1
|
Aboalam HS, Hassan MK, El-domiaty N, Ibrahim NF, Ali AM, Hassan W, Abu El Wafa EG, Elsaghier A, Hetta HF, Elbadry M, El-Kassas M. Challenges and Recent Advances in Diagnosing Wilson Disease. J Clin Exp Hepatol 2025; 15:102531. [PMID: 40160676 PMCID: PMC11952840 DOI: 10.1016/j.jceh.2025.102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/18/2025] [Indexed: 04/02/2025] Open
Abstract
Wilson disease (WD) is a rare autosomal recessive disorder caused by ATP7B gene mutations, leading to pathological copper accumulation that primarily affects the liver, brain, and eyes. Diagnosing WD remains a significant challenge due to its highly variable clinical presentation, which ranges from asymptomatic biochemical abnormalities to acute liver failure and severe neuropsychiatric manifestations. Traditional diagnostic markers, such as serum ceruloplasmin, urinary copper excretion, and liver biopsy, lack sufficient specificity and sensitivity, often leading to delays in diagnosis and misclassification. Additionally, the absence of a single gold-standard test and the overlap with other hepatic and neurological disorders further complicate early detection. Recent advances in diagnostic techniques offer promising solutions to overcome these limitations. Novel biomarkers, including relative exchangeable copper (REC) and ATP7B protein quantification in dried blood spots have demonstrated improved accuracy in distinguishing WD from other conditions. Advanced imaging modalities, such as anterior segment optical coherence tomography (AS-OCT), quantitative susceptibility mapping (QSM), and copper-64 positron emission tomography imaging provide noninvasive tools for detecting early disease-related changes. Furthermore, next-generation sequencing (NGS) enhances genetic screening, facilitating earlier diagnosis, and family screening. A comprehensive approach integrating conventional and emerging diagnostic methodologies is essential for improving early detection and patient outcomes. Greater awareness of the limitations of traditional tests and the incorporation of novel biomarkers and imaging techniques into clinical practice can help refine diagnostic accuracy, reduce delays, and optimize treatment strategies for WD.
Collapse
Affiliation(s)
- Hani S. Aboalam
- Tropical Medicine and Gastroenterology Department, Assiut Liver Center, Assiut, Egypt
| | - Marwa K. Hassan
- Tropical Medicine and Gastroenterology Department, Assiut Liver Center, Assiut, Egypt
| | - Nada El-domiaty
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Nagat F. Ibrahim
- Tropical Medicine and Gastroenterology Department, Assiut Liver Center, Assiut, Egypt
| | - Anwar M. Ali
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Wesam Hassan
- Tropical Medicine and Gastroenterology Department, Assiut Liver Center, Assiut, Egypt
| | | | - Ashraf Elsaghier
- Pediatric Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal F. Hetta
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed Elbadry
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Mohamed El-Kassas
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Wooton-Kee CR. Therapeutic implications of impaired nuclear receptor function and dysregulated metabolism in Wilson's disease. Pharmacol Ther 2023; 251:108529. [PMID: 37741465 PMCID: PMC10841433 DOI: 10.1016/j.pharmthera.2023.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
Copper is an essential trace element that is required for the activity of many enzymes and cellular processes, including energy homeostasis and neurotransmitter biosynthesis; however, excess copper accumulation results in significant cellular toxicity. The liver is the major organ for maintaining copper homeostasis. Inactivating mutations of the copper-transporting P-type ATPase, ATP7B, result in Wilson's disease, an autosomal recessive disorder that requires life-long medicinal therapy or liver transplantation. Current treatment protocols are limited to either sequestration of copper via chelation or reduction of copper absorption in the gut (zinc therapy). The goal of these strategies is to reduce free copper, redox stress, and cellular toxicity. Several lines of evidence in Wilson's disease animal models and patients have revealed altered hepatic metabolism and impaired hepatic nuclear receptor activity. Nuclear receptors are transcription factors that coordinate hepatic metabolism in normal and diseased livers, and several hepatic nuclear receptors have decreased activity in Wilson's disease and Atp7b-/- models. In this review, we summarize the basic physiology that underlies Wilson's disease pathology, Wilson's disease animal models, and the possibility of targeting nuclear receptor activity in Wilson's disease patients.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Baylor College of Medicine, Department of Pediatrics-Nutrition, Children's Nutrition Research Center, Houston, TX, United States of America.
| |
Collapse
|
3
|
Mi X, Song Y, Deng C, Yan J, Li Z, Li Y, Zheng J, Yang W, Gong L, Shi J. Stimulation of Liver Fibrosis by N2 Neutrophils in Wilson's Disease. Cell Mol Gastroenterol Hepatol 2023; 16:657-684. [PMID: 37406734 PMCID: PMC10514429 DOI: 10.1016/j.jcmgh.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND & AIMS Wilson's disease is an inherited hepatoneurologic disorder caused by mutations in the copper transporter ATP7B. Liver disease from Wilson's disease is one leading cause of cirrhosis in adolescents. Current copper chelators and zinc salt treatments improve hepatic presentations but frequently worsen neurologic symptoms. In this study, we showed the function and machinery of neutrophil heterogeneity using a zebrafish/murine/cellular model of Wilson's disease. METHODS We investigated the neutrophil response in atp7b-/- zebrafish by live imaging, movement tracking, and transcriptional analysis in sorted cells. Experiments were conducted to validate liver neutrophil heterogeneity in Atp7b-/- mice. In vitro experiments were performed in ATP7B-knockout human hepatocellular carcinomas G2 cells and isolated bone marrow neutrophils to reveal the mechanism of neutrophil heterogeneity. RESULTS Recruitment of neutrophils into the liver is observed in atp7b-/- zebrafish. Pharmacologic stimulation of neutrophils aggravates liver and behavior defects in atp7b-/- zebrafish. Transcriptional analysis in sorted liver neutrophils from atp7b-/- zebrafish reveals a distinct transcriptional profile characteristic of N2 neutrophils. Furthermore, liver N2 neutrophils also were observed in ATP7B-knockout mice, and pharmacologically targeted transforming growth factor β1, DNA methyltransferase, or signal transducer and activator of transcription 3 reduces liver N2 neutrophils and improves liver function and alleviates liver inflammation and fibrosis in ATP7B-knockout mice. Epigenetic silencing of Socs3 expression by transforming growth factor β1 contributes to N2-neutrophil polarization in isolated bone marrow neutrophils. CONCLUSIONS Our findings provide a novel prospect that pharmacologic modulation of N2-neutrophil activity should be explored as an alternative therapeutic to improve liver function in Wilson's disease.
Collapse
Affiliation(s)
- Xiaoxiao Mi
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yu Song
- Department of Hepatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Xinhua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chaohua Deng
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jian Yan
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihui Li
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingniang Li
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Zheng
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Ling Gong
- Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junping Shi
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Infectious Diseases and Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Zhejiang, China.
| |
Collapse
|
4
|
Alkhouri N, Gonzalez-Peralta RP, Medici V. Wilson disease: a summary of the updated AASLD Practice Guidance. Hepatol Commun 2023; 7:02009842-202306010-00006. [PMID: 37184530 DOI: 10.1097/hc9.0000000000000150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/15/2023] [Indexed: 05/16/2023] Open
Abstract
Wilson disease (WD) is caused by autosomal variants affecting the ATP7B gene on chromosome 13, resulting in alterations in physiological copper homeostasis and copper accumulation. Excess copper clinically manifests in many organs, most often in the central nervous system and liver, ultimately causing cirrhosis and death. Often considered a pediatric or young adult disease, WD actually affects patients of all ages, and aging patients need to be regularly managed with long-term follow-up. Despite over a century of advances in diagnosis and treatment, WD is still associated with diagnostic challenges and considerable disability and death, in part due to delays in diagnosis and limitations in treatment. Standard-of-care treatments are considered generally effective when the diagnosis is timely but are also limited by efficacy, safety concerns, multiple daily dosing, and adherence. This expert perspective review seeks to facilitate improvements in the awareness, understanding, diagnosis, and management of WD. The objectives are to provide a full overview of WD and streamline updated diagnosis and treatment guidance, as recently published by the American Association for the Study of Liver Diseases, in a practical way for clinical use.
Collapse
Affiliation(s)
| | | | - Valentina Medici
- Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, California, USA
| |
Collapse
|
5
|
Gromadzka G, Bendykowska M, Przybyłkowski A. Wilson’s Disease—Genetic Puzzles with Diagnostic Implications. Diagnostics (Basel) 2023; 13:diagnostics13071287. [PMID: 37046505 PMCID: PMC10093728 DOI: 10.3390/diagnostics13071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Introduction: Wilson’s disease (WND) is an autosomal recessive disorder of copper metabolism. The WND gene is ATP7B, located on chromosome 13. WND is characterized by high clinical variability, which causes diagnostic difficulties. (2) Methods: The PubMed, Science Direct, and Wiley Online Library medical databases were reviewed using the following phrases: “Wilson’s disease”, “ATP7B genotype”, “genotype-phenotype”, “epigenetics”, “genetic modifiers”, and their combinations. Publications presenting the results of experimental and clinical studies, as well as review papers, were selected, which concerned: (i) the diversity of genetic strategies and tests used in WND diagnosis; (ii) the difficulties of genetic diagnosis, including uncertainty as to the pathogenicity of variants; (iii) genetic counseling; (iv) phenotypic effects of ATP7B variants in patients with WND and in heterozygous carriers (HzcWND); (v) genetic and epigenetics factors modifying the clinical picture of the disease. (3) Results and conclusions: The genetic diagnosis of WND is carried out using a variety of strategies and tests. Due to the large number of known variants in the ATP7B gene (>900), the usefulness of genetic tests in routine diagnostics is still relatively small and even analyses performed using the most advanced technologies, including next-generation sequencing, require additional tests, including biochemical evidence of abnormal copper metabolism, to confirm the diagnosis of WND. Pseudodominant inheritance, the presence of three various pathogenic variants in the same patient, genotypes indicating the possibility of segmental uniparental disomy, have been reported. Genotype–phenotype relationships in WND are complex. The ATP7B genotype, to some extent, determines the clinical picture of the disease, but other genetic and epigenetic modifiers are also relevant.
Collapse
|
6
|
Roy S, Ghosh S, Ray J, Ray K, Sengupta M. Missing heritability of Wilson disease: a search for the uncharacterized mutations. Mamm Genome 2023; 34:1-11. [PMID: 36462057 DOI: 10.1007/s00335-022-09971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Wilson disease (WD), a copper metabolism disorder caused by mutations in ATP7B, manifests heterogeneous clinical features. Interestingly, in a fraction of clinically diagnosed WD patients, mutations in ATP7B appears to be missing. In this review we discuss the plausible explanations of this missing heritability and propose a workflow that can identify the hidden mutations. Mutation analyses of WD generally includes targeted sequencing of ATP7B exons, exon-intron boundaries, and rarely, the proximal promoter region. We propose that variants in the distal cis-regulatory elements and/or deep intronic variants that impact splicing might well represent the hidden mutations. Heterozygous del/ins that remain refractory to conventional PCR-sequencing method may also represent such mutations. In this review, we also hypothesize that mutations in the key copper metabolism genes, like, ATOX1, COMMD1, and SLC31A1, could possibly lead to a WD-like phenotype. In fact, WD does present overlapping symptoms with other rare genetic disorders; hence, the possibility of a misdiagnosis and thus adding to missing heritability cannot be excluded. In this regard, it seems that whole-genome analysis will provide a comprehensive and rapid molecular diagnosis of WD. However, considering the associated cost for such a strategy, we propose an alternative customized screening schema of WD which include targeted sequencing of ATP7B locus as well as other key copper metabolism genes. Success of such a schema has been tested in a pilot study.
Collapse
Affiliation(s)
- Shubhrajit Roy
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
- Post-doctoral Fellow, Physiology Department, Johns Hopkins University, Baltimore, USA
| | - Sampurna Ghosh
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, India
| | - Kunal Ray
- Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, Kolkata, 700 103, India.
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
7
|
Penning LC, Berenguer M, Czlonkowska A, Double KL, Dusek P, Espinós C, Lutsenko S, Medici V, Papenthin W, Stremmel W, Willemse J, Weiskirchen R. A Century of Progress on Wilson Disease and the Enduring Challenges of Genetics, Diagnosis, and Treatment. Biomedicines 2023; 11:biomedicines11020420. [PMID: 36830958 PMCID: PMC9953205 DOI: 10.3390/biomedicines11020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Wilson disease (WD) is a rare, inherited metabolic disorder manifested with varying clinical presentations including hepatic, neurological, psychiatric, and ophthalmological features, often in combination. Causative mutations in the ATP7B gene result in copper accumulation in hepatocytes and/or neurons, but clinical diagnosis remains challenging. Diagnosis is complicated by mild, non-specific presentations, mutations exerting no clear effect on protein function, and inconclusive laboratory tests, particularly regarding serum ceruloplasmin levels. As early diagnosis and effective treatment are crucial to prevent progressive damage, we report here on the establishment of a global collaboration of researchers, clinicians, and patient advocacy groups to identify and address the outstanding challenges posed by WD.
Collapse
Affiliation(s)
- Louis C. Penning
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
- Correspondence: (L.C.P.); (R.W.)
| | - Marina Berenguer
- Digestive Medicine Department, Ciberehd & IISLaFe, Hospital U. i P. La Fe, University of Valencia, 46010 Valenci, Spain
| | - Anna Czlonkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Kay L. Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), The University of Sydney, Sydney, NSW 2006, Australia
| | - Petr Dusek
- Department of Radiology, Charles University and General University Hospital, 128 08 Prague, Czech Republic
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, 128 08 Prague, Czech Republic
| | - Carmen Espinós
- Rare Neurodegenerative Diseases Lab, Centro de Investigacion Principe Felipe, 46012 Valencia, Spain
| | - Svetlana Lutsenko
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 1800, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 1800, USA
| | - Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, CA 59817, USA
| | - Wiebke Papenthin
- German Society for Wilson disease Patients (Morbus Wilson e.V.), Zehlendorfer Damm 119, D-14532 Kleinnachnow, Germany
| | - Wolfgang Stremmel
- Private Practice for Internal Medicine, Beethovenstraße 2, D-76530 Baden-Baden, Germany
| | - Jose Willemse
- Dutch Society for Liver Disease Patients (Nederlandse Leverpatienten Vereniging), 3828 NS Hoogland, The Netherlands
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital Aachen, D-52074 Aachen, Germany
- Correspondence: (L.C.P.); (R.W.)
| |
Collapse
|
8
|
Dev S, Muchenditsi A, Gottlieb A, Deme P, Murphy S, Gabrielson KL, Dong Y, Hughes R, Haughey NJ, Hamilton JP, Lutsenko S. Oxysterol misbalance critically contributes to Wilson disease pathogenesis. SCIENCE ADVANCES 2022; 8:eadc9022. [PMID: 36260680 PMCID: PMC9581482 DOI: 10.1126/sciadv.adc9022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Wilson disease (WD) is a metabolic disorder caused by inactivation of the copper-transporting ATPase 2 (ATP7B) and copper (Cu) overload in tissues. Excess Cu causes oxidative stress and pathologic changes with poorly understood mechanistic connections. In Atp7b-/- mice with established liver disease, Cu overload activates the stress-sensitive transcription factor Nrf2 (nuclear factor erythroid-derived 2-like 2). Nrf2 targets, especially sulfotransferase 1e1 (Sult1e1), are strongly induced and cause elevation of sulfated sterols, whereas oxysterols are decreased. This sterol misbalance results in inhibition of the liver X receptor (LXR) and up-regulation of LXR targets associated with inflammatory responses. Pharmacological inhibition of Sult1e1 partially reverses oxysterol misbalance and LXR inhibition. Contribution of this pathway to advanced hepatic WD was demonstrated by treating mice with an LXR agonist. Treatment decreased inflammation by reducing expression of proinflammatory molecules, diminished fibrosis by down-regulating the noncanonical transforming growth factor-β signaling pathway, and improved liver morphology and function. Thus, the identified pathway is an important driver of WD.
Collapse
Affiliation(s)
- Som Dev
- Department of Physiology, Johns Hopkins University, School of Medicine, 725 North Wolfe St, Baltimore, MD 21205, USA
| | - Abigael Muchenditsi
- Department of Physiology, Johns Hopkins University, School of Medicine, 725 North Wolfe St, Baltimore, MD 21205, USA
| | - Aline Gottlieb
- Department of Physiology, Johns Hopkins University, School of Medicine, 725 North Wolfe St, Baltimore, MD 21205, USA
| | - Pragney Deme
- Department of Neurology, Johns Hopkins University, School of Medicine, 600 North Wolfe St, Baltimore, MD 21287, USA
| | - Sean Murphy
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Ave, Baltimore, MD 21205, USA
| | - Kathleen L. Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Yixuan Dong
- Department of Physiology, Johns Hopkins University, School of Medicine, 725 North Wolfe St, Baltimore, MD 21205, USA
| | - Robert Hughes
- Department of Medicine, Johns Hopkins University, School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| | - Norman J. Haughey
- Department of Neurology, Johns Hopkins University, School of Medicine, 600 North Wolfe St, Baltimore, MD 21287, USA
| | - James P. Hamilton
- Department of Medicine, Johns Hopkins University, School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
- Corresponding author. (S.L.); (J.P.H.)
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University, School of Medicine, 725 North Wolfe St, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University, School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
- Corresponding author. (S.L.); (J.P.H.)
| |
Collapse
|
9
|
Dev S, Kruse RL, Hamilton JP, Lutsenko S. Wilson Disease: Update on Pathophysiology and Treatment. Front Cell Dev Biol 2022; 10:871877. [PMID: 35586338 PMCID: PMC9108485 DOI: 10.3389/fcell.2022.871877] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Wilson disease (WD) is a potentially fatal genetic disorder with a broad spectrum of phenotypic presentations. Inactivation of the copper (Cu) transporter ATP7B and Cu overload in tissues, especially in the liver, are established causes of WD. However, neither specific ATP7B mutations nor hepatic Cu levels, alone, explain the diverse clinical presentations of WD. Recently, the new molecular details of WD progression and metabolic signatures of WD phenotypes began to emerge. Studies in WD patients and animal models revealed the contributions of non-parenchymal liver cells and extrahepatic tissues to the liver phenotype, and pointed to dysregulation of nuclear receptors (NR), epigenetic modifications, and mitochondria dysfunction as important hallmarks of WD pathogenesis. This review summarizes recent advances in the characterization of WD pathophysiology and discusses emerging targets for improving WD diagnosis and treatment.
Collapse
Affiliation(s)
- Som Dev
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, United States
| | - Robert L. Kruse
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - James P. Hamilton
- Department of Medicine, Johns Hopkins Medical Institutes, Baltimore, MD, United States
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, Baltimore, MD, United States
- *Correspondence: Svetlana Lutsenko,
| |
Collapse
|
10
|
Mordaunt CE, Mouat JS, Schmidt RJ, LaSalle JM. Comethyl: a network-based methylome approach to investigate the multivariate nature of health and disease. Brief Bioinform 2022; 23:bbab554. [PMID: 35037016 PMCID: PMC8921619 DOI: 10.1093/bib/bbab554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/15/2021] [Accepted: 12/04/2021] [Indexed: 11/14/2022] Open
Abstract
Health outcomes are frequently shaped by difficult to dissect inter-relationships between biological, behavioral, social and environmental factors. DNA methylation patterns reflect such multivariate intersections, providing a rich source of novel biomarkers and insight into disease etiologies. Recent advances in whole-genome bisulfite sequencing enable investigation of DNA methylation over all genomic CpGs, but existing bioinformatic approaches lack accessible system-level tools. Here, we develop the R package Comethyl, for weighted gene correlation network analysis of user-defined genomic regions that generates modules of comethylated regions, which are then tested for correlations with multivariate sample traits. First, regions are defined by CpG genomic location or regulatory annotation and filtered based on CpG count, sequencing depth and variability. Next, correlation networks are used to find modules of interconnected nodes using methylation values within the selected regions. Each module containing multiple comethylated regions is reduced in complexity to a single eigennode value, which is then tested for correlations with experimental metadata. Comethyl has the ability to cover the noncoding regulatory regions of the genome with high relevance to interpretation of genome-wide association studies and integration with other types of epigenomic data. We demonstrate the utility of Comethyl on a dataset of male cord blood samples from newborns later diagnosed with autism spectrum disorder (ASD) versus typical development. Comethyl successfully identified an ASD-associated module containing regions mapped to genes enriched for brain glial functions. Comethyl is expected to be useful in uncovering the multivariate nature of health disparities for a variety of common disorders. Comethyl is available at github.com/cemordaunt/comethyl with complete documentation and example analyses.
Collapse
Affiliation(s)
- Charles E Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, Perinatal Origins of Disparities Center, and MIND Institute, University of California, Davis, CA, USA
| | - Julia S Mouat
- Department of Medical Microbiology and Immunology, Genome Center, Perinatal Origins of Disparities Center, and MIND Institute, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, Perinatal Origins of Disparities Center, and MIND Institute, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, Perinatal Origins of Disparities Center, and MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
11
|
Zhu Y, Gomez JA, Laufer BI, Mordaunt CE, Mouat JS, Soto DC, Dennis MY, Benke KS, Bakulski KM, Dou J, Marathe R, Jianu JM, Williams LA, Gutierrez Fugón OJ, Walker CK, Ozonoff S, Daniels J, Grosvenor LP, Volk HE, Feinberg JI, Fallin MD, Hertz-Picciotto I, Schmidt RJ, Yasui DH, LaSalle JM. Placental methylome reveals a 22q13.33 brain regulatory gene locus associated with autism. Genome Biol 2022; 23:46. [PMID: 35168652 PMCID: PMC8848662 DOI: 10.1186/s13059-022-02613-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome. RESULTS We use whole genome bisulfite sequencing in placenta samples from prospective ASD studies to discover a previously uncharacterized ASD risk gene, LOC105373085, renamed NHIP. Out of 134 differentially methylated regions associated with ASD in placental samples, a cluster at 22q13.33 corresponds to a 118-kb hypomethylated block that replicates in two additional cohorts. Within this locus, NHIP is functionally characterized as a nuclear peptide-encoding transcript with high expression in brain, and increased expression following neuronal differentiation or hypoxia, but decreased expression in ASD placenta and brain. NHIP overexpression increases cellular proliferation and alters expression of genes regulating synapses and neurogenesis, overlapping significantly with known ASD risk genes and NHIP-associated genes in ASD brain. A common structural variant disrupting the proximity of NHIP to a fetal brain enhancer is associated with NHIP expression and methylation levels and ASD risk, demonstrating a common genetic influence. CONCLUSIONS Together, these results identify and initially characterize a novel environmentally responsive ASD risk gene relevant to brain development in a hitherto under-characterized region of the human genome.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Charles E Mordaunt
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia S Mouat
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Megan Y Dennis
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Kelly S Benke
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - John Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ria Marathe
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Logan A Williams
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Orangel J Gutierrez Fugón
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Cheryl K Walker
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| | - Sally Ozonoff
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Psychiatry and Behavioral Sciences, Davis, CA, USA
| | - Jason Daniels
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Luke P Grosvenor
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Heather E Volk
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jason I Feinberg
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - M Daniele Fallin
- Wendy Klag Center for Autism and Developmental Disabilities, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Irva Hertz-Picciotto
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Rebecca J Schmidt
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Dag H Yasui
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
- MIND Institute, School of Medicine, University of California, Davis, CA, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA.
- Perinatal Origins of Disparities Center, University of California, Davis, CA, USA.
- Genome Center, University of California, Davis, CA, USA.
- MIND Institute, School of Medicine, University of California, Davis, CA, USA.
| |
Collapse
|
12
|
Claringbould A, Zaugg JB. Enhancers in disease: molecular basis and emerging treatment strategies. Trends Mol Med 2021; 27:1060-1073. [PMID: 34420874 DOI: 10.1016/j.molmed.2021.07.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Enhancers are genomic sequences that play a key role in regulating tissue-specific gene expression levels. An increasing number of diseases are linked to impaired enhancer function through chromosomal rearrangement, genetic variation within enhancers, or epigenetic modulation. Here, we review how these enhancer disruptions have recently been implicated in congenital disorders, cancers, and common complex diseases and address the implications for diagnosis and treatment. Although further fundamental research into enhancer function, target genes, and context is required, enhancer-targeting drugs and gene editing approaches show great therapeutic promise for a range of diseases.
Collapse
Affiliation(s)
- Annique Claringbould
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
13
|
Wilson Disease: Epigenetic Factors Contribute to Genetic Mutations to Affect the Disease. Cell Mol Gastroenterol Hepatol 2021; 12:1507-1508. [PMID: 34352219 PMCID: PMC8531976 DOI: 10.1016/j.jcmgh.2021.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
|
14
|
Stanton JE, Malijauskaite S, McGourty K, Grabrucker AM. The Metallome as a Link Between the "Omes" in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:695873. [PMID: 34290588 PMCID: PMC8289253 DOI: 10.3389/fnmol.2021.695873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Metal dyshomeostasis plays a significant role in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Autism Spectrum Disorders (ASD), and many more. Like studies investigating the proteome, transcriptome, epigenome, microbiome, etc., for years, metallomics studies have focused on data from their domain, i.e., trace metal composition, only. Still, few have considered the links between other "omes," which may together result in an individual's specific pathologies. In particular, ASD have been reported to have multitudes of possible causal effects. Metallomics data focusing on metal deficiencies and dyshomeostasis can be linked to functions of metalloenzymes, metal transporters, and transcription factors, thus affecting the proteome and transcriptome. Furthermore, recent studies in ASD have emphasized the gut-brain axis, with alterations in the microbiome being linked to changes in the metabolome and inflammatory processes. However, the microbiome and other "omes" are heavily influenced by the metallome. Thus, here, we will summarize the known implications of a changed metallome for other "omes" in the body in the context of "omics" studies in ASD. We will highlight possible connections and propose a model that may explain the so far independently reported pathologies in ASD.
Collapse
Affiliation(s)
- Janelle E Stanton
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland
| | - Sigita Malijauskaite
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Kieran McGourty
- Bernal Institute, University of Limerick, Limerick, Ireland.,Department of Chemical Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
15
|
Fanni D, Gerosa C, Nurchi VM, Cappai R, Mureddu M, Eyken PV, Saba L, Manchia M, Faa G. Copper-Induced Epigenetic Changes Shape the Clinical Phenotype in Wilson's Disease. Curr Med Chem 2021; 28:2707-2716. [PMID: 32744959 DOI: 10.2174/0929867327666200730214757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/22/2022]
Abstract
Wilson's disease is a congenital disorder of copper metabolism whose pathogenesis remains, at least in part, unknown. Subjects carrying the same genotype may show completely different phenotypes, differing for the age at illness onset or for the hepatic, neurologic or psychiatric clinical presentation. The inability to find a unequivocal correlation between the type of mutation in the ATPase copper transporting beta (ATP7B) gene and the phenotypic manifestation, has encouraged many authors to look for epigenetic factors interacting with the genetic changes. Here, the evidences regarding the ability of copper overload to change the global DNA methylation status are discussed.
Collapse
Affiliation(s)
- Daniela Fanni
- Section of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Section of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Valeria Marina Nurchi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Rosita Cappai
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Marta Mureddu
- Section of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Peter Van Eyken
- Department of Pathology, UZ Genk Regional Hospital, Genk, Belgium
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Section of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
16
|
Dean DC, Madrid A, Planalp EM, Moody JF, Papale LA, Knobel KM, Wood EK, McAdams RM, Coe CL, Hill Goldsmith H, Davidson RJ, Alisch RS, Kling PJ. Cord blood DNA methylation modifications in infants are associated with white matter microstructure in the context of prenatal maternal depression and anxiety. Sci Rep 2021; 11:12181. [PMID: 34108589 PMCID: PMC8190282 DOI: 10.1038/s41598-021-91642-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Maternal and environmental factors influence brain networks and architecture via both physiological pathways and epigenetic modifications. In particular, prenatal maternal depression and anxiety symptoms appear to impact infant white matter (WM) microstructure, leading us to investigate whether epigenetic modifications (i.e., DNA methylation) contribute to these WM differences. To determine if infants of women with depression and anxiety symptoms exhibit epigenetic modifications linked to neurodevelopmental changes, 52 umbilical cord bloods (CBs) were profiled. We observed 219 differentially methylated genomic positions (DMPs; FDR p < 0.05) in CB that were associated with magnetic resonance imaging measures of WM microstructure at 1 month of age and in regions previously described to be related to maternal depression and anxiety symptoms. Genomic characterization of these associated DMPs revealed 143 unique genes with significant relationships to processes involved in neurodevelopment, GTPase activity, or the canonical Wnt signaling pathway. Separate regression models for female (n = 24) and male (n = 28) infants found 142 associated DMPs in females and 116 associated DMPs in males (nominal p value < 0.001, R > 0.5), which were annotated to 98 and 81 genes, respectively. Together, these findings suggest that umbilical CB DNA methylation levels at birth are associated with 1-month WM microstructure.
Collapse
Affiliation(s)
- Douglas C Dean
- Department of Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, USA.,Department of Medical Physics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Andy Madrid
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Planalp
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jason F Moody
- Department of Medical Physics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ligia A Papale
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Karla M Knobel
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth K Wood
- Harlow Center for Biological Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ryan M McAdams
- Department of Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, USA
| | - Christopher L Coe
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Harlow Center for Biological Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - H Hill Goldsmith
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Waisman Center, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychology, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Center for Healthy Minds, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Department of Psychiatry, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Reid S Alisch
- Department of Neurosurgery, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Pamela J Kling
- Department of Pediatrics, School of Medicine & Public Health, University of Wisconsin-Madison, Madison, USA
| |
Collapse
|
17
|
Sarode GV, Neier K, Shibata NM, Shen Y, Goncharov DA, Goncharova EA, Mazi TA, Joshi N, Settles ML, LaSalle JM, Medici V. Wilson Disease: Intersecting DNA Methylation and Histone Acetylation Regulation of Gene Expression in a Mouse Model of Hepatic Copper Accumulation. Cell Mol Gastroenterol Hepatol 2021; 12:1457-1477. [PMID: 34098115 PMCID: PMC8487080 DOI: 10.1016/j.jcmgh.2021.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The pathogenesis of Wilson disease (WD) involves hepatic and brain copper accumulation resulting from pathogenic variants affecting the ATP7B gene and downstream epigenetic and metabolic mechanisms. Prior methylome investigations in human WD liver and blood and in the Jackson Laboratory (Bar Harbor, ME) C3He-Atp7btx-j/J (tx-j) WD mouse model revealed an epigenetic signature of WD, including changes in histone deacetylase (HDAC) 5. We tested the hypothesis that histone acetylation is altered with respect to copper overload and aberrant DNA methylation in WD. METHODS We investigated class IIa HDAC4 and HDAC5 and H3K9/H3K27 histone acetylation in tx-j mouse livers compared with C3HeB/FeJ (C3H) control in response to 3 treatments: 60% kcal fat diet, D-penicillamine (copper chelator), and choline (methyl group donor). Experiments with copper-loaded hepatoma G2 cells were conducted to validate in vivo studies. RESULTS In 9-week tx-j mice, HDAC5 levels increased significantly after 8 days of a 60% kcal fat diet compared with chow. In 24-week tx-j mice, HDAC4/5 levels were reduced 5- to 10-fold compared with C3H, likely through mechanisms involving HDAC phosphorylation. HDAC4/5 levels were affected by disease progression and accompanied by increased acetylation. D-penicillamine and choline partially restored HDAC4/5 and H3K9ac/H3K27ac to C3H levels. Integrated RNA and chromatin immunoprecipitation sequencing analyses revealed genes regulating energy metabolism and cellular stress/development, which, in turn, were regulated by histone acetylation in tx-j mice compared with C3H mice, with Pparα and Pparγ among the most relevant targets. CONCLUSIONS These results suggest dietary modulation of class IIa HDAC4/5, and subsequent H3K9/H3K27 acetylation/deacetylation can regulate gene expression in key metabolic pathways in the pathogenesis of WD.
Collapse
Affiliation(s)
| | - Kari Neier
- Department of Medical Microbiology and Immunology, Genome Center, Davis, California
| | | | - Yuanjun Shen
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Dmitry A. Goncharov
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Lung Center, Department of Internal Medicine, Davis, California
| | - Tagreed A. Mazi
- Department of Nutrition, Davis, California,Department of Community Health Sciences–Clinical Nutrition, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nikhil Joshi
- Bioinformatics Core Facility, University of California–Davis, Davis, California
| | - Matthew L. Settles
- Bioinformatics Core Facility, University of California–Davis, Davis, California
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, Davis, California
| | - Valentina Medici
- Division of Gastroenterology and Hepatology, Davis, California,Correspondence Address correspondence to: Valentina Medici, MD, FAASLD, Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California–Davis, 4150 V Street, Patient Support Services Building (PSSB) Suite 3500, Sacramento, California 95817. fax: (916) 734-7908.
| |
Collapse
|
18
|
Medici V. Expanding the Diagnostic Toolkit of Wilson Disease with ATP7B Peptides. Gastroenterology 2021; 160:2249-2251. [PMID: 33753100 PMCID: PMC8666137 DOI: 10.1053/j.gastro.2021.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/16/2021] [Indexed: 01/08/2023]
Affiliation(s)
- Valentina Medici
- University of California Davis, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Sacramento, California.
| |
Collapse
|
19
|
Leung M, Aronowitz PB, Medici V. The Present and Future Challenges of Wilson's Disease Diagnosis and Treatment. Clin Liver Dis (Hoboken) 2021; 17:267-270. [PMID: 33968387 PMCID: PMC8087914 DOI: 10.1002/cld.1041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/27/2020] [Accepted: 09/13/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Marcia Leung
- Department of Internal MedicineUniversity of California DavisSacramentoCA
| | - Paul B. Aronowitz
- Department of Internal MedicineUniversity of California DavisSacramentoCA
| | - Valentina Medici
- Department of Internal MedicineDivision of Gastroenterology and HepatologyUniversity of California DavisSacramentoCA
| |
Collapse
|
20
|
Muchenditsi A, Talbot CC, Gottlieb A, Yang H, Kang B, Boronina T, Cole R, Wang L, Dev S, Hamilton JP, Lutsenko S. Systemic deletion of Atp7b modifies the hepatocytes' response to copper overload in the mouse models of Wilson disease. Sci Rep 2021; 11:5659. [PMID: 33707579 PMCID: PMC7952580 DOI: 10.1038/s41598-021-84894-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 02/09/2021] [Indexed: 02/03/2023] Open
Abstract
Wilson disease (WD) is caused by inactivation of the copper transporter Atp7b and copper overload in tissues. Mice with Atp7b deleted either globally (systemic inactivation) or only in hepatocyte recapitulate various aspects of human disease. However, their phenotypes vary, and neither the common response to copper overload nor factors contributing to variability are well defined. Using metabolic, histologic, and proteome analyses in three Atp7b-deficient mouse strains, we show that global inactivation of Atp7b enhances and specifically modifies the hepatocyte response to Cu overload. The loss of Atp7b only in hepatocytes dysregulates lipid and nucleic acid metabolisms and increases the abundance of respiratory chain components and redox balancing enzymes. In global knockouts, independently of their background, the metabolism of lipid, nucleic acid, and amino acids is inhibited, respiratory chain components are down-regulated, inflammatory response and regulation of chromosomal replication are enhanced. Decrease in glucokinase and lathosterol oxidase and elevation of mucin-13 and S100A10 are observed in all Atp7b mutant strains and reflect the extent of liver injury. The magnitude of proteomic changes in Atp7b-/- animals inversely correlates with the metallothioneins levels rather than liver Cu content. These findings facilitate identification of WD-specific metabolic and proteomic changes for diagnostic and treatment.
Collapse
Affiliation(s)
- Abigael Muchenditsi
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - C Conover Talbot
- Core Analysis Unit, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Aline Gottlieb
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - Haojun Yang
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - Byunghak Kang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Robert Cole
- Mass Spectrometry and Proteomics Facility, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Li Wang
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - Som Dev
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA
| | - James P Hamilton
- Department of Medicine, Johns Hopkins Medical Institutes, Baltimore, MD, 21205, USA
| | - Svetlana Lutsenko
- Department of Physiology, Johns Hopkins Medical Institutes, 725 N Wolfe street, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Zhu Y, Mordaunt CE, Durbin‐Johnson BP, Caudill MA, Malysheva OV, Miller JW, Green R, James SJ, Melnyk SB, Fallin MD, Hertz‐Picciotto I, Schmidt RJ, LaSalle JM. Expression Changes in Epigenetic Gene Pathways Associated With One-Carbon Nutritional Metabolites in Maternal Blood From Pregnancies Resulting in Autism and Non-Typical Neurodevelopment. Autism Res 2021; 14:11-28. [PMID: 33159718 PMCID: PMC7894157 DOI: 10.1002/aur.2428] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022]
Abstract
The prenatal period is a critical window for the development of autism spectrum disorder (ASD). The relationship between prenatal nutrients and gestational gene expression in mothers of children later diagnosed with ASD or non-typical development (Non-TD) is poorly understood. Maternal blood collected prospectively during pregnancy provides insights into the effects of nutrition, particularly one-carbon metabolites, on gene pathways and neurodevelopment. Genome-wide transcriptomes were measured with microarrays in 300 maternal blood samples in Markers of Autism Risk in Babies-Learning Early Signs. Sixteen different one-carbon metabolites, including folic acid, betaine, 5'-methyltretrahydrofolate (5-MeTHF), and dimethylglycine (DMG) were measured. Differential expression analysis and weighted gene correlation network analysis (WGCNA) were used to compare gene expression between children later diagnosed as typical development (TD), Non-TD and ASD, and to one-carbon metabolites. Using differential gene expression analysis, six transcripts (TGR-AS1, SQSTM1, HLA-C, and RFESD) were associated with child outcomes (ASD, Non-TD, and TD) with genome-wide significance. Genes nominally differentially expressed between ASD and TD significantly overlapped with seven high confidence ASD genes. WGCNA identified co-expressed gene modules significantly correlated with 5-MeTHF, folic acid, DMG, and betaine. A module enriched in DNA methylation functions showed a suggestive protective association with folic acid/5-MeTHF concentrations and ASD risk. Maternal plasma betaine and DMG concentrations were associated with a block of co-expressed genes enriched for adaptive immune, histone modification, and RNA processing functions. These results suggest that the prenatal maternal blood transcriptome is a sensitive indicator of gestational one-carbon metabolite status and changes relevant to children's later neurodevelopmental outcomes. LAY SUMMARY: Pregnancy is a time when maternal nutrition could interact with genetic risk for autism spectrum disorder. Blood samples collected during pregnancy from mothers who had a prior child with autism were examined for gene expression and nutrient metabolites, then compared to the diagnosis of the child at age three. Expression differences in gene pathways related to the immune system and gene regulation were observed for pregnancies of children with autism and non-typical neurodevelopment and were associated with maternal nutrients.
Collapse
Affiliation(s)
- Yihui Zhu
- Department of Medical Microbiology and Immunology, Genome Center, and Perinatal Origins of Disparities CenterUniversity of CaliforniaDavisCaliforniaUSA
- MIND Institute, School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | - Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, and Perinatal Origins of Disparities CenterUniversity of CaliforniaDavisCaliforniaUSA
- MIND Institute, School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Marie A. Caudill
- Division of Nutritional SciencesCornell UniversityIthacaNew YorkUSA
| | | | - Joshua W. Miller
- Department of Nutritional SciencesRutgers UniversityNew BrunswickNew JerseyUSA
| | - Ralph Green
- Department of Pathology and Laboratory MedicineUniversity of California Davis School of MedicineSacramentoCaliforniaUSA
| | - S. Jill James
- Department of Pediatrics, University of Arkansas for Medical SciencesArkansas Children's Research InstituteLittle RockArkansasUSA
| | - Stepan B. Melnyk
- Department of Pediatrics, University of Arkansas for Medical SciencesArkansas Children's Research InstituteLittle RockArkansasUSA
| | - M. Daniele Fallin
- Department of Mental Health, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Irva Hertz‐Picciotto
- MIND Institute, School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
- Department of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Rebecca J. Schmidt
- MIND Institute, School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
- Department of Public Health SciencesUniversity of CaliforniaDavisCaliforniaUSA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, and Perinatal Origins of Disparities CenterUniversity of CaliforniaDavisCaliforniaUSA
- MIND Institute, School of MedicineUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
22
|
Joshi A, Farber K, Scheiber IF. Neurotoxicity of copper and copper nanoparticles. ADVANCES IN NEUROTOXICOLOGY 2021:115-157. [DOI: 10.1016/bs.ant.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Medici V, Sarode GV, Napoli E, Song GY, Shibata NM, Guimarães AO, Mordaunt CE, Kieffer DA, Mazi TA, Czlonkowska A, Litwin T, LaSalle JM, Giulivi C. mtDNA depletion-like syndrome in Wilson disease. Liver Int 2020; 40:2776-2787. [PMID: 32996699 PMCID: PMC8079140 DOI: 10.1111/liv.14646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Wilson disease (WD) is caused by mutations in the copper transporter ATP7B, with its main pathology attributed to copper-mediated oxidative damage. The limited therapeutic effect of copper chelators and the early occurrence of mitochondrial deficits, however, undermine the prevalence of this mechanism. METHODS We characterized mitochondrial DNA copy number and mutations as well as bioenergetic deficits in blood from patients with WD and in livers of tx-j mice, a mouse model of hepatic copper accumulation. In vitro experiments with hepatocytes treated with CuSO4 were conducted to validate in vivo studies. RESULTS Here, for the first time, we characterized the bioenergetic deficits in WD as consistent with a mitochondrial DNA depletion-like syndrome. This is evidenced by enriched DNA synthesis/replication pathways in serum metabolomics and decreased mitochondrial DNA copy number in blood of WD patients as well as decreased mitochondrial DNA copy number, increased citrate synthase activity, and selective Complex IV deficit in livers of the tx-j mouse model of WD. Tx-j mice treated with the copper chelator penicillamine, methyl donor choline or both ameliorated mitochondrial DNA damage but further decreased mitochondrial DNA copy number. Experiments with copper-loaded HepG2 cells validated the concept of a direct copper-mitochondrial DNA interaction. CONCLUSIONS This study underlines the relevance of targeting the copper-mitochondrial DNA pool in the treatment of WD separate from the established copper-induced oxidative stress-mediated damage.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, University of California Davis, Sacramento, CA 95616
| | - Gaurav Vilas Sarode
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, University of California Davis, Sacramento, CA 95616
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616
| | - Gyu-Young Song
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616
| | - Noreene M. Shibata
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, University of California Davis, Sacramento, CA 95616
| | - Andre Oliveira Guimarães
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616
- Laboratório de Ciências Físicas, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes RJ, Brazil
| | - Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, Genome Center, University of California Davis, Davis, CA 95616
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, 2825 50 St, University of California Davis, Davis, CA 95817
| | - Dorothy A. Kieffer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, 4150 V Street, PSSB Suite 3500, University of California Davis, Sacramento, CA 95616
| | - Tagreed A. Mazi
- Department of Nutrition, University of California Davis, Davis, CA 95616
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Anna Czlonkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, Genome Center, University of California Davis, Davis, CA 95616
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, 2825 50 St, University of California Davis, Davis, CA 95817
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, University of California Davis, Davis, CA 95616
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, 2825 50 St, University of California Davis, Davis, CA 95817
| |
Collapse
|
24
|
Espinós C, Ferenci P. Are the new genetic tools for diagnosis of Wilson disease helpful in clinical practice? JHEP Rep 2020; 2:100114. [PMID: 32613181 PMCID: PMC7322184 DOI: 10.1016/j.jhepr.2020.100114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
The diagnosis of Wilson disease is not always easy. For many patients, a combination of tests reflecting disturbed copper metabolism may be needed. Testing for ATP7B variants has become part of the routine diagnostic approach. The methods of genetic testing include analysis of the 21 coding exons and intronic flanking sequences, in which exons with recurrent variants would be prioritised depending on the mutation frequency in the local population. If sequencing the entire ATP7B gene cannot identify 2 variants and the suspicion for Wilson disease is high, after reviewing the clinical data, WES (whole-exome sequencing) or WGS (whole-genome sequencing) could be applied. A workflow based on the type and number of ATP7B variants responsible for Wilson disease is proposed. Genetic testing is indicated for confirmation of diagnosis, family screening, and screening of newborns and infants and in unclear cases suspected of suffering from Wilson disease. However, genetic testing is not a routine screening test for Wilson disease. If no additional variants can be identified, it can be assumed that other hereditary disorders may mimic Wilson disease (congenital disorders of glycosylation, MEDNIK syndrome, idiopathic or primary copper toxicoses).
Collapse
Affiliation(s)
- Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, Valencia, Spain
- Department of Genetics, Universitat de València, Valencia, Spain
| | - Peter Ferenci
- Department of Internal Medicine 3, Gastroenterology and Hepatology, Medical University of Vienna, Austria
| |
Collapse
|
25
|
Azbukina NV, Lopachev AV, Chistyakov DV, Goriainov SV, Astakhova AA, Poleshuk VV, Kazanskaya RB, Fedorova TN, Sergeeva MG. Oxylipin Profiles in Plasma of Patients with Wilson's Disease. Metabolites 2020; 10:metabo10060222. [PMID: 32485807 PMCID: PMC7345781 DOI: 10.3390/metabo10060222] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 05/25/2020] [Indexed: 12/31/2022] Open
Abstract
Wilson’s disease (WD) is a rare autosomal recessive metabolic disorder resulting from mutations in the copper-transporting, P-type ATPase gene ATP7B gene, but influences of epigenetics, environment, age, and sex-related factors on the WD phenotype complicate diagnosis and clinical manifestations. Oxylipins, derivatives of omega-3, and omega-6 polyunsaturated fatty acids (PUFAs) are signaling mediators that are deeply involved in innate immunity responses; the regulation of inflammatory responses, including acute and chronic inflammation; and other disturbances related to any system diseases. Therefore, oxylipin profile tests are attractive for the diagnosis of WD. With UPLC-MS/MS lipidomics analysis, we detected 43 oxylipins in the plasma profiles of 39 patients with various clinical manifestations of WD compared with 16 healthy controls (HCs). Analyzing the similarity matrix of oxylipin profiles allowed us to cluster patients into three groups. Analysis of the data by VolcanoPlot and partial least square discriminant analysis (PLS-DA) showed that eight oxylipins and lipids stand for the variance between WD and HCs: eicosapentaenoic acid EPA, oleoylethanolamide OEA, octadecadienoic acids 9-HODE, 9-KODE, 12-hydroxyheptadecatrenoic acid 12-HHT, prostaglandins PGD2, PGE2, and 14,15-dihydroxyeicosatrienoic acids 14,15-DHET. The compounds indicate the involvement of oxidative stress damage, inflammatory processes, and peroxisome proliferator-activated receptor (PPAR) signaling pathways in this disease. The data reveal novel possible therapeutic targets and intervention strategies for treating WD.
Collapse
Affiliation(s)
- Nadezhda V. Azbukina
- Faculty of Bioengineering and Bioinformatics, Moscow Lomonosov State University, Moscow 119234, Russia;
| | - Alexander V. Lopachev
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, Moscow 125367, Russia;
| | - Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia;
- Correspondence: (D.V.C.); (T.N.F.); (M.G.S.)
| | - Sergei V. Goriainov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia;
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia;
| | | | - Rogneda B. Kazanskaya
- Biological Department, Saint Petersburg State University, Universitetskaya Emb. 7/9, St Petersburg 199034, Russia;
| | - Tatiana N. Fedorova
- Laboratory of Clinical and Experimental neurochemistry, Research Center of Neurology, Moscow 125367, Russia;
- Correspondence: (D.V.C.); (T.N.F.); (M.G.S.)
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia;
- Correspondence: (D.V.C.); (T.N.F.); (M.G.S.)
| |
Collapse
|
26
|
John A, Qin B, Kalari KR, Wang L, Yu J. Patient-specific multi-omics models and the application in personalized combination therapy. Future Oncol 2020; 16:1737-1750. [PMID: 32462937 DOI: 10.2217/fon-2020-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The rapid advancement of high-throughput technologies and sharp decrease in cost have opened up the possibility to generate large amount of multi-omics data on an individual basis. The development of high-throughput -omics, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiomics, enables the application of multi-omics technologies in the clinical settings. Combination therapy, defined as disease treatment with two or more drugs to achieve efficacy with lower doses or lower drug toxicity, is the basis for the care of diseases like cancer. Patient-specific multi-omics data integration can help the identification and development of combination therapies. In this review, we provide an overview of different -omics platforms, and discuss the methods for multi-omics, high-throughput, data integration, personalized combination therapy.
Collapse
Affiliation(s)
- August John
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Bo Qin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jia Yu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Wooton-Kee CR, Robertson M, Zhou Y, Dong B, Sun Z, Kim KH, Liu H, Xu Y, Putluri N, Saha P, Coarfa C, Moore DD, Nuotio-Antar AM. Metabolic dysregulation in the Atp7b-/- Wilson's disease mouse model. Proc Natl Acad Sci U S A 2020; 117:2076-2083. [PMID: 31924743 PMCID: PMC6994990 DOI: 10.1073/pnas.1914267117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inactivating mutations in the copper transporter Atp7b result in Wilson's disease. The Atp7b-/- mouse develops hallmarks of Wilson's disease. The activity of several nuclear receptors decreased in Atp7b-/- mice, and nuclear receptors are critical for maintaining metabolic homeostasis. Therefore, we anticipated that Atp7b-/- mice would exhibit altered progression of diet-induced obesity, fatty liver, and insulin resistance. Following 10 wk on a chow or Western-type diet (40% kcal fat), parameters of glucose and lipid homeostasis were measured. Hepatic metabolites were measured by liquid chromatography-mass spectrometry and correlated with transcriptomic data. Atp7b-/- mice fed a chow diet presented with blunted body-weight gain over time, had lower fat mass, and were more glucose tolerant than wild type (WT) littermate controls. On the Western diet, Atp7b-/- mice exhibited reduced body weight, adiposity, and hepatic steatosis compared with WT controls. Atp7b-/- mice fed either diet were more insulin sensitive than WT controls; however, fasted Atp7b-/- mice exhibited hypoglycemia after administration of insulin due to an impaired glucose counterregulatory response, as evidenced by reduced hepatic glucose production. Coupling gene expression with metabolomic analyses, we observed striking changes in hepatic metabolic profiles in Atp7b-/- mice, including increases in glycolytic intermediates and components of the tricarboxylic acid cycle. In addition, the active phosphorylated form of AMP kinase was significantly increased in Atp7b-/- mice relative to WT controls. Alterations in hepatic metabolic profiles and nuclear receptor signaling were associated with improved glucose tolerance and insulin sensitivity as well as with impaired fasting glucose production in Atp7b-/- mice.
Collapse
Affiliation(s)
- Clavia Ruth Wooton-Kee
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
| | - Matthew Robertson
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Ying Zhou
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | - Bingning Dong
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Zhen Sun
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Kang Ho Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Hailan Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Yong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Pradip Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - David D Moore
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030;
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030
| | | |
Collapse
|
28
|
Medici V, LaSalle JM. Genetics and epigenetic factors of Wilson disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S58. [PMID: 31179295 PMCID: PMC6531661 DOI: 10.21037/atm.2019.01.67] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Wilson disease (WD) is a complex condition due to copper accumulation mainly in the liver and brain. The genetic base of WD is represented by pathogenic mutations of the copper-transporting gene ATP7B with consequent lack of copper excretion through the biliary tract. ATP7B is the only gene so far identified and known to be responsible for the development of the disease. Our understanding of the disease has been evolving as functional studies have associated specific disease-causing mutations with specific copper-transporter impairments. The most frequent variant in patients of European descent is the H1069Q missense mutation and it has been associated with protein misfolding, aberrant phosphorylation of the P-domain, and altered ATP binding orientation and affinity. Conversely, there is much less understanding of the relation between the genotype and the clinical manifestations of WD. WD is characterized by a highly varied and unpredictable presentation with different combined hepatic, neurological, and psychiatric symptoms. Several studies have attempted to correlate genotype and phenotype but the most recent evidences on larger populations failed to identify a relation between genotype and clinical presentations. Given that so far also modifier genes have not shown convincing association with WD, there is growing interest to identify epigenetic mechanisms of gene expression regulation as underlying the onset and progression of WD phenotype. Evidence from animal models indicated changes in methionine metabolism regulation with possible effects on DNA methylation. Mouse models of WD have indicated transcript level changes of genes related to DNA methylation in fetal and adult livers. And finally, evidence is accumulating regarding DNA methylation changes in patients with WD. It is unexplored how ATP7B genetic mutations combine with epigenetic changes to affect the phenotype. In conclusion, WD is a genetic disease with a complex regulation of its phenotype that includes molecular genetics and epigenetic mechanisms.
Collapse
Affiliation(s)
- Valentina Medici
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of California Davis, Sacramento, California, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, University of California Davis, Sacramento, California, USA
| |
Collapse
|