1
|
Singh MK, Bonnell VA, Tojal Da Silva I, Santiago VF, Moraes MS, Adderley J, Doerig C, Palmisano G, Llinas M, Garcia CRS. A Plasmodium falciparum MORC protein complex modulates epigenetic control of gene expression through interaction with heterochromatin. eLife 2024; 12:RP92201. [PMID: 39412522 PMCID: PMC11483127 DOI: 10.7554/elife.92201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.
Collapse
Affiliation(s)
- Maneesh Kumar Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Victoria Ann Bonnell
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
| | | | | | - Miriam Santos Moraes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| | - Jack Adderley
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Christian Doerig
- School of Health and Biomedical Sciences, RMIT UniversityBundooraAustralia
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Science, University of São PauloSão PauloBrazil
| | - Manuel Llinas
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Eukaryotic Gene Regulation, Pennsylvania State University, University ParkHarrisburgUnited States
- Huck Institutes Center for Malaria Research, Pennsylvania State University, University ParkHarrisburgUnited States
- Department of Chemistry, Pennsylvania State University, University ParkHarrisburgUnited States
| | - Celia RS Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São PauloSão PauloBrazil
| |
Collapse
|
2
|
Lappalainen R, Kumar M, Duraisingh MT. Hungry for control: metabolite signaling to chromatin in Plasmodium falciparum. Curr Opin Microbiol 2024; 78:102430. [PMID: 38306915 PMCID: PMC11157454 DOI: 10.1016/j.mib.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
The human malaria parasite Plasmodium falciparum undergoes a complex life cycle in two hosts, mammalian and mosquito, where it is constantly subjected to environmental changes in nutrients. Epigenetic mechanisms govern transcriptional switches and are essential for parasite persistence and proliferation. Parasites infecting red blood cells are auxotrophic for several nutrients, and mounting evidence suggests that various metabolites act as direct substrates for epigenetic modifications, with their abundance directly relating to changes in parasite gene expression. Here, we review the latest understanding of metabolic changes that alter the histone code resulting in changes to transcriptional programmes in malaria parasites.
Collapse
Affiliation(s)
- Ruth Lappalainen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manish Kumar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston 02115, USA.
| |
Collapse
|
3
|
Azad MTA, Sugi T, Qulsum U, Kato K. Detection of Developmental Asexual Stage-Specific RNA Editing Events in Plasmodium falciparum 3D7 Malaria Parasite. Microorganisms 2024; 12:137. [PMID: 38257964 PMCID: PMC10819399 DOI: 10.3390/microorganisms12010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Transcriptional variation has been studied but post-transcriptional modification due to RNA editing has not been investigated in Plasmodium. We investigated developmental stage-specific RNA editing in selected genes in Plasmodium falciparum 3D7. We detected extensive amination- and deamination-type RNA editing at 8, 16, 24, 32, 40, and 46 h in tightly synchronized Plasmodium. Most of the editing events were observed in 8 and 16 h ring-stage parasites. Extensive A-to-G deamination-type editing was detected more during the 16 h ring stage (25%) than the 8 h ring stage (20%). Extensive U-to-C amination-type editing was detected more during the 16 h ring stage (31%) than the 8 h ring stage (22%). In 28S, rRNA editing converted the loop structure to the stem structure. The hemoglobin binding activity of PF3D7_0216900 was also altered due to RNA editing. Among the expressed 28S rRNA genes, PF3D7_0532000 and PF3D7_0726000 expression was higher. Increased amounts of the transcripts of these two genes were found, particularly PF3D7_0726000 in the ring stage and PF3D7_0532000 in the trophozoite and schizont stages. Adenosine deaminase (ADA) expression did not correlate with the editing level. This first experimental report of RNA editing will help to identify the editing machinery that might be useful for antimalarial drug discovery and malaria control.
Collapse
Affiliation(s)
- Md Thoufic Anam Azad
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
- Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Tatsuki Sugi
- Division of Collaboration and Education, International Institute for Zoonosis Control, Hokkaido University, Nishi10-Kita 20, Sapporo 001-0020, Japan
| | - Umme Qulsum
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
- Department of Botany, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi 989-6711, Japan
| |
Collapse
|
4
|
Mori T, Nakashima M. Sequence-dependent heterochromatin formation in the human malaria parasite Plasmodium falciparum. Heliyon 2023; 9:e19164. [PMID: 37681121 PMCID: PMC10480601 DOI: 10.1016/j.heliyon.2023.e19164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
The human malaria parasite Plasmodium falciparum represses transcription of the gene encoding AP2-G, which is the master regulator of germ cell differentiation, via heterochromatin condensation following histone H3 lysine 9 trimethylation (H3K9me3). Although H3K9me3-marked heterochromatin is typically constitutive and its establishment depends on the RNA interference (RNAi) pathway in fission yeast centromeres, malaria parasites lack molecular members essential for RNAi. We developed a strategy to assess heterochromatin establishment on artificial chromosomes introduced into P. falciparum. We show that a particular DNA sequence in the AP2-G promoter is able to induce de novo H3K9me3 nucleosome deposition. In addition, we also found that the AP2-G promoter contains a distinct element required in maintenance of the repression memory. Thus, we speculate that malaria parasites have evolutionarily acquired a sequence-dependent establishment system of non-constitutive, i.e. facultative, H3K9me3-marked heterochromatin.
Collapse
Affiliation(s)
- Toshiyuki Mori
- Corresponding author. Department of Molecular Protozoology, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | | |
Collapse
|
5
|
Harris CT, Tong X, Campelo R, Marreiros IM, Vanheer LN, Nahiyaan N, Zuzarte-Luís VA, Deitsch KW, Mota MM, Rhee KY, Kafsack BFC. Sexual differentiation in human malaria parasites is regulated by competition between phospholipid metabolism and histone methylation. Nat Microbiol 2023; 8:1280-1292. [PMID: 37277533 PMCID: PMC11163918 DOI: 10.1038/s41564-023-01396-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 04/25/2023] [Indexed: 06/07/2023]
Abstract
For Plasmodium falciparum, the most widespread and virulent malaria parasite that infects humans, persistence depends on continuous asexual replication in red blood cells, while transmission to their mosquito vector requires asexual blood-stage parasites to differentiate into non-replicating gametocytes. This decision is controlled by stochastic derepression of a heterochromatin-silenced locus encoding AP2-G, the master transcription factor of sexual differentiation. The frequency of ap2-g derepression was shown to be responsive to extracellular phospholipid precursors but the mechanism linking these metabolites to epigenetic regulation of ap2-g was unknown. Through a combination of molecular genetics, metabolomics and chromatin profiling, we show that this response is mediated by metabolic competition for the methyl donor S-adenosylmethionine between histone methyltransferases and phosphoethanolamine methyltransferase, a critical enzyme in the parasite's pathway for de novo phosphatidylcholine synthesis. When phosphatidylcholine precursors are scarce, increased consumption of SAM for de novo phosphatidylcholine synthesis impairs maintenance of the histone methylation responsible for silencing ap2-g, increasing the frequency of derepression and sexual differentiation. This provides a key mechanistic link that explains how LysoPC and choline availability can alter the chromatin status of the ap2-g locus controlling sexual differentiation.
Collapse
Affiliation(s)
- Chantal T Harris
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Xinran Tong
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- BCMB Allied Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Riward Campelo
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Inês M Marreiros
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Leen N Vanheer
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Navid Nahiyaan
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Vanessa A Zuzarte-Luís
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
| | - Maria M Mota
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Björn F C Kafsack
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Singh P, Tabassum W, Fangaria N, Dey S, Padhi S, Bhattacharyya MK, Arun Kumar K, Roy A, Bhattacharyya S. Plasmodium Topoisomerase VIB and Spo11 Constitute Functional Type IIB Topoisomerase in Malaria Parasite: Its Possible Role in Mitochondrial DNA Segregation. Microbiol Spectr 2023; 11:e0498022. [PMID: 37212694 PMCID: PMC10269783 DOI: 10.1128/spectrum.04980-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/07/2023] [Indexed: 05/23/2023] Open
Abstract
The human malaria parasite undergoes a noncanonical cell division, namely, endoreduplication, where several rounds of nuclear, mitochondrial, and apicoplast replication occur without cytoplasmic division. Despite its importance in Plasmodium biology, the topoisomerases essential for decatenation of replicated chromosome during endoreduplication remain elusive. We hypothesize that the topoisomerase VI complex, containing Plasmodium falciparum topiosomerase VIB (PfTopoVIB) and catalytic P. falciparum Spo11 (PfSpo11), might be involved in the segregation of the Plasmodium mitochondrial genome. Here, we demonstrate that the putative PfSpo11 is the functional ortholog of yeast Spo11 that can complement the sporulation defects of the yeast Δspo11 strain, and the catalytic mutant Pfspo11Y65F cannot complement such defects. PfTopoVIB and PfSpo11 display a distinct expression pattern compared to the other type II topoisomerases of Plasmodium and are induced specifically at the late schizont stage of the parasite, when the mitochondrial genome segregation occurs. Furthermore, PfTopoVIB and PfSpo11 are physically associated with each other at the late schizont stage, and both subunits are localized in the mitochondria. Using PfTopoVIB- and PfSpo11-specific antibodies, we immunoprecipitated the chromatin of tightly synchronous early, mid-, and late schizont stage-specific parasites and found that both the subunits are associated with the mitochondrial genome during the late schizont stage of the parasite. Furthermore, PfTopoVIB inhibitor radicicol and atovaquone show synergistic interaction. Accordingly, atovaquone-mediated disruption of mitochondrial membrane potential reduces the import and recruitment of both subunits of PfTopoVI to mitochondrial DNA (mtDNA) in a dose-dependent manner. The structural differences between PfTopoVIB and human TopoVIB-like protein could be exploited for development of a novel antimalarial agent. IMPORTANCE This study demonstrates a likely role of topoisomerase VI in the mitochondrial genome segregation of Plasmodium falciparum during endoreduplication. We show that PfTopoVIB and PfSpo11 remain associated and form the functional holoenzyme within the parasite. The spatiotemporal expression of both subunits of PfTopoVI correlates well with their recruitment to the mitochondrial DNA at the late schizont stage of the parasite. Additionally, the synergistic interaction between PfTopoVI inhibitor and the disruptor of mitochondrial membrane potential, atovaquone, supports that topoisomerase VI is the mitochondrial topoisomerase of the malaria parasite. We propose that topoisomerase VI may act as a novel target against malaria.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Wahida Tabassum
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nupur Fangaria
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sandeep Dey
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Siladitya Padhi
- TCS Research-Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Mrinal K. Bhattacharyya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Arijit Roy
- TCS Research-Hyderabad (Life Sciences Division), Tata Consultancy Services Limited, Hyderabad, India
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
7
|
Abstract
The three-dimensional (3D) genome structure of human malaria parasite Plasmodium falciparum is highly organized and plays important roles in regulating coordinated expression patterns of specific genes such as virulence genes which are involved in antigenic variation and immune escape. However, the molecular mechanisms that control 3D genome of the parasite remain elusive. Here, by analyzing genome organization of P. falciparum, we identify high-interacting regions (HIRs) with strong chromatin interactions at telomeres and virulence genes loci. Specifically, HIRs are highly enriched with repressive histone marks (H3K36me3 and H3K9me3) and form the transcriptional repressive center. Deletion of PfSET2, which controls H3K36me3 level, results in marked reduction of both intrachromosomal and interchromosomal interactions for HIRs. Importantly, such chromatin reorganization coordinates with dynamic changes in epigenetic feature in HIRs and transcriptional activation of var genes. Additionally, different cluster of var genes based on the pattern of chromatin interactions show distinct transcriptional activation potential after deletion of PfSET2. Our results uncover a fundamental mechanism that the epigenetic factor PfSET2 controls the 3D organization of heterochromatin to regulate the transcription activities of var genes family in P. falciparum. IMPORTANCE PfSET2 has been reported to play key role in silencing var genes in Plasmodium falciparum, while the underlying molecular mechanisms remain unclear. Here, we provide evidence that PfSET2 is essential to maintain 3D genome organization of heterochromatin region to keep var genes in transcription repressive state. These findings can contribute better understanding of the regulation of high-order chromatin structure in P. falciparum.
Collapse
|
8
|
Patterns of Heterochromatin Transitions Linked to Changes in the Expression of Plasmodium falciparum Clonally Variant Genes. Microbiol Spectr 2023; 11:e0304922. [PMID: 36515553 PMCID: PMC9927496 DOI: 10.1128/spectrum.03049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.
Collapse
|
9
|
Shrestha S, Lucky AB, Brashear AM, Li X, Cui L, Miao J. Distinct Histone Post-translational Modifications during Plasmodium falciparum Gametocyte Development. J Proteome Res 2022; 21:1857-1867. [PMID: 35772009 PMCID: PMC9738646 DOI: 10.1021/acs.jproteome.2c00108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histones are the building units of nucleosomes, which constitute chromatin. Histone post-translational modifications (PTMs) play an essential role in epigenetic gene regulation. The Plasmodium falciparum genome encodes canonical and variant histones and a collection of conserved enzymes for histone PTMs and chromatin remodeling. Herein, we profiled the P. falciparum histone PTMs during the development of gametocytes, the obligatory stage for parasite transmission. Mass spectrometric analysis of histones extracted from the early, middle, and late stages of gametocytes identified 457 unique histone peptides with 90 PTMs, of which 50% were novel. The gametocyte histone PTMs display distinct patterns from asexual stages, with many new methylation sites in histones H3 and H3.3 (e.g., K14, K18, and K37). Quantitative analyses revealed a high abundance of acetylation in H3 and H4, mono-methylation of H3/H3.3 K37, and ubiquitination of H3BK112, suggesting that these PTMs play critical roles in gametocytes. Gametocyte histones also showed extensive and unique combinations of PTMs. These data indicate that the parasite harbors distinct transcription regulation mechanisms during gametocyte development and lay the foundation for further characterization of epigenetic regulation in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Sony Shrestha
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Awtum Marie Brashear
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States; Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States; Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
10
|
Connacher J, von Grüning H, Birkholtz L. Histone Modification Landscapes as a Roadmap for Malaria Parasite Development. Front Cell Dev Biol 2022; 10:848797. [PMID: 35433676 PMCID: PMC9010790 DOI: 10.3389/fcell.2022.848797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
Plasmodium falciparum remains the deadliest parasite species in the world, responsible for 229 million cases of human malaria in 2019. The ability of the P. falciparum parasite to progress through multiple life cycle stages and thrive in diverse host and vector species hinges on sophisticated mechanisms of epigenetic regulation of gene expression. Emerging evidence indicates such epigenetic control exists in concentric layers, revolving around core histone post-translational modification (PTM) landscapes. Here, we provide a necessary update of recent epigenome research in malaria parasites, focusing specifically on the ability of dynamic histone PTM landscapes to orchestrate the divergent development and differentiation pathways in P. falciparum parasites. In addition to individual histone PTMs, we discuss recent findings that imply functional importance for combinatorial PTMs in P. falciparum parasites, representing an operational histone code. Finally, this review highlights the remaining gaps and provides strategies to address these to obtain a more thorough understanding of the histone modification landscapes that are at the center of epigenetic regulation in human malaria parasites.
Collapse
|
11
|
von Grüning H, Coradin M, Mendoza MR, Reader J, Sidoli S, Garcia BA, Birkholtz LM. A dynamic and combinatorial histone code drives malaria parasite asexual and sexual development. Mol Cell Proteomics 2022; 21:100199. [PMID: 35051657 PMCID: PMC8941266 DOI: 10.1016/j.mcpro.2022.100199] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these “histone codes” are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes. First middle-down chromatin proteomics compendium of the malaria parasite, Plasmodium falciparum. Novel histone PTMs (including arginine methylation) in both asexual parasites and transmissible gametocytes. Histone PTM cross talk is dynamic life cycle stage stratified. Gametocytes rely on histone PTM connectivity to allow onward transmission. AP2-G2 is an important effector of H3K18acK23ac in mature gametocytes.
Collapse
Affiliation(s)
- Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Mariel Coradin
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariel R Mendoza
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa; Institute for Sustainable Malaria Control, University of Pretoria, Private bag X20, Hatfield, Pretoria, South Africa.
| |
Collapse
|
12
|
Prata IO, Cubillos EFG, Krüger A, Barbosa D, Martins J, Setubal JC, Wunderlich G. Plasmodium falciparum Acetyl-CoA Synthetase Is Essential for Parasite Intraerythrocytic Development and Chromatin Modification. ACS Infect Dis 2021; 7:3224-3240. [PMID: 34766750 DOI: 10.1021/acsinfecdis.1c00414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The malaria parasite Plasmodium falciparum possesses a unique Acetyl-CoA Synthetase (PfACS), which provides acetyl moieties for different metabolic and regulatory cellular pathways. We characterized PfACS and studied its role focusing on epigenetic modifications using the var gene family as reporter genes. For this, mutant lines to modulate plasmodial ACS expression by degron-mediated protein degradation and ribozyme-induced transcript decay were created. Additionally, an inhibitor of the human Acetyl-CoA Synthetase 2 was tested for its effectiveness in interfering with PfACS. The knockdown of PfACS or its inhibition resulted in impaired parasite growth. Decreased levels of PfACS also led to differential histone acetylation patterns, altered variant gene expression, and concomitantly decreased cytoadherence of infected red blood cells containing knocked-down parasites. Further, ChIP analysis revealed the presence of PfACS in many loci in ring stage parasites, underscoring its involvement in the regulation of chromatin. Due to its central function in the plasmodial metabolism and significant differences to human ACS, PfACS is an interesting target for drug development.
Collapse
Affiliation(s)
- Isadora Oliveira Prata
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Eliana Fernanda Galindo Cubillos
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Arne Krüger
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| | - Deibs Barbosa
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo-SP, Brazil
| | - Joaquim Martins
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo-SP, Brazil
| | - João Carlos Setubal
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo-SP, Brazil
| | - Gerhard Wunderlich
- Department of Parasitology, Institute for Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo-SP, Brazil
| |
Collapse
|
13
|
Shaw PJ, Piriyapongsa J, Kaewprommal P, Wongsombat C, Chaosrikul C, Teeravajanadet K, Boonbangyang M, Uthaipibull C, Kamchonwongpaisan S, Tongsima S. Identifying transcript 5' capped ends in Plasmodium falciparum. PeerJ 2021; 9:e11983. [PMID: 34527439 PMCID: PMC8401752 DOI: 10.7717/peerj.11983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background The genome of the human malaria parasite Plasmodium falciparum is poorly annotated, in particular, the 5' capped ends of its mRNA transcripts. New approaches are needed to fully catalog P. falciparum transcripts for understanding gene function and regulation in this organism. Methods We developed a transcriptomic method based on next-generation sequencing of complementary DNA (cDNA) enriched for full-length fragments using eIF4E, a 5' cap-binding protein, and an unenriched control. DNA sequencing adapter was added after enrichment of full-length cDNA using two different ligation protocols. From the mapped sequence reads, enrichment scores were calculated for all transcribed nucleotides and used to calculate P-values of 5' capped nucleotide enrichment. Sensitivity and accuracy were increased by combining P-values from replicate experiments. Data were obtained for P. falciparum ring, trophozoite and schizont stages of intra-erythrocytic development. Results 5' capped nucleotide signals were mapped to 17,961 non-overlapping P. falciparum genomic intervals. Analysis of the dominant 5' capped nucleotide in these genomic intervals revealed the presence of two groups with distinctive epigenetic features and sequence patterns. A total of 4,512 transcripts were annotated as 5' capped based on the correspondence of 5' end with 5' capped nucleotide annotated from full-length cDNA data. Discussion The presence of two groups of 5' capped nucleotides suggests that alternative mechanisms may exist for producing 5' capped transcript ends in P. falciparum. The 5' capped transcripts that are antisense, outside of, or partially overlapping coding regions may be important regulators of gene function in P. falciparum.
Collapse
Affiliation(s)
- Philip J Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jittima Piriyapongsa
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pavita Kaewprommal
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chayaphat Wongsombat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chadapohn Chaosrikul
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Krirkwit Teeravajanadet
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Manon Boonbangyang
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chairat Uthaipibull
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
14
|
Rawat M, Srivastava A, Johri S, Gupta I, Karmodiya K. Single-Cell RNA Sequencing Reveals Cellular Heterogeneity and Stage Transition under Temperature Stress in Synchronized Plasmodium falciparum Cells. Microbiol Spectr 2021; 9:e0000821. [PMID: 34232098 PMCID: PMC8552519 DOI: 10.1128/spectrum.00008-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
The malaria parasite has a complex life cycle exhibiting phenotypic and morphogenic variations in two different hosts by existing in heterogeneous developmental states. To investigate this cellular heterogeneity of the parasite within the human host, we performed single-cell RNA sequencing of synchronized Plasmodium cells under control and temperature treatment conditions. Using the Malaria Cell Atlas (https://www.sanger.ac.uk/science/tools/mca) as a guide, we identified 9 subtypes of the parasite distributed across known intraerythrocytic stages. Interestingly, temperature treatment results in the upregulation of the AP2-G gene, the master regulator of sexual development in a small subpopulation of the parasites. Moreover, we identified a heterogeneous stress-responsive subpopulation (clusters 5, 6, and 7 [∼10% of the total population]) that exhibits upregulation of stress response pathways under normal growth conditions. We also developed an online exploratory tool that will provide new insights into gene function under normal and temperature stress conditions. Thus, our study reveals important insights into cell-to-cell heterogeneity in the parasite population under temperature treatment that will be instrumental toward a mechanistic understanding of cellular adaptation and population dynamics in Plasmodium falciparum. IMPORTANCE The malaria parasite has a complex life cycle exhibiting phenotypic variations in two different hosts accompanied by cell-to-cell variability that is important for stress tolerance, immune evasion, and drug resistance. To investigate cellular heterogeneity determined by gene expression, we performed single-cell RNA sequencing (scRNA-seq) of about 12,000 synchronized Plasmodium cells under physiologically relevant normal (37°C) and temperature stress (40°C) conditions phenocopying the cyclic bouts of fever experienced during malarial infection. In this study, we found that parasites exhibit transcriptional heterogeneity in an otherwise morphologically synchronized culture. Also, a subset of parasites is continually committed to gametocytogenesis and stress-responsive pathways. These observations have important implications for understanding the mechanisms of drug resistance generation and vaccine development against the malaria parasite.
Collapse
Affiliation(s)
- Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Ashish Srivastava
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| | - Shreya Johri
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ishaan Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, Maharashtra, India
| |
Collapse
|
15
|
Farhat DC, Hakimi MA. The developmental trajectories of Toxoplasma stem from an elaborate epigenetic rewiring. Trends Parasitol 2021; 38:37-53. [PMID: 34456144 DOI: 10.1016/j.pt.2021.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Toxoplasma gondii is considered to be one of the most successful parasitic pathogens. It owes this success to its flexibility in responding to signals emanating from the different environments it encounters during its multihost life cycle. The adaptability of this unicellular organism relies on highly coordinated and evolutionarily optimized developmental abilities that allow it to adopt the forms best suited to the requirements of each environment. Here we discuss recent outstanding studies that have uncovered how master regulators epigenetically regulate the cryptic process of sexual development and the transition to chronicity. We also highlight the molecular and technical advances that allow the field to embark on a new journey of epigenetic reprogramming of T. gondii development.
Collapse
Affiliation(s)
- Dayana C Farhat
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France.
| | - Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Grenoble Alpes University, 38700 Grenoble, France.
| |
Collapse
|
16
|
Singh S, Santos JM, Orchard LM, Yamada N, van Biljon R, Painter HJ, Mahony S, Llinás M. The PfAP2-G2 transcription factor is a critical regulator of gametocyte maturation. Mol Microbiol 2021; 115:1005-1024. [PMID: 33368818 PMCID: PMC8330521 DOI: 10.1111/mmi.14676] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
Abstract
Differentiation from asexual blood stages to mature sexual gametocytes is required for the transmission of malaria parasites. Here, we report that the ApiAP2 transcription factor, PfAP2-G2 (PF3D7_1408200) plays a critical role in the maturation of Plasmodium falciparum gametocytes. PfAP2-G2 binds to the promoters of a wide array of genes that are expressed at many stages of the parasite life cycle. Interestingly, we also find binding of PfAP2-G2 within the gene body of almost 3,000 genes, which strongly correlates with the location of H3K36me3 and several other histone modifications as well as Heterochromatin Protein 1 (HP1), suggesting that occupancy of PfAP2-G2 in gene bodies may serve as an alternative regulatory mechanism. Disruption of pfap2-g2 does not impact asexual development, but the majority of sexual parasites are unable to mature beyond stage III gametocytes. The absence of pfap2-g2 leads to overexpression of 28% of the genes bound by PfAP2-G2 and none of the PfAP2-G2 bound genes are downregulated, suggesting that it is a repressor. We also find that PfAP2-G2 interacts with chromatin remodeling proteins, a microrchidia (MORC) protein, and another ApiAP2 protein (PF3D7_1139300). Overall our data demonstrate that PfAP2-G2 establishes an essential gametocyte maturation program in association with other chromatin-related proteins.
Collapse
Affiliation(s)
- Suprita Singh
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Joana M. Santos
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Lindsey M. Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Naomi Yamada
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA 16802
| | - Riëtte van Biljon
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Heather J. Painter
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802, Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, USA 16802
- Center for Eukaryotic Gene Regulation, Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, PA, USA 16802
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA 16802
| |
Collapse
|
17
|
Jabeena CA, Govindaraju G, Rawat M, Gopi S, Sethumadhavan DV, Jaleel A, Sasankan D, Karmodiya K, Rajavelu A. Dynamic association of the H3K64 trimethylation mark with genes encoding exported proteins in Plasmodium falciparum. J Biol Chem 2021; 296:100614. [PMID: 33839154 PMCID: PMC8095176 DOI: 10.1016/j.jbc.2021.100614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/03/2022] Open
Abstract
Epigenetic modifications have emerged as critical regulators of virulence genes and stage-specific gene expression in Plasmodium falciparum. However, the specific roles of histone core epigenetic modifications in regulating the stage-specific gene expression are not well understood. In this study, we report an unconventional trimethylation at lysine 64 on histone 3 (H3K64me3) and characterize its functional relevance in P. falciparum. We show that PfSET4 and PfSET5 proteins of P. falciparum methylate H3K64 and that they prefer the nucleosome as a substrate over free histone 3 proteins. Structural analysis of PfSET5 revealed that it interacts with the nucleosome as a dimer. The H3K64me3 mark is dynamic, being enriched in the ring and trophozoite stages and drastically reduced in the schizont stages. Stage-specific global chromatin immunoprecipitation –sequencing analysis of the H3K64me3 mark revealed the selective enrichment of this methyl mark on the genes of exported family proteins in the ring and trophozoite stages and a significant reduction of the same in the schizont stages. Collectively, our data identify a novel epigenetic mark that is associated with the subset of genes encoding for exported proteins, which may regulate their expression in different stages of P. falciparum.
Collapse
Affiliation(s)
- C A Jabeena
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Gayathri Govindaraju
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Soundhararajan Gopi
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Devadathan Valiyamangalath Sethumadhavan
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India; Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Abdul Jaleel
- Cardiovascular Disease Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Dhakshmi Sasankan
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Arumugam Rajavelu
- Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
18
|
Connacher J, Josling GA, Orchard LM, Reader J, Llinás M, Birkholtz LM. H3K36 methylation reprograms gene expression to drive early gametocyte development in Plasmodium falciparum. Epigenetics Chromatin 2021; 14:19. [PMID: 33794978 PMCID: PMC8017609 DOI: 10.1186/s13072-021-00393-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background The Plasmodium sexual gametocyte stages are the only transmissible form of the malaria parasite and are thus responsible for the continued transmission of the disease. Gametocytes undergo extensive functional and morphological changes from commitment to maturity, directed by an equally extensive control program. However, the processes that drive the differentiation and development of the gametocyte post-commitment, remain largely unexplored. A previous study reported enrichment of H3K36 di- and tri-methylated (H3K36me2&3) histones in early-stage gametocytes. Using chromatin immunoprecipitation followed by high-throughput sequencing, we identify a stage-specific association between these repressive histone modifications and transcriptional reprogramming that define a stage II gametocyte transition point. Results Here, we show that H3K36me2 and H3K36me3 from stage II gametocytes are associated with repression of genes involved in asexual proliferation and sexual commitment, indicating that H3K36me2&3-mediated repression of such genes is essential to the transition from early gametocyte differentiation to intermediate development. Importantly, we show that the gene encoding the transcription factor AP2-G as commitment master regulator is enriched with H3K36me2&3 and actively repressed in stage II gametocytes, providing the first evidence of ap2-g gene repression in post-commitment gametocytes. Lastly, we associate the enhanced potency of the pan-selective Jumonji inhibitor JIB-04 in gametocytes with the inhibition of histone demethylation including H3K36me2&3 and a disruption of normal transcriptional programs. Conclusions Taken together, our results provide the first description of an association between global gene expression reprogramming and histone post-translational modifications during P. falciparum early sexual development. The stage II gametocyte-specific abundance of H3K36me2&3 manifests predominantly as an independent regulatory mechanism targeted towards genes that are repressed post-commitment. H3K36me2&3-associated repression of genes is therefore involved in key transcriptional shifts that accompany the transition from early gametocyte differentiation to intermediate development. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00393-9.
Collapse
Affiliation(s)
- Jessica Connacher
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Gabrielle A Josling
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lindsey M Orchard
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA.,Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
19
|
Structural insights into histone chaperone Asf1 and its characterization from Plasmodium falciparum. Biochem J 2021; 478:1117-1136. [PMID: 33501928 DOI: 10.1042/bcj20200891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/24/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023]
Abstract
Asf1 is a highly conserved histone chaperone that regulates tightly coupled nucleosome assembly/disassembly process. We observed that Plasmodium falciparum Asf1 (PfAsf1) is ubiquitously expressed in different stages of the life cycle of the parasite. To gain further insight into its biological activity, we solved the structure of N-terminal histone chaperone domain of PfAsf1 (1-159 amino acids) by X-ray crystallography to a resolution of 2.4 Å. The structure is composed of two beta-sheet to form a beta-sandwich, which resembles an immunoglobulin-like fold. The surface-charge distribution of PfAsf1 is distinct from yAsf1 and hAsf1 although the core-structure shows significant similarity. The crystal-structure indicated that PfAsf1 may exist in a dimeric-state which was further confirmed by solution cross-linking experiment. PfAsf1 was found to specifically interact with Plasmodium histone H3 and H4 and was able to deposit H3/H4 dimer onto DNA-template to form disomes, showing its characteristic histone chaperone activity. We mapped the critical residues of PfAsf1 involved in histone H3/H4 interaction and confirmed by site-directed mutagenesis. Further analysis indicates that histone interacting surface of Asf1 is highly conserved while the dimerization interface is variable. Our results identify the role of PfAsf1 as a mediator of chromatin assembly in Plasmodium falciparum, which is the causative agent of malignant malaria in humans.
Collapse
|
20
|
Tabassum W, Bhattacharyya S, Varunan SM, Bhattacharyya MK. Febrile temperature causes transcriptional downregulation of Plasmodium falciparum Sirtuins through Hsp90-dependent epigenetic modification. Mol Microbiol 2021; 115:1025-1038. [PMID: 33538363 DOI: 10.1111/mmi.14692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 11/28/2022]
Abstract
Sirtuins (PfSIR2A and PfSIR2B) are implicated to play pivotal roles in the silencing of sub-telomeric genes and the maintenance of telomere length in P. falciparum 3D7 strain. Here, we identify the key factors that regulate the cellular abundance and activity of these two histone deacetylases. Our results demonstrate that PfSIR2A and PfSIR2B are transcriptionally downregulated at the mid-ring stage in response to febrile temperature. We found that the molecular chaperone PfHsp90 acts as a repressor of PfSIR2A & B transcription. By virtue of its presence in the PfSIR2A & B promoter proximal regions PfHsp90 helps recruiting H3K9me3, conferring heterochromatic state, and thereby leading to the downregulation of PfSIR2A & B transcription. Such transcriptional downregulation can be reversed by the addition of 17-(allylamino)-17-demethoxygeldanamycin or Radicicol, two potent inhibitors of PfHsp90. The reduced occupancy of PfSir2 at sub-telomeric var promoters leads to the de-repression of var genes. Thus, here we uncover how exposure to febrile temperature, a hallmark of malaria, enables the parasites to manipulate the expression of the two prominent epigenetic modifiers PfSir2A and PfSir2B.
Collapse
Affiliation(s)
- Wahida Tabassum
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sunanda Bhattacharyya
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Shalu M Varunan
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | |
Collapse
|
21
|
Rawat M, Kanyal A, Sahasrabudhe A, Vembar SS, Lopez-Rubio JJ, Karmodiya K. Histone acetyltransferase PfGCN5 regulates stress responsive and artemisinin resistance related genes in Plasmodium falciparum. Sci Rep 2021; 11:852. [PMID: 33441725 PMCID: PMC7806804 DOI: 10.1038/s41598-020-79539-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/07/2020] [Indexed: 01/29/2023] Open
Abstract
Plasmodium falciparum has evolved resistance to almost all front-line drugs including artemisinin, which threatens malaria control and elimination strategies. Oxidative stress and protein damage responses have emerged as key players in the generation of artemisinin resistance. In this study, we show that PfGCN5, a histone acetyltransferase, binds to the stress-responsive genes in a poised state and regulates their expression under stress conditions. Furthermore, we show that upon artemisinin exposure, genome-wide binding sites for PfGCN5 are increased and it is directly associated with the genes implicated in artemisinin resistance generation like BiP and TRiC chaperone. Interestingly, expression of genes bound by PfGCN5 was found to be upregulated during stress conditions. Moreover, inhibition of PfGCN5 in artemisinin-resistant parasites increases the sensitivity of the parasites to artemisinin treatment indicating its role in drug resistance generation. Together, these findings elucidate the role of PfGCN5 as a global chromatin regulator of stress-responses with a potential role in modulating artemisinin drug resistance and identify PfGCN5 as an important target against artemisinin-resistant parasites.
Collapse
Affiliation(s)
- Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| | - Abhishek Kanyal
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| | - Aishwarya Sahasrabudhe
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India
| | | | - Jose-Juan Lopez-Rubio
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, INSERM, Montpellier University, Montpellier, France
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411 008, India.
| |
Collapse
|
22
|
Tang J, Chisholm SA, Yeoh LM, Gilson PR, Papenfuss AT, Day KP, Petter M, Duffy MF. Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenetics Chromatin 2020; 13:50. [PMID: 33225957 PMCID: PMC7682024 DOI: 10.1186/s13072-020-00365-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum has an unusually euchromatic genome with poorly conserved positioning of nucleosomes in intergenic sequences and poorly understood mechanisms of gene regulation. Variant histones and histone modifications determine nucleosome stability and recruit trans factors, but their combinatorial contribution to gene regulation is unclear. Results Here, we show that the histone H3 acetylations H3K18ac and H3K27ac and the variant histone Pf H2A.Z are enriched together at regulatory sites upstream of genes. H3K18ac and H3K27ac together dynamically mark regulatory regions of genes expressed during the asexual life cycle. In contrast, H3K4me1 is depleted in intergenic sequence and dynamically depleted upstream of expressed genes. The temporal pattern of H3K27ac and H3K18ac enrichment indicates that they accumulate during S phase and mitosis and are retained at regulatory sequences until at least G1 phase and after cessation of expression of the cognate genes. We integrated our ChIPseq data with existing datasets to show that in schizont stages H3K18ac, H3K27ac and Pf H2A.Z colocalise with the transcription factor PfAP2-I and the bromodomain protein PfBDP1 and are enriched at stably positioned nucleosomes within regions of exposed DNA at active transcriptional start sites. Using transient transfections we showed that sequences enriched with colocalised H3K18ac, H3K27ac and Pf H2A.Z possess promoter activity in schizont stages, but no enhancer-like activity. Conclusions The dynamic H3 acetylations define P. falciparum regulatory sequences and contribute to gene activation. These findings expand the knowledge of the chromatin landscape that regulates gene expression in P. falciparum.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Scott A Chisholm
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.,Bio21 Institute, Parkville, VIC, 3052, Australia
| | - Lee M Yeoh
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, 3004, Australia.,Monash University, Melbourne, VIC, 3800, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Mathematics and Statistics, University of Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Karen P Day
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Michaela Petter
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,Erlangen University, 91054, Erlangen, Germany
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia. .,Bio21 Institute, Parkville, VIC, 3052, Australia. .,Peter Doherty Institute, Melbourne, VIC, 3000, Australia. .,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
23
|
Wang C, Gibbons J, Adapa SR, Oberstaller J, Liao X, Zhang M, Adams JH, Jiang RHY. The human malaria parasite genome is configured into thousands of coexpressed linear regulatory units. J Genet Genomics 2020; 47:513-521. [PMID: 33272860 DOI: 10.1016/j.jgg.2020.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/07/2020] [Accepted: 08/28/2020] [Indexed: 12/27/2022]
Abstract
The human malaria parasite Plasmodium falciparum thrives in radically different host environments in mosquitoes and humans, with only a limited set of transcription factors. The nature of regulatory elements or their target genes in the P. falciparum genome remains elusive. Here, we found that this eukaryotic parasite uses an efficient way to maximally use genetic and epigenetic regulation to form regulatory units (RUs) during blood infections. Genes located in the same RU tend to have the same pattern of expression over time and are associated with open chromatin along regulatory elements. To precisely define and quantify these RUs, a novel hidden Markov model was developed to capture the regulatory structure in a genome-wide fashion by integrating expression and epigenetic evidence. We successfully identified thousands of RUs and cross-validated with previous findings. We found more genes involved in red blood cell (RBC) invasion located in the same RU as the PfAP2-I (AP2-I) transcription factor, demonstrating that AP2-I is responsible for regulating RBC invasion. Our study has provided a regulatory mechanism for a compact eukaryotic genome and offers new insights into the in vivo transcriptional regulation of the P. falciparum intraerythrocytic stage.
Collapse
Affiliation(s)
- Chengqi Wang
- Global and Planetary Health, USF Genomics, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Justin Gibbons
- Global and Planetary Health, USF Genomics, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Swamy R Adapa
- Global and Planetary Health, USF Genomics, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Jenna Oberstaller
- Global and Planetary Health, USF Genomics, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Xiangyun Liao
- Global and Planetary Health, USF Genomics, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Min Zhang
- Global and Planetary Health, USF Genomics, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - John H Adams
- Global and Planetary Health, USF Genomics, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Rays H Y Jiang
- Global and Planetary Health, USF Genomics, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
24
|
Matthews KA, Senagbe KM, Nötzel C, Gonzales CA, Tong X, Rijo-Ferreira F, Bhanu NV, Miguel-Blanco C, Lafuente-Monasterio MJ, Garcia BA, Kafsack BFC, Martinez ED. Disruption of the Plasmodium falciparum Life Cycle through Transcriptional Reprogramming by Inhibitors of Jumonji Demethylases. ACS Infect Dis 2020; 6:1058-1075. [PMID: 32272012 PMCID: PMC7748244 DOI: 10.1021/acsinfecdis.9b00455] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Little
is known about the role of the three Jumonji C (JmjC) enzymes
in Plasmodium falciparum (Pf). Here,
we show that JIB-04 and other established inhibitors of mammalian
JmjC histone demethylases kill asexual blood stage parasites and are
even more potent at blocking gametocyte development and gamete formation.
In late stage parasites, JIB-04 increased levels of trimethylated
lysine residues on histones, suggesting the inhibition of P. falciparum Jumonji demethylase activity. These epigenetic
defects coincide with deregulation of invasion, cell motor, and sexual
development gene programs, including gene targets coregulated by the
PfAP2-I transcription factor and chromatin-binding factor, PfBDP1.
Mechanistically, we demonstrate that PfJmj3 converts 2-oxoglutarate
to succinate in an iron-dependent manner consistent with mammalian
Jumonji enzymes, and this catalytic activity is inhibited by JIB-04
and other Jumonji inhibitors. Our pharmacological studies of Jumonji
activity in the malaria parasite provide evidence that inhibition
of these enzymatic activities is detrimental to the parasite.
Collapse
Affiliation(s)
- Krista A. Matthews
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Kossi M. Senagbe
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Christopher Nötzel
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Christopher A. Gonzales
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Xinran Tong
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| | - Natarajan V. Bhanu
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, Pennsylvania 19104, United States
| | - Celia Miguel-Blanco
- Tres Cantos Medicines Development Campus, GlaxoSmithKline, P.T.M. Severo Ochoa, Tres Cantos, Madrid 28760, Spain
| | | | - Benjamin A. Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Bldg. 421, Philadelphia, Pennsylvania 19104, United States
| | - Björn F. C. Kafsack
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
- Biochemistry, Cell & Molecular Biology Graduate Program, Weill Cornell Medicine, 1300 York Avenue, W-705, New York, New York 10065, United States
| | - Elisabeth D. Martinez
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, Texas 75390, United States
| |
Collapse
|
25
|
Ruiz JL, Gómez-Díaz E. The second life of Plasmodium in the mosquito host: gene regulation on the move. Brief Funct Genomics 2020; 18:313-357. [PMID: 31058281 DOI: 10.1093/bfgp/elz007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 01/08/2023] Open
Abstract
Malaria parasites face dynamically changing environments and strong selective constraints within human and mosquito hosts. To survive such hostile and shifting conditions, Plasmodium switches transcriptional programs during development and has evolved mechanisms to adjust its phenotype through heterogeneous patterns of gene expression. In vitro studies on culture-adapted isolates have served to set the link between chromatin structure and functional gene expression. Yet, experimental evidence is limited to certain stages of the parasite in the vertebrate, i.e. blood, while the precise mechanisms underlying the dynamic regulatory landscapes during development and in the adaptation to within-host conditions remain poorly understood. In this review, we discuss available data on transcriptional and epigenetic regulation in Plasmodium mosquito stages in the context of sporogonic development and phenotypic variation, including both bet-hedging and environmentally triggered direct transcriptional responses. With this, we advocate the mosquito offers an in vivo biological model to investigate the regulatory networks, transcription factors and chromatin-modifying enzymes and their modes of interaction with regulatory sequences, which might be responsible for the plasticity of the Plasmodium genome that dictates stage- and cell type-specific blueprints of gene expression.
Collapse
Affiliation(s)
- José L Ruiz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra (IPBLN), Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
26
|
Coetzee N, von Grüning H, Opperman D, van der Watt M, Reader J, Birkholtz LM. Epigenetic inhibitors target multiple stages of Plasmodium falciparum parasites. Sci Rep 2020; 10:2355. [PMID: 32047203 PMCID: PMC7012883 DOI: 10.1038/s41598-020-59298-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
The epigenome of the malaria parasite, Plasmodium falciparum, is associated with regulation of various essential processes in the parasite including control of proliferation during asexual development as well as control of sexual differentiation. The unusual nature of the epigenome has prompted investigations into the potential to target epigenetic modulators with novel chemotypes. Here, we explored the diversity within a library of 95 compounds, active against various epigenetic modifiers in cancerous cells, for activity against multiple stages of P. falciparum development. We show that P. falciparum is differentially susceptible to epigenetic perturbation during both asexual and sexual development, with early stage gametocytes particularly sensitive to epi-drugs targeting both histone and non-histone epigenetic modifiers. Moreover, 5 compounds targeting histone acetylation and methylation show potent multistage activity against asexual parasites, early and late stage gametocytes, with transmission-blocking potential. Overall, these results warrant further examination of the potential antimalarial properties of these hit compounds.
Collapse
Affiliation(s)
- Nanika Coetzee
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Hilde von Grüning
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Daniel Opperman
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Mariette van der Watt
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Lyn-Marié Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
27
|
|
28
|
Bhowmick K, Tehlan A, Sunita, Sudhakar R, Kaur I, Sijwali PS, Krishnamachari A, Dhar SK. Plasmodium falciparum GCN5 acetyltransferase follows a novel proteolytic processing pathway that is essential for its function. J Cell Sci 2020; 133:jcs.236489. [PMID: 31862795 DOI: 10.1242/jcs.236489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
Abstract
The pathogenesis of human malarial parasite Plasmodium falciparum is interlinked with its timely control of gene expression during its complex life cycle. In this organism, gene expression is partially controlled through epigenetic mechanisms, the regulation of which is, hence, of paramount importance to the parasite. The P. falciparum (Pf)-GCN5 histone acetyltransferase (HAT), an essential enzyme, acetylates histone 3 and regulates global gene expression in the parasite. Here, we show the existence of a novel proteolytic processing for PfGCN5 that is crucial for its activity in vivo We find that a cysteine protease-like enzyme is required for the processing of PfGCN5 protein. Immunofluorescence and immuno-electron microscopy analysis suggest that the processing event occurs in the vicinity of the digestive vacuole of the parasite following its trafficking through the classical ER-Golgi secretory pathway, before it subsequently reaches the nucleus. Furthermore, blocking of PfGCN5 processing leads to the concomitant reduction of its occupancy at the gene promoters and a reduced H3K9 acetylation level at these promoters, highlighting the important correlation between the processing event and PfGCN5 activity. Altogether, our study reveals a unique processing event for a nuclear protein PfGCN5 with unforeseen role of a food vacuolar cysteine protease. This leads to a possibility of the development of new antimalarials against these targets.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Krishanu Bhowmick
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ankita Tehlan
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sunita
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Renu Sudhakar
- Centre for Cellular and Molecular Biology, Hyderabad, Telengana 500007, India
| | - Inderjeet Kaur
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Puran Singh Sijwali
- Centre for Cellular and Molecular Biology, Hyderabad, Telengana 500007, India
| | | | - Suman Kumar Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
29
|
Rawat M, Malhotra R, Shintre S, Pani S, Karmodiya K. Role of PfGCN5 in nutrient sensing and transcriptional regulation in Plasmodium falciparum. J Biosci 2020; 45:11. [PMID: 31965989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Malaria is a deadly, infectious disease caused by the parasite Plasmodium, leading to millions of deaths worldwide. Plasmodium requires a coordinated pattern of sequential gene expression for surviving in both invertebrate and vertebrate host environments. As parasites largely depend on host resources, they also develop efficient mechanisms to sense and adapt to variable nutrient conditions in the environment and modulate their virulence. Earlier we have shown that PfGCN5, a histone acetyltransferase, binds to the stress-responsive and virulence-related genes in a poised state and regulates their expression under temperature and artemisinin treatment conditions in P. falciparum. In this study, we show upregulation of PfGCN5 upon nutrient stress condition. With the help of chromatin immunoprecipitation coupled high-throughput sequencing (ChIP-seq) and transcriptomic (RNA-sequencing) analyses, we show that PfGCN5 is associated with the genes that are important for the maintenance of parasite cellular homeostasis upon nutrient stress condition. Furthermore, we identified various metabolic enzymes as interacting partners of PfGCN5 by immunoprecipitation coupled with mass spectroscopy, possibly acting as a sensor of nutrient conditions in the environment. We also demonstrated that PfGCN5 interacts and acetylates PfGAPDH in vitro. Collectively, our data provides important insights into transcriptional deregulation upon nutrient stress condition and elucidate the role of PfGCN5 during nutrient stress condition.
Collapse
Affiliation(s)
- Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | | | | | | | | |
Collapse
|
30
|
van Biljon R, van Wyk R, Painter HJ, Orchard L, Reader J, Niemand J, Llinás M, Birkholtz LM. Hierarchical transcriptional control regulates Plasmodium falciparum sexual differentiation. BMC Genomics 2019; 20:920. [PMID: 31795940 PMCID: PMC6889441 DOI: 10.1186/s12864-019-6322-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Malaria pathogenesis relies on sexual gametocyte forms of the malaria parasite to be transmitted between the infected human and the mosquito host but the molecular mechanisms controlling gametocytogenesis remains poorly understood. Here we provide a high-resolution transcriptome of Plasmodium falciparum as it commits to and develops through gametocytogenesis. RESULTS The gametocyte-associated transcriptome is significantly different from that of the asexual parasites, with dynamic gene expression shifts characterizing early, intermediate and late-stage gametocyte development and results in differential timing for sex-specific transcripts. The transcriptional dynamics suggest strict transcriptional control during gametocytogenesis in P. falciparum, which we propose is mediated by putative regulators including epigenetic mechanisms (driving active repression of proliferation-associated processes) and a cascade-like expression of ApiAP2 transcription factors. CONCLUSIONS The gametocyte transcriptome serves as the blueprint for sexual differentiation and will be a rich resource for future functional studies on this critical stage of Plasmodium development, as the intraerythrocytic transcriptome has been for our understanding of the asexual cycle.
Collapse
Affiliation(s)
- Riëtte van Biljon
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
- Department of Biochemistry & Molecular Biology and the Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, 16802, USA
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Heather J Painter
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Review, U.S. Food & Drug Administration, Silver Spring, MD, 20993, USA
| | - Lindsey Orchard
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
| | - Janette Reader
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Jandeli Niemand
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, the Huck Center for Malaria Research, University Park, PA, 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA, 16802, USA
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
31
|
Ruiz JL, Tena JJ, Bancells C, Cortés A, Gómez-Skarmeta JL, Gómez-Díaz E. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2019; 46:9414-9431. [PMID: 30016465 PMCID: PMC6182165 DOI: 10.1093/nar/gky643] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
Human malaria is a devastating disease and a major cause of poverty in resource-limited countries. To develop and adapt within hosts Plasmodium falciparum undergoes drastic switches in gene expression. To identify regulatory regions in the parasite genome, we performed genome-wide profiling of chromatin accessibility in two culture-adapted isogenic subclones at four developmental stages during the intraerythrocytic cycle by using the Assay for Transposase-Accessible Chromatin by sequencing (ATAC-seq). Tn5 transposase hypersensitivity sites (THSSs) localize preferentially at transcriptional start sites (TSSs). Chromatin accessibility by ATAC-seq is predictive of active transcription and of the levels of histone marks H3K9ac and H3K4me3. Our assay allows the identification of novel regulatory regions including TSS and enhancer-like elements. We show that the dynamics in the accessible chromatin profile matches temporal transcription during development. Motif analysis of stage-specific ATAC-seq sites predicts the in vivo binding sites and function of multiple ApiAP2 transcription factors. At last, the alternative expression states of some clonally variant genes (CVGs), including eba, phist, var and clag genes, associate with a differential ATAC-seq signal at their promoters. Altogether, this study identifies genome-wide regulatory regions likely to play an essential function in the developmental transitions and in CVG expression in P. falciparum.
Collapse
Affiliation(s)
- José Luis Ruiz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, Seville 41092, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville 41013, Spain
| | - Cristina Bancells
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain
| | - Alfred Cortés
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Catalonia 08036, Spain.,ICREA, Barcelona, Catalonia 08010, Spain
| | - José Luis Gómez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville 41013, Spain
| | - Elena Gómez-Díaz
- Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas, Seville 41092, Spain.,Instituto de Parasitología y Biomedicina 'López-Neyra' (IPBLN), Consejo Superior de Investigaciones Científicas, Granada 18016, Spain
| |
Collapse
|
32
|
Bai HJ, Zhang P, Ma L, Liang H, Wei G, Yang HT. SMYD2 Drives Mesendodermal Differentiation of Human Embryonic Stem Cells Through Mediating the Transcriptional Activation of Key Mesendodermal Genes. Stem Cells 2019; 37:1401-1415. [PMID: 31348575 DOI: 10.1002/stem.3068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
Abstract
Histone methyltransferases play a critical role in early human development, whereas their roles and precise mechanisms are less understood. SET and MYND domain-containing protein 2 (SMYD2) is a histone lysine methyltransferase induced during early differentiation of human embryonic stem cells (hESCs), but little is known about its function in undifferentiated hESCs and in their early lineage fate decision as well as underlying mechanisms. Here, we explored the role of SMYD2 in the self-renewal and mesendodermal lineage commitment of hESCs. We demonstrated that the expression of SMYD2 was significantly enhanced during mesendodermal but not neuroectodermal differentiation of hESCs. SMYD2 knockout (SMYD2-/- ) did not affect self-renewal and early neuroectodermal differentiation of hESCs, whereas it blocked the mesendodermal lineage commitment. This phenotype was rescued by reintroduction of SMYD2 into the SMYD2-/- hESCs. Mechanistically, the bindings of SMYD2 at the promoter regions of critical mesendodermal transcription factor genes, namely, brachyury (T), eomesodermin (EOMES), mix paired-like homeobox (MIXL1), and goosecoid homeobox (GSC) were significantly enhanced during mesendodermal differentiation of SMYD2+/+ hESCs but totally suppressed in SMYD2-/- ones. Concomitantly, such a suppression was associated with the remarkable reduction of methylation at histone 3 lysine 4 and lysine 36 but not at histone 4 lysine 20 globally and specifically on the promoter regions of mesendodermal genes, namely, T, EOMES, MIXL1, and GSC. These results reveal that the histone methyltransferase SMYD2 is dispensable in the undifferentiated hESCs and the early neuroectodermal differentiation, but it promotes the mesendodermal differentiation of hESCs through the epigenetic control of critical genes to mesendodermal lineage commitment. Stem Cells 2019;37:1401-1415.
Collapse
Affiliation(s)
- Hua-Jun Bai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Li Ma
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - He Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, Laboratory of Epigenome Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences (SIBS), University of Chinese Academy of Sciences (CAS), CAS, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Singh S, Jangid RK, Crowder A, Groves AK. Foxi3 transcription factor activity is mediated by a C-terminal transactivation domain and regulated by the Protein Phosphatase 2A (PP2A) complex. Sci Rep 2018; 8:17249. [PMID: 30467319 PMCID: PMC6250667 DOI: 10.1038/s41598-018-35390-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/02/2018] [Indexed: 01/20/2023] Open
Abstract
The Forkhead box (FOX) family consists of at least 19 subgroups of transcription factors which are characterized by the presence of an evolutionary conserved ‘forkhead’ or ‘winged-helix’ DNA-binding domain. Despite having a conserved core DNA binding domain, FOX proteins display remarkable functional diversity and are involved in many developmental and cell specific processes. In the present study, we focus on a poorly characterized member of the Forkhead family, Foxi3, which plays a critical role in the development of the inner ear and jaw. We show that Foxi3 contains at least two important functional domains, a nuclear localization sequence (NLS) and a C-terminal transactivation domain (TAD), and that it directly binds its targets in a sequence specific manner. We also show that the transcriptional activity of Foxi3 is regulated by phosphorylation, and that the activity of Foxi3 can be attenuated by its physical interaction with the protein phosphatase 2A (PP2A) complex.
Collapse
Affiliation(s)
- Sunita Singh
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Rahul K Jangid
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Alyssa Crowder
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Program in Developmental Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
34
|
Abstract
Eukaryotic pathogens must survive in different hosts, respond to changing environments, and exploit specialized niches to propagate. Plasmodium parasites cause human malaria during bloodstream infections, where they must persist long enough to be transmitted. Parasites have evolved diverse strategies of variant gene expression that control critical biological processes of blood-stage infections, including antigenic variation, erythrocyte invasion, innate immune evasion, and nutrient acquisition, as well as life-cycle transitions. Epigenetic mechanisms within the parasite are being elucidated, with discovery of epigenomic marks associated with gene silencing and activation, and the identification of epigenetic regulators and chromatin proteins that are required for the switching and maintenance of gene expression. Here, we review the key epigenetic processes that facilitate transition through the parasite life cycle and epigenetic regulatory mechanisms utilized by Plasmodium parasites to survive changing environments and consider epigenetic switching in the context of the outcome of human infections.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| | - Kristen M Skillman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
35
|
Marinov GK, Kundaje A. ChIP-ping the branches of the tree: functional genomics and the evolution of eukaryotic gene regulation. Brief Funct Genomics 2018; 17:116-137. [PMID: 29529131 PMCID: PMC5889016 DOI: 10.1093/bfgp/ely004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Advances in the methods for detecting protein-DNA interactions have played a key role in determining the directions of research into the mechanisms of transcriptional regulation. The most recent major technological transformation happened a decade ago, with the move from using tiling arrays [chromatin immunoprecipitation (ChIP)-on-Chip] to high-throughput sequencing (ChIP-seq) as a readout for ChIP assays. In addition to the numerous other ways in which it is superior to arrays, by eliminating the need to design and manufacture them, sequencing also opened the door to carrying out comparative analyses of genome-wide transcription factor occupancy across species and studying chromatin biology in previously less accessible model and nonmodel organisms, thus allowing us to understand the evolution and diversity of regulatory mechanisms in unprecedented detail. Here, we review the biological insights obtained from such studies in recent years and discuss anticipated future developments in the field.
Collapse
Affiliation(s)
- Georgi K Marinov
- Corresponding author: Georgi K. Marinov, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA. E-mail:
| | | |
Collapse
|
36
|
Kanyal A, Rawat M, Gurung P, Choubey D, Anamika K, Karmodiya K. Genome‐wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of
Plasmodium falciparum. FEBS J 2018; 285:1767-1782. [DOI: 10.1111/febs.14376] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Abhishek Kanyal
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| | - Mukul Rawat
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| | - Pratima Gurung
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| | | | | | - Krishanpal Karmodiya
- Department of Biology Indian Institute of Science Education and Research Pashan, Pune India
| |
Collapse
|
37
|
Ubhe S, Rawat M, Verma S, Anamika K, Karmodiya K. Genome-wide identification of novel intergenic enhancer-like elements: implications in the regulation of transcription in Plasmodium falciparum. BMC Genomics 2017; 18:656. [PMID: 28836940 PMCID: PMC5569477 DOI: 10.1186/s12864-017-4052-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/11/2017] [Indexed: 01/28/2023] Open
Abstract
Background The molecular mechanisms of transcriptional regulation are poorly understood in Plasmodium falciparum. In addition, most of the genes in Plasmodium falciparum are transcriptionally poised and only a handful of cis-regulatory elements are known to operate in transcriptional regulation. Here, we employed an epigenetic signature based approach to identify significance of previously uncharacterised intergenic regions enriched with histone modification marks leading to discovery of enhancer-like elements. Results We found that enhancer-like elements are significantly enriched with H3K4me1, generate unique non-coding bi-directional RNAs and majority of them can function as cis-regulators. Furthermore, functional enhancer reporter assay demonstrates that the enhancer-like elements regulate transcription of target genes in Plasmodium falciparum. Our study also suggests that the Plasmodium genome segregates functionally related genes into discrete housekeeping and pathogenicity/virulence clusters, presumably for robust transcriptional control of virulence/pathogenicity genes. Conclusions This report contributes to the understanding of parasite regulatory genomics by identification of enhancer-like elements, defining their epigenetic and transcriptional features and provides a resource of functional cis-regulatory elements that may give insights into the virulence/pathogenicity of Plasmodium falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4052-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suyog Ubhe
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India
| | - Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India
| | - Srikant Verma
- Labs, Persistent Systems Limited, Pingala - Aryabhata, Erandwane, Pune, 411004, India
| | - Krishanpal Anamika
- Labs, Persistent Systems Limited, Pingala - Aryabhata, Erandwane, Pune, 411004, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune, 411008, India.
| |
Collapse
|
38
|
Gupta AP, Zhu L, Tripathi J, Kucharski M, Patra A, Bozdech Z. Histone 4 lysine 8 acetylation regulates proliferation and host-pathogen interaction in Plasmodium falciparum. Epigenetics Chromatin 2017; 10:40. [PMID: 28830512 PMCID: PMC5568195 DOI: 10.1186/s13072-017-0147-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The dynamics of histone modifications in Plasmodium falciparum indicates the existence of unique mechanisms that link epigenetic factors with transcription. Here, we studied the impact of acetylated histone code on transcriptional regulation during the intraerythrocytic developmental cycle (IDC) of P. falciparum. RESULTS Using a dominant-negative transgenic approach, we showed that acetylations of histone H4 play a direct role in transcription. Specifically, these histone modifications mediate an inverse transcriptional relationship between the factors of cell proliferation and host-parasite interaction. Out of the four H4 acetylations, H4K8ac is likely the rate-limiting, regulatory step, which modulates the overall dynamics of H4 posttranslational modifications. H4K8ac exhibits maximum responsiveness to HDAC inhibitors and has a highly dynamic distribution pattern along the genome of P. falciparum during the IDC. Moreover, H4K8ac functions mainly in the euchromatin where its occupancy shifts from intergenic regions located upstream of 5' end of open reading frame into the protein coding regions. This shift is directly or indirectly associated with transcriptional activities at the corresponding genes. H4K8ac is also active in the heterochromatin where it stimulates expression of the main antigenic gene family (var) by its presence in the promoter region. CONCLUSIONS Overall, we demonstrate that H4K8ac is a potential major regulator of chromatin-linked transcriptional changes during P. falciparum life cycle which is associated not only with euchromatin but also with heterochromatin environment. This is potentially a highly significant finding that suggests a regulatory connection between growth and parasite-host interaction both of which play a major role in malaria parasite virulence.
Collapse
Affiliation(s)
- Archana P. Gupta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Jaishree Tripathi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Michal Kucharski
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Alok Patra
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
39
|
Gupta AP, Bozdech Z. Epigenetic landscapes underlining global patterns of gene expression in the human malaria parasite, Plasmodium falciparum. Int J Parasitol 2017; 47:399-407. [PMID: 28414071 DOI: 10.1016/j.ijpara.2016.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022]
Abstract
The dynamic chromatin landscape displaying combinatorial complexity of the epigenome impacts gene expression that underlies many events of differentiation and cell cycle progression. In the past few years, epigenetic mechanisms have emerged as important processes involved in the tight gene regulation in malaria parasites, Plasmodium spp. Focusing predominantly on Plasmodium falciparum, the species associated with the most severe form of the disease, many advances have been made in our understanding of the interaction between transcriptional regulation and epigenetic mechanisms as the pivotal processes in regulating life cycle progression, host parasite interactions and parasite adaptation to the host environment. This review focuses on the epigenome and its effect on transcriptional regulation in P. falciparum, highlighting its unique, evolutionary diverse features.
Collapse
Affiliation(s)
- Archana P Gupta
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
40
|
Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci Rep 2017; 7:607. [PMID: 28377601 PMCID: PMC5428830 DOI: 10.1038/s41598-017-00687-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/08/2017] [Indexed: 01/24/2023] Open
Abstract
Gene expression in Plasmodia integrates post-transcriptional regulation with epigenetic marking of active genomic regions through histone post-translational modifications (PTMs). To generate insights into the importance of histone PTMs to the entire asexual and sexual developmental cycles of the parasite, we used complementary and comparative quantitative chromatin proteomics to identify and functionally characterise histone PTMs in 8 distinct life cycle stages of P. falciparum parasites. ~500 individual histone PTMs were identified of which 106 could be stringently validated. 46 individual histone PTMs and 30 co-existing PTMs were fully quantified with high confidence. Importantly, 15 of these histone PTMs are novel for Plasmodia (e.g. H3K122ac, H3K27me3, H3K56me3). The comparative nature of the data revealed a highly dynamic histone PTM landscape during life cycle development, with a set of histone PTMs (H3K4ac, H3K9me1 and H3K36me2) displaying a unique and conserved abundance profile exclusively during gametocytogenesis (P < 0.001). Euchromatic histone PTMs are abundant during schizogony and late gametocytes; heterochromatic PTMs mark early gametocytes. Collectively, this data provides the most accurate, complete and comparative chromatin proteomic analyses of the entire life cycle development of malaria parasites. A substantial association between histone PTMs and stage-specific transition provides insights into the intricacies characterising Plasmodial developmental biology.
Collapse
|
41
|
Song MJ, Kim M, Choi Y, Yi MH, Kim J, Park SJ, Yong TS, Kim HP. Epigenome mapping highlights chromatin-mediated gene regulation in the protozoan parasite Trichomonas vaginalis. Sci Rep 2017; 7:45365. [PMID: 28345651 PMCID: PMC5366954 DOI: 10.1038/srep45365] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 02/06/2023] Open
Abstract
Trichomonas vaginalis is an extracellular flagellated protozoan parasite that causes trichomoniasis, one of the most common non-viral sexually transmitted diseases. To survive and to maintain infection, T. vaginalis adapts to a hostile host environment by regulating gene expression. However, the mechanisms of transcriptional regulation are poorly understood for this parasite. Histone modification has a marked effect on chromatin structure and directs the recruitment of transcriptional machinery, thereby regulating essential cellular processes. In this study, we aimed to outline modes of chromatin-mediated gene regulation in T. vaginalis. Inhibition of histone deacetylase (HDAC) alters global transcriptional responses and induces hyperacetylation of histones and hypermethylation of H3K4. Analysis of the genome of T. vaginalis revealed that a number of enzymes regulate histone modification, suggesting that epigenetic mechanisms are important to controlling gene expression in this organism. Additionally, we describe the genome-wide localization of two histone H3 modifications (H3K4me3 and H3K27Ac), which we found to be positively associated with active gene expression in both steady and dynamic transcriptional states. These results provide the first direct evidence that histone modifications play an essential role in transcriptional regulation of T. vaginalis, and may help guide future epigenetic research into therapeutic intervention strategies against this parasite.
Collapse
Affiliation(s)
- Min-Ji Song
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Mikyoung Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yeeun Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Juri Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Soon-Jung Park
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, 03722, Korea.,Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul, 03722, Korea.,BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| |
Collapse
|
42
|
Volkman SK, Herman J, Lukens AK, Hartl DL. Genome-Wide Association Studies of Drug-Resistance Determinants. Trends Parasitol 2016; 33:214-230. [PMID: 28179098 DOI: 10.1016/j.pt.2016.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/26/2016] [Accepted: 10/06/2016] [Indexed: 02/07/2023]
Abstract
Population genetic strategies that leverage association, selection, and linkage have identified drug-resistant loci. However, challenges and limitations persist in identifying drug-resistance loci in malaria. In this review we discuss the genetic basis of drug resistance and the use of genome-wide association studies, complemented by selection and linkage studies, to identify and understand mechanisms of drug resistance and response. We also discuss the implications of nongenetic mechanisms of drug resistance recently reported in the literature, and present models of the interplay between nongenetic and genetic processes that contribute to the emergence of drug resistance. Throughout, we examine artemisinin resistance as an example to emphasize challenges in identifying phenotypes suitable for population genetic studies as well as complications due to multiple-factor drug resistance.
Collapse
Affiliation(s)
- Sarah K Volkman
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA; Simmons College, School of Nursing and Health Science, Boston, MA, USA.
| | - Jonathan Herman
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; Weill Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Amanda K Lukens
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Disease, Boston, MA, USA; The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA
| | - Daniel L Hartl
- The Broad Institute of MIT and Harvard, Infectious Disease Initiative, Cambridge, MA, USA; Harvard University, Organismic and Evolutionary Biology, Cambridge, MA, USA
| |
Collapse
|
43
|
Severe malaria: what's new on the pathogenesis front? Int J Parasitol 2016; 47:145-152. [PMID: 27670365 DOI: 10.1016/j.ijpara.2016.08.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022]
Abstract
Plasmodium falciparum causes the most severe and fatal form of malaria in humans with over half a million deaths each year. Cerebral malaria, a complex neurological syndrome of severe falciparum malaria, is often fatal and represents a major public health burden. Despite vigorous efforts, the pathophysiology of cerebral malaria remains to be elucidated, thereby hindering the development of adjunctive therapies. In recent years, multidisciplinary and collaborative approaches have led to groundbreaking progress both in the laboratory and in the field. Here we review the latest breakthroughs in severe malaria pathogenesis, with a specific focus on new pathogenetic mechanisms leading to cerebral malaria. The most recent findings point towards specific parasite phenotypes targeting brain microvasculature, endothelial dysfunction and subsequent oedema-induced brain swelling.
Collapse
|
44
|
Richter J, Franken G, Holtfreter MC, Walter S, Labisch A, Mehlhorn H. Clinical implications of a gradual dormancy concept in malaria. Parasitol Res 2016; 115:2139-48. [PMID: 27079460 DOI: 10.1007/s00436-016-5043-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
Abstract
Malaria recurrences after an initially successful therapy and malarial fever occurring a long time after infection are well-known problems in malariology. Currently, two distinct types of malaria recurrences are defined: recrudescence and relapse. A recrudescence is thought to originate from circulating Plasmodium blood stages which do not cause fever before a certain level of a microscopically detectable parasitemia is reached. Contrary, a relapse is thought to originate from quiescent intracellular hepatic parasite stages called hypnozoites. Recrudescences would typically occur in infections due to Plasmodium falciparum. Plasmodium knowlesi, and Plasmodium malariae, whereas relapses would be caused exclusively by Plasmodium vivax and Plasmodium ovale. This schematic view is, however, insufficiently supported by experimental evidence. For instance, hypnozoites of P. ovale have never been experimentally documented. On the other hand, the nonfinding of P. malariae hypnozoites turned into the proof for the nonexistence of P. malariae hypnozoites. Clinical relapse-type recurrences have been observed in both P. ovale and P. malariae infections, and decade-long incubation times have also been reported in P. falciparum infections. We propose a gradual hypothesis in accordance with the continuity concept of biological evolution: both, relapse and recrudescence may be potentially caused by all Plasmodium spp. We hypothesize that the difference between the various Plasmodium spp. is quantitative rather than qualitative: there are Plasmodium spp. which frequently cause relapses such as P. vivax, particularly the P.v. Chesson strain, species which cause relapses less frequently, such as P. ovale and sometimes P. malariae, and species which may exceptionally cause relapses such as P. falciparum. All species may cause recrudescences. As clinical consequences, we propose that 8-aminquinolines may be considered in a relapse-type recrudescence regardless of the causal Plasmodium sp., whereas primaquine relapse prevention might not be routinely indicated in malaria due to P. ovale.
Collapse
Affiliation(s)
- Joachim Richter
- Tropical Medicine Unit, Department for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Gabriele Franken
- Institute for the History of Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Martha C Holtfreter
- Tropical Medicine Unit, Department for Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Susanne Walter
- Institute for Zoomorphology, Cell Biology and Parasitology, Faculty of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alfons Labisch
- Institute for the History of Medicine, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Heinz Mehlhorn
- Institute for Zoomorphology, Cell Biology and Parasitology, Faculty of Biology, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
45
|
Rawat M, Bhosale MA, Karmodiya K. Plasmodium falciparum epigenome: A distinct dynamic epigenetic regulation of gene expression. GENOMICS DATA 2015; 7:79-81. [PMID: 26981368 PMCID: PMC4778637 DOI: 10.1016/j.gdata.2015.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
Histone modification profiles are predictive of gene expression and most of the knowledge gained is acquired through studies done in higher eukaryotes. However, genome-wide studies involving Plasmodium falciparum, the causative agent of malaria, have been rather few, at lower resolution (mostly using ChIP-on-chip), and covering limited number of histone modifications. In our recent study [1], we have performed extensive genome-wide analyses of multiple histone modifications including the active (H3K4me2, H3K4me3, H3K9ac, H3K14ac, H3K27ac and H4ac), inactive (H3K9me3 and H3K27me3), elongation (H3K79me3) and regulatory element (H3K4me1) in a stage-specific manner. Furthermore, we used a ligation-based method suitable for sequencing homopolymeric stretches as seen in P. falciparum for next-generation sequencing library amplification [2], enabling highly quantitative analysis of the extremely AT-rich P. falciparum genome. Our recently published study suggests that transcription regulation by virtue of poised chromatin and differential histone modifications is unique to P. falciparum [1]. Here we describe the experiments, quality controls and chromatin immunoprecipitation-sequencing data analysis of our associated study published in Epigenetics and Chromatin [1]. Stage-specific ChIP-sequencing data for histone modifications is submitted to Gene Expression Omnibus (GEO) database under the accession number GSE63369.
Collapse
Affiliation(s)
- Mukul Rawat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Madhvi A Bhosale
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Krishanpal Karmodiya
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| |
Collapse
|