1
|
Feng Q, Li Q, Hu Y, Wang Z, Zhou H, Lin C, Wang D. TET1 overexpression affects cell proliferation and apoptosis in aging ovaries. J Assist Reprod Genet 2024; 41:3491-3502. [PMID: 39317913 PMCID: PMC11707214 DOI: 10.1007/s10815-024-03271-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE Along with the progress of society, human life expectancy has been increasing, and late marriage and late childbearing are the current trend. Since reproductive aging affects fertility, ovarian aging in women has become a major reproductive health issue in the current society. During ovarian aging, DNA methylation levels may change. The ten-eleven translocation (TET) protein family proteins TET1, TET2, and TET3 are important DNA demethylation enzymes, and differential expression of TET1, TET2, and TET3 may affect the proliferation and apoptosis of aging ovarian cells. The aim of this study was to investigate the role of TET1 in the regulation of ovarian aging. METHODS The expression of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) was analyzed by immunofluorescence (IF) in young and aging ovaries of six 6-8-week-old female mice and six 6-8-month-old female mice. Then, the expression pattern of the TET protein family in young and aging ovaries of mice was investigated. To determine the impact of TET1 on ovarian development, the aging of IOSE-80, KGN, and SKOV-3 cells was induced with D-galactosidase (D-gal). Cells were then transfected using the TET1 overexpression vector or si-TET1. We assessed the proliferation and apoptosis of aging cells after transfection and analyzed the regulatory effect of TET1 expression on aging cells. Additionally, we verified the Tet1 expression in Tet1-KO mice. RESULTS The 5mC to 5hmC transition, oocyte maturation, and blastocyst rate were reduced in aging mice compared to young mice. In aging mice ovaries, the expression levels of Tet1, Tet2, and Tet3 were reduced significantly, with Tet1 being particularly pronounced. The overexpression of TET1 promoted proliferation and inhibited apoptosis in aging human ovarian cells. Furthermore, Tet1 expression was very low in Tet1-KO C57BL/6 J mice ovaries. CONCLUSION This study demonstrates that the expression levels of TET family proteins are low in aging ovaries, and the overexpression of TET1 can promote proliferation and inhibit apoptosis in aging ovarian cells.
Collapse
Affiliation(s)
- Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, 130062, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yurui Hu
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Zhan Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, 130062, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Mohanty SK, Singh K, Kumar M, Verma SS, Srivastava R, Gnyawali SC, Palakurti R, Sahi AK, El Masry MS, Banerjee P, Kacar S, Rustagi Y, Verma P, Ghatak S, Hernandez E, Rubin JP, Khanna S, Roy S, Yoder MC, Sen CK. Vasculogenic skin reprogramming requires TET-mediated gene demethylation in fibroblasts for rescuing impaired perfusion in diabetes. Nat Commun 2024; 15:10277. [PMID: 39604331 PMCID: PMC11603198 DOI: 10.1038/s41467-024-54385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Tissue nanotransfection (TNT) topically delivers Etv2, Foxc2, and Fli1 (EFF) plasmids increasing vasculogenic fibroblasts (VF) and promoting vascularization in ischemic murine skin. Human dermal fibroblasts respond to EFF nanoelectroporation with elevated expression of endothelial genes in vitro, which is linked to increased ten-eleven translocase 1/2/3 (TET) expression. Single cell RNA sequencing dependent validation of VF induction reveals a TET-dependent transcript signature. TNTEFF also induces TET expression in vivo, and fibroblast-specific EFF overexpression leads to VF-transition, with TET-activation correlating with higher 5-hydroxymethylcytosine (5-hmC) levels in VF. VF emergence requires TET-dependent demethylation of endothelial genes in vivo, enhancing VF abundance and restoring perfusion in diabetic ischemic limbs. TNTEFF improves perfusion and wound closure in diabetic mice, while increasing VF in cultured human skin explants. Suppressed in diabetes, TET1/2/3 play a critical role in TNT-mediated VF formation which supports de novo blood vessel development to rescue diabetic ischemic tissue.
Collapse
Affiliation(s)
- Sujit K Mohanty
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Manishekhar Kumar
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sumit S Verma
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rajneesh Srivastava
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Surya C Gnyawali
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ravichand Palakurti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ajay K Sahi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed S El Masry
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pradipta Banerjee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sedat Kacar
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yashika Rustagi
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Priyanka Verma
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Subhadip Ghatak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward Hernandez
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J Peter Rubin
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Savita Khanna
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sashwati Roy
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mervin C Yoder
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Kamei N, Day K, Guo W, Haus DL, Nguyen HX, Scarfone VM, Booher K, Jia XY, Cummings BJ, Anderson AJ. Injured inflammatory environment overrides the TET2 shaped epigenetic landscape of pluripotent stem cell derived human neural stem cells. Sci Rep 2024; 14:25186. [PMID: 39448736 PMCID: PMC11502794 DOI: 10.1038/s41598-024-75689-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Spinal cord injury creates an inflammatory microenvironment that regulates the capacity of transplanted human Neural Stem Cells (hNSC) to migrate, differentiate, and repair injury. Despite similarities in gene expression and markers detected by immunostaining, hNSC populations exhibit heterogeneous therapeutic potential. This heterogeneity derives in part from the epigenetic landscape in the hNSC genome, specifically methylation (5mC) and hydroxymethylation (5hmC) state, which may affect the response of transplanted hNSC in the injury microenvironment and thereby modulate repair capacity. We demonstrate a significant up-regulation of methylcytosine dioxygenase 2 gene (TET2) expression in undifferentiated hNSC derived from human embryonic stem cells (hES-NSC), and report that this is associated with hES-NSC competence for differentiation marker expression. TET2 protein catalyzes active demethylation and TET2 upregulation could be a signature of pluripotent exit, while shaping the epigenetic landscape in hES-NSC. We determine that the inflammatory environment overrides epigenetic programming in vitro and in vivo by directly modulating TET2 expression levels in hES-NSC to change cell fate. We also report the effect of cell fate and microenvironment on differential methylation 5mC/5hmC balance. Understanding how the activity of epigenetic modifiers changes within the transplantation niche in vivo is crucial for assessment of hES-NSC behavior for potential clinical applications.
Collapse
Affiliation(s)
- Noriko Kamei
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
- Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, 92697-4475, USA.
| | - Kenneth Day
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
- Vidium Animal Health, 7201 E Henkel Way Suite210, Scottsdale, AZ, 85255, USA
| | - Wei Guo
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Daniel L Haus
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Hal X Nguyen
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Vanessa M Scarfone
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA
| | - Keith Booher
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Xi-Yu Jia
- Zymo Research Corp, 17062 Murphy Ave, Irvine, CA, 92614, USA
| | - Brian J Cummings
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| | - Aileen J Anderson
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, 92697-1705, USA.
| |
Collapse
|
4
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
5
|
Routh S, Manickam V. Epigenetic alterations dictating the inflammation: A view through pancreatitis. Life Sci 2024; 338:122383. [PMID: 38158041 DOI: 10.1016/j.lfs.2023.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Pancreatitis is a severe inflammation in the pancreas and accounts for one of the leading gastrointestinal disorders worldwide, and presently pacing up with the morbidity and mortality rates. It has been noted that severe recurrences of acute pancreatitis lead to chronic inflammation and fibrosis of the pancreas which may further result to a long-term risk of pancreatic carcinogenesis which has a lower survival rate and worse prognosis. Several genetic and epigenetic mechanisms have been reported to orchestrate disease development. Intriguingly, concurrent epigenetic alterations can also control the genes responsible for the pathophysiology of several inflammatory pathways. Deciphering how epigenetic changes affect the inflammatory processes in pancreatitis and body's response to various therapeutic modalities may help to manage the condition more effectively. The current review will concentrate on several epigenetic changes in general and how specifically they are implicated in pancreatitis pathogenesis. Further, this review summarizes the involvement of inflammation in pancreatitis from an epigenetic perspective.
Collapse
Affiliation(s)
- Sreyoshi Routh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Venkatraman Manickam
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Derbala D, Garnier A, Bonnet E, Deleuze JF, Tost J. Whole-Genome Bisulfite Sequencing Protocol for the Analysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution. Methods Mol Biol 2024; 2842:353-382. [PMID: 39012605 DOI: 10.1007/978-1-0716-4051-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The analysis of genome-wide epigenomic alterations including DNA methylation and hydroxymethylation has become a subject of intensive research for many biological and clinical questions. DNA methylation analysis bears the particular promise to supplement or replace biochemical and imaging-based tests for the next generation of personalized medicine. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies is currently considered the gold standard for a comprehensive and quantitative analysis of DNA methylation throughout the genome. However, bisulfite conversion does not allow distinguishing between cytosine methylation and hydroxymethylation requiring an additional chemical or enzymatic step to identify hydroxymethylated cytosines. Here, we provide a detailed protocol based on a commercial kit for the preparation of sequencing libraries for the comprehensive whole-genome analysis of DNA methylation and/or hydroxymethylation. The protocol is based on the construction of sequencing libraries from limited amounts of input DNA by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. For analyses requiring a quantitative distinction between 5-methylcytosine and 5-hydroxymethylcytosines levels, an oxidation step is included in the same workflow to perform oxidative bisulfite sequencing (OxBs-Seq). In this case, two sequencing libraries will be generated and sequenced: a classic methylome following bisulfite conversion and analyzing modified cytosines (not distinguishing between methylated and hydroxymethylated cytosines) and a methylome analyzing only methylated cytosines, respectively. Hydroxymethylation levels are deduced from the differences between the two reactions. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocol has been successfully applied to different human and plant samples and yields robust and reproducible results.
Collapse
Affiliation(s)
- David Derbala
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Abel Garnier
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Eric Bonnet
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France
| | - Jörg Tost
- Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Université Paris -Saclay, Evry, France.
| |
Collapse
|
7
|
Yang J, Liu Y, Yin H, Xie S, Zhang L, Dong X, Ni H, Bu W, Ma H, Liu P, Zhu H, Guo R, Sun L, Wu Y, Qin J, Sun B, Li D, Luo HR, Liu M, Xuan C, Zhou J. HDAC6 deacetylates IDH1 to promote the homeostasis of hematopoietic stem and progenitor cells. EMBO Rep 2023; 24:e56009. [PMID: 37642636 PMCID: PMC10561360 DOI: 10.15252/embr.202256009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/27/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are cells mainly present in the bone marrow and capable of forming mature blood cells. However, the epigenetic mechanisms governing the homeostasis of HSPCs remain elusive. Here, we demonstrate an important role for histone deacetylase 6 (HDAC6) in regulating this process. Our data show that the percentage of HSPCs in Hdac6 knockout mice is lower than in wild-type mice due to decreased HSPC proliferation. HDAC6 interacts with isocitrate dehydrogenase 1 (IDH1) and deacetylates IDH1 at lysine 233. The deacetylation of IDH1 inhibits its catalytic activity and thereby decreases the 5-hydroxymethylcytosine level of ten-eleven translocation 2 (TET2) target genes, changing gene expression patterns to promote the proliferation of HSPCs. These findings uncover a role for HDAC6 and IDH1 in regulating the homeostasis of HSPCs and may have implications for the treatment of hematological diseases.
Collapse
Affiliation(s)
- Jia Yang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Yang Liu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hanxiao Yin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Songbo Xie
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Linlin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Xifeng Dong
- Department of HematologyTianjin Medical University General HospitalTianjinChina
| | - Hua Ni
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Weiwen Bu
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo Ma
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Peng Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Haiyan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Rongxia Guo
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| | - Lei Sun
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Yue Wu
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| | - Juan Qin
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Baofa Sun
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
| | - Hongbo R Luo
- Department of Pathology, Department of Laboratory Medicine, Harvard Medical SchoolChildren's Hospital Boston, Dana‐Farber/Harvard Cancer CenterBostonMAUSA
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjinChina
| | - Chenghao Xuan
- The Province and Ministry Co‐sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Protein Science, College of Life SciencesNankai UniversityTianjinChina
- Center for Cell Structure and Function, College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of ShandongShandong Normal UniversityJinanChina
| |
Collapse
|
8
|
Lirussi L, Nilsen HL. DNA Glycosylases Define the Outcome of Endogenous Base Modifications. Int J Mol Sci 2023; 24:10307. [PMID: 37373453 DOI: 10.3390/ijms241210307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified nucleic acid bases are sources of genomic instability and mutations but may also regulate gene expression as epigenetic or epitranscriptomic modifications. Depending on the cellular context, they can have vastly diverse impacts on cells, from mutagenesis or cytotoxicity to changing cell fate by regulating chromatin organisation and gene expression. Identical chemical modifications exerting different functions pose a challenge for the cell's DNA repair machinery, as it needs to accurately distinguish between epigenetic marks and DNA damage to ensure proper repair and maintenance of (epi)genomic integrity. The specificity and selectivity of the recognition of these modified bases relies on DNA glycosylases, which acts as DNA damage, or more correctly, as modified bases sensors for the base excision repair (BER) pathway. Here, we will illustrate this duality by summarizing the role of uracil-DNA glycosylases, with particular attention to SMUG1, in the regulation of the epigenetic landscape as active regulators of gene expression and chromatin remodelling. We will also describe how epigenetic marks, with a special focus on 5-hydroxymethyluracil, can affect the damage susceptibility of nucleic acids and conversely how DNA damage can induce changes in the epigenetic landscape by altering the pattern of DNA methylation and chromatin structure.
Collapse
Affiliation(s)
- Lisa Lirussi
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Section of Clinical Molecular Biology (EpiGen), Akershus University Hospital, 1478 Lørenskog, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Hilde Loge Nilsen
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Unit for Precision Medicine, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
9
|
Azagra A, Meler A, de Barrios O, Tomás-Daza L, Collazo O, Monterde B, Obiols M, Rovirosa L, Vila-Casadesús M, Cabrera-Pasadas M, Gusi-Vives M, Graf T, Varela I, Sardina JL, Javierre BM, Parra M. The HDAC7-TET2 epigenetic axis is essential during early B lymphocyte development. Nucleic Acids Res 2022; 50:8471-8490. [PMID: 35904805 PMCID: PMC9410891 DOI: 10.1093/nar/gkac619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 06/23/2022] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Correct B cell identity at each stage of cellular differentiation during B lymphocyte development is critically dependent on a tightly controlled epigenomic landscape. We previously identified HDAC7 as an essential regulator of early B cell development and its absence leads to a drastic block at the pro-B to pre-B cell transition. More recently, we demonstrated that HDAC7 loss in pro-B-ALL in infants associates with a worse prognosis. Here we delineate the molecular mechanisms by which HDAC7 modulates early B cell development. We find that HDAC7 deficiency drives global chromatin de-condensation, histone marks deposition and deregulates other epigenetic regulators and mobile elements. Specifically, the absence of HDAC7 induces TET2 expression, which promotes DNA 5-hydroxymethylation and chromatin de-condensation. HDAC7 deficiency also results in the aberrant expression of microRNAs and LINE-1 transposable elements. These findings shed light on the mechanisms by which HDAC7 loss or misregulation may lead to B cell–based hematological malignancies.
Collapse
Affiliation(s)
- Alba Azagra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Ainara Meler
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Oriol de Barrios
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Laureano Tomás-Daza
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Olga Collazo
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| | - Beatriz Monterde
- Instituto de Biomedicina y Biotecnología de Cantabria. Universidad de Cantabria-CSIC. 39011 Santander, Spain
| | - Mireia Obiols
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Llorenç Rovirosa
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Maria Vila-Casadesús
- Centre for Genomic Regulation (CRG), PRBB Building, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Mónica Cabrera-Pasadas
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Mar Gusi-Vives
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Thomas Graf
- Centre for Genomic Regulation (CRG), PRBB Building, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - Ignacio Varela
- Instituto de Biomedicina y Biotecnología de Cantabria. Universidad de Cantabria-CSIC. 39011 Santander, Spain
| | - José Luis Sardina
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Biola M Javierre
- 3D Chromatin Organization Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Maribel Parra
- Lymphocyte Development and Disease Group, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain.,Cellular Differentiation Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Av. Gran Via 199, 08908 L'Hospitalet, Barcelona, Spain
| |
Collapse
|
10
|
Li J, Wu X, Ke J, Lee M, Lan Q, Li J, Yu J, Huang Y, Sun DQ, Xie R. TET1 dioxygenase is required for FOXA2-associated chromatin remodeling in pancreatic beta-cell differentiation. Nat Commun 2022; 13:3907. [PMID: 35798741 PMCID: PMC9263144 DOI: 10.1038/s41467-022-31611-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
Existing knowledge of the role of epigenetic modifiers in pancreas development has exponentially increased. However, the function of TET dioxygenases in pancreatic endocrine specification remains obscure. We set out to tackle this issue using a human embryonic stem cell (hESC) differentiation system, in which TET1/TET2/TET3 triple knockout cells display severe defects in pancreatic β-cell specification. The integrative whole-genome analysis identifies unique cell-type-specific hypermethylated regions (hyper-DMRs) displaying reduced chromatin activity and remarkable enrichment of FOXA2, a pioneer transcription factor essential for pancreatic endoderm specification. Intriguingly, TET depletion leads to significant changes in FOXA2 binding at the pancreatic progenitor stage, in which gene loci with decreased FOXA2 binding feature low levels of active chromatin modifications and enriches for bHLH motifs. Transduction of full-length TET1 but not the TET1-catalytic-domain in TET-deficient cells effectively rescues β-cell differentiation accompanied by restoring PAX4 hypomethylation. Taking these findings together with the defective generation of functional β-cells upon TET1-inactivation, our study unveils an essential role of TET1-dependent demethylation in establishing β-cell identity. Moreover, we discover a physical interaction between TET1 and FOXA2 in endodermal lineage intermediates, which provides a mechanistic clue regarding the complex crosstalk between TET dioxygenases and pioneer transcription factors in epigenetic regulation during pancreas specification. Here the authors show that TET1 is required for the generation of functional insulin-producing cells, FOXA2 physically interacts with TET1 and contributes to specific recruitment of TET1 to mediate chromatin opening at the regulatory elements of pancreatic lineage determinants.
Collapse
Affiliation(s)
- Jianfang Li
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.,Innovation Center for Advanced Interdisciplinary Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510530, China.,Guangzhou Laboratory, Guangzhou, 510005, China
| | - Xinwei Wu
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.,Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jie Ke
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Minjung Lee
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Qingping Lan
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Jia Li
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology & Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yun Huang
- Center for Epigenetics & Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - De-Qiang Sun
- Innovation Center for Advanced Interdisciplinary Medicine, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510530, China. .,Cardiology Department, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Ruiyu Xie
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China. .,Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
11
|
Loss of adipose TET proteins enhances β-adrenergic responses and protects against obesity by epigenetic regulation of β3-AR expression. Proc Natl Acad Sci U S A 2022; 119:e2205626119. [PMID: 35737830 PMCID: PMC9245707 DOI: 10.1073/pnas.2205626119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
β-adrenergic receptor (β-AR) signaling plays predominant roles in modulating energy expenditure by triggering lipolysis and thermogenesis in adipose tissue, thereby conferring obesity resistance. Obesity is associated with diminished β3-adrenergic receptor (β3-AR) expression and decreased β-adrenergic responses, but the molecular mechanism coupling nutrient overload to catecholamine resistance remains poorly defined. Ten-eleven translocation (TET) proteins are dioxygenases that alter the methylation status of DNA by oxidizing 5-methylcytosine to 5-hydroxymethylcytosine and further oxidized derivatives. Here, we show that TET proteins are pivotal epigenetic suppressors of β3-AR expression in adipocytes, thereby attenuating the responsiveness to β-adrenergic stimulation. Deletion of all three Tet genes in adipocytes led to increased β3-AR expression and thereby enhanced the downstream β-adrenergic responses, including lipolysis, thermogenic gene induction, oxidative metabolism, and fat browning in vitro and in vivo. In mouse adipose tissues, Tet expression was elevated after mice ate a high-fat diet. Mice with adipose-specific ablation of all TET proteins maintained higher levels of β3-AR in both white and brown adipose tissues and remained sensitive to β-AR stimuli under high-fat diet challenge, leading to augmented energy expenditure and decreased fat accumulation. Consequently, they exhibited improved cold tolerance and were substantially protected from diet-induced obesity, inflammation, and metabolic complications, including insulin resistance and hyperlipidemia. Mechanistically, TET proteins directly repressed β3-AR transcription, mainly in an enzymatic activity-independent manner, and involved the recruitment of histone deacetylases to increase deacetylation of its promoter. Thus, the TET-histone deacetylase-β3-AR axis could be targeted to treat obesity and related metabolic diseases.
Collapse
|
12
|
Alagia A, Gullerova M. The Methylation Game: Epigenetic and Epitranscriptomic Dynamics of 5-Methylcytosine. Front Cell Dev Biol 2022; 10:915685. [PMID: 35721489 PMCID: PMC9204050 DOI: 10.3389/fcell.2022.915685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
DNA and RNA methylation dynamics have been linked to a variety of cellular processes such as development, differentiation, and the maintenance of genome integrity. The correct deposition and removal of methylated cytosine and its oxidized analogues is pivotal for cellular homeostasis, rapid responses to exogenous stimuli, and regulated gene expression. Uncoordinated expression of DNA/RNA methyltransferases and demethylase enzymes has been linked to genome instability and consequently to cancer progression. Furthermore, accumulating evidence indicates that post-transcriptional DNA/RNA modifications are important features in DNA/RNA function, regulating the timely recruitment of modification-specific reader proteins. Understanding the biological processes that lead to tumorigenesis or somatic reprogramming has attracted a lot of attention from the scientific community. This work has revealed extensive crosstalk between epigenetic and epitranscriptomic pathways, adding a new layer of complexity to our understanding of cellular programming and responses to environmental cues. One of the key modifications, m5C, has been identified as a contributor to regulation of the DNA damage response (DDR). However, the various mechanisms of dynamic m5C deposition and removal, and the role m5C plays within the cell, remains to be fully understood.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Tost J. Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:395-469. [DOI: 10.1007/978-3-031-11454-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Cortés-Mancera FM, Sarno F, Goubert D, Rots MG. Gene-Targeted DNA Methylation: Towards Long-Lasting Reprogramming of Gene Expression? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:515-533. [DOI: 10.1007/978-3-031-11454-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Chen X, Luo J, Liu J, Chen T, Sun J, Zhang Y, Xi Q. Exploration of the Effect on Genome-Wide DNA Methylation by miR-143 Knock-Out in Mice Liver. Int J Mol Sci 2021; 22:13075. [PMID: 34884879 PMCID: PMC8658369 DOI: 10.3390/ijms222313075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
MiR-143 play an important role in hepatocellular carcinoma and liver fibrosis via inhibiting hepatoma cell proliferation. DNA methyltransferase 3 alpha (DNMT3a), as a target of miR-143, regulates the development of primary organic solid tumors through DNA methylation mechanisms. However, the effect of miR-143 on DNA methylation profiles in liver is unclear. In this study, we used Whole-Genome Bisulfite Sequencing (WGBS) to detect the differentially methylated regions (DMRs), and investigated DMR-related genes and their enriched pathways by miR-143. We found that methylated cytosines increased 0.19% in the miR-143 knock-out (KO) liver fed with high-fat diet (HFD), compared with the wild type (WT). Furthermore, compared with the WT group, the CG methylation patterns of the KO group showed lower CG methylation levels in CG islands (CGIs), promoters and hypermethylation in CGI shores, 5'UTRs, exons, introns, 3'UTRs, and repeat regions. A total of 984 DMRs were identified between the WT and KO groups consisting of 559 hypermethylation and 425 hypomethylation DMRs. Furthermore, DMR-related genes were enriched in metabolism pathways such as carbon metabolism (serine hydroxymethyltransferase 2 (Shmt2), acyl-Coenzyme A dehydrogenase medium chain (Acadm)), arginine and proline metabolism (spermine synthase (Sms), proline dehydrogenase (Prodh2)) and purine metabolism (phosphoribosyl pyrophosphate synthetase 2 (Prps2)). In summary, we are the first to report the change in whole-genome methylation levels by miR-143-null through WGBS in mice liver, and provide an experimental basis for clinical diagnosis and treatment in liver diseases, indicating that miR-143 may be a potential therapeutic target and biomarker for liver damage-associated diseases and hepatocellular carcinoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (X.C.); (J.L.); (J.L.); (T.C.); (J.S.)
| | - Qianyun Xi
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, No. 483 Wushan Road, Guangzhou 510642, China; (X.C.); (J.L.); (J.L.); (T.C.); (J.S.)
| |
Collapse
|
16
|
Joshi P, Vijaykumar A, Enkhmandakh B, Mina M, Shin DG, Bayarsaihan D. Genome-wide distribution of 5hmC in the dental pulp of mouse molars and incisors. J Biochem 2021; 171:123-129. [PMID: 34676418 DOI: 10.1093/jb/mvab114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022] Open
Abstract
The dental pulp is critical for the production of odontoblasts to create reparative dentin. In recent years dental pulp has become a promising source of mesenchymal stem cells that are capable of differentiating into multiple cell types. To elucidate the transcriptional control mechanisms specifying the early phases of odontoblast differentiation, we analyzed the DNA demethylation pattern associated with 5-hydroxymethylcytosine (5hmC) in the primary murine dental pulp. 5hmC plays an important role in chromatin accessibility and transcriptional control by modeling a dynamic equilibrium between DNA methylation and demethylation. Our research revealed 5hmC enrichment along genes and non-coding regulatory regions associated with specific developmental pathways in the genome of mouse incisor and molar dental pulp. Although the overall distribution of 5hmC is similar, the intensity and location of the 5hmC peaks significantly differs between the incisor and molar pulp genome, indicating cell type-specific epigenetic variations. Our study suggests that the differential DNA demethylation pattern could account for the distinct regulatory mechanisms underlying the tooth-specific ontogenetic programs.
Collapse
Affiliation(s)
- Pujan Joshi
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Badam Enkhmandakh
- Center for Regenerative Medicine & Skeletal Development, Department of Reconstructive Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Mina Mina
- Department of Craniofacial Sciences, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Dong-Guk Shin
- Computer Science and Engineering Department, University of Connecticut, 371 Fairfield Way, Unit 4155, Storrs, CT 06269, USA
| | - Dashzeveg Bayarsaihan
- Institute for System Genomics & Center for Regenerative Medicine & Skeletal Development, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| |
Collapse
|
17
|
Huang D, Jing G, Zhang L, Chen C, Zhu S. Interplay Among Hydrogen Sulfide, Nitric Oxide, Reactive Oxygen Species, and Mitochondrial DNA Oxidative Damage. FRONTIERS IN PLANT SCIENCE 2021; 12:701681. [PMID: 34421950 PMCID: PMC8377586 DOI: 10.3389/fpls.2021.701681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/06/2021] [Indexed: 06/01/2023]
Abstract
Hydrogen sulfide (H2S), nitric oxide (NO), and reactive oxygen species (ROS) play essential signaling roles in cells by oxidative post-translational modification within suitable ranges of concentration. All of them contribute to the balance of redox and are involved in the DNA damage and repair pathways. However, the damage and repair pathways of mitochondrial DNA (mtDNA) are complicated, and the interactions among NO, H2S, ROS, and mtDNA damage are also intricate. This article summarized the current knowledge about the metabolism of H2S, NO, and ROS and their roles in maintaining redox balance and regulating the repair pathway of mtDNA damage in plants. The three reactive species may likely influence each other in their generation, elimination, and signaling actions, indicating a crosstalk relationship between them. In addition, NO and H2S are reported to be involved in epigenetic variations by participating in various cell metabolisms, including (nuclear and mitochondrial) DNA damage and repair. Nevertheless, the research on the details of NO and H2S in regulating DNA damage repair of plants is in its infancy, especially in mtDNA.
Collapse
Affiliation(s)
- Dandan Huang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Guangqin Jing
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
- College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Lili Zhang
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Changbao Chen
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| | - Shuhua Zhu
- Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, College of Chemistry and Material Science, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
18
|
Jung BC, Kang S. Epigenetic regulation of inflammatory factors in adipose tissue. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159019. [PMID: 34332076 DOI: 10.1016/j.bbalip.2021.159019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/10/2021] [Accepted: 07/25/2021] [Indexed: 12/13/2022]
Abstract
Obesity is a strong risk factor for insulin resistance. Chronic low-grade tissue inflammation and systemic inflammation have been proposed as major mechanisms that promote insulin resistance in obesity. Adipose tissue has been recognized as a nexus between inflammation and metabolism, but how exactly inflammatory gene expression is orchestrated during the development of obesity is not well understood. Epigenetic modifications are defined as heritable changes in gene expression and cellular function without changes to the original DNA sequence. The major epigenetic mechanisms include DNA methylation, histone modification, noncoding RNAs, nucleopositioning/remodeling and chromatin reorganization. Epigenetic mechanisms provide a critical layer of gene regulation in response to environmental changes. Accumulating evidence supports that epigenetics plays a large role in the regulation of inflammatory genes in adipocytes and adipose-resident immune cell types. This review focuses on the association between adipose tissue inflammation in obesity and major epigenetic modifications.
Collapse
Affiliation(s)
- Byung Chul Jung
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, United States of America
| | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, United States of America.
| |
Collapse
|
19
|
Abstract
Animal and humans exposed to stress early in life are more likely to suffer from long-term behavioral, mental health, metabolic, immune, and cardiovascular health consequences. The hypothalamus plays a nodal role in programming, controlling, and regulating stress responses throughout the life course. Epigenetic reprogramming in the hippocampus and the hypothalamus play an important role in adapting genome function to experiences and exposures during the perinatal and early life periods and setting up stable phenotypic outcomes. Epigenetic programming during development enables one genome to express multiple cell type identities. The most proximal epigenetic mark to DNA is a covalent modification of the DNA itself by enzymatic addition of methyl moieties. Cell-type-specific DNA methylation profiles are generated during gestational development and define cell and tissue specific phenotypes. Programming of neuronal phenotypes and sex differences in the hypothalamus is achieved by developmentally timed rearrangement of DNA methylation profiles. Similarly, other stations in the life trajectory such as puberty and aging involve predictable and scheduled reorganization of DNA methylation profiles. DNA methylation and other epigenetic marks are critical for maintaining cell-type identity in the brain, across the body, and throughout life. Data that have emerged in the last 15 years suggest that like its role in defining cell-specific phenotype during development, DNA methylation might be involved in defining experiential identities, programming similar genes to perform differently in response to diverse experiential histories. Early life stress impact on lifelong phenotypes is proposed to be mediated by DNA methylation and other epigenetic marks. Epigenetic marks, as opposed to genetic mutations, are reversible by either pharmacological or behavioral strategies and therefore offer the potential for reversing or preventing disease including behavioral and mental health disorders. This chapter discusses data testing the hypothesis that DNA methylation modulations of the HPA axis mediate the impact of early life stress on lifelong behavioral and physical phenotypes.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
20
|
Key Markers and Epigenetic Modifications of Dental-Derived Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:5521715. [PMID: 34046069 PMCID: PMC8128613 DOI: 10.1155/2021/5521715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
As a novel research hotspot in tissue regeneration, dental-derived mesenchymal stromal cells (MSCs) are famous for their accessibility, multipotent differentiation ability, and high proliferation. However, cellular heterogeneity is a major obstacle to the clinical application of dental-derived MSCs. Here, we reviewed the heterogeneity of dental-derived MSCs firstly and then discussed the key markers and epigenetic modifications related to the proliferation, differentiation, immunomodulation, and aging of dental-derived MSCs. These messages help to control the composition and function of dental-derived MSCs and thus accelerate the translation of cell therapy into clinical practice.
Collapse
|
21
|
Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, Vera DL, Zeng Q, Yu D, Bonkowski MS, Yang JH, Zhou S, Hoffmann EM, Karg MM, Schultz MB, Kane AE, Davidsohn N, Korobkina E, Chwalek K, Rajman LA, Church GM, Hochedlinger K, Gladyshev VN, Horvath S, Levine ME, Gregory-Ksander MS, Ksander BR, He Z, Sinclair DA. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020; 588:124-129. [PMID: 33268865 PMCID: PMC7752134 DOI: 10.1038/s41586-020-2975-4] [Citation(s) in RCA: 448] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Ageing is a degenerative process that leads to tissue dysfunction and death. A proposed cause of ageing is the accumulation of epigenetic noise that disrupts gene expression patterns, leading to decreases in tissue function and regenerative capacity1-3. Changes to DNA methylation patterns over time form the basis of ageing clocks4, but whether older individuals retain the information needed to restore these patterns-and, if so, whether this could improve tissue function-is not known. Over time, the central nervous system (CNS) loses function and regenerative capacity5-7. Using the eye as a model CNS tissue, here we show that ectopic expression of Oct4 (also known as Pou5f1), Sox2 and Klf4 genes (OSK) in mouse retinal ganglion cells restores youthful DNA methylation patterns and transcriptomes, promotes axon regeneration after injury, and reverses vision loss in a mouse model of glaucoma and in aged mice. The beneficial effects of OSK-induced reprogramming in axon regeneration and vision require the DNA demethylases TET1 and TET2. These data indicate that mammalian tissues retain a record of youthful epigenetic information-encoded in part by DNA methylation-that can be accessed to improve tissue function and promote regeneration in vivo.
Collapse
Affiliation(s)
- Yuancheng Lu
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Benedikt Brommer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xiao Tian
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Anitha Krishnan
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Margarita Meer
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Chen Wang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Daniel L Vera
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Qiurui Zeng
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Doudou Yu
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Michael S Bonkowski
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Jae-Hyun Yang
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Songlin Zhou
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Emma M Hoffmann
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Margarete M Karg
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Michael B Schultz
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Alice E Kane
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Noah Davidsohn
- Department of Genetics, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Ekaterina Korobkina
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Karolina Chwalek
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Luis A Rajman
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - George M Church
- Department of Genetics, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Konrad Hochedlinger
- Department of Molecular Biology, Cancer Center and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Morgan E Levine
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Meredith S Gregory-Ksander
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Bruce R Ksander
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Zhigang He
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA.
- Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
22
|
Chebly A, Chouery E, Ropio J, Kourie HR, Beylot-Barry M, Merlio JP, Tomb R, Chevret E. Diagnosis and treatment of lymphomas in the era of epigenetics. Blood Rev 2020; 48:100782. [PMID: 33229141 DOI: 10.1016/j.blre.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Lymphomas represent a heterogeneous group of cancers characterized by clonal lymphoproliferation. Over the past decades, frequent epigenetic dysregulations have been identified in hematologic malignancies including lymphomas. Many of these impairments occur in genes with established roles and well-known functions in the regulation and maintenance of the epigenome. In hematopoietic cells, these dysfunctions can result in abnormal DNA methylation, erroneous chromatin state and/or altered miRNA expression, affecting many different cellular functions. Nowadays, it is evident that epigenetic dysregulations in lymphoid neoplasms are mainly caused by genetic alterations in genes encoding for enzymes responsible for histone or chromatin modifications. We summarize herein the recent epigenetic modifiers findings in lymphomas. We focus also on the most commonly mutated epigenetic regulators and emphasize on actual epigenetic therapies.
Collapse
Affiliation(s)
- Alain Chebly
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Porto University, Institute of Biomedical Sciences of Abel Salazar, 4050-313 Porto, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465 Porto, Portugal
| | - Hampig Raphael Kourie
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Hematology-Oncology Department, Beirut, Lebanon
| | - Marie Beylot-Barry
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Dermatology Department, 33000 Bordeaux, France
| | - Jean-Philippe Merlio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, 33600 Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France.
| |
Collapse
|
23
|
Raj S, Kyono Y, Sifuentes CJ, Arellanes-Licea EDC, Subramani A, Denver RJ. Thyroid Hormone Induces DNA Demethylation in Xenopus Tadpole Brain. Endocrinology 2020; 161:bqaa155. [PMID: 32865566 PMCID: PMC7947600 DOI: 10.1210/endocr/bqaa155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 12/29/2022]
Abstract
Thyroid hormone (T3) plays pivotal roles in vertebrate development, acting via nuclear T3 receptors (TRs) that regulate gene transcription by promoting post-translational modifications to histones. Methylation of cytosine residues in deoxyribonucleic acid (DNA) also modulates gene transcription, and our recent finding of predominant DNA demethylation in the brain of Xenopus tadpoles at metamorphosis, a T3-dependent developmental process, caused us to hypothesize that T3 induces these changes in vivo. Treatment of premetamorphic tadpoles with T3 for 24 or 48 hours increased immunoreactivity in several brain regions for the DNA demethylation intermediates 5-hydroxymethylcytosine (5-hmC) and 5-carboxylcytosine, and the methylcytosine dioxygenase ten-eleven translocation 3 (TET3). Thyroid hormone treatment induced locus-specific DNA demethylation in proximity to known T3 response elements within the DNA methyltransferase 3a and Krüppel-like factor 9 genes, analyzed by 5-hmC immunoprecipitation and methylation sensitive restriction enzyme digest. Chromatin-immunoprecipitation (ChIP) assay showed that T3 induced TET3 recruitment to these loci. Furthermore, the messenger ribonucleic acid for several genes encoding DNA demethylation enzymes were induced by T3 in a time-dependent manner in tadpole brain. A TR ChIP-sequencing experiment identified putative TR binding sites at several of these genes, and we provide multiple lines of evidence to support that tet2 contains a bona fide T3 response element. Our findings show that T3 can promote DNA demethylation in developing tadpole brain, in part by promoting TET3 recruitment to discrete genomic regions, and by inducing genes that encode DNA demethylation enzymes.
Collapse
Affiliation(s)
- Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Yasuhiro Kyono
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| | - Christopher J Sifuentes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | | | - Arasakumar Subramani
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
24
|
Ishikawa Y, Nakai K. A hypothetical trivalent epigenetic code that affects the nature of human ESCs. PLoS One 2020; 15:e0238742. [PMID: 32911515 PMCID: PMC7482980 DOI: 10.1371/journal.pone.0238742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that DNA methylation can work in concert with other epigenetic factors, leading to changes in cellular phenotypes. For example, DNA demethylation modifications producing 5-hydroxymethylcytosine (5hmC) are thought to interact with histone modifications to influence the acquisition of embryonic stem cell (ESC) potency. However, the mechanism by which this occurs is still unknown. Thus, we systematically analysed the co-occurrence of DNA and histone modifications at genic regions as well as their relationship with ESC-specific expression using a number of heterogeneous public datasets. From a set of 19 epigenetic factors, we found remarkable co-occurrence of 5hmC and H4K8ac, accompanied by H3K4me1. This enrichment was more prominent at gene body regions. The results were confirmed using data obtained from different detection methods and species. Our analysis shows that these marks work cooperatively to influence ESC-specific gene expression. We also found that this trivalent mark is relatively enriched in genes related with immunity, which is a bit specific in ESCs. We propose that a trivalent epigenetic mark, composed of 5hmC, H4K8ac and H3K4me1, regulates gene expression and modulates the nature of human ESCs as a novel epigenetic code.
Collapse
Affiliation(s)
- Yasuhisa Ishikawa
- Department of Computational Biology and Medical Sciences, the University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, the University of Tokyo, Kashiwa-shi, Chiba, Japan
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Kyono Y, Raj S, Sifuentes CJ, Buisine N, Sachs L, Denver RJ. DNA methylation dynamics underlie metamorphic gene regulation programs in Xenopus tadpole brain. Dev Biol 2020; 462:180-196. [PMID: 32240642 PMCID: PMC7251973 DOI: 10.1016/j.ydbio.2020.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/28/2020] [Accepted: 03/23/2020] [Indexed: 01/07/2023]
Abstract
Methylation of cytosine residues in DNA influences chromatin structure and gene transcription, and its regulation is crucial for brain development. There is mounting evidence that DNA methylation can be modulated by hormone signaling. We analyzed genome-wide changes in DNA methylation and their relationship to gene regulation in the brain of Xenopus tadpoles during metamorphosis, a thyroid hormone-dependent developmental process. We studied the region of the tadpole brain containing neurosecretory neurons that control pituitary hormone secretion, a region that is highly responsive to thyroid hormone action. Using Methylated DNA Capture sequencing (MethylCap-seq) we discovered a diverse landscape of DNA methylation across the tadpole neural cell genome, and pairwise stage comparisons identified several thousand differentially methylated regions (DMRs). During the pre-to pro-metamorphic period, the number of DMRs was lowest (1,163), with demethylation predominating. From pre-metamorphosis to metamorphic climax DMRs nearly doubled (2,204), with methylation predominating. The largest changes in DNA methylation were seen from metamorphic climax to the completion of metamorphosis (2960 DMRs), with 80% of the DMRs representing demethylation. Using RNA sequencing, we found negative correlations between differentially expressed genes and DMRs localized to gene bodies and regions upstream of transcription start sites. DNA demethylation at metamorphosis revealed by MethylCap-seq was corroborated by increased immunoreactivity for the DNA demethylation intermediates 5-hydroxymethylcytosine and 5-carboxymethylcytosine, and the methylcytosine dioxygenase ten eleven translocation 3 that catalyzes DNA demethylation. Our findings show that the genome of tadpole neural cells undergoes significant changes in DNA methylation during metamorphosis, and these changes likely influence chromatin architecture, and gene regulation programs occurring during this developmental period.
Collapse
Affiliation(s)
- Yasuhiro Kyono
- Neuroscience Graduate Program, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Christopher J Sifuentes
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Buisine
- UMR-7221, Centre National de la recherche scientifique (CNRS), Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Laurent Sachs
- UMR-7221, Centre National de la recherche scientifique (CNRS), Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Robert J Denver
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
26
|
Senner CE, Chrysanthou S, Burge S, Lin HY, Branco MR, Hemberger M. TET1 and 5-Hydroxymethylation Preserve the Stem Cell State of Mouse Trophoblast. Stem Cell Reports 2020; 15:1301-1316. [PMID: 32442533 PMCID: PMC7724466 DOI: 10.1016/j.stemcr.2020.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
The ten-eleven translocation factor TET1 and its conferred epigenetic modification 5-hydroxymethylcytosine (5hmC) have important roles in maintaining the pluripotent state of embryonic stem cells (ESCs). We previously showed that TET1 is also essential to maintain the stem cell state of trophoblast stem cells (TSCs). Here, we establish an integrated panel of absolute 5hmC levels, genome-wide DNA methylation and hydroxymethylation patterns, transcriptomes, and TET1 chromatin occupancy in TSCs and differentiated trophoblast cells. We show that the combined presence of 5-methylcytosine (5mC) and 5hmC correlates with transcriptional activity of associated genes. Hypoxia can slow down the global loss of 5hmC that occurs upon differentiation of TSCs. Notably, unlike in ESCs and epiblast cells, most TET1-bound regions overlap with active chromatin marks and TFAP2C binding sites and demarcate putative trophoblast enhancer regions. These chromatin modification and occupancy patterns are highly informative to identify novel candidate regulators of the TSC state. 5hmC to 5mC ratios correlate with gene activity in TS cells TS cell differentiation-associated loss of 5hmC is slowed down in hypoxia TET1 binding in TS cells forms long-range interactions with key trophoblast genes Intergenic TET1 binding sites in TS cells demarcate putative trophoblast enhancers
Collapse
Affiliation(s)
- Claire E Senner
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK.
| | - Stephanie Chrysanthou
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Sarah Burge
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Hai-Yan Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miguel R Branco
- Blizard Institute, Barts and the London School of Medicine and Dentistry, QMUL, London E1 2AT, UK
| | - Myriam Hemberger
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK; Departments of Biochemistry & Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
27
|
Huang G, Liu L, Wang H, Gou M, Gong P, Tian C, Deng W, Yang J, Zhou TT, Xu GL, Liu L. Tet1 Deficiency Leads to Premature Reproductive Aging by Reducing Spermatogonia Stem Cells and Germ Cell Differentiation. iScience 2020; 23:100908. [PMID: 32114381 PMCID: PMC7049665 DOI: 10.1016/j.isci.2020.100908] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/08/2019] [Accepted: 02/07/2020] [Indexed: 12/17/2022] Open
Abstract
Ten-eleven translocation (Tet) enzymes are involved in DNA demethylation, important in regulating embryo development, stem cell pluripotency and tumorigenesis. Alterations of DNA methylation with age have been shown in various somatic cell types. We investigated whether Tet1 and Tet2 regulate aging. We showed that Tet1-deficient mice undergo a progressive reduction of spermatogonia stem cells and spermatogenesis and thus accelerated infertility with age. Tet1 deficiency decreases 5hmC levels in spermatogonia and downregulates a subset of genes important for cell cycle, germ cell differentiation, meiosis and reproduction, such as Ccna1 and Spo11, resulting in premature reproductive aging. Moreover, Tet1 and 5hmC both regulate signaling pathways key for stem cell development, including Wnt and PI3K-Akt, autophagy and stress response genes. In contrast, effect of Tet2 deficiency on male reproductive aging is minor. Hence, Tet1 maintains spermatogonia stem cells with age, revealing an important role of Tet1 in regulating stem cell aging. Tet1 regulates stem cell aging and differentiation Tet1 plays an important role in maintaining spermatogonial stem cells Loss of Tet1 results in exhaustion of spermatogonia and premature reproductive aging Effect of Tet2 deficiency on reproductive aging in males is minor
Collapse
Affiliation(s)
- Guian Huang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Linlin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Huasong Wang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Mo Gou
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Peng Gong
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Chenglei Tian
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wei Deng
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jiao Yang
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Tian-Tian Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
28
|
Yu T, Liu D, Zhang T, Zhou Y, Shi S, Yang R. Inhibition of Tet1- and Tet2-mediated DNA demethylation promotes immunomodulation of periodontal ligament stem cells. Cell Death Dis 2019; 10:780. [PMID: 31611558 PMCID: PMC6791886 DOI: 10.1038/s41419-019-2025-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Periodontal ligament stem cells (PDLSCs) possess great potential for clinical treatment of immune diseases due to their extensive immunomodulatory properties. However, the underlying mechanisms that govern the immunomodulatory properties of mesenchymal stem cells (MSCs) are still not fully elucidated. Here, we show that member of the Ten-eleven translocation (Tet) family, a group of DNA demethylases, are capable of regulating PDLSC immunomodulatory functions. Tet1 and Tet2 deficiency enhance PDLSC-induced T cell apoptosis and ameliorate the disease phenotype in colitis mice. Mechanistically, we found that downregulation of Tet1 and Tet2 leads to hypermethylation of DKK-1 promoter, leading to the activation of WNT signaling pathway and therefore promoting Fas ligand (FasL) expression, which results in elevated immunomodulatory capacity of PDLSCs. These results reveal a previously unrecognized role of Tet1 and Tet2 in regulating immunomodulation of PDLSCs. This Tet/DKK-1/FasL cascade may serve as a promising target for enhancing PDLSC-based immune therapy.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- South China Center of Craniofacial Stem Cell Research, School of Guanghua Dental Medicine, Sun Yat-sen University, #74 Zhongshan 2 Road, Guangzhou, Guangdong, 510080, China
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China.
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Abstract
Increasing numbers of studies implicate abnormal DNA methylation in cancer and many non-malignant diseases. This is consistent with numerous findings about differentiation-associated changes in DNA methylation at promoters, enhancers, gene bodies, and sites that control higher-order chromatin structure. Abnormal increases or decreases in DNA methylation contribute to or are markers for cancer formation and tumour progression. Aberrant DNA methylation is also associated with neurological diseases, immunological diseases, atherosclerosis, and osteoporosis. In this review, I discuss DNA hypermethylation in disease and its interrelationships with normal development as well as proposed mechanisms for the origin of and pathogenic consequences of disease-associated hypermethylation. Disease-linked DNA hypermethylation can help drive oncogenesis partly by its effects on cancer stem cells and by the CpG island methylator phenotype (CIMP); atherosclerosis by disease-related cell transdifferentiation; autoimmune and neurological diseases through abnormal perturbations of cell memory; and diverse age-associated diseases by age-related accumulation of epigenetic alterations.
Collapse
Affiliation(s)
- Melanie Ehrlich
- Tulane Cancer Center and Tulane Center for Bioinformatics and Genomics, Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|