1
|
Trinh TTT, Kim YA, Hong H, Le LTT, Jang H, Kim SA, Park H, Kim HS, Yeo SJ. In Vitro Evaluation of Two Novel Antimalarial Derivatives of SKM13: SKM13-MeO and SKM13-F. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:401-407. [PMID: 36588416 PMCID: PMC9806497 DOI: 10.3347/kjp.2022.60.6.401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022]
Abstract
Antimalarial drugs play an important role in the control and treatment of malaria, a deadly disease caused by the protozoan parasite Plasmodium spp. The development of novel antimalarial agents effective against drug-resistant malarial parasites is urgently needed. The novel derivatives, SKM13-MeO and SKM13-F, were designed based on an SKM13 template by replacing the phenyl group with electron-donating (-OMe) or electron-withdrawing groups (-F), respectively, to reverse the electron density. A colorimetric assay was used to quantify cytotoxicity, and in vitro inhibition assays were performed on 3 different blood stages (ring, trophozoite, and schizonts) of P. falciparum 3D7 and the ring/mixed stage of D6 strain after synchronization. The in vitro cytotoxicity analysis showed that 2 new SKM13 derivatives reduced the cytotoxicity of the SKM13 template. SKM13 maintained the IC50 at the ring and trophozoite stages but not at the schizont stage. The IC50 values for both the trophozoite stage of P. falciparum 3D7 and ring/mixed stages of D6 demonstrated that 2 SKM13 derivatives had decreased antimalarial efficacy, particularly for the SKM13-F derivative. SKM13 may be comparably effective in ring and trophozoite, and electron-donating groups (-OMe) may be better maintain the antimalarial activity than electron-withdrawing groups (-F) in SKM13 modification.
Collapse
Affiliation(s)
- Thuy-Tien Thi Trinh
- Department of Tropical Medicine and Parasitology, Medical Research Center, Institute of Endemic Diseases, Seoul National University, Seoul 03080,
Korea
| | - Young-ah Kim
- College of Pharmacy, Institute of Pharmaceutical Research and Development, Wonkwang University, Iksan 54538,
Korea
| | - Hyelee Hong
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080,
Korea
| | - Linh Thi Thuy Le
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080,
Korea
| | - Hayoung Jang
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080,
Korea
| | - Soon-Ai Kim
- College of Pharmacy, Institute of Pharmaceutical Research and Development, Wonkwang University, Iksan 54538,
Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan 54538,
Korea
| | - Hak Sung Kim
- College of Pharmacy, Institute of Pharmaceutical Research and Development, Wonkwang University, Iksan 54538,
Korea,Corresponding authors (; )
| | - Seon-Ju Yeo
- Department of Tropical Medicine and Parasitology, Medical Research Center, Institute of Endemic Diseases, Seoul National University, Seoul 03080,
Korea,Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080,
Korea,Corresponding authors (; )
| |
Collapse
|
2
|
Mooney JP, DonVito SM, Jahateh M, Bittaye H, Bottomley C, D'Alessandro U, Riley EM. Dry season prevalence of Plasmodium falciparum in asymptomatic gambian children, with a comparative evaluation of diagnostic methods. Malar J 2022; 21:171. [PMID: 35672850 PMCID: PMC9172138 DOI: 10.1186/s12936-022-04184-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Subclinical infection with Plasmodium falciparum remains highly prevalent, yet diagnosing these often low-density infections remains a challenge. Infections can be subpatent, falling below the limit of detection for conventional thick-film microscopy and rapid diagnostic testing (RDT). In this study, the prevalence of subclinical P. falciparum infections in school-aged children was characterised at the start of the dry season in the Upper River Region of The Gambia in 2017/2018, with a goal to also compare the utility of different diagnostic tools. METHODS In a cross-sectional survey of children living in 29 villages on the south bank of the Gambia river (median age of 10 years), matched microscopy, rapid diagnostic test (RDT, detecting histidine-rich protein 2) and polymerase chain reaction (PCR, targeting either 18S rRNA or var gene acidic terminal sequence) were used to determine the prevalence of patent and subpatent infections and to compare the performance of the different diagnostic methods. RESULTS The prevalence of var gene acidic terminal sequence (varATS) qPCR-detectable infections was 10.2% (141/1381) with a median density of 3.12 parasites/µL. Malaria prevalence was highly heterogeneous across the region, ranging from < 1% to ~ 40% prevalence in different village clusters. Compared to varATS, 18S rRNA PCR detected fewer low-density infections, with an assay sensitivity of 50% and specificity of 98.8%. Parasite prevalence in the cohort was 2.9% by microscopy and 1.5% by RDT. Compared to varATS qPCR, microscopy and RDT had sensitivities of 11.5% and 9.2%, respectively, although both methods were highly specific (> 98%). Samples that were positive by all three tests (varATS qPCR, RDT and microscopy) had significantly higher parasite densities (median = 1705 parasites/µL) than samples that were positive by varATS qPCR only (median = 2.4 parasites/µL). CONCLUSIONS The majority of subclinical malaria infections in school-aged children were of extremely low parasite density and detectable only by ultra-sensitive PCR analysis. Understanding the duration of these low density infections, their physiological impact and their contribution to sustained parasite transmission is necessary to inform malaria elimination strategies.
Collapse
Affiliation(s)
- Jason P Mooney
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK.
| | - Sophia M DonVito
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| | - Maimuna Jahateh
- Medical Research Council Unit in The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Haddy Bittaye
- Medical Research Council Unit in The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Christian Bottomley
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| | - Umberto D'Alessandro
- Medical Research Council Unit in The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Kings Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| |
Collapse
|
3
|
Meibalan E, Barry A, Gibbins MP, Awandu S, Meerstein-Kessel L, Achcar F, Bopp S, Moxon C, Diarra A, Debe S, Ouédraogo N, Barry-Some I, Badoum ES, Fagnima T, Lanke K, Gonçalves BP, Bradley J, Wirth D, Drakeley C, Guelbeogo WM, Tiono AB, Marti M, Bousema T. Plasmodium falciparum Gametocyte Density and Infectivity in Peripheral Blood and Skin Tissue of Naturally Infected Parasite Carriers in Burkina Faso. J Infect Dis 2021; 223:1822-1830. [PMID: 31875909 PMCID: PMC8161640 DOI: 10.1093/infdis/jiz680] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Plasmodium falciparum transmission depends on mature gametocytes that can be ingested by mosquitoes taking a blood meal on human skin. Although gametocyte skin sequestration has long been hypothesized as important contributor to efficient malaria transmission, this has never been formally tested. METHODS In naturally infected gametocyte carriers from Burkina Faso, we assessed infectivity to mosquitoes by direct skin feeding and membrane feeding. We directly quantified male and female gametocytes and asexual parasites in finger-prick and venous blood samples, skin biopsy samples, and in of mosquitoes that fed on venous blood or directly on skin. Gametocytes were visualized in skin tissue with confocal microscopy. RESULTS Although more mosquitoes became infected when feeding directly on skin then when feeding on venous blood (odds ratio, 2.01; 95% confidence interval, 1.21-3.33; P = .007), concentrations of gametocytes were not higher in the subdermal skin vasculature than in other blood compartments; only sparse gametocytes were observed in skin tissue. DISCUSSION Our data strongly suggest that there is no significant skin sequestration of P. falciparum gametocytes. Gametocyte densities in peripheral blood are thus informative for predicting onward transmission potential to mosquitoes and can be used to target and monitor malaria elimination initiatives.
Collapse
Affiliation(s)
- Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Radboud Institute for Health Sciences, Radboud University Medical Center, the Netherlands
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Shehu Awandu
- Radboud Institute for Health Sciences, Radboud University Medical Center, the Netherlands
| | | | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Christopher Moxon
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Amidou Diarra
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Siaka Debe
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nicolas Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Ines Barry-Some
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Emilie S Badoum
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Traoré Fagnima
- Centre Hospitalier Universitaire Régional de Ouahigoua, Université de Ouahigouya, Burkina Faso
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, the Netherlands
| | - Bronner P Gonçalves
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John Bradley
- MRC Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dyann Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Chris Drakeley
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, the Netherlands
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Yadav BS, Chaturvedi N, Marina N. Recent Advances in System Based Study for Anti-Malarial Drug Development Process. Curr Pharm Des 2019; 25:3367-3377. [DOI: 10.2174/1381612825666190902162105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
Abstract
Background:
Presently, malaria is one of the most prevalent and deadly infectious disease across Africa,
Asia, and America that has now started to spread in Europe. Despite large research being carried out in the
field, still, there is a lack of efficient anti-malarial therapeutics. In this paper, we highlight the increasing efforts
that are urgently needed towards the development and discovery of potential antimalarial drugs, which must be
safe and affordable. The new drugs thus mentioned are also able to counter the spread of malaria parasites that
have been resistant to the existing agents.
Objective:
The main objective of the review is to highlight the recent development in the use of system biologybased
approaches towards the design and discovery of novel anti-malarial inhibitors.
Method:
A huge literature survey was performed to gain advance knowledge about the global persistence of
malaria, its available treatment and shortcomings of the available inhibitors. Literature search and depth analysis
were also done to gain insight into the use of system biology in drug discovery and how this approach could be
utilized towards the development of the novel anti-malarial drug.
Results:
The system-based analysis has made easy to understand large scale sequencing data, find candidate
genes expression during malaria disease progression further design of drug molecules those are complementary of
the target proteins in term of shape and configuration.
Conclusion:
The review article focused on the recent computational advances in new generation sequencing,
molecular modeling, and docking related to malaria disease and utilization of the modern system and network
biology approach to antimalarial potential drug discovery and development.
Collapse
Affiliation(s)
- Brijesh S. Yadav
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Navaneet Chaturvedi
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, Partizahska, Ohrid, Macedonia, the Former Yugoslav Republic of
| |
Collapse
|
5
|
Koehler JW, Douglas CE, Minogue TD. A highly multiplexed broad pathogen detection assay for infectious disease diagnostics. PLoS Negl Trop Dis 2018; 12:e0006889. [PMID: 30395567 PMCID: PMC6245831 DOI: 10.1371/journal.pntd.0006889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/20/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022] Open
Abstract
Rapid pathogen identification during an acute febrile illness is a critical first step for providing appropriate clinical care and patient isolation. Primary screening using sensitive and specific assays, such as real-time PCR and ELISAs, can rapidly test for known circulating infectious diseases. If the initial testing is negative, potentially due to a lack of developed diagnostic assays or an incomplete understanding of the pathogens circulating within a geographic region, additional testing would be required including highly multiplexed assays and metagenomic next generation sequencing. To bridge the gap between rapid point of care diagnostics and sequencing, we developed a highly multiplexed assay designed to detect 164 different viruses, bacteria, and parasites using the NanoString nCounter platform. Included in this assay were high consequence pathogens such as Ebola virus, highly endemic organisms including several Plasmodium species, and a large number of less prevalent pathogens to ensure a broad coverage of potential human pathogens. Evaluation of this panel resulted in positive detection of 113 (encompassing 98 different human pathogen types) of the 126 organisms available to us including the medically important Ebola virus, Lassa virus, dengue virus serotypes 1–4, Chikungunya virus, yellow fever virus, and Plasmodium falciparum. Overall, this assay could improve infectious disease diagnostics and biosurveillance efforts as a quick, highly multiplexed, and easy to use pathogen screening tool. Identifying the causative agent in an acute febrile illness can be challenging diagnostically, especially when organisms in a particular region have overlapping clinical presentation or when that pathogen’s presence is unexpected. Ebola virus, for example, was not considered in an acute febrile illness differential diagnosis in West Africa until the explosive outbreak in 2013 presented the risk of infection. Besides the cost and time of screening a single patient sample for a large number of pathogens, limited sample volumes place further restrictions on what assays can be applied. Here, we developed a broad pathogen screening assay targeting 164 different human pathogens and show positive detection of over 100 of the organisms on the panel including Ebola virus, Plasmodium falciparum, and a large number of rare pathogens. The hands on time and sample volume requirement is minimal. The assay performed well in mock clinical and human clinical samples, demonstrating the clinical utility of this assay in cases where the initial diagnostic testing results in negative results. Our results provide a framework for further validation studies that would be required for formal clinical diagnostic applications.
Collapse
Affiliation(s)
- Jeffrey W. Koehler
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Christina E. Douglas
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Timothy D. Minogue
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
7
|
New Technologies for the Diagnosis of Infection. DIAGNOSTIC PATHOLOGY OF INFECTIOUS DISEASE 2018. [PMCID: PMC7152403 DOI: 10.1016/b978-0-323-44585-6.00006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Gunawardena S, Karunaweera ND. Advances in genetics and genomics: use and limitations in achieving malaria elimination goals. Pathog Glob Health 2016; 109:123-41. [PMID: 25943157 DOI: 10.1179/2047773215y.0000000015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Success of the global research agenda towards eradication of malaria will depend on the development of new tools, including drugs, vaccines, insecticides and diagnostics. Genetic and genomic information now available for the malaria parasites, their mosquito vectors and human host, can be harnessed to both develop these tools and monitor their effectiveness. Here we review and provide specific examples of current technological advances and how these genetic and genomic tools have increased our knowledge of host, parasite and vector biology in relation to malaria elimination and in turn enhanced the potential to reach that goal. We then discuss limitations of these tools and future prospects for the successful achievement of global malaria elimination goals.
Collapse
|