis, Immune Activity, and Transcriptomic Analysis of the Stress Response in the Sydney Rock Oyster ( Saccostrea glomerata) Hemocytes. Front Endocrinol (Lausanne) 2022; 13:891714. [PMID: 35784537 PMCID: PMC9248207 DOI: 10.3389/fendo.2022.891714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Teneurin C-terminal associated peptide (TCAP) is an ancient bioactive peptide that is highly conserved in metazoans. TCAP administration reduces cellular and behavioral stress in vertebrate and urochordate models. There is little information for invertebrates regarding the existence or function of a TCAP. This study used the Sydney rock oyster (SRO) as a molluscan model to characterize an invertebrate TCAP, from molecular gene analysis to its physiological effects associated with hemocyte phagocytosis. We report a single teneurin gene (and 4 teneurin splice variants), which encodes a precursor with TCAP that shares a vertebrate-like motif, and is similar to that of other molluscan classes (gastropod, cephalopod), arthropods and echinoderms. TCAP was identified in all SRO tissues using western blotting at 1-2 different molecular weights (~22 kDa and ~37kDa), supporting precursor cleavage variation. In SRO hemolymph, TCAP was spatially localized to the cytosol of hemocytes, and with particularly high density immunoreactivity in granules. Based on 'pull-down' assays, the SRO TCAP binds to GAPDH, suggesting that TCAP may protect cells from apoptosis under oxidative stress. Compared to sham injection, the intramuscular administration of TCAP (5 pmol) into oysters modulated their immune system by significantly reducing hemocyte phagocytosis under stress conditions (low salinity and high temperature). TCAP administration also significantly reduced hemocyte reactive oxygen species production at ambient conditions and after 48 h stress, compared to sham injection. Transcriptomic hemocyte analysis of stressed oysters administered with TCAP demonstrated significant changes in expression of genes associated with key metabolic, protective and immune functions. In summary, this study established a role for TCAP in oysters through modulation of physiological and molecular functions associated with energy conservation, stress and cellular defense.
Collapse
Affiliation(s)
- Tomer Abramov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Michael Dove
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute, João Pessoa, Para´ıba, Taylors Beach, NSW, Australia
| | - Wayne O’Connor
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute, João Pessoa, Para´ıba, Taylors Beach, NSW, Australia
| | - Laura Parker
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David A. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- *Correspondence: Abigail Elizur,
| |
Collapse
|
14
|
Junior NCP, de Melo ES, de Lima IL, da Rocha RET, Batista M, da Silva RA, Feitosa APS, de Lima Filho JL, Brayner FA, Alves LC. A proteomics evaluation of the primary and secondary immune response of Biomphalaria straminea challenged by Schistosoma mansoni. Parasitol Res 2021; 120:4023-4035. [PMID: 34657981 DOI: 10.1007/s00436-021-07341-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022]
Abstract
Biomphalaria spp. snails are intermediary hosts of Schistosoma mansoni, etiologic agent of intestinal schistosomiasis, one of the most important neglected tropical diseases. Biomphalaria straminea is an important intermediary host that possess a different phenotype to parasite infection but shows a large geographic distribution and high capacity of new ecologic niche invasion. Our purpose was to characterize for the first time the differentially expressed proteome in B. straminea during two times intervals after primary and secondary exposure to S. mansoni. The hemolymph was collected at 1 and 15 days after primary and secondary exposure of snails to the parasite. Total proteins were extracted and digested with trypsin. LC-MS/MS label-free quantification was performed and analyzed using Maxquant and Perseus software. Proteins were identified and annotated using Blast2GO tools. After 1 day of exposure, most of upregulated proteins are hemoglobin type 2, C and H type lectins, molecules related to cell adhesion, and response to oxidative stress. After 15 days, we found a similar pattern of upregulated proteins but some fibrinogen-related proteins (FREPs) and TEPs homologs were downregulated. Regarding the differentially expressed proteins during secondary response, the principal immune-related proteins upregulated were C and H type lectins, cellular adhesion molecules, biomphalysin, and FREP3. We noted a several upregulated biological processes during both responses that could be the one of the key points of efficacy in the immune response to parasite. Our data suggests different immune mechanisms used by B. straminea snails challenged with S. mansoni.
Collapse
Affiliation(s)
| | - Elverson Soares de Melo
- Department of Parasitology, Aggeu Magalhães Research Center FIOCRUZ Pernambuco, Professor Moraes Rego Avenue, s/n-Campus da UFPE-Cidade Universitária, Recife, PE, CEP: 50.740-465, Brazil
| | - Iasmim Lopes de Lima
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Rubens Emanoel Tavares da Rocha
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Michel Batista
- Carlos Chagas Institute FIOCRUZ Paraná, Mass Spectrometry Facility P02-004, Professor Algacyr Munhoz Mader street, 3775 - Curitiba Industrial City, Curitiba, PR, CEP: 81,350,010, Brazil
| | - Roberto Afonso da Silva
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Ana Paula Sampaio Feitosa
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Jose Luiz de Lima Filho
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil
| | - Fábio André Brayner
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil.,Department of Parasitology, Aggeu Magalhães Research Center FIOCRUZ Pernambuco, Professor Moraes Rego Avenue, s/n-Campus da UFPE-Cidade Universitária, Recife, PE, CEP: 50.740-465, Brazil
| | - Luiz Carlos Alves
- Keiso Asami Imunopatology Laboratory, UFPE, Prof. Moraes Rego Avenue, 1235 - Unversitary City, Recife, PE, CEP: 50,670-901, Brazil.,Department of Parasitology, Aggeu Magalhães Research Center FIOCRUZ Pernambuco, Professor Moraes Rego Avenue, s/n-Campus da UFPE-Cidade Universitária, Recife, PE, CEP: 50.740-465, Brazil
| |
Collapse
|
15
|
Qokoyi NK, Masamba P, Kappo AP. Proteins as Targets in Anti-Schistosomal Drug Discovery and Vaccine Development. Vaccines (Basel) 2021; 9:762. [PMID: 34358178 PMCID: PMC8310332 DOI: 10.3390/vaccines9070762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
Proteins hardly function in isolation; they form complexes with other proteins or molecules to mediate cell signaling and control cellular processes in various organisms. Protein interactions control mechanisms that lead to normal and/or disease states. The use of competitive small molecule inhibitors to disrupt disease-relevant protein-protein interactions (PPIs) holds great promise for the development of new drugs. Schistosome invasion of the human host involves a variety of cross-species protein interactions. The pathogen expresses specific proteins that not only facilitate the breach of physical and biochemical barriers present in skin, but also evade the immune system and digestion of human hemoglobin, allowing for survival in the host for years. However, only a small number of specific protein interactions between the host and parasite have been functionally characterized; thus, in-depth understanding of the molecular mechanisms of these interactions is a key component in the development of new treatment methods. Efforts are now focused on developing a schistosomiasis vaccine, as a proposed better strategy used either alone or in combination with Praziquantel to control and eliminate this disease. This review will highlight protein interactions in schistosomes that can be targeted by specific PPI inhibitors for the design of an alternative treatment to Praziquantel.
Collapse
Affiliation(s)
| | | | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa; (N.K.Q.); (P.M.)
| |
Collapse
|
16
|
Stroehlein AJ, Korhonen PK, Rollinson D, Stothard JR, Hall RS, Gasser RB, Young ND. Bulinus truncatus transcriptome – a resource to enable molecular studies of snail and schistosome biology. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021; 1:100015. [PMID: 35284899 PMCID: PMC8906107 DOI: 10.1016/j.crpvbd.2021.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/05/2022]
Abstract
Despite advances in high-throughput sequencing and bioinformatics, molecular investigations of snail intermediate hosts that transmit parasitic trematodes are scant. Here, we report the first transcriptome for Bulinus truncatus – a key intermediate host of Schistosoma haematobium – a blood fluke that causes urogenital schistosomiasis in humans. We assembled this transcriptome from short- and long-read RNA-sequence data. From this transcriptome, we predicted 12,998 proteins, 58% of which had orthologs in Biomphalaria glabrata – an intermediate host of Schistosoma mansoni – a blood fluke that causes hepato-intestinal schistosomiasis. We predicted that select protein groups are involved in signal transduction, cell growth and death, the immune system, environmental adaptation and/or the excretory/secretory system, suggesting roles in immune responses, pathogen defence and/or parasite-host interactions. The transcriptome of Bu. truncatus provides a useful resource to underpin future molecular investigations of this and related snail species, and its interactions with pathogens including S. haematobium. The present resource should enable comparative investigations of other molluscan hosts of socioeconomically important parasites in the future. First transcriptome to represent Bulinus truncatus – a snail intermediate host of Schistosoma haematobium. Select protein groups of Bu. truncatus are inferred to associate with innate immune responses against pathogens. Transcriptome provides a resource for future studies of parasite-host interactions and snail-host resistance to pathogens.
Collapse
|
17
|
Resistance of Biomphalaria alexandrina to Schistosoma mansoni and Bulinus truncatus to Schistosoma haematobium Correlates with Unsaturated Fatty Acid Levels in the Snail Soft Tissue. J Parasitol Res 2020; 2020:8852243. [PMID: 33204522 PMCID: PMC7652611 DOI: 10.1155/2020/8852243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Only a fraction of the Biomphalaria and Bulinus snail community shows patent infection with schistosomes despite continuous exposure to the parasite, indicating that a substantial proportion of snails may resist infection. Accordingly, exterminating the schistosome intermediate snail hosts in transmission foci in habitats that may extend to kilometres is cost-prohibitive and damaging to the ecological equilibrium and quality of water and may be superfluous. It may be more cost effective with risk less ecological damage to focus on discovering the parameters governing snail susceptibility and resistance to schistosome infection. Therefore, laboratory bred Biomphalaria alexandrina and Bulinus truncatus snails were exposed to miracidia of laboratory-maintained Schistosoma mansoni and S. haematobium, respectively. Snails were examined for presence or lack of infection association with soft tissue and hemolymph content of proteins, cholesterol, and triglycerides, evaluated using standard biochemical techniques and palmitic, oleic, linoleic, and arachidonic acid, assayed by ultraperformance liquid chromatography-tandem mass spectrometry. Successful schistosome infection of B. alexandrina and B. truncatus consistently and reproducibly correlated with snails showing highly significant (up to P < 0.0001) decrease in soft tissue and hemolymph content of the monounsaturated fatty acid, oleic acid, and the polyunsaturated fatty acids, linoleic, and arachidonic acids as compared to naïve snails. Snails that resisted twice infection had soft tissue content of oleic, linoleic, and arachidonic acid similar to naïve counterparts. High levels of soft tissue and hemolymph oleic, linoleic, and arachidonic acid content appear to interfere with schistosome development in snails. Diet manipulation directed to eliciting excessive increase of polyunsaturated fatty acids in snails may protect them from infection and interrupt disease transmission in a simple and effective manner.
Collapse
|
18
|
Heat shock protein 70 (Hsp70) in Schistosoma mansoni and its role in decreased adult worm sensitivity to praziquantel. Parasitology 2020; 147:634-642. [PMID: 32127065 DOI: 10.1017/s0031182020000347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Schistosoma mansoni is the most common species causing schistosomiasis. It has a complex life cycle involving a vertebrate definitive host and a snail intermediate host of the genus Biomphalaria. Each stage encounters a plethora of environmental stresses specially heat stress. Another sort of stress arises from repeated exposure of the parasite to praziquantel (PZQ), the only drug used for treatment, which leads to the development of resistance in the fields and the labs. Heat shock protein 70 (Hsp70) is found in different developmental stages of S. mansoni. It is immunogenic and regulate cercarial invasion besides its chaperone function. In the Biomphalaria/S. mansoni interaction, epigenetic modulations of the Hsp70 gene underscore the susceptibility phenotype of the snail. Hsp70 is up-regulated in adult S. mansoni with decreased sensitivity to PZQ. This could be due to the induction of oxidative and endoplasmic reticulum stress, induction of apoptosis, exposure to the stressful drug pressure and increase influx of calcium ions. Up-regulation of Hsp70 might help the worm to survive the schistosomicidal effect of the drug mainly by dealing with misfolded proteins, inhibition of apoptosis, induction of autophagy, up-regulation of the P-glycoprotein transporter and attenuation of the signalling from G protein coupled receptors.
Collapse
|