1
|
Silver H, Greenberg R, Siper PM, Zweifach J, Soufer R, Sahin M, Berry-Kravis E, Soorya LV, Thurm A, Bernstein JA, Kolevzon A, Grice DE, Buxbaum JD, Levy T. Protein-truncating variants and deletions of SHANK2 are associated with autism spectrum disorder and other neurodevelopmental concerns. J Neurodev Disord 2025; 17:25. [PMID: 40307697 PMCID: PMC12042525 DOI: 10.1186/s11689-025-09600-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/03/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND SHANK2 disorder is a rare neurodevelopmental disorder caused by a deletion or pathogenic sequence variant of the SHANK2 gene and is associated with autism spectrum disorder (ASD), intellectual disability (ID), and developmental delay. To date, research in SHANK2 has focused on laboratory-based in vivo and in vitro studies with few prospective clinical studies in humans. METHODS A remote assessment battery was comprised of caregiver interviews with a psychiatrist, psychologists, and a genetic counselor, caregiver-reports, and review of records. Results from this cohort were reported using descriptive statistics. An age-matched sample of participants with SHANK3 haploinsufficiency (Phelan-McDermid syndrome, PMS) was used to compare adaptive behavior between the two groups. RESULTS All ten participants demonstrated delays in adaptive behavior, with most motor skills preserved and a weakness in communication. According to parent report, 90% of participants carried a formal diagnosis of ASD, 50% of participants carried a diagnosis of attention-deficit/hyperactivity disorder (ADHD), and mild-to-moderate developmental delays were noted. Sensory hyperreactivity and seeking behaviors were more pronounced than sensory hyporeactivity. Medical features included hypotonia, recurrent ear infections, and gastrointestinal abnormalities. No similar facial dysmorphic features were observed. Compared to PMS participants, individuals with SHANK2 disorder had significantly higher adaptive functioning. CONCLUSIONS Consistent with previous studies of SHANK2 disorder, these results indicate mild to moderate developmental impairment. Overall, SHANK2 disorder is associated with developmental and adaptive functioning delays, high rates of autism, including sensory symptoms and repetitive behaviors, and ADHD. This study was limited by its remote nature, diverse age range, and the homogeneous racial and ethnic sample. Future studies should examine larger, diverse cohorts, add cognitive testing, capture longitudinal data, and include in-person assessments.
Collapse
Affiliation(s)
- Hailey Silver
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rori Greenberg
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica Zweifach
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Renee Soufer
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
| | - Elizabeth Berry-Kravis
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Latha Valluripalli Soorya
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Department of Psychiatry & Behavioral Sciences, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Audrey Thurm
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Neurodevelopmental and Behavioral Phenotyping Service, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonathan A Bernstein
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Dorothy E Grice
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Division of Tics, OCD and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joseph D Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Developmental Synaptopathies Consortium, Rare Disease Clinical Research Network, Boston, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Abarca-Barriga HH, Vásquez Sotomayor F, Punil-Luciano R, Laso-Salazar MC, Barrón-Pastor HJ. Identification of intragenic variants in pediatric patients with intellectual disability in Peru. BMC Med Genomics 2025; 18:76. [PMID: 40251579 PMCID: PMC12008840 DOI: 10.1186/s12920-025-02141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Intellectual disability in Latin America can reach a frequency of 12% of the population, these may include nutritional deficiencies, exposure to toxic or infectious agents, and the lack of universal neonatal screening programs. In 90% of patients with intellectual disability, the etiology can be attributed to variants in the genome. OBJECTIVE to determine intragenic variants in patients with intellectual disability between 5 and 18 years old at Instituto Nacional de Salud del Niño. METHODS It is a descriptive cross-sectional study with convenience sampling. A total of 124 children diagnosed with intellectual disability were selected based on psychological test results and availability for whole exome sequencing. In addition, a chromosomal analysis of 6.55 M was performed on ten patients with a negative result in sequencing. Relative and absolute frequencies and measures of central tendency and dispersion were determined according to their nature. In addition, multiple linear regression and Poisson regression were used to determine the association between some clinical characteristics and the probability of occurrence in patients with positive results. RESULTS The median age of the patients was 6.3 (IQR = 5.95), males accounted for 57.3%, and 91.9% of the cases had mild intellectual disability. Exome sequencing determined the etiology in 30.6% of patients with intellectual disability, of which 52.6% were autosomal dominant inheritance. The most frequent genes found were MECP2, STXBP1 and LAMA2. A broad genotype-phenotype correlation was identified, highlighting the genetic heterogeneity of intellectual disability in this population. The presence of dermatologic lesions, dystonia, peripheral neurological disorders, and fourth finger flexion limitation were observed more frequently in patients with intellectual disability with "positive results". CONCLUSIONS This study shows that one-third of patients with intellectual disability exhibit intragenic variants, highlighting the importance of genetic analysis for accurate diagnosis. The identification of genes such as MECP2, STXBP1, and LAMA2 underscores the genetic heterogeneity of intellectual disability in the studied population. These findings emphasize the need for genetic testing in clinical management and the implementation of early detection programs in Peru.
Collapse
Affiliation(s)
- Hugo Hernán Abarca-Barriga
- Instituto de Investigaciones de Ciencias Biomédicas, Facultad de Medicina Humana, Universidad Ricardo Palma, Av. Benavides 5440. Santiago de Surco, Lima, 1801, Perú.
- Servicio de Genética & Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño- Breña, Lima, Perú.
- Facultad de Medicina Humana, Universidad Nacional Mayor de San Marcos. Lima, Lima, Perú.
| | - Flor Vásquez Sotomayor
- Instituto de Investigaciones de Ciencias Biomédicas, Facultad de Medicina Humana, Universidad Ricardo Palma, Av. Benavides 5440. Santiago de Surco, Lima, 1801, Perú
- Servicio de Genética & Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño- Breña, Lima, Perú
| | - Renzo Punil-Luciano
- Servicio de Genética & Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño- Breña, Lima, Perú
| | - María Cristina Laso-Salazar
- Servicio de Genética & Errores Innatos del Metabolismo, Instituto Nacional de Salud del Niño- Breña, Lima, Perú
| | | |
Collapse
|
3
|
Kansal R. Rapid Whole-Genome Sequencing in Critically Ill Infants and Children with Suspected, Undiagnosed Genetic Diseases: Evolution to a First-Tier Clinical Laboratory Test in the Era of Precision Medicine. CHILDREN (BASEL, SWITZERLAND) 2025; 12:429. [PMID: 40310077 PMCID: PMC12025730 DOI: 10.3390/children12040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025]
Abstract
The completion of the Human Genome Project in 2003 has led to significant advances in patient care in medicine, particularly in diagnosing and managing genetic diseases and cancer. In the realm of genetic diseases, approximately 15% of critically ill infants born in the U.S.A. are diagnosed with genetic disorders, which comprise a significant cause of mortality in neonatal and pediatric intensive care units. The introduction of rapid whole-genome sequencing (rWGS) as a first-tier test in critically ill children with suspected, undiagnosed genetic diseases is a breakthrough in the diagnosis and subsequent clinical management of such infants and older children in intensive care units. Rapid genome sequencing is currently being used clinically in the USA, the UK, the Netherlands, Sweden, and Australia, among other countries. This review is intended for students and clinical practitioners, including non-experts in genetics, for whom it provides a historical background and a chronological review of the relevant published literature for the progression of pediatric diagnostic genomic sequencing leading to the development of pediatric rWGS in critically ill infants and older children with suspected but undiagnosed genetic diseases. Factors that will help to develop rWGS as a clinical test in critically ill infants and the limitations are briefly discussed, including an evaluation of the clinical utility and accessibility of genetic testing, education for parents and providers, cost-effectiveness, ethical challenges, consent issues, secondary findings, data privacy concerns, false-positive and false-negative results, challenges in variant interpretation, costs and reimbursement, the limited availability of genetic counselors, and the development of evidence-based guidelines, which would all need to be addressed to facilitate the implementation of pediatric genomic sequencing in an effective widespread manner in the era of precision medicine.
Collapse
Affiliation(s)
- Rina Kansal
- Molecular Oncology and Genetics, Diagnostic Laboratories, Versiti Blood Center of Wisconsin, Milwaukee, WI 53233, USA;
- Department of Pathology and Anatomical Sciences, The University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
4
|
Huyghebaert J, Christiaenssen B, De Rademaeker M, Van den Ende J, Vandeweyer G, Kooy RF, Mateiu L, Annear D. Paracentric inversion disrupting the SHANK2 gene. Eur J Med Genet 2025; 75:105009. [PMID: 40057302 DOI: 10.1016/j.ejmg.2025.105009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/07/2025] [Accepted: 03/06/2025] [Indexed: 03/14/2025]
Abstract
In this study, we employed a multifaceted approach combining short-read whole genome sequencing (WGS) analyzed using Delly, cytogenomics using Bionano technology, and Sanger sequencing to identify the breakpoints of a balanced de novo paracentric inversion on chromosome 11, spanning approximately 64 Mb (inv11q13.3; q25). This inversion was discovered in a girl who presented with mild intellectual disability (ID), speech and language delays, a delay in motor development and attention deficit hyperactivity disorder (ADHD). Detailed analysis of the breakpoints revealed the disruption of two genes; SHANK2, which is critical for encoding a postsynaptic scaffolding protein at glutamatergic synapses in the brain, and LINC02714, a long non-coding RNA (lncRNA). Although SHANK2 is not listed in the OMIM database as a causative gene to this date, literature reports at least 21 cases where (likely) pathogenic variants in SHANK2 have been identified in patients with neurodevelopmental disorders (NDDs). A loss of function variant of the SHANK2 gene is in line with the clinical presentation of this patient. No additional genetic variants that could explain her phenotype were identified. In conclusion, by combining WGS, cytogenomics and Sanger sequencing techniques, we identified the exact breakpoints of a large inversion providing a likely molecular diagnosis for our patient.
Collapse
Affiliation(s)
- Jolien Huyghebaert
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| | | | - Marjan De Rademaeker
- Department of Medical Genetics, University Hospital of Antwerp, Antwerp, Belgium.
| | - Jenneke Van den Ende
- Department of Medical Genetics, University Hospital of Antwerp, Antwerp, Belgium.
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium; Department of Medical Genetics, University Hospital of Antwerp, Antwerp, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| | - Ligia Mateiu
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium.
| | - Dale Annear
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium; Department of Biochemistry & Microbiology, Nelson Mandela University, Gqeberha, South Africa.
| |
Collapse
|
5
|
Lan X, Tang X, Weng W, Xu W, Song X, Yang Y, Sun H, Ye H, Zhang H, Yu G, Wu S. Diagnostic Utility of Trio-Exome Sequencing for Children With Neurodevelopmental Disorders. JAMA Netw Open 2025; 8:e251807. [PMID: 40131272 PMCID: PMC11937947 DOI: 10.1001/jamanetworkopen.2025.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/21/2025] [Indexed: 03/26/2025] Open
Abstract
Importance Copy number variants (CNVs) and single-nucleotide variations (SNVs) or insertions and deletions are key genetic contributors to neurodevelopmental disorders (NDDs). Traditionally, chromosome microarray and exome sequencing (ES) have been used to detect CNVs and single gene variants, respectively. Objective To identify genetic variants causing NDDs and evaluate the diagnostic yield and clinical utility of ES by simultaneously analyzing CNVs and SNVs in patients with NDDs and their biologic parents (trios). Design, Setting, and Participants This retrospective cohort study included pediatric patients with suspected NDDs who visited Shanghai Children's Hospital between January 1, 2018, and December 31, 2023. ES was used to investigate trios (trio-ES) including patients with NDDs who remained undiagnosed after phenotype identification and underwent gene panel testing, multiplex ligation-dependent probe amplification, or karyotyping. Comprehensive clinical and laboratory data were collected. Data were analyzed from July 2022 to December 2023. Exposure NDDs, characterized by global developmental delay or intellectual disability. Main Outcomes and Measures The study measured the overall diagnostic yield of SNVs and CNVs in the NDD cohort as well as within NDD syndromic subtypes. Results Of the 1106 patients with NDDs, 731 (66.1%) were male. The mean (SD) age of patients at diagnosis was 3.80 (2.82) years. The overall diagnostic yield of trio-ES was 46.1% (510 diagnoses among 1106 patients), with 149 CNVs (13.5%), 355 SNVs (32.1%), and 4 cases of uniparental disomy (0.4%). Codiagnosis of SNVs and CNVs occurred in 2 cases (0.2%). Among the trios, 812 candidate germline variants were identified, including 634 SNVs (78.1%), 174 CNVs (21.4%), and 4 cases of uniparental disomy (0.5%). Of these, 423 SNVs (66.7%) and 157 CNVs (90.2%) were diagnostic variants, while 211 SNVs (33.3%) and 17 CNVs (9.8%) were variants of uncertain significance. Sixteen CNVs smaller than 20 kilobase were detected using ES. Conclusions and Relevance In this cohort study, trio-ES, by simultaneously detecting SNVs and CNVs, achieved a diagnostic yield of 46.1%. Trio-ES may be particularly applicable for identifying small CNVs and recessive genetic diseases involving both SNVs and CNVs. These findings suggest that in clinical practice, simultaneously analyzing SNVs and CNVs using trio-ES data has a favorable genetic diagnostic yield for children with NDDs.
Collapse
Affiliation(s)
- Xiaoping Lan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojun Tang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhao Weng
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wuhen Xu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaozhen Song
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongchen Yang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Sun
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Center for Biomedical Informatics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyun Ye
- Department of Ophthalmology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangjun Yu
- Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Shengnan Wu
- Department of Clinical Laboratory, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Moeinifar N, Hojati Z. Novel mutations found in genes involved in global developmental delay and intellectual disability by whole-exome sequencing, homology modeling, and systems biology. World J Biol Psychiatry 2025; 26:130-145. [PMID: 39853208 DOI: 10.1080/15622975.2025.2453198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/23/2024] [Accepted: 01/09/2025] [Indexed: 01/26/2025]
Abstract
BACKGROUND Genes associated with global developmental delay (GDD) and intellectual disability (ID) are increasingly being identified through next-generation sequencing (NGS) technologies. This study aimed to identify novel mutations in GDD/ID phenotypes through whole-exome sequencing (WES) and additional in silico analyses. MATERIAL AND METHODS WES was performed on 27 subjects, among whom 18 were screened for potential novel mutations. In silico analyses included protein-protein interactions (PPIs), gene-miRNA interactions (GMIs), and enrichment analyses. The identified novel variants were further modelled using I-Tasser-MTD and SWISS-MODEL, with structural superimposition performed. RESULTS Novel mutations were detected in 18 patients, with 10 variants reported for the first time. Among these, three were classified as pathogenic (DNMT1:c.856dup, KCNQ2:c.1635_1636insT, and TMEM94:c.2598_2599insC), and six were likely pathogenic. DNMT1 and MRE11 were highlighted as key players in PPIs and GMIs. GMIs analysis emphasised the roles of hsa-miR-30a-5p and hsa-miR-185-5p. The top-scoring pathways included the neuronal system (R-HSA-112316, p = 7.73E-04) and negative regulation of the smooth muscle cell apoptotic process (p = 3.37E-06). Homology modelling and superimposition revealed a significant functional loss in the mutated DNMT1 enzyme structure. CONCLUSION This study identified 10 novel pathogenic/likely pathogenic variants associated with GDD/ID, supported by clinical findings and in silico analyses focused on DNMT1 mutations.
Collapse
Affiliation(s)
- Nafiseh Moeinifar
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Zohreh Hojati
- Division of Genetics, Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
7
|
Kava H, Akgun-Dogan O, Yesilyurt A, Alanay Y, Isik U. Evaluation of the etiology of epilepsy and/or developmental delay in children via next-generation sequencing: a single-center experience. Front Pediatr 2025; 13:1471965. [PMID: 40083435 PMCID: PMC11904636 DOI: 10.3389/fped.2025.1471965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 01/28/2025] [Indexed: 03/16/2025] Open
Abstract
Background We aimed to understand the genetic etiology in children presenting with epilepsy and/or developmental delay by using next-generation sequencing (NGS). Materials and methods We included children presenting to our pediatric neurology clinic with a diagnosis of epilepsy and/or developmental delay between January 2019 and December 2021. We evaluated the patients using the NGS equipment in our genetic laboratory. Results In total, 90 patients were included in the study. Twenty (34.4%) out of 58 patients who had undergone whole-exome sequencing (WES) had pathogenic or likely pathogenic (P/LP) variants and 11 (18.9%) had variants of unknown significance (VUS). Five (41.6%) out of 12 patients who had undergone whole-genome sequencing had P/LP variants and 5 (41.6%) had VUS. Eleven (55%) out of 20 patients who had undergone WES and chromosomal microarray had P/LP variants and 2 (10%) had VUS. Twenty-six novel variants were described. Twelve patients (13.3%) were diagnosed using a known specific treatment. Conclusion NGS aids in precisely diagnosing children with epilepsy and/or developmental delay. Furthermore, it provides a correct prognosis, specific treatment methods, and a multidisciplinary approach.
Collapse
Affiliation(s)
- Handan Kava
- Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ozlem Akgun-Dogan
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Department of Transitional Medicine, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | | | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Acibadem Mehmet Ali Aydinlar University Rare Diseases and Orphan Drugs Application and Research Center (ACURARE), Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
- Department of Genome Studies, Health Sciences Institute, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| | - Ugur Isik
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Türkiye
| |
Collapse
|
8
|
Pandey R, Brennan NF, Trachana K, Katsandres S, Bodamer O, Belmont J, Veenstra DL, Peng S. A meta-analysis of diagnostic yield and clinical utility of genome and exome sequencing in pediatric rare and undiagnosed genetic diseases. Genet Med 2025; 27:101398. [PMID: 40022598 DOI: 10.1016/j.gim.2025.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
PURPOSE To systematically evaluate the diagnostic yield and clinical utility of genome sequencing (GS) and exome sequencing (ES; genome-wide sequencing [GWS]) in pediatric patients with rare and undiagnosed genetic diseases. METHODS We conducted a meta-analysis of studies published between 2011 and 2023. To address study heterogeneity, comparative analyses included within-cohort studies using random-effects models. RESULTS We identified 108 studies including 24,631 probands with diverse clinical indications. The pooled diagnostic yield among within-cohort studies (N = 13) for GWS was 34.2% (95% CI: 27.6-41.5; I2: 86%) vs 18.1% (95% CI: 13.1-24.6; I2: 89%) for non-GWS, with 2.4-times odds of diagnosis (95% CI: 1.40-4.04; P < .05). The pooled diagnostic yield among within-cohort studies (N = 3) for GS was 30.6% (95% CI: 18.6-45.9; I2: 79%) vs 23.2% (95% CI: 18.5-28.7; I2: 58%) for ES, with 1.7-times the odds of diagnosis (95% CI: 0.94-2.92; P = .13). In first-line testing, the diagnostic yield tended to be higher for GS than for ES across clinical subgroups. The pooled clinical utility among patients with a positive diagnosis was 58.7% (95% CI: 47.3-69.2; I2: 81%) for GS and 54.5% (95% CI: 40.7-67.6; I2: 87%) for ES. CONCLUSION GS appears to have a higher diagnostic yield than ES, with similar clinical utility per positive diagnosis.
Collapse
Affiliation(s)
- Rajshree Pandey
- Curta Inc, Seattle, WA; The CHOICE Institute, School of Pharmacy, University of Washington, Seattle, WA
| | | | | | | | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - David L Veenstra
- Curta Inc, Seattle, WA; The CHOICE Institute, School of Pharmacy, University of Washington, Seattle, WA.
| | | |
Collapse
|
9
|
Romito LM, Colucci F, Leta V, Panteghini C, Telese R, Tolva G, Villa R, Elia AE, Eleopra R, Peron A, Garavaglia B, Iascone M. Causative Role of the SLC6A1 p.Asp451Gly Variant in a Patient with Combined Dystonia and Neurodevelopmental Disorder. Mov Disord Clin Pract 2025; 12:239-241. [PMID: 39446029 PMCID: PMC11802647 DOI: 10.1002/mdc3.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 09/13/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Luigi M. Romito
- Parkinson and Movement Disorders Unit, Department of Clinical NeurosciencesFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Health SciencesUniversità degli Studi di MilanoMilanItaly
| | - Fabiana Colucci
- Parkinson and Movement Disorders Unit, Department of Clinical NeurosciencesFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Neuroscience and RehabilitationUniversity of FerraraFerraraItaly
| | - Valentina Leta
- Parkinson and Movement Disorders Unit, Department of Clinical NeurosciencesFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Parkinson's Centre of Excellence at King's College Hospital and King's College LondonLondonUK
| | - Celeste Panteghini
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Roberta Telese
- Parkinson and Movement Disorders Unit, Department of Clinical NeurosciencesFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of NeuroscienceUniversità Degli Studi di Milano‐BicoccaMilanItaly
| | - Gianluca Tolva
- Medical Genetics Unit, ASST Santi Paolo e CarloMilanItaly
| | - Roberta Villa
- Medical Genetics Unit, ASST Santi Paolo e CarloMilanItaly
| | - Antonio E. Elia
- Parkinson and Movement Disorders Unit, Department of Clinical NeurosciencesFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Roberto Eleopra
- Parkinson and Movement Disorders Unit, Department of Clinical NeurosciencesFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Angela Peron
- Division of Medical Genetics, Meyer Children's Hospital IRCCS, Florence, Italy and Department of Clinical and Experimental Biomedical Sciences “Mario Serio”Università degli Studi di FirenzeFlorenceItaly
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Maria Iascone
- Laboratorio di Genetica MedicaASST Papa Giovanni XXIIIBergamoItaly
| |
Collapse
|
10
|
Vinci E, Beretta S, Colombo V, Zippo A, Catanese A, Wiegreffe C, Britsch S, Boeckers T, Verpelli C, Sala C. Regulation of Dendrite and Dendritic Spine Formation by TCF20. J Neurochem 2025; 169:e16297. [PMID: 39801227 PMCID: PMC11725998 DOI: 10.1111/jnc.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/24/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025]
Abstract
Mutations in the Transcription Factor 20 (TCF20) have been identified in patients with autism spectrum disorders (ASDs), intellectual disabilities (IDs), and other neurological issues. Recently, a new syndrome called TCF20-associated neurodevelopmental disorders (TAND) has been described, with specific clinical features. While TCF20's role in the neurogenesis of mouse embryos has been reported, little is known about its molecular function in neurons. In this study, we demonstrate that TCF20 is expressed in all analyzed brain regions in mice, and its expression increases during brain development but decreases in muscle tissue. Our findings suggest that TCF20 plays a central role in dendritic arborization and dendritic spine formation processes. RNA sequencing analysis revealed a downregulation of pre- and postsynaptic pathways in TCF20 knockdown neurons. We also found decreased levels of GABRA1, BDNF, PSD-95, and c-Fos in total homogenates and in synaptosomal preparations of knockdown TCF20 rat cortical cultures. Furthermore, synaptosomal preparations of knockdown TCF20 rat cortical cultures showed significant downregulation of GluN2B and GABRA5, while GluA2 was significantly upregulated. Overall, our data suggest that TCF20 plays an essential role in neuronal development and function by modulating the expression of proteins involved in dendrite and synapse formation and function.
Collapse
Affiliation(s)
- Ersilia Vinci
- CNR Neuroscience Institute, MilanoVedano al LambroItaly
| | | | | | - Antonio Zippo
- CNR Neuroscience Institute, MilanoVedano al LambroItaly
| | - Alberto Catanese
- Institute of Anatomy and Cell BiologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular AnatomyUniversity of UlmUlmGermany
| | - Tobias Boeckers
- Institute of Anatomy and Cell BiologyUniversity of UlmUlmGermany
- German Center for Neurodegenerative Diseases (DZNE)UlmGermany
| | | | - Carlo Sala
- CNR Neuroscience Institute, MilanoVedano al LambroItaly
| |
Collapse
|
11
|
Vivó P, Hernández-Andreu JM, Prieto-Ruíz JÁ, Ventura González I. GPBP or CERT: The Roles in Autoimmunity, Cancer or Neurodegenerative Disease-A Systematic Review. Int J Mol Sci 2024; 25:13179. [PMID: 39684889 DOI: 10.3390/ijms252313179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
In 1999, Goodpasture antigen-binding protein (GPBP) was identified as a protein interacting with the N-terminal region of the human Goodpasture antigen, linked to collagen IV in patients with Goodpasture syndrome, an autoimmune disease. In 2003, a splice variant lacking a serine-rich domain was discovered, which is involved in the cytosolic transport of ceramide, leading to its renaming as Ceramide Transfer Protein (CERT). This dual functionality has sparked debate regarding the roles of GPBP/CERT, as they appear to participate in distinct research fields and are implicated in various pathologies. This review follows the guidelines of the Preferred Reporting Items for Systematic Reviews (PRISMA). It compiles data from searches on Medline (PubMed) and Web of Science conducted between February and November 2022. Out of 465 records, 47 publications were selected for review. The literature predominantly focuses on GPBP/CERT as ceramide transporters. Notably, no studies contradict either hypothesis, with substantial scientific evidence supporting both roles. The need for further research is clear, and new insights into these proteins' involvement in multiple pathologies could drive future therapeutic strategies. GPBP and CERT are multifunctional proteins with roles beyond collagen organization and ceramide transport, extending to autoimmune disorders, neurodegenerative diseases, and cancer. The ongoing controversy highlights the necessity for continued investigation, which promises to offer significant insights and potential therapeutic avenues.
Collapse
Affiliation(s)
- Paula Vivó
- School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo no. 2, 46001 Valencia, Spain
| | - José Miguel Hernández-Andreu
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo no. 2, 46001 Valencia, Spain
- Translational Research Center San Alberto Magno CITSAM, Catholic University of Valencia San Vicente Mártir, C/Quevedo no. 2, 46001 Valencia, Spain
| | - Jesús Ángel Prieto-Ruíz
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo no. 2, 46001 Valencia, Spain
- Translational Research Center San Alberto Magno CITSAM, Catholic University of Valencia San Vicente Mártir, C/Quevedo no. 2, 46001 Valencia, Spain
| | - Ignacio Ventura González
- Molecular and Mitochondrial Medicine Research Group, School of Medicine and Health Sciences, Catholic University of Valencia San Vicente Mártir, C/Quevedo no. 2, 46001 Valencia, Spain
- Translational Research Center San Alberto Magno CITSAM, Catholic University of Valencia San Vicente Mártir, C/Quevedo no. 2, 46001 Valencia, Spain
| |
Collapse
|
12
|
Boyarchuk O, Volianska L, Smashna O, Makukh H. Exome sequencing in 90 children with developmental delay: a single-center experience. Front Genet 2024; 15:1505254. [PMID: 39678379 PMCID: PMC11638168 DOI: 10.3389/fgene.2024.1505254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Developmental delay (DD) in children is often caused by genetic abnormalities, which are challenging to diagnose due to the vast genetic variability. Methods This study presents a detailed analysis of whole-exome sequencing (WES) on 90 children with DD at a single clinical center. Results We identified pathogenic or likely pathogenic variants in 27.8% of cases, with 7.8% revealing variants of uncertain significance (VUS). Among the positive findings, 21 (84.0%) corresponded to the main clinical manifestations in patients, and 4 (16.0%) secondary findings provided new insights into the patient's conditions. Positive and inconclusive cases led to a revision of the diagnosis or management plan in 34.4% of cases. The positive genetic result in children with Developmental delay was higher in the presence of epilepsy or seizures (odds ratio - 5.4444; 95% CI 2.0176 to 14.6918; p = 0.0008) and more than 3 dysmorphic features (odds ratio - 7.1739; 95% CI 1.7791 to 28.9282; p = 0.0056). Variants compatible with the clinical manifestations were identified in 11.9% of children with autistic spectrum disorders. Conclusion Our findings emphasize the utility of WES in clinical diagnostics, offering significant insights into patient management and potentially guiding therapeutic decisions.
Collapse
Affiliation(s)
- Oksana Boyarchuk
- Department of Children’s Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Liubov Volianska
- Department of Children’s Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Olena Smashna
- Department of Children’s Diseases and Pediatric Surgery, I.Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Halyna Makukh
- Department of the Research and Biotechnology, Scientific Medical Genetic Center LeoGENE, Lviv, Ukraine
| |
Collapse
|
13
|
Hiatt SM, Lawlor JMJ, Handley LH, Latner DR, Bonnstetter ZT, Finnila CR, Thompson ML, Boston LB, Williams M, Rodriguez Nunez I, Jenkins J, Kelley WV, Bebin EM, Lopez MA, Hurst ACE, Korf BR, Schmutz J, Grimwood J, Cooper GM. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. Genome Res 2024; 34:1747-1762. [PMID: 39299904 PMCID: PMC11610584 DOI: 10.1101/gr.279227.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Variant detection from long-read genome sequencing (lrGS) has proven to be more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare diseases that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, nine of which (8/96, ∼9.4%) harbored pathogenic or likely pathogenic variants. Nine probands (∼9.4%) had variants that were accurately called in both srGS and lrGS and represent changes to clinical interpretation, mostly from recently published gene-disease associations. Seven cases included variants that were only correctly interpreted in lrGS, including copy-number variants (CNVs), an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality control and filtration. Thus, while reanalysis of older srGS data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS data sets grow allowing for better variant-frequency annotation, the additional lrGS-only rare disease yield will grow over time.
Collapse
Affiliation(s)
- Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA;
| | - James M J Lawlor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Lori H Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Donald R Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Candice R Finnila
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Whitley V Kelley
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Michael A Lopez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35924, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA;
| |
Collapse
|
14
|
Lai G, Gu Q, Lai Z, Chen H, Chen J, Huang J. The application of whole-exome sequencing in the early diagnosis of rare genetic diseases in children: a study from Southeastern China. Front Pediatr 2024; 12:1448895. [PMID: 39439447 PMCID: PMC11493614 DOI: 10.3389/fped.2024.1448895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background Genetic diseases exhibit significant clinical and genetic diversity, leading to a complex and challenging diagnostic process. Exploiting novel approaches is imperative for the molecular diagnosis of genetic diseases. In this study, we utilized whole-exome sequencing (WES) to facilitate early diagnosis in patients suspected of genetic disorders. Methods This retrospective analysis included 144 patients diagnosed by singleton-WES Trio-WES between January 2021 and December 2023. We investigated the relevance of diagnosis rates with age, clinical presentation, and sample type. Results Among the 144 patients, 61 were diagnosed, yielding an overall diagnostic rate of 42.36%, with Trio-WES demonstrating a significantly higher diagnostic rate of 51.43% (36/70) compared to singleton-WES at 33.78% (25/74) (p < 0.05). Global developmental delay had a diagnosis rate of 67.39%, significantly higher than muscular hypotonia at 30.43% (p < 0.01) among different clinical phenotypic groups. Autosomal dominant disorders accounted for 70.49% (43/61) of positive cases, with autosomal abnormalities being fivefold more prevalent than sex chromosome abnormalities. Notably, sex chromosome abnormalities were more prevalent in males (80%, 8/10). Furthermore, 80.56% (29/36) of pathogenic variants were identified as de novo mutations through Trio-WES. Conclusions These findings highlight the effectiveness of WES in identifying genetic variants, and elucidating the molecular basis of genetic diseases, ultimately enabling early diagnosis in affected children.
Collapse
Affiliation(s)
| | | | | | | | | | - Jungao Huang
- Central Laboratory, Ganzhou Maternal and Child Health Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
15
|
You C, Xu L, Zhu L, Qiu S, Xu N, Wang Y, Yang L. Clinical analysis of five CHD2 gene mutations in Chinese children with epilepsy. Seizure 2024; 121:38-44. [PMID: 39068850 DOI: 10.1016/j.seizure.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Increasing evidence reveals critical roles for CHD2 in children with developmental and epileptic encephalopathy. OBJECTIVES The aim was to present clinical analysis results of five cases with CHD2 mutations and 157 reported cases with non-copy number variations (non-CNV) of CHD2. METHODS This study recruited pediatric epilepsy patients with CHD2 mutations and clinical data from November 2016 to October 2023 in the Linyi People's Hospital, China. Whole-exome and gene panel sequencing were employed to find mutations. The HGMD and PubMed databases were examined for documented cases that had CHD2 mutations. RESULTS This study reports five cases with CHD2 mutations: c.3543T > A, c.1850A > G, c.2536C > T, c.4233_4236del, c.3782G > C. Three novel mutations (c.3543T > A, c.1850A > G, c.2536C > T) have never been reported. c.4233_4236del has been reported in three cases, indicating that this locus may be a mutation hotspot. c.3782G > C has been reported in one case. All five patients had seizures before the age of four. Three patients had varying degrees of developmental delay, and four patients had varying degrees of intellectual disability. All of them had controlled seizures after Valproic acid (VPA) monotherapy or VPA in combination with other medications. Furthermore, we reviewed 157 reported cases having non-CNV mutations of CHD2. Most mutations of these cases were de novo. Epilepsy, developmental delay, and intellectual disability were the typical clinical phenotypes. We also found a significant clustering of the mutations near the C-terminus of the CHD2 protein (P < 0.001). CONCLUSION This study reports new CHD2 genotypes and analyzes reported CHD2 mutation cases. Given its significance in epileptic encephalopathies, research on the CHD2 gene may provide new insights into epileptogenesis.
Collapse
Affiliation(s)
- Cuiping You
- Central Laboratory, Linyi People's Hospital, Linyi, Shandong, China
| | - Liyun Xu
- Shandong Medical College, Linyi, China
| | - Liping Zhu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Shiyan Qiu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Na Xu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Yanyan Wang
- Department of Laboratory Medicine, Linyi People's Hospital, Linyi, China; Key Laboratory for Laboratory Medicine of Linyi City, Linyi, China; Shandong Provincial Medicine and Health Key Laboratory for Precise Diagnosis of Hereditary Rare Diseases, Linyi People's Hospital, Linyi, China
| | - Li Yang
- Department of Pediatrics, Linyi People's Hospital, Linyi, China.
| |
Collapse
|
16
|
Lai W, Zhao Y, Chen Y, Dai Z, Chen R, Niu Y, Chen X, Chen S, Huang G, Shan Z, Zheng J, Hu Y, Chen Q, Gong S, Kang S, Guo H, Ma X, Song Y, Xia K, Wang J, Zhou L, So KF, Wang K, Qiu S, Zhang L, Chen J, Shi L. Autism patient-derived SHANK2B Y29X mutation affects the development of ALDH1A1 negative dopamine neuron. Mol Psychiatry 2024; 29:3180-3194. [PMID: 38704506 PMCID: PMC11449796 DOI: 10.1038/s41380-024-02578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions. Different mutations on a single ASD gene contribute to heterogeneity of disease phenotypes, possibly due to functional diversity of generated isoforms. SHANK2, a causative gene in ASD, demonstrates this phenomenon, but there is a scarcity of tools for studying endogenous SHANK2 proteins in an isoform-specific manner. Here, we report a point mutation on SHANK2, which is found in a patient with autism, located on exon of the SHANK2B transcript variant (NM_133266.5), hereby SHANK2BY29X. This mutation results in an early stop codon and an aberrant splicing event that impacts SHANK2 transcript variants distinctly. Induced pluripotent stem cells (iPSCs) carrying this mutation, from the patient or isogenic editing, fail to differentiate into functional dopamine (DA) neurons, which can be rescued by genetic correction. Available SMART-Seq single-cell data from human midbrain reveals the abundance of SHANK2B transcript in the ALDH1A1 negative DA neurons. We then show that SHANK2BY29X mutation primarily affects SHANK2B expression and ALDH1A1 negative DA neurons in vitro during early neuronal developmental stage. Mice knocked in with the identical mutation exhibit autistic-like behavior, decreased occupancy of ALDH1A1 negative DA neurons and decreased dopamine release in ventral tegmental area (VTA). Our study provides novel insights on a SHANK2 mutation derived from autism patient and highlights SHANK2B significance in ALDH1A1 negative DA neuron.
Collapse
Affiliation(s)
- Wanjing Lai
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yingying Zhao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, 999077, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalan Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Zhenzhu Dai
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Ruhai Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yimei Niu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Xiaoxia Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Shuting Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Guanqun Huang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Ziyun Shan
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajun Zheng
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yu Hu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qingpei Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Siyi Gong
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Sai Kang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Hui Guo
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 850004, USA
| | - Youqiang Song
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Jie Wang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 850004, USA
| | - Li Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China.
| | - Jiekai Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, 999077, China.
| | - Lingling Shi
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China.
- Department of Psychiatry, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China.
- Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu, 226019, China.
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| |
Collapse
|
17
|
Ali D, Laighneach A, Corley E, Patlola SR, Mahoney R, Holleran L, McKernan DP, Kelly JP, Corvin AP, Hallahan B, McDonald C, Donohoe G, Morris DW. Direct targets of MEF2C are enriched for genes associated with schizophrenia and cognitive function and are involved in neuron development and mitochondrial function. PLoS Genet 2024; 20:e1011093. [PMID: 39259737 PMCID: PMC11419381 DOI: 10.1371/journal.pgen.1011093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/23/2024] [Accepted: 08/27/2024] [Indexed: 09/13/2024] Open
Abstract
Myocyte Enhancer Factor 2C (MEF2C) is a transcription factor that plays a crucial role in neurogenesis and synapse development. Genetic studies have identified MEF2C as a gene that influences cognition and risk for neuropsychiatric disorders, including autism spectrum disorder (ASD) and schizophrenia (SCZ). Here, we investigated the involvement of MEF2C in these phenotypes using human-derived neural stem cells (NSCs) and glutamatergic induced neurons (iNs), which represented early and late neurodevelopmental stages. For these cellular models, MEF2C function had previously been disrupted, either by direct or indirect mutation, and gene expression assayed using RNA-seq. We integrated these RNA-seq data with MEF2C ChIP-seq data to identify dysregulated direct target genes of MEF2C in the NSCs and iNs models. Several MEF2C direct target gene-sets were enriched for SNP-based heritability for intelligence, educational attainment and SCZ, as well as being enriched for genes containing rare de novo mutations reported in ASD and/or developmental disorders. These gene-sets are enriched in both excitatory and inhibitory neurons in the prenatal and adult brain and are involved in a wide range of biological processes including neuron generation, differentiation and development, as well as mitochondrial function and energy production. We observed a trans expression quantitative trait locus (eQTL) effect of a single SNP at MEF2C (rs6893807, which is associated with IQ) on the expression of a target gene, BNIP3L. BNIP3L is a prioritized risk gene from the largest genome-wide association study of SCZ and has a function in mitophagy in mitochondria. Overall, our analysis reveals that either direct or indirect disruption of MEF2C dysregulates sets of genes that contain multiple alleles associated with SCZ risk and cognitive function and implicates neuron development and mitochondrial function in the etiology of these phenotypes.
Collapse
Affiliation(s)
- Deema Ali
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Aodán Laighneach
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Emma Corley
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Saahithh Redddi Patlola
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - Rebecca Mahoney
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| | - Laurena Holleran
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Declan P. McKernan
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - John P. Kelly
- Discipline of Pharmacology & Therapeutics, School of Medicine, University of Galway, Ireland
| | - Aiden P. Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Psychiatry, School of Medicine, University of Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- Discipline of Psychiatry, School of Medicine, University of Galway, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Psychology, University of Galway, Ireland
| | - Derek W. Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), University of Galway, Ireland
- School of Biological and Chemical Sciences, University of Galway, Ireland
| |
Collapse
|
18
|
Desrosiers-Battu LR, Wang T, Reuther J, Miles G, Dai H, Jo E, Russell H, Raesz-Martinez R, Recinos A, Gutierrez S, Thomas A, Berenson E, Corredor J, Nugent K, Castillo RW, Althaus R, Littlejohn R, Gessay S, Tomlinson G, Gill J, Bernini JC, Vallance K, Griffin T, Scollon S, Lin F, Eng C, Kulkarni S, Hilsenbeck SG, Roy A, McGuire AL, Parsons DW, Plon SE. Comparing the Diagnostic Yield of Germline Exome Versus Panel Sequencing in the Diverse Population of the Texas KidsCanSeq Pediatric Cancer Study. JCO Precis Oncol 2024; 8:e2400187. [PMID: 39259914 PMCID: PMC11392521 DOI: 10.1200/po.24.00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE To evaluate the relative diagnostic yield of clinical germline genomic tests in a diverse pediatric cancer population. PATIENTS AND METHODS The KidsCanSeq study enrolled pediatric cancer patients across six sites in Texas. Germline analysis included both exome sequencing and a therapy-focused pediatric cancer gene panel. The results were categorized by participants demographics, the presence of pathogenic or likely pathogenic (P/LP) variants, and variants of uncertain significance (VUS) in cancer predisposition genes (CPGs). Pediatric actionable CPGs were defined as those with cancer surveillance recommendations during childhood. RESULTS Cancer P/LP variants were reported by at least one platform in 103 of 578 (17.8%) participants of which 76 were dominant cancer genes (13.1%) with no significant differences by self-described race or Hispanic ethnicity. However, the proportion of participants with VUS was greater in Asian and African American participants (P = .0029). Diagnostic yield was 16.6% for exome versus 8.5% for panel (P < .0001) with 42 participants with concordant germline results. Exome-only results included P/LP variants in 30 different CPGs in 54 participants, whereas panel-only results included seven participants with a copy number or structural P/LP variants in CPGs. There was no significant difference in diagnostic yield limited to pediatric actionable CPGs (P = .6171). CONCLUSION Approximately 18% of a diverse pediatric cancer population had germline diagnostic findings with 50% of P/LP variants reported by only one platform because of CPGs not on the targeted panel and copy number variants (CNVs)/rearrangements not reported by exome. Although diagnostic yields were similar in this diverse population, increases in VUS results were observed in Asian and African American populations. Given the clinical significance of CNVs/rearrangements in this cohort, detection is critical to optimize germline analysis of pediatric cancer populations.
Collapse
Affiliation(s)
| | | | | | - George Miles
- Baylor College of Medicine
- Texas Children’s Hospital
| | | | | | | | | | - Alva Recinos
- Baylor College of Medicine
- Texas Children’s Hospital
| | | | | | | | | | - Kimberly Nugent
- Baylor College of Medicine
- CHRISTUS Children’s Hospital (formerly Children’s Hospital of San Antonio)
| | | | | | - Rebecca Littlejohn
- Baylor College of Medicine
- CHRISTUS Children’s Hospital (formerly Children’s Hospital of San Antonio)
| | | | | | | | | | | | - Timothy Griffin
- Baylor College of Medicine
- CHRISTUS Children’s Hospital (formerly Children’s Hospital of San Antonio)
| | | | - Frank Lin
- Baylor College of Medicine
- Texas Children’s Hospital
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Coleman TF, Pugh J, Kelley WV, East KM, Greve V, Finnila CR, Henson A, Korf BR, Barsh GS, Cooper GM, Cochran ME. Errors in genome sequencing result disclosures: A randomized controlled trial comparing neonatology non-genetics healthcare professionals and genetic counselors. Genet Med 2024; 26:101198. [PMID: 38943479 DOI: 10.1016/j.gim.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
PURPOSE We compared the rate of errors in genome sequencing (GS) result disclosures by genetic counselors (GC) and trained non-genetics healthcare professionals (NGHPs) in SouthSeq, a randomized trial utilizing GS in critically ill infants. METHODS Over 400 recorded GS result disclosures were analyzed for major and minor errors. We used Fisher's exact test to compare error rates between GCs and NGHPs and performed a qualitative content analysis to characterize error themes. RESULTS Major errors were identified in 7.5% of disclosures by NGHPs and in no disclosures by GCs. Minor errors were identified in 32.1% of disclosures by NGHPs and in 11.4% of disclosures by GCs. Although most disclosures lacked errors, NGHPs were significantly more likely to make any error than GCs for all result types (positive, negative, or uncertain). Common major error themes include omission of critical information, overstating a negative result, and overinterpreting an uncertain result. The most common minor error was failing to disclose negative secondary findings. CONCLUSION Trained NGHPs made clinically significant errors in GS result disclosures. Characterizing common errors in result disclosure can illuminate gaps in education to inform the development of future genomics training and alternative service delivery models.
Collapse
Affiliation(s)
| | - Jada Pugh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | | | - Kelly M East
- HudsonAlpha Institute for Biotechnology, Huntsville, AL
| | | | | | - Ava Henson
- HudsonAlpha Institute for Biotechnology, Huntsville, AL; Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center UTHealth Houston, Houston, TX
| | - Bruce R Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL
| | | | | | | |
Collapse
|
20
|
Chi CS, Tsai CR, Lee HF. Resolving unsolved whole-genome sequencing data in paediatric neurological disorders: a cohort study. Arch Dis Child 2024; 109:730-735. [PMID: 38789118 PMCID: PMC11347223 DOI: 10.1136/archdischild-2024-326985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVE To resolve unsolved whole-genome sequencing (WGS) data in individuals with paediatric neurological disorders. DESIGN A cohort study method using updated bioinformatic tools, new analysis targets, clinical information and literature databases was employed to reanalyse existing unsolved genome data. PARTICIPANTS From January 2016 to September 2023, a total of 615 individuals who aged under 18 years old, exhibited neurological disorders and received singleton WGS were recruited. 364 cases were unsolved during initial WGS analysis, in which 102 consented to reanalyse existing singleton WGS data. RESULTS Median duration for reanalysis after initial negative WGS results was 2 years and 4 months. The diagnostic yield was 29 of 102 individuals (28.4%) through reanalysis. New disease gene discovery and new target acquisitions contributed to 13 of 29 solved cases (44.8%). The reasons of non-detected causative variants during initial WGS analysis were variant reclassification in 9 individuals (31%), analytical issue in 9 (31%), new emerging disease-gene association in 8 (27.6%) and clinical update in 3 (10.3%). The 29 new diagnoses increased the cumulative diagnostic yield of clinical WGS in the entire study cohort to 45.5% after reanalysis. CONCLUSIONS Unsolved paediatric WGS individuals with neurological disorders could obtain molecular diagnoses through reanalysis within a timeframe of 2-2.5 years. New disease gene, structural variations and deep intronic splice variants make a significant contribution to diagnostic yield. This approach can provide precise genetic counselling to positive reanalysis results and end a diagnostic odyssey.
Collapse
Affiliation(s)
- Ching-Shiang Chi
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chi-Ren Tsai
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hsiu-Fen Lee
- Division of Pediatric Neurology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
21
|
Slavotinek AM, Thompson ML, Martin LJ, Gelb BD. Diagnostic yield after next-generation sequencing in pediatric cardiovascular disease. HGG ADVANCES 2024; 5:100286. [PMID: 38521975 PMCID: PMC11024993 DOI: 10.1016/j.xhgg.2024.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024] Open
Abstract
Genetic testing with exome sequencing and genome sequencing is increasingly offered to infants and children with cardiovascular diseases. However, the rates of positive diagnoses after genetic testing within the different categories of cardiac disease and phenotypic subtypes of congenital heart disease (CHD) have been little studied. We report the diagnostic yield after next-generation sequencing in 500 patients with CHD from diverse population subgroups that were enrolled at three different sites in the Clinical Sequencing Evidence-Generating Research consortium. Patients were ascertained due to a primary cardiovascular issue comprising arrhythmia, cardiomyopathy, and/or CHD, and corresponding human phenotype ontology terms were selected to describe the cardiac and extracardiac findings. We examined the diagnostic yield for patients with arrhythmia, cardiomyopathy, and/or CHD and phenotypic subtypes of CHD comprising conotruncal defects, heterotaxy, left ventricular outflow tract obstruction, septal defects, and "other" heart defects. We found a significant increase in the frequency of positive findings for patients who underwent genome sequencing compared to exome sequencing and for syndromic cardiac defects compared to isolated cardiac defects. We also found significantly higher diagnostic rates for patients who presented with isolated cardiomyopathy compared to isolated CHD. For patients with syndromic presentations who underwent genome sequencing, there were significant differences in the numbers of positive diagnoses for phenotypic subcategories of CHD, ranging from 31.7% for septal defects to 60% for "other". Despite variation in the diagnostic yield at each site, our results support genetic testing in pediatric patients with syndromic and isolated cardiovascular issues and in all subtypes of CHD.
Collapse
Affiliation(s)
- Anne M Slavotinek
- Division of Medical Genetics, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Michelle L Thompson
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Weymann D, Buckell J, Fahr P, Loewen R, Ehman M, Pollard S, Friedman JM, Stockler-Ipsiroglu S, Elliott AM, Wordsworth S, Buchanan J, Regier DA. Health Care Costs After Genome-Wide Sequencing for Children With Rare Diseases in England and Canada. JAMA Netw Open 2024; 7:e2420842. [PMID: 38985473 PMCID: PMC11238031 DOI: 10.1001/jamanetworkopen.2024.20842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Importance Etiologic diagnoses for rare diseases can involve a diagnostic odyssey, with repeated health care interactions and inconclusive diagnostics. Prior studies reported cost savings associated with genome-wide sequencing (GWS) compared with cytogenetic or molecular testing through rapid genetic diagnosis, but there is limited evidence on whether diagnosis from GWS is associated with reduced health care costs. Objective To measure changes in health care costs after diagnosis from GWS for Canadian and English children with suspected rare diseases. Design, Setting, and Participants This cohort study was a quasiexperimental retrospective analysis across 3 distinct English and Canadian cohorts, completed in 2023. Mixed-effects generalized linear regression was used to estimate associations between GWS and costs in the 2 years before and after GWS. Difference-in-differences regression was used to estimate associations of genetic diagnosis and costs. Costs are in 2019 US dollars. GWS was conducted in a research setting (Genomics England 100 000 Genomes Project [100KGP] and Clinical Assessment of the Utility of Sequencing and Evaluation as a Service [CAUSES] Research Clinic) or clinical outpatient setting (publicly reimbursed GWS in British Columbia [BC], Canada). Participants were children with developmental disorders, seizure disorders, or both undergoing GWS between 2014 and 2019. Data were analyzed from April 2021 to September 2023. Exposures GWS and genetic diagnosis. Main Outcomes and Measures Annual health care costs and diagnostic costs per child. Results Study cohorts included 7775 patients in 100KGP, among whom 788 children had epilepsy (mean [SD] age at GWS, 11.6 [11.1] years; 400 female [50.8%]) and 6987 children had an intellectual disability (mean [SD] age at GWS, 8.2 [8.4] years; 2750 female [39.4%]); 77 patients in CAUSES (mean [SD] age at GWS, 8.5 [4.4] years; 33 female [42.9%]); and 118 publicly reimbursed GWS recipients from BC (mean [SD] age at GWS, 5.5 [5.2] years; 58 female [49.2%]). GWS diagnostic yield was 143 children (18.1%) for those with epilepsy and 1323 children (18.9%) for those with an intellectual disability in 100KGP, 47 children (39.8%) in the BC publicly reimbursed setting, and 42 children (54.5%) in CAUSES. Mean annual per-patient spending over the study period was $5283 (95% CI, $5121-$5427) for epilepsy and $3373 (95% CI, $3322-$3424) for intellectual disability in the 100KGP, $724 (95% CI, $563-$886) in CAUSES, and $1573 (95% CI, $1372-$1773) in the BC reimbursed setting. Receiving a genetic diagnosis from GWS was not associated with changed costs in any cohort. Conclusions and Relevance In this study, receiving a genetic diagnosis was not associated with cost savings. This finding suggests that patient benefit and cost-effectiveness should instead drive GWS implementation.
Collapse
Affiliation(s)
- Deirdre Weymann
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - John Buckell
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Primary Health Care Sciences, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Patrick Fahr
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Rosalie Loewen
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Morgan Ehman
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Samantha Pollard
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| | - Jan M. Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sylvia Stockler-Ipsiroglu
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Biochemical Genetics, BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Alison M. Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - James Buchanan
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research Biomedical Research Centre, Oxford, United Kingdom
| | - Dean A. Regier
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Sandal S, Verma IC, Mahay SB, Dubey S, Sabharwal RK, Kulshrestha S, Saxena R, Suman P, Kumar P, Puri RD. Next-Generation Sequencing in Unexplained Intellectual Disability. Indian J Pediatr 2024; 91:682-695. [PMID: 37804371 DOI: 10.1007/s12098-023-04820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/23/2023] [Indexed: 10/09/2023]
Abstract
OBJECTIVES To determine the diagnostic yield of next generation sequencing (NGS) in patients with moderate/severe/profound intellectual disability (ID) unexplained by conventional tests and to assess the impact of definitive diagnosis on the clinical management and genetic counselling of these families. METHODS This was a ambi-directional study conducted at Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi. The study comprised 227 patients (prospective cohort - 126, retrospective cohort - 101) in whom NGS based tests were performed. RESULTS The mean age of study cohort was 4.5 ± 4.4 y (2.5 mo to 37.3 y). The male: female ratio was 1.6:1. The overall diagnostic yield of NGS was 53.3% (121/227) with causative variants identified in 84 known ID genes. Autosomal recessive intellectual disability (ARID) (23.3%, 53/227) was the most common followed by autosomal dominant intellectual disability (ADID) (20.7%, 47/227) and X-linked intellectual disability (XLID) (9.2%, 21/227). The diagnostic yield was notably higher for ID plus associated condition group (55.6% vs. 20%) (p = 0.0075, Fisher's exact test) compared to isolated ID group. The impact of diagnosis on active or long-term management was observed in 17/121 (14%) and on reproductive outcomes in 26/121 (21.4%) families. CONCLUSIONS There is paucity of data on molecular genetic spectrum of ID from India. The current study identifies extensive genetic heterogeneity and the impact of NGS in patients with ID unexplained by standard genetic tests. The study identified ARID as the most common cause of ID with additional implications for reproductive outcomes. It reiterates the importance of phenotype in genetic testing.
Collapse
Affiliation(s)
- Sapna Sandal
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar Chander Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sunita Bijarnia Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sudhisha Dubey
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - R K Sabharwal
- Department of Pediatric Neurology, Sir Ganga Ram Hospital, New Delhi, India
| | - Samarth Kulshrestha
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Suman
- Department of Developmental Pediatrics, Sir Ganga Ram Hospital, New Delhi, India
| | - Praveen Kumar
- Department of Pediatric Neurology, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| |
Collapse
|
24
|
Cortés BI, Meza RC, Ancatén-González C, Ardiles NM, Aránguiz MI, Tomita H, Kaplan DR, Cornejo F, Nunez-Parra A, Moya PR, Chávez AE, Cancino GI. Loss of protein tyrosine phosphatase receptor delta PTPRD increases the number of cortical neurons, impairs synaptic function and induces autistic-like behaviors in adult mice. Biol Res 2024; 57:40. [PMID: 38890753 PMCID: PMC11186208 DOI: 10.1186/s40659-024-00522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The brain cortex is responsible for many higher-level cognitive functions. Disruptions during cortical development have long-lasting consequences on brain function and are associated with the etiology of brain disorders. We previously found that the protein tyrosine phosphatase receptor delta Ptprd, which is genetically associated with several human neurodevelopmental disorders, is essential to cortical brain development. Loss of Ptprd expression induced an aberrant increase of excitatory neurons in embryonic and neonatal mice by hyper-activating the pro-neurogenic receptors TrkB and PDGFRβ in neural precursor cells. However, whether these alterations have long-lasting consequences in adulthood remains unknown. RESULTS Here, we found that in Ptprd+/- or Ptprd-/- mice, the developmental increase of excitatory neurons persists through adulthood, affecting excitatory synaptic function in the medial prefrontal cortex. Likewise, heterozygosity or homozygosity for Ptprd also induced an increase of inhibitory cortical GABAergic neurons and impaired inhibitory synaptic transmission. Lastly, Ptprd+/- or Ptprd-/- mice displayed autistic-like behaviors and no learning and memory impairments or anxiety. CONCLUSIONS These results indicate that loss of Ptprd has long-lasting effects on cortical neuron number and synaptic function that may aberrantly impact ASD-like behaviors.
Collapse
Affiliation(s)
- Bastián I Cortés
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Rodrigo C Meza
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
- Programa de Doctorado en Ciencias mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Nicolás M Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - María-Ignacia Aránguiz
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Hideaki Tomita
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Ludna Biotech Co., Ltd, Suita, Osaka, 565-0871, Japan
| | - David R Kaplan
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1X8, Canada
| | - Francisca Cornejo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, 8580745, Chile
| | - Alexia Nunez-Parra
- Cell Physiology Laboratory, Biology Department, Faculty of Science, Universidad de Chile, Santiago, 7800003, Chile
| | - Pablo R Moya
- Centro de Estudios Traslacionales en Estrés y Salud Mental (C-ESTRES), Universidad de Valparaíso, Valparaíso, 2340000, Chile
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, 2340000, Chile
| | - Gonzalo I Cancino
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
| |
Collapse
|
25
|
Zhang J, Xu Y, Liu Y, Yue L, Jin H, Chen Y, Wang D, Wang M, Chen G, Yang L, Zhang G, Zhang X, Li S, Zhao H, Zhao Y, Niu G, Gao Y, Cai Z, Yang F, Zhu C, Zhu D. Genetic Testing for Global Developmental Delay in Early Childhood. JAMA Netw Open 2024; 7:e2415084. [PMID: 38837156 PMCID: PMC11154162 DOI: 10.1001/jamanetworkopen.2024.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/03/2024] [Indexed: 06/06/2024] Open
Abstract
Importance Global developmental delay (GDD) is characterized by a complex etiology, diverse phenotypes, and high individual heterogeneity, presenting challenges for early clinical etiologic diagnosis. Cognitive impairment is the core symptom, and despite the pivotal role of genetic factors in GDD development, the understanding of them remains limited. Objectives To assess the utility of genetic detection in patients with GDD and to examine the potential molecular pathogenesis of GDD to identify targets for early intervention. Design, Setting, and Participants This multicenter, prospective cohort study enrolled patients aged 12 to 60 months with GDD from 6 centers in China from July 4, 2020, to August 31, 2023. Participants underwent trio whole exome sequencing (trio-WES) coupled with copy number variation sequencing (CNV-seq). Bioinformatics analysis was used to unravel pathogenesis and identify therapeutic targets. Main Outcomes and Measures The main outcomes of this study involved enhancing the rate of positive genetic diagnosis for GDD, broadening the scope of genetic testing indications, and investigating the underlying pathogenesis. The classification of children into levels of cognitive impairment was based on the developmental quotient assessed using the Gesell scale. Results The study encompassed 434 patients with GDD (262 [60%] male; mean [SD] age, 25.75 [13.24] months) with diverse degrees of cognitive impairment: mild (98 [23%]), moderate (141 [32%]), severe (122 [28%]), and profound (73 [17%]). The combined use of trio-WES and CNV-seq resulted in a 61% positive detection rate. Craniofacial abnormalities (odds ratio [OR], 2.27; 95% CI, 1.45-3.56), moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70), and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35) were associated with a higher risk of carrying genetic variants. Additionally, bioinformatics analysis suggested that genetic variants may induce alterations in brain development and function, which may give rise to cognitive impairment. Moreover, an association was found between the dopaminergic pathway and cognitive impairment. Conclusions and Relevance In this cohort study of patients with GDD, combining trio-WES with CNV-seq was a demonstrable, instrumental strategy for advancing the diagnosis of GDD. The close association among genetic variations, brain development, and clinical phenotypes contributed valuable insights into the pathogenesis of GDD. Notably, the dopaminergic pathway emerged as a promising focal point for potential targets in future precision medical interventions for GDD.
Collapse
Affiliation(s)
- Jiamei Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yun Liu
- Kunming Children’s Hospital, Kunming, China
| | - Ling Yue
- Department of Neurological Rehabilitation, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Hongfang Jin
- Qinghai Provincial Women and Children’s Hospital, Xining, China
| | | | - Dong Wang
- Department of Pediatric Neurology, Xi’an Children’s Hospital, Xi’an, China
| | - Mingmei Wang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gongxun Chen
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Yang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangyu Zhang
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoli Zhang
- Department of Pediatric Neurology, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sansong Li
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huiling Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yunxia Zhao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guohui Niu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongqiang Gao
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijun Cai
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Dengna Zhu
- Department of Rehabilitation Medicine, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Wu R, Li X, Meng Z, Li P, He Z, Liang L. Phenotypic and genetic analysis of children with unexplained neurodevelopmental delay and neurodevelopmental comorbidities in a Chinese cohort using trio-based whole-exome sequencing. Orphanet J Rare Dis 2024; 19:205. [PMID: 38764027 PMCID: PMC11103872 DOI: 10.1186/s13023-024-03214-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/10/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Trio-based whole-exome sequencing (trio-WES) enables identification of pathogenic variants, including copy-number variants (CNVs), in children with unexplained neurodevelopmental delay (NDD) and neurodevelopmental comorbidities (NDCs), including autism spectrum disorder (ASD), epilepsy, and attention deficit hyperactivity disorder. Further phenotypic and genetic analysis on trio-WES-tested NDD-NDCs cases may help to identify key phenotypic factors related to higher diagnostic yield of using trio-WES and novel risk genes associated with NDCs in clinical settings. METHODS In this study, we retrospectively performed phenotypic analysis on 163 trio-WES-tested NDD-NDCs children to determine the phenotypic differences between genetically diagnosed and non-genetically diagnosed groups. Additionally, we conducted genetic analysis of ASD genes with the help of Simons Foundation for Autism Research Institute (SFARI) Gene database to identify novel possible ASD-risk genes underlying genetic NDD conditions. RESULTS Among these 163 patients, pathogenic variants were identified in 82 cases (82/163, 50.3%), including 20 cases with CNVs. By comparing phenotypic variables between genetically diagnosed group (82 cases) and non-genetically diagnosed group (81 cases) with multivariate binary logistic regression analysis, we revealed that NDD-NDCs cases presenting with severe-profound NDD [53/82 vs 17/81, adjusted-OR (95%CI): 4.865 (2.213 - 10.694), adjusted-P < 0.001] or having multiple NDCs [26/82 vs 8/81, adjusted-OR (95%CI): 3.731 (1.399 - 9.950), adjusted-P = 0.009] or accompanying ASD [64/82 vs 35/81, adjusted-OR (95%CI): 3.256 (1.479 - 7.168), adjusted-P = 0.003] and head circumference abnormality [33/82 vs 11/81, adjusted-OR (95%CI): 2.788 (1.148 - 6.774), adjusted-P = 0.024] were more likely to have a genetic diagnosis using trio-WES. Moreover, 37 genes with monogenetic variants were identified in 48 patients genetically diagnosed with NDD-ASD, and 15 dosage-sensitive genes were identified in 16 individuals with NDD-ASD carrying CNVs. Most of those genes had been proven to be ASD-related genes. However, some of them (9 genes) were not proven sufficiently to correlate with ASD. By literature review and constructing protein-protein interaction networks among these 9 candidate ASD-risk genes and 102 established ASD genes obtained from the SFARI Gene database, we identified CUL4B, KCNH1, and PLA2G6 as novel possible ASD-risk genes underlying genetic NDD conditions. CONCLUSIONS Trio-WES testing is recommended for patients with unexplained NDD-NDCs that have severe-profound NDD or multiple NDCs, particularly those with accompanying ASD and head circumference abnormality, as these independent factors may increase the likelihood of genetic diagnosis using trio-WES. Moreover, NDD patients with pathogenic variants in CUL4B, KCNH1 and PLA2G6 should be aware of potential risks of developing ASD during their disease courses.
Collapse
Affiliation(s)
- Ruohao Wu
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China
| | - Xiaojuan Li
- Department of Research and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
| | - Zhe Meng
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China
| | - Pinggan Li
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China
| | - Zhanwen He
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China.
| | - Liyang Liang
- Department of Children's Neuro-endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, Guangdong, China.
- Children's Medical Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou Guangdong, 510120, China.
| |
Collapse
|
27
|
Ma H, Zhu L, Yang X, Ao M, Zhang S, Guo M, Dai X, Ma X, Zhang X. Genetic and phenotypic analysis of 225 Chinese children with developmental delay and/or intellectual disability using whole-exome sequencing. BMC Genomics 2024; 25:391. [PMID: 38649797 PMCID: PMC11034079 DOI: 10.1186/s12864-024-10279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
Developmental delay (DD), or intellectual disability (ID) is a very large group of early onset disorders that affects 1-2% of children worldwide, which have diverse genetic causes that should be identified. Genetic studies can elucidate the pathogenesis underlying DD/ID. In this study, whole-exome sequencing (WES) was performed on 225 Chinese DD/ID children (208 cases were sequenced as proband-parent trio) who were classified into seven phenotype subgroups. The phenotype and genomic data of patients with DD/ID were further retrospectively analyzed. There were 96/225 (42.67%; 95% confidence interval [CI] 36.15-49.18%) patients were found to have causative single nucleotide variants (SNVs) and small insertions/deletions (Indels) associated with DD/ID based on WES data. The diagnostic yields among the seven subgroups ranged from 31.25 to 71.43%. Three specific clinical features, hearing loss, visual loss, and facial dysmorphism, can significantly increase the diagnostic yield of WES in patients with DD/ID (P = 0.005, P = 0.005, and P = 0.039, respectively). Of note, hearing loss (odds ratio [OR] = 1.86%; 95% CI = 1.00-3.46, P = 0.046) or abnormal brainstem auditory evoked potential (BAEP) (OR = 1.91, 95% CI = 1.02-3.50, P = 0.042) was independently associated with causative genetic variants in DD/ID children. Our findings enrich the variation spectrums of SNVs/Indels associated with DD/ID, highlight the value genetic testing for DD/ID children, stress the importance of BAEP screen in DD/ID children, and help to facilitate early diagnose, clinical management and reproductive decisions, improve therapeutic response to medical treatment.
Collapse
Affiliation(s)
- Heqian Ma
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Lina Zhu
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China
| | - Xiao Yang
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China
| | - Meng Ao
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Shunxiang Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Meizhen Guo
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Xuelin Dai
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China
| | - Xiuwei Ma
- Faculty of Pediatrics, The Chinese PLA General Hospital, 100700, Beijing, China.
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, 100700, Beijing, China.
- Beijing Key Laboratory of Pediatric Organ Failure, 100700, Beijing, China.
| | - Xiaoying Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, 541199, Guilin, PR China.
| |
Collapse
|
28
|
Regier DA, Loewen R, Chan B, Ehman M, Pollard S, Friedman JM, Stockler-Ipsiroglu S, van Karnebeek C, Race S, Elliott AM, Dragojlovic N, Lynd LD, Weymann D. Real-world diagnostic outcomes and cost-effectiveness of genome-wide sequencing for developmental and seizure disorders: Evidence from Canada. Genet Med 2024; 26:101069. [PMID: 38205742 DOI: 10.1016/j.gim.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024] Open
Abstract
PURPOSE To determine real-world diagnostic rates, cost trajectories, and cost-effectiveness of exome sequencing (ES) and genome sequencing (GS) for children with developmental and/or seizure disorders in British Columbia, Canada. METHODS Based on medical records review, we estimated real-world costs and outcomes for 491 patients who underwent standard of care (SOC) diagnostic testing at British Columbia Children's Hospital. Results informed a state-transition Markov model examining cost-effectiveness of 3 competing diagnostic strategies: (1) SOC with last-tier access to ES, (2) streamlined ES access, and (3) first-tier GS. RESULTS Through SOC, 49.4% (95% CI: 40.6, 58.2) of patients were diagnosed at an average cost of C$11,683 per patient (95% CI: 9200, 14,166). Compared with SOC, earlier ES or GS access yielded similar or improved diagnostic rates and shorter times to genetic diagnosis, with 94% of simulations demonstrating cost savings for streamlined ES and 60% for first-tier GS. Net benefit from the perspective of the health care system was C$2956 (95% CI: -608, 6519) for streamlined ES compared with SOC. CONCLUSION Using real-world data, we found earlier access to ES may yield more rapid genetic diagnosis of childhood developmental and seizure disorders and cost savings compared with current practice in a Canadian health care system.
Collapse
Affiliation(s)
- Dean A Regier
- School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Rosalie Loewen
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Brandon Chan
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Morgan Ehman
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Samantha Pollard
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada
| | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Sylvia Stockler-Ipsiroglu
- BC Children's Hospital Research Institute, Vancouver, Canada; Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Division of Biochemical Genetics, BC Children's Hospital, Vancouver, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Simone Race
- Division of Biochemical Genetics, BC Children's Hospital, Vancouver, Canada
| | - Alison M Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada; BC Children's Hospital Research Institute, Vancouver, Canada
| | - Nick Dragojlovic
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Larry D Lynd
- Collaboration for Outcomes Research and Evaluation, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada; Centre for Health Evaluation and Outcomes Sciences, Providence Health Research Institute, Vancouver, Canada
| | - Deirdre Weymann
- Cancer Control Research, BC Cancer Research Institute, Vancouver, Canada.
| |
Collapse
|
29
|
Hiatt SM, Lawlor JM, Handley LH, Latner DR, Bonnstetter ZT, Finnila CR, Thompson ML, Boston LB, Williams M, Nunez IR, Jenkins J, Kelley WV, Bebin EM, Lopez MA, Hurst ACE, Korf BR, Schmutz J, Grimwood J, Cooper GM. Long-read genome sequencing and variant reanalysis increase diagnostic yield in neurodevelopmental disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.22.24304633. [PMID: 38585854 PMCID: PMC10996728 DOI: 10.1101/2024.03.22.24304633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Variant detection from long-read genome sequencing (lrGS) has proven to be considerably more accurate and comprehensive than variant detection from short-read genome sequencing (srGS). However, the rate at which lrGS can increase molecular diagnostic yield for rare disease is not yet precisely characterized. We performed lrGS using Pacific Biosciences "HiFi" technology on 96 short-read-negative probands with rare disease that were suspected to be genetic. We generated hg38-aligned variants and de novo phased genome assemblies, and subsequently annotated, filtered, and curated variants using clinical standards. New disease-relevant or potentially relevant genetic findings were identified in 16/96 (16.7%) probands, eight of which (8/96, 8.33%) harbored pathogenic or likely pathogenic variants. Newly identified variants were visible in both srGS and lrGS in nine probands (~9.4%) and resulted from changes to interpretation mostly from recent gene-disease association discoveries. Seven cases included variants that were only interpretable in lrGS, including copy-number variants, an inversion, a mobile element insertion, two low-complexity repeat expansions, and a 1 bp deletion. While evidence for each of these variants is, in retrospect, visible in srGS, they were either: not called within srGS data, were represented by calls with incorrect sizes or structures, or failed quality-control and filtration. Thus, while reanalysis of older data clearly increases diagnostic yield, we find that lrGS allows for substantial additional yield (7/96, 7.3%) beyond srGS. We anticipate that as lrGS analysis improves, and as lrGS datasets grow allowing for better variant frequency annotation, the additional lrGS-only rare disease yield will grow over time.
Collapse
Affiliation(s)
- Susan M. Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Lori H. Handley
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Donald R. Latner
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | | | | | - Lori Beth Boston
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Melissa Williams
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - E. Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Michael A. Lopez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Anna C. E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Bruce R. Korf
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35924, USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | |
Collapse
|
30
|
Donnellan EP, Gorman KM, Shahwan A, Allen NM. Epileptic dyskinetic encephalopathy in KBG syndrome: Expansion of the phenotype. Epilepsy Behav Rep 2024; 25:100647. [PMID: 38317675 PMCID: PMC10839861 DOI: 10.1016/j.ebr.2024.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
KBG syndrome is characterised by developmental delay, dental (macrodontia of upper central incisors), craniofacial and skeletal anomalies. Since the identification of variants in the gene (ANKRD11) responsible for KBG syndrome, wider phenotypes are emerging. While there is phenotypic variability within many features of KBG syndrome, epilepsy is not usually markedly severe and movement disorders largely undocumented. Here we describe a novel early onset phenotype of dyskinetic epileptic encephalopathy in a male, who presented during infancy with a florid hyperkinetic movement disorder and developmental regression. Initially he had epileptic spasms and tonic seizures, and EEGs revealed a modified hypsarrhythmia. The epilepsy phenotype evolved to Lennox-Gastaut syndrome with seizures resistant to multiple anti-seizure therapies and the movement disorder evolved to choreoathetosis of limbs and head with oro-lingual dyskinesias. Previous extensive neurometabolic and imaging investigations, including panel-based exome sequencing were unremarkable. Later trio exome sequencing identified a de novo pathogenic heterozygous frameshift deletion of ANKRD11 (c.6792delC; p.Ala2265Profs*72). Review of the literature did not identify any individuals with such a hyperkinetic movement disorder presentation in combination with early-onset epileptic encephalopathy. This report expands the phenotype of ANKRD11-related KBG syndrome to include epileptic dyskinetic encephalopathy.
Collapse
Affiliation(s)
- Eoin P. Donnellan
- Dept. of Paediatrics, Galway University Hospital, Ireland
- Dept. of Paediatrics, School of Medicine, University of Galway, Ireland
| | - Kathleen M. Gorman
- Dept of Paediatric Neurology and Neurophysiology, Children’s Health Ireland at Temple St., Dublin 1, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Amre Shahwan
- Dept of Paediatric Neurology and Neurophysiology, Children’s Health Ireland at Temple St., Dublin 1, Ireland
- School of Medicine, Royal College of Surgeons in Ireland, Ireland
| | - Nicholas M. Allen
- Dept. of Paediatrics, Galway University Hospital, Ireland
- Dept. of Paediatrics, School of Medicine, University of Galway, Ireland
| |
Collapse
|
31
|
Shreeve N, Sproule C, Choy KW, Dong Z, Gajewska-Knapik K, Kilby MD, Mone F. Incremental yield of whole-genome sequencing over chromosomal microarray analysis and exome sequencing for congenital anomalies in prenatal period and infancy: systematic review and meta-analysis. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:15-23. [PMID: 37725747 DOI: 10.1002/uog.27491] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
OBJECTIVES First, to determine the incremental yield of whole-genome sequencing (WGS) over quantitative fluorescence polymerase chain reaction (QF-PCR)/chromosomal microarray analysis (CMA) with and without exome sequencing (ES) in fetuses, neonates and infants with a congenital anomaly that was or could have been detected on prenatal ultrasound. Second, to evaluate the turnaround time (TAT) and quantity of DNA required for testing using these pathways. METHODS This review was registered prospectively in December 2022. Ovid MEDLINE, EMBASE, MEDLINE (Web of Science), The Cochrane Library and ClinicalTrials.gov databases were searched electronically (January 2010 to December 2022). Inclusion criteria were cohort studies including three or more fetuses, neonates or infants with (i) one or more congenital anomalies; (ii) an anomaly which was or would have been detectable on prenatal ultrasound; and (iii) negative QF-PCR and CMA. In instances in which the CMA result was unavailable, all cases of causative pathogenic copy number variants > 50 kb were excluded, as these would have been detectable on standard prenatal CMA. Pooled incremental yield was determined using a random-effects model and heterogeneity was assessed using Higgins' I2 test. Subanalyses were performed based on pre- or postnatal cohorts, cases with multisystem anomalies and those meeting the NHS England prenatal ES inclusion criteria. RESULTS A total of 18 studies incorporating 902 eligible cases were included, of which eight (44.4%) studies focused on prenatal cohorts, incorporating 755 cases, and the remaining studies focused on fetuses undergoing postmortem testing or neonates/infants with congenital structural anomalies, constituting the postnatal cohort. The incremental yield of WGS over QF-PCR/CMA was 26% (95% CI, 18-36%) (I2 = 86%), 16% (95% CI, 9-24%) (I2 = 85%) and 39% (95% CI, 27-51%) (I2 = 53%) for all, prenatal and postnatal cases, respectively. The incremental yield increased in cases in which sequencing was performed in line with the NHS England prenatal ES criteria (32% (95% CI, 22-42%); I2 = 70%) and in those with multisystem anomalies (30% (95% CI, 19-43%); I2 = 65%). The incremental yield of WGS for variants of uncertain significance (VUS) was 18% (95% CI, 7-33%) (I2 = 74%). The incremental yield of WGS over QF-PCR/CMA and ES was 1% (95% CI, 0-4%) (I2 = 47%). The pooled median TAT of WGS was 18 (range, 1-912) days, and the quantity of DNA required was 100 ± 0 ng for WGS and 350 ± 50 ng for QF-PCR/CMA and ES (P = 0.03). CONCLUSION While WGS in cases with congenital anomaly holds great promise, its incremental yield over ES is yet to be demonstrated. However, the laboratory pathway for WGS requires less DNA with a potentially faster TAT compared with sequential QF-PCR/CMA and ES. There was a relatively high rate of VUS using WGS. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- N Shreeve
- Department of Obstetrics & Gynaecology, University of Cambridge, Cambridge, UK
| | - C Sproule
- Department of Obstetrics & Gynaecology, South Eastern Health and Social Care Trust, Belfast, UK
| | - K W Choy
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Z Dong
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - K Gajewska-Knapik
- Department of Obstetrics & Gynaecology, Cambridge University Hospitals, Cambridge, UK
| | - M D Kilby
- Fetal Medicine Centre, Birmingham Women's and Children's Foundation Trust, Birmingham, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Medical Genomics Research Group, Illumina, Cambridge, UK
| | - F Mone
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
32
|
Shin S, Lee J, Kim YG, Ha C, Park JH, Kim JW, Lee J, Jang JH. Genetic Diagnosis of Children With Neurodevelopmental Disorders Using Whole Genome Sequencing. Pediatr Neurol 2023; 149:44-52. [PMID: 37776660 DOI: 10.1016/j.pediatrneurol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/05/2023] [Accepted: 09/05/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs) have diverse phenotypes. Their genetic diagnoses are often challenged by difficulties of targeting causative genes due to heterogeneous genetic etiologies. The objective of this study was to perform genetic diagnosis of children with NDDs using whole genome sequencing. METHODS This study included 78 pediatric patients with NDDs and their 152 family members for whole genome sequencing (WGS). All cases except one were families with at least two members. Seventy-five patients had previously undergone other genetic tests besides WGS. Detected variants were classified according to the guidelines of the American College of Medical Genetics and Genomics. RESULTS Among 78 probands, 26 patients were genetically diagnosed with NDDs through WGS, showing a diagnostic rate of 33.3%. Of them, 22 cases had de novo variants (DNVs) identified through trio analysis. Of these DNVs, half were novel variants. Three structural variants, including a multiexon deletion, a contiguous gene deletion involving 13 Mb, and a retrotransposon insertion, were revealed by WGS. All cases except one had defects in different genes, consistent with the phenotypically diverse nature of NDDs. In addition, three patients were inconclusive, two of them had one likely pathogenic variant in a gene associated with autosomal recessive disease and the other one had no clinical phenotypes associated with the detected DNV. CONCLUSIONS Our experience demonstrates the advantage of WGS in the diagnosis of NDDs, including detection of copy number variations and also the advantage of trio sequencing for interpretation of DNVs.
Collapse
Affiliation(s)
- Sunghwan Shin
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; Department of Laboratory Medicine, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Jiwon Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Gon Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Changhee Ha
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jong-Ho Park
- Clinical Genomics Center, Samsung Medical Center, Seoul, Korea
| | - Jong-Won Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeehun Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ja-Hyun Jang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
33
|
Yesmin MF, Chowdhury MRK, Bornee FA, Kader M, Mondal MNI, Hossain M, Rashid M. Urban-rural difference in factors associated with childhood functional difficulty in Bangladesh: a cross-sectional study. Front Public Health 2023; 11:1270853. [PMID: 38026377 PMCID: PMC10652778 DOI: 10.3389/fpubh.2023.1270853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Objective Early childhood functional difficulty poses a substantial worldwide public health challenge, leading to adverse effects on children's quality of life and overall productivity. Moreover, it represents a significant social and economic problem in Bangladesh. Therefore, the current study aimed to identify factors contributing to childhood functional difficulty in Bangladesh within the context of urban-rural areas. Methods A nationally representative cross-sectional survey data from Multiple Indicator Cluster Survey (MICS), 2019 in Bangladesh was used in this study. Chi-square test and multivariable logistic regression analyses were carried out to identify factors associated with childhood functional difficulty. Results Functional difficulties were found in approximately 3.3% of children 2-4 years of age in urban areas and 2.5% in rural areas. Having a mother with functional difficulties and undernutrition were identified as significant factors common in both urban and rural areas. Further, mothers who had no formal education (AOR = 2.76, 95%CI = 1.18-6.45) and experienced infant death (AOR = 1.94, 95%CI = 1.01-3.70) were identified as significant factors of functional difficulty in urban areas. On the other hand, in rural areas, no access to mass media, children with acute respiratory infection (ARI) (AOR = 2.13, 95%CI = 1.39-3.28), female sex (AOR = 0.69, 95%CI = 0.53-0.91), child undernutrition (AOR = 1.73, 95%CI = 1.32-2.27) and poorer socio-economic status (AOR = 1.95, 95%CI = 1.08-3.55) were found significant factors. Conclusion Functional difficulty was found to be present in one out of every 35 children age 2 to 4 years in Bangladesh. Childhood functional difficulties were reported slightly higher in urban areas as compared to rural areas. Reducing childhood difficulties in urban areas demands comprehensive strategies: quality healthcare, inclusive education, community support, better information systems, and collaboration. To achieve urban-rural parity in child health, address disparities in economic development, healthcare, and education, especially for girls.
Collapse
Affiliation(s)
- Mst Farjana Yesmin
- Department of Population Science and Human Resource Development, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Rocky Khan Chowdhury
- Department of Population Science and Human Resource Development, University of Rajshahi, Rajshahi, Bangladesh
- Department of Public Health, First Capital University of Bangladesh, Chuadanga, Bangladesh
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Farzana Akhter Bornee
- Department of Pediatrics, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Manzur Kader
- Department of Medicine, Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden
| | - Md Nazrul Islam Mondal
- Department of Population Science and Human Resource Development, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Hossain
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Mamunur Rashid
- Department of Public Health and Sports Science, Faculty of Health and Occupational Studies, University of Gävle, Gävle, Sweden
| |
Collapse
|
34
|
Sloboda N, Renard E, Lambert L, Bonnet C, Leheup B, Todosi C, Schmitt E, Feillet F, Feigerlova E, Piton A, Journeau P, Klein M, Maillard L, Chelly J, Renaud M. MAST1-related mega-corpus-callosum syndrome with central hypogonadism. Eur J Med Genet 2023; 66:104853. [PMID: 37758169 DOI: 10.1016/j.ejmg.2023.104853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/20/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE Heterozygous variations in microtubule-associated serine/threonine kinase 1 gene (MAST1) were recently described in the mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations (MCCCHCM, MIM 618273), revealing the importance of the MAST genes family in global brain development. To date, patients with MAST1 gene mutations were mostly young children with central nervous system involvement, impaired motor function, speech delay, and brain magnetic resonance imaging (MRI) abnormalities. Here, we report the clinical presentation of an adult patient with a rare and de novo MAST1 mutation with central hypogonadism that could extend this phenotype. METHODS A panel of 333 genes involved in epilepsy or cortical development was sequenced in the described patient. Routine biochemical analyses were performed, and hormonal status was investigated. RESULT We report a 22-year-old man with a de novo, heterozygous missense variant in MAST1 (Chr19(GRCh37):g.12975903G > A, NP_055790.1:p.Gly517Ser). He presented with an epileptic encephalopathy associated with cerebral malformations, short stature, hypogonadotropic hypogonadism, and secondary osteopenia. CONCLUSION This is the first patient with MAST1 gene mutation described with central hypogonadism, which may be associated with the phenotype of MCCCHCM syndrome.
Collapse
Affiliation(s)
- Natacha Sloboda
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France
| | - Emeline Renard
- INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France; Service de MédecineInfantile, Centre Hospitalier Régional Universitaire, Nancy, France.
| | - Laetitia Lambert
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France
| | - Céline Bonnet
- Laboratoire de Génétique, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Bruno Leheup
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France
| | - Calina Todosi
- Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Laboratoire de Génétique, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Emmanuelle Schmitt
- Service de Neuroradiologie, Centre Hospitalier Régional Universitaire, Nancy, France
| | - François Feillet
- INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France; Service de MédecineInfantile, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Eva Feigerlova
- Service d'Endocrinologie, Centre Hospitalier Régional Universitaire, Nancy, France; INSERM UMR_S 1116 - DCAC, Medical Faculty, Université de Lorraine, Nancy, France
| | - Amélie Piton
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091, Strasbourg, France
| | - Pierre Journeau
- Service de Chirurgie Orthopédique Infantile, Hôpital d'Enfants, Vandoeuvre les Nancy, France
| | - Marc Klein
- Service d'Endocrinologie, Centre Hospitalier Régional Universitaire, Nancy, France
| | - Louis Maillard
- Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Service de Neurologie, Centre Hospitalier Régional Universitaire, Nancy, France; CNRS UMR7039,CRAN, Université de Lorraine, Nancy, France
| | - Jamel Chelly
- Service de Diagnostic Génétique, Hôpital Civil de Strasbourg, Hôpitaux Universitaires de Strasbourg, 67091, Strasbourg, France
| | - Mathilde Renaud
- Service de Génétique Clinique, Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; Centre de Référence des Epilepsies Rares (CRéER) Centre Hospitalier Régional Universitaire, Nancy, F-54000, France; INSERM UMRS 1256 NGERE, Nutrition, Genetics, and Environmental Risk Exposure, National Center of Hospitalier Régional Universitaire, Nancy, France
| |
Collapse
|
35
|
Mir A, Song Y, Lee H, Khanahmad H, Khorram E, Nasiri J, Tabatabaiefar MA. Whole exome sequencing revealed variants in four genes underlying X-linked intellectual disability in four Iranian families: novel deleterious variants and clinical features with the review of literature. BMC Med Genomics 2023; 16:239. [PMID: 37821930 PMCID: PMC10566173 DOI: 10.1186/s12920-023-01680-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023] Open
Abstract
AIM AND OBJECTIVE Intellectual disability (ID) is a heterogeneous condition affecting brain development, function, and/or structure. The X-linked mode of inheritance of ID (X-linked intellectual disability; XLID) has a prevalence of 1 out of 600 to 1000 males. In the last decades, exome sequencing technology has revolutionized the process of disease-causing gene discovery in XLIDs. Nevertheless, so many of them still remain with unknown etiology. This study investigated four families with severe XLID to identify deleterious variants for possible diagnostics and prevention aims. METHODS Nine male patients belonging to four pedigrees were included in this study. The patients were studied genetically for Fragile X syndrome, followed by whole exome sequencing and analysis of intellectual disability-related genes variants. Sanger sequencing, co-segregation analysis, structural modeling, and in silico analysis were done to verify the causative variants. In addition, we collected data from previous studies to compare and situate our work with existing knowledge. RESULTS In three of four families, novel deleterious variants have been identified in three different genes, including ZDHHC9 (p. Leu189Pro), ATP2B3 (p. Asp847Glu), and GLRA2 (p. Arg350Cys) and also with new clinical features and in another one family, a reported pathogenic variant in the L1CAM (p. Glu309Lys) gene has been identified related to new clinical findings. CONCLUSION The current study's findings expand the existing knowledge of variants of the genes implicated in XLID and broaden the spectrum of phenotypes associated with the related conditions. The data have implications for genetic diagnosis and counseling.
Collapse
Affiliation(s)
- Atefeh Mir
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746 73461, Iran
| | - Yongjun Song
- Division of Medical Genetics, 3Billion Inc, Seoul, South Korea
| | - Hane Lee
- Division of Medical Genetics, 3Billion Inc, Seoul, South Korea
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746 73461, Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Erfan Khorram
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746 73461, Iran
| | - Jafar Nasiri
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746 73461, Iran.
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
- Deputy of Research and Technology, GenTArget Corp (GTAC), Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
36
|
Halley MC, Young JL, Tang C, Mintz KT, Lucas-Griffin S, Maghiro A, Ashley EA, Tabor HK. Genomics Research with Undiagnosed Children: Ethical Challenges at the Boundaries of Research and Clinical Care. J Pediatr 2023; 261:113537. [PMID: 37271495 PMCID: PMC10527480 DOI: 10.1016/j.jpeds.2023.113537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To explore the perspectives of parents of undiagnosed children enrolled in genomic diagnosis research regarding their motivations for enrolling their children, their understanding of the potential burdens and benefits, and the extent to which their experiences ultimately aligned with or diverged from their original expectations. STUDY DESIGN In-depth interviews were conducted with parents, audio-recorded and transcribed. A structured codebook was applied to each transcript, after which iterative memoing was used to identify themes. RESULTS Fifty-four parents participated, including 17 (31.5%) whose child received a diagnosis through research. Themes describing parents' expectations and experiences of genomic diagnosis research included (1) the extent to which parents' motivations for participation focused on their hope that it would directly benefit their child, (2) the ways in which parents' frustrations regarding the research process confused the dual clinical and research goals of their participation, and (3) the limited clinical benefits parents ultimately experienced for their children. CONCLUSIONS Our results suggest that parents of undiagnosed children seeking enrollment in genomic diagnosis research are at risk of a form of therapeutic misconception-in this case, diagnostic misconception. These findings indicate the need to examine the processes and procedures associated with this research to communicate appropriately and balance the potential burdens and benefits of study participation.
Collapse
Affiliation(s)
- Meghan C Halley
- Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA.
| | - Jennifer L Young
- Center for Genetic Medicine, Northwestern Feinberg School of Medicine, Chicago, IL
| | - Charis Tang
- Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA
| | - Kevin T Mintz
- Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA
| | - Sawyer Lucas-Griffin
- Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA
| | | | - Euan A Ashley
- Department of Genetics, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA
| | - Holly K Tabor
- Center for Biomedical Ethics, Stanford University School of Medicine, Stanford, CA; Department of Medicine, Stanford University School of Medicine; Stanford, CA
| |
Collapse
|
37
|
Li N, Kang H, Zou Y, Liu Z, Deng Y, Wang M, Li L, Qin H, Qiu X, Wang Y, Zhu J, Agostino M, Heng JIT, Yu P. A novel heterozygous ZBTB18 missense mutation in a family with non-syndromic intellectual disability. Neurogenetics 2023; 24:251-262. [PMID: 37525067 DOI: 10.1007/s10048-023-00727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder characterized by significantly impaired adaptive behavior and cognitive capacity. High throughput sequencing approaches have revealed the genetic etiologies for 25-50% of ID patients, while inherited genetic mutations were detected in <5% cases. Here, we investigated the genetic cause for non-syndromic ID in a Han Chinese family. Whole genome sequencing was performed on identical twin sisters diagnosed with ID, their respective children, and their asymptomatic parents. Data was filtered for rare variants, and in silico prediction tools were used to establish pathogenic alleles. Candidate mutations were validated by Sanger sequencing. In silico modeling was used to evaluate the mutation's effects on the protein encoded by a candidate coding gene. A novel heterozygous variant in the ZBTB18 gene c.1323C>G (p.His441Gln) was identified. This variant co-segregated with affected individuals in an autosomal dominant pattern and was not detected in asymptomatic family members. Molecular studies reveal that a p.His441Gln substitution disrupts zinc binding within the second zinc finger and disrupts the capacity for ZBTB18 to bind DNA. This is the first report of an inherited ZBTB18 mutation for ID. This study further validates WGS for the accurate molecular diagnosis of ID.
Collapse
Affiliation(s)
- Nana Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Hong Kang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Yanna Zou
- Department of Gynaecology and Obstetrics, Changyi Maternal and Child Care Hospital, Weifang, Shandong, China
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Ying Deng
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Meixian Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Lu Li
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Hong Qin
- Department of Gynaecology and Obstetrics, Wuhou District People's Hospital, Chengdu, Sichuan, China
| | - Xiaoqiong Qiu
- Department of Obstetrics and Gynecology, Pidu District People's Hospital, Chengdu, China
| | - Yanping Wang
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Jun Zhu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China
| | - Mark Agostino
- Faculty of Health Sciences, Curtin University, Bentley, Australia
- Curtin Institute for Computation, Curtin University, Bentley, Australia
- Curtin Medical School, Curtin University, Bentley, Australia
| | - Julian I-T Heng
- Faculty of Health Sciences, Curtin University, Bentley, Australia.
| | - Ping Yu
- National Center for Birth Defect Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan, China.
| |
Collapse
|
38
|
Abul-Husn NS, Marathe PN, Kelly NR, Bonini KE, Sebastin M, Odgis JA, Abhyankar A, Brown K, Di Biase M, Gallagher KM, Guha S, Ioele N, Okur V, Ramos MA, Rodriguez JE, Rehman AU, Thomas-Wilson A, Edelmann L, Zinberg RE, Diaz GA, Greally JM, Jobanputra V, Suckiel SA, Horowitz CR, Wasserstein MP, Kenny EE, Gelb BD. Molecular diagnostic yield of genome sequencing versus targeted gene panel testing in racially and ethnically diverse pediatric patients. Genet Med 2023; 25:100880. [PMID: 37158195 PMCID: PMC10789486 DOI: 10.1016/j.gim.2023.100880] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/10/2023] Open
Abstract
PURPOSE Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions. METHODS Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing. Diagnostic yield was compared using a fully paired study design. RESULTS A total of 645 probands (median age 9 years) underwent genetic testing, and 113 (17.5%) received a molecular diagnosis. Among 642 probands with both GS and TGP testing, GS yielded 106 (16.5%) and TGPs yielded 52 (8.1%) diagnoses (P < .001). Yield was greater for GS vs TGPs in Hispanic/Latino(a) (17.2% vs 9.5%, P < .001) and White/European American (19.8% vs 7.9%, P < .001) but not in Black/African American (11.5% vs 7.7%, P = .22) population groups by self-report. A higher rate of inconclusive results was seen in the Black/African American (63.8%) vs White/European American (47.6%; P = .01) population group. Most causal copy number variants (17 of 19) and mosaic variants (6 of 8) were detected only by GS. CONCLUSION GS may yield up to twice as many diagnoses in pediatric patients compared with TGP testing but not yet across all population groups.
Collapse
Affiliation(s)
- Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; 23andMe, Inc., Sunnyvale, CA
| | - Priya N Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Nicole R Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Katherine E Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Jacqueline A Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Kaitlyn Brown
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY; Illumina Incorporated, San Diego, CA
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Katie M Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY; Invitae Corporation, San Francisco, CA
| | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Nicolette Ioele
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY; Memorial Sloan Kettering Cancer Center, New York, NY
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY
| | - Michelle A Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jessica E Rodriguez
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | - Randi E Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - George A Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY; iECURE Incorporated, Philadelphia, PA
| | - John M Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY
| | - Sabrina A Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Carol R Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY; Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Melissa P Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
39
|
Chung CCY, Hue SPY, Ng NYT, Doong PHL, Chu ATW, Chung BHY. Meta-analysis of the diagnostic and clinical utility of exome and genome sequencing in pediatric and adult patients with rare diseases across diverse populations. Genet Med 2023; 25:100896. [PMID: 37191093 DOI: 10.1016/j.gim.2023.100896] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE This meta-analysis aims to compare the diagnostic and clinical utility of exome sequencing (ES) vs genome sequencing (GS) in pediatric and adult patients with rare diseases across diverse populations. METHODS A meta-analysis was conducted to identify studies from 2011 to 2021. RESULTS One hundred sixty-one studies across 31 countries/regions were eligible, featuring 50,417 probands of diverse populations. Diagnostic rates of ES (0.38, 95% CI 0.36-0.40) and GS (0.34, 95% CI 0.30-0.38) were similar (P = .1). Within-cohort comparison illustrated 1.2-times odds of diagnosis by GS over ES (95% CI 0.79-1.83, P = .38). GS studies discovered a higher range of novel genes than ES studies; yet, the rate of variant of unknown significance did not differ (P = .78). Among high-quality studies, clinical utility of GS (0.77, 95% CI 0.64-0.90) was higher than that of ES (0.44, 95% CI 0.30-0.58) (P < .01). CONCLUSION This meta-analysis provides an important update to demonstrate the similar diagnostic rates between ES and GS and the higher clinical utility of GS over ES. With the newly published recommendations for clinical interpretation of variants found in noncoding regions of the genome and the trend of decreasing variant of unknown significance and GS cost, it is expected that GS will be more widely used in clinical settings.
Collapse
Affiliation(s)
| | - Shirley P Y Hue
- Hong Kong Genome Institute, Hong Kong Special Administrative Region
| | - Nicole Y T Ng
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Phoenix H L Doong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Annie T W Chu
- Hong Kong Genome Institute, Hong Kong Special Administrative Region.
| | - Brian H Y Chung
- Hong Kong Genome Institute, Hong Kong Special Administrative Region; Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
40
|
Chepkirui D, Kipkemoi P, Bitta M, Harris E, Musesengwa R, Kamuya D. Ethical issues of involving people with intellectual disabilities in genomic research: a scoping review protocol. Wellcome Open Res 2023; 8:340. [PMID: 37928211 PMCID: PMC10624948 DOI: 10.12688/wellcomeopenres.19403.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2023] [Indexed: 11/07/2023] Open
Abstract
Background: Psychiatric genomic research is a growing field of research in Africa that is looking at epigenetics of psychiatric disorders; within which a specific focus is neurodevelopmental disorders including intellectual disability (ID). Conducting this type of research is important to identify etiologies and possible interventions or areas for further research. However, genomic research generally, and psychiatric genomic research, faces many social, ethical, cultural, and legal issues; research involving people with ID is particularly challenging. All research stakeholders - researchers, research review bodies, regulators, patient groups - generally agree that involving people with ID require several considerations, including extra protection. It is also recognized that not involving people with ID in research that is relevant to them means that opportunities to learn on specific issues including lived experiences are missed. In this scoping review, we aim to describe the range of ethical and social-cultural issues concerning involvement of people with intellectual disability in genomic research from existing literature. Methods: This scoping review will be conducted based on the Joanna Briggs Institute guidance for scoping review and reported using the PRISMA-ScR guidelines. Iterative review stages will include systematic search of six databases (Embase, Ovid Global Health, PubMed, Scopus, PsycInfo and Web of Science core collection), screening, charting and synthesis of the data. Forward and backward citation screening will also be done for the articles included in the final review. We will include peer reviewed journal articles, guidance documents and reports. Screening and selection of studies based on the eligibility criteria will be done independently by three reviewers; conflicts will be resolved through discussion with a third reviewer and other experts. Results: The results will be included in the scoping review publication. Conclusions: This scoping review will identify key areas of ethical tensions and possible solutions and inform opportunities for empirical ethics studies.
Collapse
Affiliation(s)
- Dorothy Chepkirui
- Health Systems and Research Ethics, KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Patricia Kipkemoi
- Health Systems and Research Ethics, KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mary Bitta
- Health Systems and Research Ethics, KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
| | - Eli Harris
- Bodleian Health Care Libraries, University of Oxford, Oxford, England, UK
| | | | - Dorcas Kamuya
- Health Systems and Research Ethics, KEMRI Wellcome Trust Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, England, UK
| |
Collapse
|
41
|
Valencia AM, Sankar A, van der Sluijs PJ, Satterstrom FK, Fu J, Talkowski ME, Vergano SAS, Santen GWE, Kadoch C. Landscape of mSWI/SNF chromatin remodeling complex perturbations in neurodevelopmental disorders. Nat Genet 2023; 55:1400-1412. [PMID: 37500730 PMCID: PMC10412456 DOI: 10.1038/s41588-023-01451-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
DNA sequencing-based studies of neurodevelopmental disorders (NDDs) have identified a wide range of genetic determinants. However, a comprehensive analysis of these data, in aggregate, has not to date been performed. Here, we find that genes encoding the mammalian SWI/SNF (mSWI/SNF or BAF) family of ATP-dependent chromatin remodeling protein complexes harbor the greatest number of de novo missense and protein-truncating variants among nuclear protein complexes. Non-truncating NDD-associated protein variants predominantly disrupt the cBAF subcomplex and cluster in four key structural regions associated with high disease severity, including mSWI/SNF-nucleosome interfaces, the ATPase-core ARID-armadillo repeat (ARM) module insertion site, the Arp module and DNA-binding domains. Although over 70% of the residues perturbed in NDDs overlap with those mutated in cancer, ~60% of amino acid changes are NDD-specific. These findings provide a foundation to functionally group variants and link complex aberrancies to phenotypic severity, serving as a resource for the chromatin, clinical genetics and neurodevelopment communities.
Collapse
Affiliation(s)
- Alfredo M Valencia
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Chemical Biology Program, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Akshay Sankar
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - F Kyle Satterstrom
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Jack Fu
- Massachusetts General Hospital, Boston, MA, USA
| | - Michael E Talkowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Samantha A Schrier Vergano
- Children's Hospital of the King's Daughters, Norfolk, Virginia, USA
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
42
|
Rumpf M, Pautz S, Drebes B, Herberg FW, Müller HAJ. Microtubule-Associated Serine/Threonine (MAST) Kinases in Development and Disease. Int J Mol Sci 2023; 24:11913. [PMID: 37569286 PMCID: PMC10419289 DOI: 10.3390/ijms241511913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Microtubule-Associated Serine/Threonine (MAST) kinases represent an evolutionary conserved branch of the AGC protein kinase superfamily in the kinome. Since the discovery of the founding member, MAST2, in 1993, three additional family members have been identified in mammals and found to be broadly expressed across various tissues, including the brain, heart, lung, liver, intestine and kidney. The study of MAST kinases is highly relevant for unraveling the molecular basis of a wide range of different human diseases, including breast and liver cancer, myeloma, inflammatory bowel disease, cystic fibrosis and various neuronal disorders. Despite several reports on potential substrates and binding partners of MAST kinases, the molecular mechanisms that would explain their involvement in human diseases remain rather obscure. This review will summarize data on the structure, biochemistry and cell and molecular biology of MAST kinases in the context of biomedical research as well as organismal model systems in order to provide a current profile of this field.
Collapse
Affiliation(s)
- Marie Rumpf
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Sabine Pautz
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Benedikt Drebes
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| | - Friedrich W. Herberg
- Department of Biochemistry, Institute of Biology, University of Kassel, 34321 Kassel, Germany
| | - Hans-Arno J. Müller
- Department of Developmental Genetics, Institute of Biology, University of Kassel, 34321 Kassel, Germany; (M.R.)
| |
Collapse
|
43
|
Ballesta-Martínez MJ, Pérez-Fernández V, López-González V, Sánchez-Soler MJ, Serrano-Antón AT, Rodríguez-Peña LI, Barreda-Sánchez M, Armengol-Dulcet L, Guillén-Navarro E. Validation of clinical exome sequencing in the diagnostic procedure of patients with intellectual disability in clinical practice. Orphanet J Rare Dis 2023; 18:201. [PMID: 37480025 PMCID: PMC10362575 DOI: 10.1186/s13023-023-02809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/05/2023] [Indexed: 07/23/2023] Open
Abstract
Intellectual disability (ID) has a prevalence of 1-3% and aproximately 30-50% of ID cases have a genetic cause. Development of next-generation sequencing has shown a high diagnostic potential. The aim of this work was to evaluate the diagnostic yield of clinical exome sequencing in 188 ID patients and the economic impact of its introduction in clinical practice. An analysis of diagnostic yield according to the different clinical variables was performed in order to establish an efficient diagnostic protocol for ID patients. Diagnostic yield of clinical exome sequencing was significant (34%) supporting its utility in diagnosis of ID patients. Wide genetic heterogeneity and predominance of autosomal dominant de novo variants in ID patients were observed. Time to diagnosis was shortened and diagnostic study costs decreased by 62% after implementation of clinical exome sequencing. No association was found between any of the variables analyzed and a higher diagnostic yield; added to the fact that many of the diagnoses weren't clinically detectable, the reduction of time to diagnosis and the economic savings with respect to classical diagnostic studies, strengthen the clinical and economical convenience of early implementation of clinical exome sequencing in the diagnostic workup of ID patients in clinical practice.
Collapse
Affiliation(s)
- María Juliana Ballesta-Martínez
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.
- Instituto Murciano de Investigación Biomédica (IMIB), Murcia, Spain.
- Centro de Investigación Biomédica en Red-Enfermedades Raras (CIBERER-Instituto de Salud Carlos III), Madrid, Spain.
| | - Virginia Pérez-Fernández
- Departamento de Ciencias Sociosanitarias-Área de Bioestadística, Facultad de Medicina, Universidad de Murcia, Murcia, Spain
| | - Vanesa López-González
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biomédica (IMIB), Murcia, Spain
- Centro de Investigación Biomédica en Red-Enfermedades Raras (CIBERER-Instituto de Salud Carlos III), Madrid, Spain
| | - María José Sánchez-Soler
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biomédica (IMIB), Murcia, Spain
| | - Ana Teresa Serrano-Antón
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
- Instituto Murciano de Investigación Biomédica (IMIB), Murcia, Spain
| | - Lidia Isolina Rodríguez-Peña
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | - Lluís Armengol-Dulcet
- Quantitative Genomic Medicine Laboratories (qGenomics), Esplugues del Llobregat, Catalonia, Spain
| | - Encarna Guillén-Navarro
- Sección de Genética Médica, Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.
- Instituto Murciano de Investigación Biomédica (IMIB), Murcia, Spain.
- Centro de Investigación Biomédica en Red-Enfermedades Raras (CIBERER-Instituto de Salud Carlos III), Madrid, Spain.
| |
Collapse
|
44
|
Harms FL, Weiss D, Lisfeld J, Alawi M, Kutsche K. A deep intronic variant in DNM1 in a patient with developmental and epileptic encephalopathy creates a splice acceptor site and affects only transcript variants including exon 10a. Neurogenetics 2023; 24:171-180. [PMID: 37039969 DOI: 10.1007/s10048-023-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
DNM1 developmental and epileptic encephalopathy (DEE) is characterized by severe to profound intellectual disability, hypotonia, movement disorder, and refractory epilepsy, typically presenting with infantile spasms. Most of the affected individuals had de novo missense variants in DNM1. DNM1 undergoes alternative splicing that results in expression of six different transcript variants. One alternatively spliced region affects the tandemly arranged exons 10a and 10b, producing isoforms DNM1A and DNM1B, respectively. Pathogenic variants in the DNM1 coding region affect all transcript variants. Recently, a de novo DNM1 NM_001288739.1:c.1197-8G > A variant located in intron 9 has been reported in several unrelated individuals with DEE that causes in-frame insertion of two amino acids and leads to disease through a dominant-negative mechanism. We report on a patient with DEE and a de novo DNM1 variant NM_001288739.2:c.1197-46C > G in intron 9, upstream of exon 10a. By RT-PCR and Sanger sequencing using fibroblast-derived cDNA of the patient, we identified aberrantly spliced DNM1 mRNAs with exon 9 spliced to the last 45 nucleotides of intron 9 followed by exon 10a (NM_001288739.2:r.1196_1197ins[1197-1_1197-45]). The encoded DNM1A mutant is predicted to contain 15 novel amino acids between Ile398 and Arg399 [NP_001275668.1:p.(Ile398_Arg399ins15)] and likely functions in a dominant-negative manner, similar to other DNM1 mutants. Our data confirm the importance of the DNM1 isoform A for normal human brain function that is underscored by previously reported predominant expression of DMN1A transcripts in pediatric brain, functional differences of the mouse Dnm1a and Dnm1b isoforms, and the Dnm1 fitful mouse, an epilepsy mouse model.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Deike Weiss
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
45
|
Thompson JLP, Karaa A, Pham H, Yeske P, Krischer J, Xiao Y, Long Y, Kramer A, Dimmock D, Holbert A, Gorski C, Engelstad KM, Buchsbaum R, Rosales XQ, Hirano M. The evolution of the mitochondrial disease diagnostic odyssey. Orphanet J Rare Dis 2023; 18:157. [PMID: 37349818 PMCID: PMC10288668 DOI: 10.1186/s13023-023-02754-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/04/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Mitochondrial diseases often require multiple years and clinicians to diagnose. We lack knowledge of the stages of this diagnostic odyssey, and factors that affect it. Our goals are to report the results of the 2018 Odyssey2 (OD2) survey of patients with a medical diagnosis of mitochondrial disease; and to propose steps to reduce the odyssey going forward, and procedures to evaluate them. METHODS Data are from the NIH-funded NAMDC-RDCRN-UMDF OD2 survey (N = 215). The main outcomes are Time from symptom Onset to mitochondrial disease Diagnosis (TOD) and Number of Doctors Seen during this diagnostic process (NDOCS). RESULTS Expert recoding increased analyzable responses by 34% for final mitochondrial diagnosis and 39% for prior non-mitochondrial diagnosis. Only one of 122 patients who initially saw a primary care physician (PCP) received a mitochondrial diagnosis, compared to 26 of 86 (30%) who initially saw a specialist (p < 0.001). Mean TOD overall was 9.9 ± 13.0 years, and mean NDOCS 6.7 ± 5.2. Mitochondrial diagnosis brings extensive benefits through treatment changes and increased membership in and support of advocacy groups. CONCLUSIONS Because TOD is long and NDOCS high, there is great potential for shortening the mitochondrial odyssey. Although prompt patient contact with primary mitochondrial disease specialists, or early implementation of appropriate tests, may shorten the diagnostic odyssey, specific proposals for improvement require testing and confirmation with adequately complete, unbiased data across all its stages, and appropriate methods. Electronic Health Record (EHRs) may help by accessing diagnostic codes early, but their reliability and diagnostic utility have not been established for this group of diseases.
Collapse
Affiliation(s)
- John L P Thompson
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA.
| | - Amel Karaa
- Division of Genetics, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Hung Pham
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA
| | | | - Jeffrey Krischer
- University of South Florida Health Informatics Institute, Tampa, FL, USA
| | - Yi Xiao
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA
| | - Yuelin Long
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA
| | - Amanda Kramer
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, USA
| | | | | | | | - Kristin M Engelstad
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Richard Buchsbaum
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, USA
| | - Xiomara Q Rosales
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
46
|
Zhang L, Tie X, Che F, Wang G, Ge Y, Li B, Yang Y. Novel maternal duplication of 6p22.3-p25.3 with subtelomeric 6p25.3 deletion: new clinical findings and genotype-phenotype correlations. Mol Cytogenet 2023; 16:11. [PMID: 37303060 DOI: 10.1186/s13039-023-00640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
BACKGROUND Copy-number variants (CNVs) drive many neurodevelopmental-related disorders. Although many neurodevelopmental-related CNVs can give rise to widespread phenotypes, it is necessary to identify the major genes contributing to phenotypic presentation. Copy-number variations in chromosome 6, such as independent 6p deletion and 6p duplication, have been reported in several live-born infants and present widespread abnormalities such as intellectual disability, growth deficiency, developmental delay, and multiple dysmorphic facial features. However, a contiguous deletion and duplication in chromosome 6p regions have been reported in only a few cases. CASE PRESENTATION In this study, we reported the first duplication of chromosome band 6p25.3-p22.3 with deletion of 6p25.3 in a pedigree. This is the first case reported involving CNVs in these chromosomal regions. In this pedigree, we reported a 1-year-old boy with maternal 6p25-pter duplication characterized by chromosome karyotype. Further analysis using CNV-seq revealed a 20.88-Mb duplication at 6p25.3-p22.3 associated with a contiguous 0.66-Mb 6p25.3 deletion. Whole exome sequencing confirmed the deletion/duplication and identified no pathogenic or likely pathogenic variants related with the patient´s phenotype. The proband presented abnormal growth, developmental delay, skeletal dysplasia, hearing loss, and dysmorphic facial features. Additionally, he presented recurrent infection after birth. CNV-seq using the proband´s parental samples showed that the deletion/duplication was inherited from the proband´s mother, who exhibited a similar phenotype to the proband. When compared with other cases, this proband and his mother presented a new clinical finding: forearm bone dysplasia. The major candidate genes contributing to recurrent infection, eye development, hearing loss features, neurodevelopmental development, and congenital bone dysplasia were further discussed. CONCLUSIONS Our results showed a new clinical finding of a contiguous deletion and duplication in chromosome 6p regions and suggested candidate genes associated with phenotypic features, such as FOXC1, SERPINB6, NRN1, TUBB2A, IRF4, and RIPK1.
Collapse
Affiliation(s)
- Liyu Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Xiaoling Tie
- Department of Rehabilitation, Xi'an Children's Hospital, Xi'an, China
| | - Fengyu Che
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Guoxia Wang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Ge
- The Center Laboratory Medicine, Xi'an Children's Hospital, Xi'an, China
| | - Benchang Li
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Yang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China.
| |
Collapse
|
47
|
Martin EA, Michel JC, Kissinger JS, Echeverry FA, Lin YP, O'Brien J, Pereda AE, Miller AC. Neurobeachin controls the asymmetric subcellular distribution of electrical synapse proteins. Curr Biol 2023; 33:2063-2074.e4. [PMID: 37172585 PMCID: PMC10266475 DOI: 10.1016/j.cub.2023.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/27/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
The subcellular positioning of synapses and their specialized molecular compositions form the fundamental basis of neural circuits. Like chemical synapses, electrical synapses are constructed from an assortment of adhesion, scaffolding, and regulatory molecules, yet little is known about how these molecules localize to specific neuronal compartments. Here, we investigate the relationship between the autism- and epilepsy-associated gene Neurobeachin, the neuronal gap junction channel-forming Connexins, and the electrical synapse scaffold ZO1. Using the zebrafish Mauthner circuit, we find Neurobeachin localizes to the electrical synapse independently of ZO1 and Connexins. By contrast, we show Neurobeachin is required postsynaptically for the robust localization of ZO1 and Connexins. We demonstrate that Neurobeachin binds ZO1 but not Connexins. Finally, we find Neurobeachin is required to restrict electrical postsynaptic proteins to dendrites, but not electrical presynaptic proteins to axons. Together, the results reveal an expanded understanding of electrical synapse molecular complexity and the hierarchical interactions required to build neuronal gap junctions. Further, these findings provide novel insight into the mechanisms by which neurons compartmentalize the localization of electrical synapse proteins and provide a cell biological mechanism for the subcellular specificity of electrical synapse formation and function.
Collapse
Affiliation(s)
- E Anne Martin
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | | | - Jane S Kissinger
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ya-Ping Lin
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - John O'Brien
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
48
|
Abul-Husn NS, Marathe PN, Kelly NR, Bonini KE, Sebastin M, Odgis JA, Abhyankar A, Brown K, Di Biase M, Gallagher KM, Guha S, Ioele N, Okur V, Ramos MA, Rodriguez JE, Rehman AU, Thomas-Wilson A, Edelmann L, Zinberg RE, Diaz GA, Greally JM, Jobanputra V, Suckiel SA, Horowitz CR, Wasserstein MP, Kenny EE, Gelb BD. Molecular diagnostic yield of genome sequencing versus targeted gene panel testing in racially and ethnically diverse pediatric patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.18.23286992. [PMID: 36993157 PMCID: PMC10055570 DOI: 10.1101/2023.03.18.23286992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Purpose Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions. Methods Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing. Diagnostic yield was compared using a fully paired study design. Results 645 probands (median age 9 years) underwent genetic testing, and 113 (17.5%) received a molecular diagnosis. Among 642 probands with both GS and TGP testing, GS yielded 106 (16.5%) and TGPs yielded 52 (8.1%) diagnoses ( P < .001). Yield was greater for GS vs . TGPs in Hispanic/Latino(a) (17.2% vs . 9.5%, P < .001) and White/European American (19.8% vs . 7.9%, P < .001), but not in Black/African American (11.5% vs . 7.7%, P = .22) population groups by self-report. A higher rate of inconclusive results was seen in the Black/African American (63.8%) vs . White/European American (47.6%; P = .01) population group. Most causal copy number variants (17 of 19) and mosaic variants (6 of 8) were detected only by GS. Conclusion GS may yield up to twice as many diagnoses in pediatric patients compared to TGP testing, but not yet across all population groups.
Collapse
Affiliation(s)
- Noura S Abul-Husn
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Priya N Marathe
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole R Kelly
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Katherine E Bonini
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Monisha Sebastin
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jacqueline A Odgis
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kaitlyn Brown
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miranda Di Biase
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Katie M Gallagher
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Saurav Guha
- Molecular Diagnostics, New York Genome Center, New York, NY, USA
| | - Nicolette Ioele
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Volkan Okur
- Molecular Diagnostics, New York Genome Center, New York, NY, USA
| | - Michelle A Ramos
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica E Rodriguez
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Atteeq U Rehman
- Molecular Diagnostics, New York Genome Center, New York, NY, USA
| | | | | | - Randi E Zinberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George A Diaz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - John M Greally
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vaidehi Jobanputra
- Molecular Diagnostics, New York Genome Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sabrina A Suckiel
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carol R Horowitz
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Melissa P Wasserstein
- Department of Pediatrics, Division of Pediatric Genetic Medicine, Children's Hospital at Montefiore/ Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eimear E Kenny
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
49
|
Hartley T, Soubry É, Acker M, Osmond M, Couse M, Gillespie MK, Ito Y, Marshall AE, Lemire G, Huang L, Chisholm C, Eaton AJ, Price EM, Dowling JJ, Ramani AK, Mendoza-Londono R, Costain G, Axford MM, Szuto A, McNiven V, Damseh N, Jobling R, de Kock L, Mojarad BA, Young T, Shao Z, Hayeems RZ, Graham ID, Tarnopolsky M, Brady L, Armour CM, Geraghty M, Richer J, Sawyer S, Lines M, Mercimek-Andrews S, Carter MT, Graham G, Kannu P, Lazier J, Li C, Aul RB, Balci TB, Dlamini N, Badalato L, Guerin A, Walia J, Chitayat D, Cohn R, Faghfoury H, Forster-Gibson C, Gonorazky H, Grunebaum E, Inbar-Feigenberg M, Karp N, Morel C, Rusnak A, Sondheimer N, Warman-Chardon J, Bhola PT, Bourque DK, Chacon IJ, Chad L, Chakraborty P, Chong K, Doja A, Goh ESY, Saleh M, Potter BK, Marshall CR, Dyment DA, Kernohan K, Boycott KM. Bridging clinical care and research in Ontario, Canada: Maximizing diagnoses from reanalysis of clinical exome sequencing data. Clin Genet 2023; 103:288-300. [PMID: 36353900 DOI: 10.1111/cge.14262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/11/2022]
Abstract
We examined the utility of clinical and research processes in the reanalysis of publicly-funded clinical exome sequencing data in Ontario, Canada. In partnership with eight sites, we recruited 287 families with suspected rare genetic diseases tested between 2014 and 2020. Data from seven laboratories was reanalyzed with the referring clinicians. Reanalysis of clinically relevant genes identified diagnoses in 4% (13/287); four were missed by clinical testing. Translational research methods, including analysis of novel candidate genes, identified candidates in 21% (61/287). Of these, 24 families have additional evidence through data sharing to support likely diagnoses (8% of cohort). This study indicates few diagnoses are missed by clinical laboratories, the incremental gain from reanalysis of clinically-relevant genes is modest, and the highest yield comes from validation of novel disease-gene associations. Future implementation of translational research methods, including continued reporting of compelling genes of uncertain significance by clinical laboratories, should be considered to maximize diagnoses.
Collapse
Affiliation(s)
- Taila Hartley
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Élisabeth Soubry
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - Meryl Acker
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | | | - Meredith K Gillespie
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Yoko Ito
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Aren E Marshall
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Gabrielle Lemire
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Lijia Huang
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Alison J Eaton
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- University of Alberta, Edmonton, Canada
| | - E Magda Price
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | - James J Dowling
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | | | | | - Gregory Costain
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Michelle M Axford
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Anna Szuto
- Hospital for Sick Children, Toronto, Canada
| | - Vanda McNiven
- Hospital for Sick Children, Toronto, Canada
- University Health Network, Toronto, Canada
| | | | | | - Leanne de Kock
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
| | | | - Ted Young
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Zhuo Shao
- University of Toronto, Toronto, Canada
- North York General Hospital, Toronto, Canada
| | | | - Ian D Graham
- University of Ottawa, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
| | | | | | - Christine M Armour
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Julie Richer
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Sarah Sawyer
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Matthew Lines
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Melissa T Carter
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Gail Graham
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Peter Kannu
- Hospital for Sick Children, Toronto, Canada
- University of Alberta, Edmonton, Canada
| | - Joanna Lazier
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Chumei Li
- McMaster Children's Hospital, Hamilton, Canada
| | - Ritu B Aul
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Tugce B Balci
- London Health Sciences Center, Western University, London, Canada
| | | | - Lauren Badalato
- Kingston Health Sciences Center, Queen's University, Kingston, Canada
| | - Andrea Guerin
- Kingston Health Sciences Center, Queen's University, Kingston, Canada
| | - Jagdeep Walia
- Kingston Health Sciences Center, Queen's University, Kingston, Canada
| | - David Chitayat
- Hospital for Sick Children, Toronto, Canada
- Mount Sinai Hospital, Toronto, Canada
| | | | | | | | | | | | | | - Natalya Karp
- London Health Sciences Center, Western University, London, Canada
| | | | - Alison Rusnak
- Children's Hospital of Eastern Ontario, Ottawa, Canada
- Kingston Health Sciences Center, Queen's University, Kingston, Canada
| | | | - Jodi Warman-Chardon
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
- The Ottawa Hospital, Ottawa, Canada
| | - Priya T Bhola
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Danielle K Bourque
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Lauren Chad
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Asif Doja
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Maha Saleh
- London Health Sciences Center, Western University, London, Canada
| | | | - Beth K Potter
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
| | - Christian R Marshall
- Hospital for Sick Children, Toronto, Canada
- University of Toronto, Toronto, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Kristin Kernohan
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada
- University of Ottawa, Ottawa, Canada
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| |
Collapse
|
50
|
Zhuang J, Luo Q, Xie M, Chen Y, Jiang Y, Zeng S, Wang Y, Xie Y, Chen C. Etiological identification of recurrent male fatality due to a novel NSDHL gene mutation using trio whole-exome sequencing: A rare case report and literature review. Mol Genet Genomic Med 2023; 11:e2121. [PMID: 36504312 PMCID: PMC10009909 DOI: 10.1002/mgg3.2121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Congenital hemidysplasia with ichthyosiform nevus and limb defects (CHILD) syndrome is a rare X-linked dominant, lethal male disorder caused by mutations to the NSDHL (NAD(P)H steroid dehydrogenase-like protein) gene. It primarily exhibits strictly unilateral congenital hemidysplasia with ichthyosiform erythroderma and ipsilateral limb defects in female individuals. METHODS A Chinese couple suffering from recurrent spontaneous abortion in male fetuses was enrolled in this study. Chromosomal microarray analysis and whole-exome sequencing were performed for genetic etiological diagnosis. RESULTS A 33-year-old pregnant woman with recurrent spontaneous abortion was experiencing her third pregnancy with a male embryo. In this pregnancy, a miscarriage occurred at a gestational age of 10+6 weeks with no copy number variants. However, a novel mutation c.790-6C>T in the NSDHL gene was observed in the fetus through whole-exome sequencing (WES). Parental verification indicated that the NSDHL gene variant was inherited from the mother. Additionally, the variant in the NSDHL gene was absent in her subsequent pregnancy with a female fetus. CONCLUSION In this study, we detected c.790-6C>T, a novel variant in the NSDHL gene that results in recurrent miscarriage in males. Our study may broaden the scope of research on the NSDHL gene in CHILD syndrome and strengthens the application value of WES for the genetic etiological identification of recurrent miscarriage.
Collapse
Affiliation(s)
- Jianlong Zhuang
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Qi Luo
- Department of Public Health for Women and Children, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian, China
| | - Meihua Xie
- Prenatal Diagnosis Center, Yueyang Central Hospital, Yueyang, China
| | - Yu'e Chen
- Ultrasonography, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Yuying Jiang
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Shuhong Zeng
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yuanbai Wang
- Center for Prenatal Diagnosis, Quanzhou Women's and Children's Hospital, Quanzhou, Fujian Province, China
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Chunnuan Chen
- Department of Neurology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, PR China
| |
Collapse
|