1
|
Ogasawara S, Schol J, Sakai D, Warita T, Susumu T, Nakamura Y, Sako K, Tamagawa S, Matsushita E, Soma H, Sato M, Watanabe M. Alginate vs. Hyaluronic Acid as Carriers for Nucleus Pulposus Cells: A Study on Regenerative Outcomes in Disc Degeneration. Cells 2024; 13:1984. [PMID: 39682732 PMCID: PMC11639827 DOI: 10.3390/cells13231984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Intervertebral disc degeneration is a leading cause of chronic low back pain, affecting millions globally. Regenerative medicine, particularly cell-based therapies, presents a promising therapeutic strategy. This study evaluates the comparative efficacy of two biomaterials-hyaluronic acid (HA) and alginate-as carriers for nucleus pulposus (NP) cell transplantation in a beagle model of induced disc degeneration. NP cells were isolated, cultured, and injected with either HA or alginate into degenerated discs, with saline and non-cell-loaded carriers used as controls. Disc height index, T2-weighted MRI, and histological analyses were conducted over a 12-week follow-up period to assess reparative outcomes. Imaging revealed that both carrier and cell-loaded treatments improved outcomes compared to degenerative controls, with cell-loaded carriers consistently outperforming carrier-only treated discs. Histological assessments supported these findings, showing trends toward extracellular matrix restoration in both treatment groups. While both biomaterials demonstrated reparative potential, HA showed greater consistency in supporting NP cells in promoting disc regeneration. These results underscore HA's potential as a superior carrier for NP cell-based therapies in addressing disc degeneration.
Collapse
Affiliation(s)
- Shota Ogasawara
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Jordy Schol
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Takayuki Warita
- TUNZ Pharma Corporation, Osaka 541-0046, Japan; (T.W.); (Y.N.); (H.S.)
| | - Takano Susumu
- Department of Radiology, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan;
| | | | - Kosuke Sako
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Erika Matsushita
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
| | - Hazuki Soma
- TUNZ Pharma Corporation, Osaka 541-0046, Japan; (T.W.); (Y.N.); (H.S.)
| | - Masato Sato
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan (J.S.); (M.S.); (M.W.)
- Center for Musculoskeletal Innovative Research and Advancement (C-MiRA), Tokai University Graduate School, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
2
|
Ambrosio L, Schol J, Ruiz-Fernández C, Tamagawa S, Joyce K, Nomura A, de Rinaldis E, Sakai D, Papalia R, Vadalà G, Denaro V. Getting to the Core: Exploring the Embryonic Development from Notochord to Nucleus Pulposus. J Dev Biol 2024; 12:18. [PMID: 39051200 PMCID: PMC11270426 DOI: 10.3390/jdb12030018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
The intervertebral disc (IVD) is the largest avascular organ of the human body and plays a fundamental role in providing the spine with its unique structural and biomechanical functions. The inner part of the IVD contains the nucleus pulposus (NP), a gel-like tissue characterized by a high content of type II collagen and proteoglycans, which is crucial for the disc's load-bearing and shock-absorbing properties. With aging and IVD degeneration (IDD), the NP gradually loses its physiological characteristics, leading to low back pain and additional sequelae. In contrast to surrounding spinal tissues, the NP presents a distinctive embryonic development since it directly derives from the notochord. This review aims to explore the embryology of the NP, emphasizing the pivotal roles of key transcription factors, which guide the differentiation and maintenance of the NP cellular components from the notochord and surrounding sclerotome. Through an understanding of NP development, we sought to investigate the implications of the critical developmental aspects in IVD-related pathologies, such as IDD and the rare malignant chordomas. Moreover, this review discusses the therapeutic strategies targeting these pathways, including the novel regenerative approaches leveraging insights from NP development and embryology to potentially guide future treatments.
Collapse
Affiliation(s)
- Luca Ambrosio
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Jordy Schol
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Clara Ruiz-Fernández
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Shota Tamagawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan;
| | - Kieran Joyce
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland;
- School of Medicine, University of Galway, H91 W2TY Galway, Ireland
| | - Akira Nomura
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Elisabetta de Rinaldis
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara 259-1143, Japan; (J.S.); (C.R.-F.); (A.N.); (D.S.)
| | - Rocco Papalia
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Gianluca Vadalà
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, 01128 Rome, Italy;
| | - Vincenzo Denaro
- Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy; (L.A.); (R.P.); (V.D.)
| |
Collapse
|
3
|
Li Y, Zhang H, Zhu D, Yang F, Wang Z, Wei Z, Yang Z, Jia J, Kang X. Notochordal cells: A potential therapeutic option for intervertebral disc degeneration. Cell Prolif 2024; 57:e13541. [PMID: 37697480 PMCID: PMC10849793 DOI: 10.1111/cpr.13541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Haijun Zhang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
- The Second People's Hospital of Gansu ProvinceLanzhouPeople's Republic of China
| | - Daxue Zhu
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Fengguang Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhaoheng Wang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Ziyan Wei
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhili Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Jingwen Jia
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Xuewen Kang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| |
Collapse
|
4
|
Ohnishi T, Homan K, Fukushima A, Ukeba D, Iwasaki N, Sudo H. A Review: Methodologies to Promote the Differentiation of Mesenchymal Stem Cells for the Regeneration of Intervertebral Disc Cells Following Intervertebral Disc Degeneration. Cells 2023; 12:2161. [PMID: 37681893 PMCID: PMC10486900 DOI: 10.3390/cells12172161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD), a highly prevalent pathological condition worldwide, is widely associated with back pain. Treatments available compensate for the impaired function of the degenerated IVD but typically have incomplete resolutions because of their adverse complications. Therefore, fundamental regenerative treatments need exploration. Mesenchymal stem cell (MSC) therapy has been recognized as a mainstream research objective by the World Health Organization and was consequently studied by various research groups. Implanted MSCs exert anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects and promote extracellular component production, as well as differentiation into IVD cells themselves. Hence, the ultimate goal of MSC therapy is to recover IVD cells and consequently regenerate the extracellular matrix of degenerated IVDs. Notably, in addition to MSC implantation, healthy nucleus pulposus (NP) cells (NPCs) have been implanted to regenerate NP, which is currently undergoing clinical trials. NPC-derived exosomes have been investigated for their ability to differentiate MSCs from NPC-like phenotypes. A stable and economical source of IVD cells may include allogeneic MSCs from the cell bank for differentiation into IVD cells. Therefore, multiple alternative therapeutic options should be considered if a refined protocol for the differentiation of MSCs into IVD cells is established. In this study, we comprehensively reviewed the molecules, scaffolds, and environmental factors that facilitate the differentiation of MSCs into IVD cells for regenerative therapies for IDD.
Collapse
Affiliation(s)
- Takashi Ohnishi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Kentaro Homan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Akira Fukushima
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Daisuke Ukeba
- Department of Orthopedic Surgery, Hokkaido University Hospital, Sapporo 060-8648, Japan;
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan; (T.O.); (K.H.); (A.F.); (N.I.)
| | - Hideki Sudo
- Department of Advanced Medicine for Spine and Spinal Cord Disorders, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
5
|
Günay B, Matthews E, Morgan J, Tryfonidou MA, Saldova R, Pandit A. An insight on the N-glycome of notochordal cell-rich porcine nucleus pulposus during maturation. FASEB Bioadv 2023; 5:321-335. [PMID: 37554546 PMCID: PMC10405234 DOI: 10.1096/fba.2023-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/25/2023] [Accepted: 05/17/2023] [Indexed: 08/10/2023] Open
Abstract
Degeneration of the intervertebral disc is an age-related condition. It also accompanies the disappearance of the notochordal cells, which are remnants of the developmental stages of the nucleus pulposus (NP). Molecular changes such as extracellular matrix catabolism, cellular phenotype, and glycosaminoglycan loss in the NP have been extensively studied. However, as one of the most significant co- and posttranslational modifications, glycosylation has been overlooked in cells in degeneration. Here, we aim to characterize the N-glycome of young and mature NP and identify patterns related to aging. Accordingly, we isolated N-glycans from notochordal cell-rich NP from porcine discs, characterized them using a combined approach of exoglycosidase digestions and analysis with hydrophilic interaction ultra-performance liquid chromatography and mass spectrometry. We have assigned over 300 individual N-glycans for each age group. Moreover, we observed a notable abundance of antennary structures, galactosylation, fucosylation, and sialylation in both age groups. In addition, as indicated from our results, increasing outer arm fucosylation and decreasing α(2,3)-linked sialylation with aging suggest that these traits are age-dependent. Lastly, we have focused on an extensive characterization of the N-glycome of the notochordal cell-rich NP in aging without inferred degeneration, describing glycosylation changes specific for aging only. Our findings in combination with those of other studies, suggest that the degeneration of the NP does not involve identical processes as aging.
Collapse
Affiliation(s)
- Büşra Günay
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| | - Elizabeth Matthews
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
| | - Jack Morgan
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
| | - Marianna A. Tryfonidou
- Faculty of Veterinary Medicine, Department of Clinical SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Radka Saldova
- NIBRT GlycoScience GroupNational Institute for Bioprocessing Research and Training (NIBRT)DublinIreland
- School of Medicine, College of Health and Agricultural ScienceUniversity College DublinDublinIreland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical DevicesUniversity of GalwayGalwayIreland
| |
Collapse
|
6
|
Wang P, Yang C, Lu J, Ren Y, Goltzman D, Miao D. Sirt1 protects against intervertebral disc degeneration induced by 1,25-dihydroxyvitamin D insufficiency in mice by inhibiting the NF-κB inflammatory pathway. J Orthop Translat 2023; 40:13-26. [PMID: 37200907 PMCID: PMC10185703 DOI: 10.1016/j.jot.2023.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 05/20/2023] Open
Abstract
Background It has been demonstrated that vitamin D deficiency is associated with an increased risk of patients developing lumbar disc herniation. However, intervertebral disc degeneration caused by active vitamin D deficiency has not been reported. Thus, the purpose of this study was to e investigate the role and mechanism of 1,25-dihydroxyvitamin D (1,25(OH)2D) insufficiency in promoting intervertebral disc degeneration. Methods The phenotypes of intervertebral discs were compared in wild-type mice and mice with heterozygous deletion of 1α-hydroxylase [1α(OH)ase+/-] at 8 mouths of age using iconography, histology and molecular biology. A mouse model that overexpressed Sirt1 in mesenchymal stem cells on a 1α(OH)ase+/- background (Sirt1Tg/1α(OH)ase+/-) was generated by crossing Prx1-Sirt1 transgenic mice with 1α(OH)ase+/- mice and comparing their intervertebral disc phenotypes with those of Sirt1Tg, 1α(OH)ase+/- and wild-type littermates at 8 months of age. A vitamin D receptor (VDR)-deficient cellular model was generated by knock-down of endogenous VDR using Ad-siVDR transfection into nucleus pulposus cells; VDR-deficient nucleus pulposus cells were then treated with or without resveratrol. The interactions between Sirt1 and acetylated p65, and p65 nuclear localization, were examined using co-immunoprecipitation, Western blots and immunofluorescence staining. VDR-deficient nucleus pulposus cells were also treated with 1,25(OH)2D3, or resveratrol or 1,25(OH)2D3 plus Ex527 (an inhibitor of Sirt1). Effects on Sirt1 expression, cell proliferation, cell senescence, extracellular matrix protein synthesis and degradation, nuclear factor-κB (NF-κB), and expression of inflammatory molecules, were examined, using immunofluorescence staining, Western blots and real-time RT-PCR. Results 1,25(OH)2D insufficiency accelerated intervertebral disc degeneration by reducing extracellular matrix protein synthesis and enhancing extracellular matrix protein degradation with reduced Sirt1 expression in nucleus pulposus tissues. Overexpression of Sirt1 in MSCs protected against 1,25(OH)2D deficiency-induced intervertebral disc degeneration by decreasing acetylation and phosphorylation of p65 and inhibiting the NF-κB inflammatory pathway. VDR or resveratrol activated Sirt1 to deacetylate p65 and inhibit its nuclear translocation into nucleus pulposus cells. Knockdown of VDR decreased VDR expression and significantly reduced the proliferation and extracellular matrix protein synthesis of nucleus pulposus cells, significantly increased the senescence of nucleus pulposus cells and significantly downregulated Sirt1 expression, and upregulated matrix metallopeptidase 13 (MMP13), tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) expression; the ratios of acetylated and phosphorylated p65/p65 in nucleus pulposus cells were also increased. Treatment of nucleus pulposus cells with VDR reduction using 1,25(OH)2D3 or resveratrol partially rescued the degeneration phenotypes, by up-regulating Sirt1 expression and inhibiting NF-κB inflammatory pathway; these effects in nucleus pulposus cells were blocked by inhibition of Sirt1. Conclusion Results from this study indicate that the 1,25(OH)2D/VDR pathway can prevent the degeneration of nucleus pulposus cells by inhibiting the NF-κB inflammatory pathway mediated by Sirt1.The Translational Potential of This Article: This study provides new insights into the use of 1,25(OH)2D3 to prevent and treat intervertebral disc degeneration caused by vitamin D deficiency.
Collapse
Affiliation(s)
- Peng Wang
- Department of Orthopaedics, Lianyungang Clinical College of Nanjing Medical University, The First People's Hospital of Lianyungang., Lianyungang, Jiangsu, China
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Cuicui Yang
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhong Lu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongxin Ren
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Dengshun Miao
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Basatvat S, Bach FC, Barcellona MN, Binch AL, Buckley CT, Bueno B, Chahine NO, Chee A, Creemers LB, Dudli S, Fearing B, Ferguson SJ, Gansau J, Gantenbein B, Gawri R, Glaeser JD, Grad S, Guerrero J, Haglund L, Hernandez PA, Hoyland JA, Huang C, Iatridis JC, Illien‐Junger S, Jing L, Kraus P, Laagland LT, Lang G, Leung V, Li Z, Lufkin T, van Maanen JC, McDonnell EE, Panebianco CJ, Presciutti SM, Rao S, Richardson SM, Romereim S, Schmitz TC, Schol J, Setton L, Sheyn D, Snuggs JW, Sun Y, Tan X, Tryfonidou MA, Vo N, Wang D, Williams B, Williams R, Yoon ST, Le Maitre CL. Harmonization and standardization of nucleus pulposus cell extraction and culture methods. JOR Spine 2023; 6:e1238. [PMID: 36994456 PMCID: PMC10041384 DOI: 10.1002/jsp2.1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/30/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background In vitro studies using nucleus pulposus (NP) cells are commonly used to investigate disc cell biology and pathogenesis, or to aid in the development of new therapies. However, lab-to-lab variability jeopardizes the much-needed progress in the field. Here, an international group of spine scientists collaborated to standardize extraction and expansion techniques for NP cells to reduce variability, improve comparability between labs and improve utilization of funding and resources. Methods The most commonly applied methods for NP cell extraction, expansion, and re-differentiation were identified using a questionnaire to research groups worldwide. NP cell extraction methods from rat, rabbit, pig, dog, cow, and human NP tissue were experimentally assessed. Expansion and re-differentiation media and techniques were also investigated. Results Recommended protocols are provided for extraction, expansion, and re-differentiation of NP cells from common species utilized for NP cell culture. Conclusions This international, multilab and multispecies study identified cell extraction methods for greater cell yield and fewer gene expression changes by applying species-specific pronase usage, 60-100 U/ml collagenase for shorter durations. Recommendations for NP cell expansion, passage number, and many factors driving successful cell culture in different species are also addressed to support harmonization, rigor, and cross-lab comparisons on NP cells worldwide.
Collapse
Affiliation(s)
| | - Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marcos N. Barcellona
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Abbie L. Binch
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Conor T. Buckley
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Brian Bueno
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Nadeen O. Chahine
- Departments of Orthopedic Surgery and Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| | - Ana Chee
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Laura B. Creemers
- Department of OrthopedicsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Stefan Dudli
- Center for Experimental RheumatologyUniversity of ZurichZurichSwitzerland
| | - Bailey Fearing
- Department of Orthopedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | | | - Jennifer Gansau
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Benjamin Gantenbein
- Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department for Orthopedics and Traumatology, Insel University HospitalUniversity of BernBernSwitzerland
| | - Rahul Gawri
- Division of Orthopaedic Surgery, Department of SurgeryMcGill UniversityMontrealCanada
- Regenerative Orthopaedics and Innovation LaboratoryMcGill UniversityMontrealCanada
| | | | | | - Julien Guerrero
- Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Center of Dental Medicine, Oral Biotechnology & BioengineeringUniversity of ZurichZurichSwitzerland
| | - Lisbet Haglund
- Division of Orthopaedic Surgery, Department of SurgeryMcGill UniversityMontrealCanada
| | - Paula A. Hernandez
- Department of Orthopaedic SurgeryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Judith A. Hoyland
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Charles Huang
- Department of Biomedical EngineeringUniversity of MiamiCoral GablesFloridaUSA
| | - James C. Iatridis
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Liufang Jing
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Petra Kraus
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
- Department of BiologyClarkson UniversityPotsdamNew YorkUSA
| | - Lisanne T. Laagland
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Gernot Lang
- Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of MedicineAlbert‐Ludwigs‐University of FreiburgFreiburg im BreisgauGermany
| | - Victor Leung
- Department of Orthopaedics & TraumatologyThe University of Hong KongHong KongSARChina
| | - Zhen Li
- AO Research Institute DavosDavosSwitzerland
| | - Thomas Lufkin
- Department of BiologyClarkson UniversityPotsdamNew YorkUSA
| | - Josette C. van Maanen
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Emily E. McDonnell
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College DublinThe University of DublinDublinIreland
| | - Chris J. Panebianco
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | | | - Sanjna Rao
- Leni & Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Stephen M. Richardson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences CentreThe University of ManchesterManchesterUK
| | - Sarah Romereim
- Department of Orthopedic SurgeryAtrium Health Musculoskeletal InstituteCharlotteNorth CarolinaUSA
| | - Tara C. Schmitz
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jordy Schol
- Department of Orthopedic SurgeryTokai University School of MedicineIseharaJapan
| | - Lori Setton
- Departments of Biomedical Engineering and Orthopedic SurgeryWashington University in St. LouisSt. LouisMissouriUSA
| | | | - Joseph W. Snuggs
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - Y. Sun
- Department of Orthopaedics & TraumatologyThe University of Hong KongHong KongSARChina
| | - Xiaohong Tan
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMissouriUSA
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Nam Vo
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Dong Wang
- Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Brandon Williams
- Department of Orthopedic SurgeryRush University Medical CenterChicagoIllinoisUSA
| | - Rebecca Williams
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
| | - S. Tim Yoon
- Department of OrthopaedicsEmory University School of MedicineAtlantaGAUSA
| | - Christine L. Le Maitre
- Biomolecular Sciences Research CentreSheffield Hallam UniversitySheffieldUK
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldSouth YorkshireUK
| |
Collapse
|
8
|
Kasamkattil J, Gryadunova A, Schmid R, Gay-Dujak MHP, Dasen B, Hilpert M, Pelttari K, Martin I, Schären S, Barbero A, Krupkova O, Mehrkens A. Human 3D nucleus pulposus microtissue model to evaluate the potential of pre-conditioned nasal chondrocytes for the repair of degenerated intervertebral disc. Front Bioeng Biotechnol 2023; 11:1119009. [PMID: 36865027 PMCID: PMC9971624 DOI: 10.3389/fbioe.2023.1119009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: An in vitro model that appropriately recapitulates the degenerative disc disease (DDD) microenvironment is needed to explore clinically relevant cell-based therapeutic strategies for early-stage degenerative disc disease. We developed an advanced 3D nucleus pulposus (NP) microtissues (µT) model generated with cells isolated from human degenerating NP tissue (Pfirrmann grade: 2-3), which were exposed to hypoxia, low glucose, acidity and low-grade inflammation. This model was then used to test the performance of nasal chondrocytes (NC) suspension or spheroids (NCS) after pre-conditioning with drugs known to exert anti-inflammatory or anabolic activities. Methods: NPµTs were formed by i) spheroids generated with NP cells (NPS) alone or in combination with ii) NCS or iii) NC suspension and cultured in healthy or degenerative disc disease condition. Anti-inflammatory and anabolic drugs (amiloride, celecoxib, metformin, IL-1Ra, GDF-5) were used for pre-conditioning of NC/NCS. The effects of pre-conditioning were tested in 2D, 3D, and degenerative NPµT model. Histological, biochemical, and gene expression analysis were performed to assess matrix content (glycosaminoglycans, type I and II collagen), production and release of inflammatory/catabolic factors (IL-6, IL-8, MMP-3, MMP-13) and cell viability (cleaved caspase 3). Results: The degenerative NPµT contained less glycosaminoglycans, collagens, and released higher levels of IL-8 compared to the healthy NPµT. In the degenerative NPµT, NCS performed superior compared to NC cell suspension but still showed lower viability. Among the different compounds tested, only IL-1Ra pre-conditioning inhibited the expression of inflammatory/catabolic mediators and promoted glycosaminoglycan accumulation in NC/NCS in DDD microenvironment. In degenerative NPµT model, preconditioning of NCS with IL-1Ra also provided superior anti-inflammatory/catabolic activity compared to non-preconditioned NCS. Conclusion: The degenerative NPµT model is suitable to study the responses of therapeutic cells to microenvironment mimicking early-stage degenerative disc disease. In particular, we showed that NC in spheroidal organization as compared to NC cell suspension exhibited superior regenerative performance and that IL-1Ra pre-conditioning of NCS could further improve their ability to counteract inflammation/catabolism and support new matrix production within harsh degenerative disc disease microenvironment. Studies in an orthotopic in vivo model are necessary to assess the clinical relevance of our findings in the context of IVD repair.
Collapse
Affiliation(s)
- Jesil Kasamkattil
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Anna Gryadunova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Raphael Schmid
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Max Hans Peter Gay-Dujak
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,Department of Biomedicine, Institute of Anatomy, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Boris Dasen
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Morgane Hilpert
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Karoliina Pelttari
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Stefan Schären
- Spine Surgery, University Hospital Basel, Basel, Switzerland
| | - Andrea Barbero
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Olga Krupkova
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland,*Correspondence: Olga Krupkova,
| | - Arne Mehrkens
- Spine Surgery, University Hospital Basel, Basel, Switzerland,Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
9
|
Bach FC, Poramba-Liyanage DW, Riemers FM, Guicheux J, Camus A, Iatridis JC, Chan D, Ito K, Le Maitre CL, Tryfonidou MA. Notochordal Cell-Based Treatment Strategies and Their Potential in Intervertebral Disc Regeneration. Front Cell Dev Biol 2022; 9:780749. [PMID: 35359916 PMCID: PMC8963872 DOI: 10.3389/fcell.2021.780749] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic low back pain is the number one cause of years lived with disability. In about 40% of patients, chronic lower back pain is related to intervertebral disc (IVD) degeneration. The standard-of-care focuses on symptomatic relief, while surgery is the last resort. Emerging therapeutic strategies target the underlying cause of IVD degeneration and increasingly focus on the relatively overlooked notochordal cells (NCs). NCs are derived from the notochord and once the notochord regresses they remain in the core of the developing IVD, the nucleus pulposus. The large vacuolated NCs rapidly decline after birth and are replaced by the smaller nucleus pulposus cells with maturation, ageing, and degeneration. Here, we provide an update on the journey of NCs and discuss the cell markers and tools that can be used to study their fate and regenerative capacity. We review the therapeutic potential of NCs for the treatment of IVD-related lower back pain and outline important future directions in this area. Promising studies indicate that NCs and their secretome exerts regenerative effects, via increased proliferation, extracellular matrix production, and anti-inflammatory effects. Reports on NC-like cells derived from embryonic- or induced pluripotent-stem cells claim to have successfully generated NC-like cells but did not compare them with native NCs for phenotypic markers or in terms of their regenerative capacity. Altogether, this is an emerging and active field of research with exciting possibilities. NC-based studies demonstrate that cues from developmental biology can pave the path for future clinical therapies focused on regenerating the diseased IVD.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jerome Guicheux
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
- PHU4 OTONN, CHU Nantes, Nantes, France
| | - Anne Camus
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Marianna A. Tryfonidou,
| |
Collapse
|
10
|
Williams RJ, Tryfonidou MA, Snuggs JW, Le Maitre CL. Cell sources proposed for nucleus pulposus regeneration. JOR Spine 2021; 4:e1175. [PMID: 35005441 PMCID: PMC8717099 DOI: 10.1002/jsp2.1175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Lower back pain (LBP) occurs in 80% of adults in their lifetime; resulting in LBP being one of the biggest causes of disability worldwide. Chronic LBP has been linked to the degeneration of the intervertebral disc (IVD). The current treatments for chronic back pain only provide alleviation of symptoms through pain relief, tissue removal, or spinal fusion; none of which target regenerating the degenerate IVD. As nucleus pulposus (NP) degeneration is thought to represent a key initiation site of IVD degeneration, cell therapy that specifically targets the restoration of the NP has been reviewed here. A literature search to quantitatively assess all cell types used in NP regeneration was undertaken. With key cell sources: NP cells; annulus fibrosus cells; notochordal cells; chondrocytes; bone marrow mesenchymal stromal cells; adipose-derived stromal cells; and induced pluripotent stem cells extensively analyzed for their regenerative potential of the NP. This review highlights: accessibility; expansion capability in vitro; cell survival in an IVD environment; regenerative potential; and safety for these key potential cell sources. In conclusion, while several potential cell sources have been proposed, iPSC may provide the most promising regenerative potential.
Collapse
Affiliation(s)
- Rebecca J. Williams
- Biomedical Research Centre, BiosciencesSheffield Hallam UniversitySheffieldUK
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | |
Collapse
|
11
|
Malli SE, Kumbhkarn P, Dewle A, Srivastava A. Evaluation of Tissue Engineering Approaches for Intervertebral Disc Regeneration in Relevant Animal Models. ACS APPLIED BIO MATERIALS 2021; 4:7721-7737. [PMID: 35006757 DOI: 10.1021/acsabm.1c00500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Translation of tissue engineering strategies for the regeneration of intervertebral disc (IVD) requires a strong understanding of pathophysiology through the relevant animal model. There is no relevant animal model due to differences in disc anatomy, cellular composition, extracellular matrix components, disc physiology, and mechanical strength from humans. However, available animal models if used correctly could provide clinically relevant information for the translation into humans. In this review, we have investigated different types of strategies for the development of clinically relevant animal models to study biomaterials, cells, biomolecular or their combination in developing tissue engineering-based treatment strategies. Tissue engineering strategies that utilize various animal models for IVD regeneration are summarized and outcomes have been discussed. The understanding of animal models for the validation of regenerative approaches is employed to understand and treat the pathophysiology of degenerative disc disease (DDD) before proceeding for human trials. These animal models play an important role in building a therapeutic regime for IVD tissue regeneration, which can serve as a platform for clinical applications.
Collapse
Affiliation(s)
- Sweety Evangeli Malli
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Pranav Kumbhkarn
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Ankush Dewle
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-Ahmedabad), Gandhinagar, Gujarat 382355, India
| |
Collapse
|
12
|
Guerrero J, Häckel S, Croft AS, Albers CE, Gantenbein B. The effects of 3D culture on the expansion and maintenance of nucleus pulposus progenitor cell multipotency. JOR Spine 2021; 4:e1131. [PMID: 33778405 PMCID: PMC7984018 DOI: 10.1002/jsp2.1131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Low back pain (LBP) is a global health concern. Increasing evidence implicates intervertebral disk (IVD) degeneration as a major contributor. In this respect, tissue-specific progenitors may play a crucial role in tissue regeneration, as these cells are perfectly adapted to their niche. Recently, a novel progenitor cell population was described in the nucleus pulposus (NP) that is positive for Tie2 marker. These cells have self-renewal capacity and in vitro multipotency potential. However, extremely low numbers of the NP progenitors limit the feasibility of cell therapy strategies. OBJECTIVE Here, we studied the influence of the culture method and of the microenvironment on the proliferation rate and the differentiation potential of human NP progenitors in vitro. METHOD Cells were obtained from human NP tissue from trauma patients. Briefly, the NP tissue cells were cultured in two-dimensional (2D) (monolayer) or three-dimensional (3D) (alginate beads) conditions. After 1 week, cells from 2D or 3D culture were expanded on fibronectin-coated flasks. Subsequently, expanded NP cells were then characterized by cytometry and tri-lineage differentiation, which was analyzed by qPCR and histology. Moreover, experiments using Tie2+ and Tie2- NP cells were also performed. RESULTS The present study aims to demonstrate that 3D expansion of NP cells better preserves the Tie2+ cell populations and increases the chondrogenic and osteogenic differentiation potential compared to 2D expansion. Moreover, the cell sorting experiments reveal that only Tie2+ cells were able to maintain the pluripotent gene expression if cultured in 3D within alginate beads. Therefore, our results highly suggest that the maintenance of the cell's multipotency is mainly, but not exclusively, due to the higher presence of Tie2+ cells due to 3D culture. CONCLUSION This project not only might have a scientific impact by evaluating the influence of a two-step expansion protocol on the functionality of NP progenitors, but it could also lead to an innovative clinical approach.
Collapse
Affiliation(s)
- Julien Guerrero
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
| | - Sonja Häckel
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| | - Andreas S. Croft
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
| | - Christoph E. Albers
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Department for BioMedical Research (DBMR) of the Faculty of Medicine of the University of BernUniversity of BernSwitzerland
- Department of Orthopaedic Surgery & Traumatology, InselspitalBern University HospitalBernSwitzerland
| |
Collapse
|
13
|
Nucleus Pulposus Cell Conditioned Medium Promotes Mesenchymal Stem Cell Differentiation into Nucleus Pulposus-Like Cells under Hypoxic Conditions. Stem Cells Int 2020; 2020:8882549. [PMID: 33424982 PMCID: PMC7773475 DOI: 10.1155/2020/8882549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/15/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Low back pain (LBP) is a major physical and socioeconomic challenge worldwide. Nucleus pulposus (NP) is directly associated with LBP due to intervertebral disc (IVD) degeneration. IVD degeneration is mainly caused by structural and matrix-related changes within the IVD occurring during aging and degeneration. Mesenchymal stem cells (MSCs) can differentiate into multiple mesenchymal lineages under specific stimulatory conditions. This study is aimed at evaluating the effectiveness of the nucleus pulposus cell (NPC) conditioned medium for promoting the expression of MSCs and at confirming the expression of healthy NP phenotypic markers recently recommended by the Spine Research Interest Group. Expression was investigated using quantitative polymerase chain reaction (qPCR) and western blotting under normoxic and hypoxic conditions. qPCR and western blotting demonstrated significant upregulation of NP marker expression in MSCs cultured under hypoxic conditions and treated with the 50% or 100% NPC conditioned medium, compared with those cultured under normoxic conditions. Upregulation was highest in the presence of the 100% NPC conditioned medium compared with the control group (aggrecan, p < 0.01; brachyury, p < 0.05; collagen II, p < 0.001; KRT8, p < 0.01; KRT19, p < 0.001; and Shh, p < 0.01). The expression levels of genes in MSCs treated with the 50% NPC conditioned medium also showed upregulation compared with the control group (collagen II, p < 0.05; KRT8, p < 0.05; and KRT19, p < 0.01). These findings suggested that the NPC conditioned medium stimulated MSC differentiation into an NP-like phenotype with distinct characteristics. The results could inform strategies for IVD regeneration.
Collapse
|
14
|
Zhang B, Zhao Q, Li Y, Zhang J. Moxibustion alleviates intervertebral disc degeneration via activation of the HIF-1α/VEGF pathway in a rat model. Am J Transl Res 2019; 11:6221-6231. [PMID: 31632589 PMCID: PMC6789265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Intervertebral disc degeneration (IDD) induces serious back, neck and radicular pain. Recently, moxibustion has been suggested as an effective treatment for IDD. Thus, our study aims to investigate the molecular mechanism of moxibustion in IDD. A rat model of IDD was established by moxibustion treatment. Nucleus pulposus (NP) cells isolated from IDD rats or IDD rats treated with moxibustion were transfected with plasmids harboring overexpressed hypoxia-inducible factor-1 alpha (HIF-1α) to understand the role of treatment on cell autophagy and apoptosis. To investigate the mechanism of moxibustion in IDD, aggrecan, cyclo-oxygenase 2 (COX-2), HIF-1α and vascular endothelial growth factor (VEGF) expression in NP cells was measured. The expression of aggrecan and COX-2 was elevated by moxibustion treatment. Moxibustion induced autophagy and suppressed apoptosis of NP cells from IDD rats. Compared with IDD rats, the expression of light chain 3 (LC3) II/I, Beclin-1, B-cell lymphoma-2 (Bcl-2) and HIF-1α was regulated significantly after moxibustion treatment, while the expression of cleaved-caspase-3, Bcl-2 associated protein X and VEGF was downregulated. In general, moxibustion may be beneficial to IDD by enhancing autophagy and reducing apoptosis of NP cells via the HIF-1α/VEGF pathway.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Rehabilitation Medicine, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| | - Qian Zhao
- Department of Medical Ultrasonics, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| | - Yushi Li
- Department of Rehabilitation Medicine, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| | - Jinxue Zhang
- Department of Rehabilitation Medicine, Dongying People’s HospitalDongying 257091, Shandong Province, P. R. China
| |
Collapse
|
15
|
Kushioka J, Kaito T, Chijimatsu R, Okada R, Ishiguro H, Bal Z, Kodama J, Takenaka S, Makino T, Sakai Y, Yoshikawa H. A novel and efficient method for culturing mouse nucleus pulposus cells. Spine J 2019; 19:1573-1583. [PMID: 30986578 DOI: 10.1016/j.spinee.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT As degeneration of the nucleus pulposus (NP) is a major cause of intervertebral disc degeneration, research directed toward nucleus pulposus cells (NPCs) is drawing increased attention. However, caused by the difficulties associated with their harvest and culture, there are few reports describing cultivation methods for mouse NP cells (mNPCs). PURPOSE To establish efficient culture methods for mNPCs. STUDY DESIGN In vitro animal study. METHODS After primary 3-dimensional (3D) gel culture of mNPCs and analysis of gene expression, cells digested from the gel were cultured in various bio-coated dishes with and without basic fibroblast growth factor (bFGF), and their growth kinetics and changes in gene expression profiles were evaluated. Next, the mNPCs obtained after sequential 3D gel and 2D culture were subjected to micromass culture and the effects of adding transforming growth factor-β3 (TGF-β3) on their gene expression profile and extracellular matrix (ECM) synthesis were evaluated. RESULTS The cell morphology and gene expression pattern of mNPCs proliferated in primary 3D collagen gel culture resembled those of mNP. In contrast, mNPCs could not proliferate in conventional monolayer culture. Cell adhesion (colony number) and proliferation (colony size) were greater in fibronectin-coated dishes than in dishes with other bio-coatings. The addition of bFGF enhanced mNPCs proliferation, but the gene expression characteristics of mNPCs were lost as passage number increased. 2D culture with bFGF followed by micromass culture allowed for the recovery of the mNPC gene expression profile in primary 3D-gel culture, and TGF-β3 supplementation during micromass culture enhanced ECM synthesis. CONCLUSIONS We established novel culture methods for mNPCs. These methods will benefit basic cell-based and molecular research involving these cells.
Collapse
Affiliation(s)
- Junichi Kushioka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Kaito
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ryota Chijimatsu
- Sensory & Motor System Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Rintaro Okada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Ishiguro
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Zeynep Bal
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Joe Kodama
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shota Takenaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takahiro Makino
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yusuke Sakai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Li XC, Wang MS, Liu W, Zhong CF, Deng GB, Luo SJ, Huang CM. Co-culturing nucleus pulposus mesenchymal stem cells with notochordal cell-rich nucleus pulposus explants attenuates tumor necrosis factor-α-induced senescence. Stem Cell Res Ther 2018; 9:171. [PMID: 29941029 PMCID: PMC6019307 DOI: 10.1186/s13287-018-0919-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/26/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023] Open
Abstract
Background Cell therapy for the treatment of intervertebral disc degeneration (IDD) faces serious barriers since tissue-specific adult cells such as nucleus pulposus cells (NPCs) have limited proliferative ability and poor regenerative potential; in addition, it is difficult for exogenous adult stem cells to survive the harsh environment of the degenerated intervertebral disc. Endogenous repair by nucleus pulposus mesenchymal stem cells (NPMSCs) has recently shown promising regenerative potential for the treatment of IDD. Notochordal cells (NCs) and NC-conditioned medium (NCCM) have been proven to possess regenerative ability for the treatment of IDD, but this approach is limited by the isolation and passaging of NCs. Our previous study demonstrated that modified notochordal cell-rich nucleus pulposus (NC-rich NP) has potential for the repair of IDD. However, whether this can protect NPMSCs during IDD has not been evaluated. Methods In the current study, tumor necrosis factor (TNF)-α was used to mimic the inflammatory environment of IDD. Human NPMSCs were cocultured with NC-rich NP explants from healthy rabbit lumbar spine with or without TNF-α. Cell proliferation and senescence were analyzed to investigate the effect of NC-rich NP explants on TNF-α-treated NPMSCs. The expression of mRNA encoding proteins related to matrix macromolecules (such as aggrecan, Sox-9, collagen Iα, and collagen IIα), markers related to the nucleus pulposus cell phenotype (including CA12, FOXF1, PAX1, and HIF-1α), and senescence markers (such as p16, p21, and p53), senescence-associated proinflammatory cytokines (IL-6), and extracellular proteases (MMP-13, ADAMTS-5) was assessed. The protein expression of CA12 and collagen II was also evaluated. Results After a 7-day treatment, the NC-rich NP explant was found to enhance cell proliferation, decrease cellular senescence, promote glycosaminoglycan (GAG), collagen II, and CA12 production, upregulate the expression of extracellular matrix (ECM)-related genes (collagen I, collagen II, SOX9, and ACAN), and enhance the expression of nucleus pulposus cell (NPC) markers (HIF-1α, FOXF1, PAX1, and CA12). Conclusion Modified NC-rich NP explants can attenuate TNF-α-induced degeneration and senescence of NPMSCs in vitro. Our findings provide new insights into the therapeutic potential of NC-rich NP for the treatment of IDD.
Collapse
|
17
|
Sakai D, Schol J, Bach FC, Tekari A, Sagawa N, Nakamura Y, Chan SC, Nakai T, Creemers LB, Frauchiger DA, May RD, Grad S, Watanabe M, Tryfonidou MA, Gantenbein B. Successful fishing for nucleus pulposus progenitor cells of the intervertebral disc across species. JOR Spine 2018; 1:e1018. [PMID: 31463445 PMCID: PMC6686801 DOI: 10.1002/jsp2.1018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Recently, Tie2/TEK receptor tyrosine kinase (Tie2 or syn. angiopoietin-1 receptor) positive nucleus pulposus progenitor cells were detected in human, cattle, and mouse. These cells show remarkable multilineage differentiation capacity and direct correlation with intervertebral disc (IVD) degeneration and are therefore an interesting target for regenerative strategies. Nevertheless, there remains controversy over the presence and function of these Tie2+ nucleus pulposus cells (NPCs), in part due to the difficulty of identification and isolation. PURPOSE Here, we present a comprehensive protocol for sorting of Tie2+ NPCs from human, canine, bovine, and murine IVD tissue. We describe enhanced conditions for expansion and an optimized fluorescence-activated cell sorting-based methodology to sort and analyze Tie2+ NPCs. METHODS We present flow cytometry protocols to isolate the Tie2+ cell population for the aforementioned species. Moreover, we describe crucial pitfalls to prevent loss of Tie2+ NPCs from the IVD cell population during the isolation process. A cross-species phylogenetic analysis of Tie2 across species is presented. RESULTS Our protocols are efficient towards labeling and isolation of Tie2+ NPCs. The total flow cytometry procedure requires approximately 9 hours, cell isolation 4 to 16 hours, cell expansion can take up to multiple weeks, dependent on the application, age, disease state, and species. Phylogenetic analysis of the TEK gene revealed a strong homology among species. CONCLUSIONS Current identification of Tie2+ cells could be confirmed in bovine, canine, mouse, and human specimens. The presented flow cytometry protocol can successfully sort these multipotent cells. The biological function of isolated cells based on Tie2+ expression needs to be confirmed by functional assays such as in vitro differentiation. in vitro culture conditions to maintain and their possible proliferation of the Tie2+ fraction is the subject of future research.
Collapse
Affiliation(s)
- Daisuke Sakai
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Jordy Schol
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Adel Tekari
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
- Laboratory of Molecular and Cellular Screening ProcessesCentre of Biotechnology of Sfax, University of SfaxSfaxTunisia
| | - Nobuho Sagawa
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Yoshihiko Nakamura
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Samantha C.W. Chan
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
| | - Tomoko Nakai
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
| | - Laura B. Creemers
- Department of Orthopaedic SurgeryUniversity Medical Centre UtrechtUtrechtThe Netherlands
| | - Daniela A. Frauchiger
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
| | - Rahel D. May
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
| | - Sibylle Grad
- AO Spine Research Network, AO Spine InternationalDavosSwitzerland
- Department of Musculoskeletal Regeneration, AO Research InstituteDavosSwitzerland
| | - Masahiko Watanabe
- Department for Orthopaedic SurgeryTokai University School of MedicineIseharaJapan
- Center for Regenerative MedicineTokai University School of MedicineIseharaJapan
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Benjamin Gantenbein
- Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, Medical FacultyUniversity of BernBernSwitzerland
- AO Spine Research Network, AO Spine InternationalDavosSwitzerland
| |
Collapse
|
18
|
Sheng B, Yuan Y, Liu X, Zhang Y, Liu H, Shen X, Liu B, Chang L. Protective effect of estrogen against intervertebral disc degeneration is attenuated by miR-221 through targeting estrogen receptor α. Acta Biochim Biophys Sin (Shanghai) 2018. [PMID: 29529124 DOI: 10.1093/abbs/gmy017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of cartilaginous endplates (CEP) is an important etiologic aspect of intervertebral disc degeneration (IDD) because the endplate has nutritional and biomechanical functions in maintaining proper disc health. In this study, we investigated the regulatory effects of estrogen on degenerated human CEP cells and the involvement of miR-221 in these effects. Normal and degenerated human CEP tissues were collected from patients with idiopathic scoliosis and IDD, respectively. CEP cells were isolated from these tissues. Polymerase chain reaction (PCR) and western blot analysis were performed to detect the expression of specific genes and proteins, respectively. Apoptosis and cell cycle were analyzed by flow cytometry. The results showed that the levels of aggrecan, collagen II, TGF-β and estrogen receptor α (ERα) were decreased in degenerated CEP tissues, while the levels of MMP-3, adamts-5, IL-1β, TNF-α, IL-6, and miR-221 were increased. Treatment of degenerated CEP cells with 17beta-estradiol (E2) increased the expressions of aggrecan and collagen II, as well as the secretion of TGF-β, but decreased IL-6 secretion. Moreover, E2 inhibited the apoptosis, resumed cell-cycle progression in G0/G1 phase, and improved the cell viability. These data indicate that estrogen has protective effect against degeneration of CEP cells. Furthermore, ERα was confirmed to be a target of miR-221 by the luciferase assay. The synthetic miR-221 mimics or knockdown of ERα attenuated the protective effects of E2, but miR-221 inhibitors promoted the protective effects of E2. These results suggest that miR-221 may impair the protective effect of estrogen in degenerated CEP cells through targeting ERα. This study reveals an important mechanism underlying the degeneration of CEP cells.
Collapse
Affiliation(s)
- Bin Sheng
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Youchao Yuan
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Xiangyang Liu
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Yi Zhang
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Hongzhe Liu
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Xiongjie Shen
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Bin Liu
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| | - Lei Chang
- Department of Orthopedics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410000, China
| |
Collapse
|
19
|
Han Z, Gao L, Shi Q, Chen L, Chen C. Quantitative magnetic resonance imaging for diagnosis of intervertebral disc degeneration of the cervico-thoracic junction: a pilot study. Am J Transl Res 2018; 10:925-935. [PMID: 29636882 PMCID: PMC5883133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to appraise two quantitative magnetic resonance imaging techniques, T2* imaging and diffusion-weighted imaging (DWI), for the diagnosis of the intervertebral disc degeneration of the cervico-thoracic junction. Influence of specific factors and diagnostic accuracy of both techniques were particularly explored. Sixty-one volunteers with neck and upper back pain were recruited and evaluated with both T2* imaging and DWI. The Pfirrmann grade, T2* relaxation time and apparent diffusion coefficient (ADC) value of each disc between C7 and T3 were recorded. Stratified analyses were performed for different anatomic levels, genders, age ranges and Pfirrmann grades. The diagnostic accuracy of both techniques was investigated using the receiver operating characteristic (ROC) curves. No statistically significant difference of either T2* relaxation time or ADC value was detected between males and females. Both parameters decreased with the increasing age and Pfirrmann grade. The ROC curves showed the higher sensitivity and specificity for T2* imaging than DWI to quantitatively identify the disc degeneration. Particularly, T2* imaging allowed for a quantitative distinguishing the normal, mild and moderate disc degeneration from the severe degeneration, which was unable to accomplish with DWI. In conclusion, we demonstrated that T2* imaging possess a better accuracy than DWI to quantitatively diagnose the intervertebral disc degeneration at the cervico-thoracic junction.
Collapse
Affiliation(s)
- Zhihua Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, PR China
- Frankfurt Initiative for Regenerative Medicine, JW Goethe-UniversityFrankfurt am Main 60528, Germany
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland UniversityHomburg/Saar 66421, Germany
| | - Qinglei Shi
- Siemens Ltd., China Healthcare Sector MR Business GroupBeijing 100102, PR China
| | - Lei Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, PR China
| | - Chun Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, PR China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and EngineeringWenzhou 325001, PR China
| |
Collapse
|
20
|
Thompson K, Moore S, Tang S, Wiet M, Purmessur D. The chondrodystrophic dog: A clinically relevant intermediate-sized animal model for the study of intervertebral disc-associated spinal pain. JOR Spine 2018; 1:e1011. [PMID: 29984354 PMCID: PMC6018624 DOI: 10.1002/jsp2.1011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022] Open
Abstract
Low back pain (LBP) is the leading cause of disability worldwide, with an estimated 80% of the American population suffering from a painful back condition at some point during their lives. The most common cause of LBP is intervertebral disc (IVD) degeneration (IVDD), a condition that can be difficult to treat, either surgically or medically, with current available therapies. Thus, understanding the pathological mechanisms of IVDD and developing novel treatments are critical for improving outcome and quality of life in people living with LBP. While experimental animal models provide valuable mechanistic insight, each model has limitations that complicate translation to the clinical setting. This review focuses on the chondrodystrophic canine clinical model of IVDD as a promising model to assess IVD-associated spinal pain and translational therapeutic strategies for LBP. The canine IVD, while smaller in size than human, goat, ovine, and bovine IVDs, is larger than most other small animal IVDD models and undergoes maturational changes similar to those of the human IVD. Furthermore, both dogs and humans develop painful IVDD as a spontaneous process, resulting in similar characteristic pathologies and clinical signs. Future exploration of the canine model as a model of IVD-associated spinal pain and biological treatments using the canine clinical model will further demonstrate its translational capabilities with the added ethical benefit of treating an existing veterinary patient population with IVDD.
Collapse
Affiliation(s)
- Kelly Thompson
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOhio
| | - Sarah Moore
- Department of Veterinary Clinical SciencesThe Ohio State UniversityColumbusOhio
| | - Shirley Tang
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
| | - Matthew Wiet
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
| | - Devina Purmessur
- Department of Biomedical Engineering, College of EngineeringThe Ohio State UniversityColumbusOhio
- Department of Orthopedics, College of MedicineThe Ohio State UniversityColumbusOhio
| |
Collapse
|
21
|
Han Z, Zhang Y, Gao L, Jiang S, Ruan D. Human Wharton's Jelly Cells Activate Degenerative Nucleus Pulposus Cells In Vitro. Tissue Eng Part A 2018; 24:1035-1043. [PMID: 29279046 DOI: 10.1089/ten.tea.2017.0340] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To investigate the interaction between human Wharton's jelly cells (WJCs) and degenerative nucleus pulposus cells (NPCs), human WJCs were cocultured with degenerative NPCs with or without direct cell-cell contact. WJCs were isolated from the human umbilical cord and degenerative NPCs were isolated from the surgically obtained degenerative intervertebral disc tissue. The isolated WJCs positively expressed CD73, CD105, CD90, CD29, CD166, and human leukocyte antigen (HLA)-ABC, but negatively expressed CD34, CD45, and HLA-DR. After coculturing with three different WJCs:NPCs ratios for 7 days, the real-time polymerase chain reaction showed that the relative gene expression of nucleus pulposus (NP)-marker genes [aggrecan, type II collagen, and SRY-type HMG box-9 (SOX-9)] was significantly upgraded in all coculture groups (all p < 0.05 compared with control groups). Coculture either with or without cell-cell contact significantly activated the expression of NP-maker genes than controls, but coculture with cell-cell contact yielded a higher gene expression than coculture without cell-cell contact. In coculturing with cell-cell contact and WJCs:NPCs of 25:75, the relative gene expression of aggrecan, type II collagen, SOX-9 for WJCs yielded the highest increase by 721-, 1507-, and 1463-folds, respectively (all p < 0.05 compared with WJCs control). In contrast, the highest relative gene expression of aggrecan, type II collagen, SOX-9 for NPCs was 112-, 84-, and 109-folds, respectively, in coculture with cell-cell contact and in WJCs:NPCs of 75:25 (all p < 0.05 compared with NPCs control). In conclusion, the data indicated that coculturing human WJCs with degenerative NPCs induced the NP-like cell differentiation of WJCs and restored the biological status of degenerative NPCs and coculture WJCs and NPCs with direct cell-cell contact yielded more favorable gene expressions.
Collapse
Affiliation(s)
- Zhihua Han
- 1 Department of Orthopaedic Surgery, Navy General Hospital of PLA , Beijing, China .,2 Experimental Trauma and Orthopedic Surgery, Frankfurt Initiative for Regenerative Medicine, J.W. Goethe-University , Frankfurt, Germany
| | - Yan Zhang
- 1 Department of Orthopaedic Surgery, Navy General Hospital of PLA , Beijing, China .,3 Department of VIP Neurology, Navy General Hospital of PLA , Beijing, China
| | - Liang Gao
- 4 Center of Experimental Orthopaedics, Saarland University Medical Center , Homburg, Germany
| | - Shujun Jiang
- 3 Department of VIP Neurology, Navy General Hospital of PLA , Beijing, China
| | - Dike Ruan
- 1 Department of Orthopaedic Surgery, Navy General Hospital of PLA , Beijing, China
| |
Collapse
|
22
|
Bach FC, Laagland LT, Grant MP, Creemers LB, Ito K, Meij BP, Mwale F, Tryfonidou MA. Link-N: The missing link towards intervertebral disc repair is species-specific. PLoS One 2017; 12:e0187831. [PMID: 29117254 PMCID: PMC5679057 DOI: 10.1371/journal.pone.0187831] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023] Open
Abstract
Introduction Degeneration of the intervertebral disc (IVD) is a frequent cause for back pain in humans and dogs. Link-N stabilizes proteoglycan aggregates in cartilaginous tissues and exerts growth factor-like effects. The human variant of Link-N facilitates IVD regeneration in several species in vitro by inducing Smad1 signaling, but it is not clear whether this is species specific. Dogs with IVD disease could possibly benefit from Link-N treatment, but Link-N has not been tested on canine IVD cells. If Link-N appears to be effective in canines, this would facilitate translation of Link-N into the clinic using the dog as an in vivo large animal model for human IVD degeneration. Materials and methods This study’s objective was to determine the effect of the human and canine variant of Link-N and short (s) Link-N on canine chondrocyte-like cells (CLCs) and compare this to those on already studied species, i.e. human and bovine CLCs. Extracellular matrix (ECM) production was determined by measuring glycosaminoglycan (GAG) content and histological evaluation. Additionally, the micro-aggregates’ DNA content was measured. Phosphorylated (p) Smad1 and -2 levels were determined using ELISA. Results Human (s)Link-N induced GAG deposition in human and bovine CLCs, as expected. In contrast, canine (s)Link-N did not affect ECM production in human CLCs, while it mainly induced collagen type I and II deposition in bovine CLCs. In canine CLCs, both canine and human (s)Link-N induced negligible GAG deposition. Surprisingly, human and canine (s)Link-N did not induce Smad signaling in human and bovine CLCs. Human and canine (s)Link-N only mildly increased pSmad1 and Smad2 levels in canine CLCs. Conclusions Human and canine (s)Link-N exerted species-specific effects on CLCs from early degenerated IVDs. Both variants, however, lacked the potency as canine IVD regeneration agent. While these studies demonstrate the challenges of translational studies in large animal models, (s)Link-N still holds a regenerative potential for humans.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Lisanne T. Laagland
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Michael P. Grant
- Department of Surgery, McGill University, Montreal, Canada
- Orthopedic Research Laboratory, Lady Davis Institute for Medical Research, SMBD-Jewish General Hospital, Montreal, Canada
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Keita Ito
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Orthopedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Björn P. Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Fackson Mwale
- Department of Surgery, McGill University, Montreal, Canada
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- * E-mail:
| |
Collapse
|
23
|
Quality Evaluation of Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair. Stem Cells Int 2017; 2017:8740294. [PMID: 28835756 PMCID: PMC5556614 DOI: 10.1155/2017/8740294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/12/2017] [Indexed: 11/17/2022] Open
Abstract
Quality evaluation of mesenchymal stem cells (MSCs) based on efficacy would be helpful for their clinical application. In this study, we aimed to find the factors of human bone marrow MSCs relating to cartilage repair. The expression profiles of humoral factors, messenger RNAs (mRNAs), and microRNAs (miRNAs) were analyzed in human bone marrow MSCs from five different donors. We investigated the correlations of these expression profiles with the capacity of the MSCs for proliferation, chondrogenic differentiation, and cartilage repair in vivo. The mRNA expression of MYBL1 was positively correlated with proliferation and cartilage differentiation. By contrast, the mRNA expression of RCAN2 and the protein expression of TIMP-1 and VEGF were negatively correlated with proliferation and cartilage differentiation. However, MSCs from all five donors had the capacity to promote cartilage repair in vivo regardless of their capacity for proliferation and cartilage differentiation. The mRNA expression of HLA-DRB1 was positively correlated with cartilage repair in vivo. Meanwhile, the mRNA expression of TMEM155 and expression of miR-486-3p, miR-148b, miR-93, and miR-320B were negatively correlated with cartilage repair. The expression analysis of these factors might help to predict the ability of bone marrow MSCs to promote cartilage repair.
Collapse
|
24
|
Iu J, Massicotte E, Li SQ, Hurtig MB, Toyserkani E, Santerre JP, Kandel RA. * In Vitro Generated Intervertebral Discs: Toward Engineering Tissue Integration. Tissue Eng Part A 2017; 23:1001-1010. [PMID: 28486045 DOI: 10.1089/ten.tea.2016.0433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The intervertebral disc (IVD) is composed of nucleus pulposus (NP) surrounded by multilamellated annulus fibrosus (AF), and is located between the vertebral bodies. Current treatments for chronic neck or low back pain do not completely restore the functionality of degenerated IVDs. Thus, developing biological disc replacements is an approach of great interest. Given the complex structure of the IVD, tissue engineering of the individual IVD components and then combining them together may be the only way to achieve this. The engineered disc must then be able to integrate into the host spine to ensure mechanical stability. The goal of this study was to generate an integrated model of an IVD in vitro. Multilamellated AF tissues were generated in vitro using aligned nanofibrous polycarbonate urethane scaffolds and AF cells. After 3 weeks in culture, it was placed around NP tissue formed on and integrated with a porous bone substitute material (calcium polyphosphate). The two tissues were cocultured to fabricate the IVD model. The AF tissue composed of six lamellae containing type I collagen-rich extracellular matrix (ECM) and the NP tissue had type II collagen- and aggrecan-rich ECM. Immunofluorescence studies showed both type I and II collagen at the AF-NP interface. There was evidence of integration of the tissues. The peel test for AF lamellae showed an interlamellar shear stress of 0.03 N/mm. The AF and NP were integrated as the pushout test demonstrated that the AF-NP interface had significantly increased mechanical stability by 2 weeks of coculture. To evaluate if these tissues remained integrated, allogeneic IVD model constructs were implanted into defects freshly made in the NP-inner AF and bone of the bovine coccygeal spine. One month postimplantation, the interfaces between the AF lamellae remained intact and there was integration with the host AF tissue. No inflammatory reaction was noted at this time period. In summary, an engineered IVD implant with mechanically stable integration between AF lamellae and AF-NP can be generated in vitro. Further study is required to scale up the size of this construct and evaluate its ability to serve as a biological disc replacement.
Collapse
Affiliation(s)
- Jonathan Iu
- 1 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Canada .,2 BioEngineering of Skeletal Tissues Team, Pathology and Laboratory Medicine, Mount Sinai Hospital, Lunenfeld Tanenbaum Research Institute, University of Toronto , Toronto, Canada
| | - Eric Massicotte
- 3 Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital , Toronto, Canada
| | - Shu-Qiu Li
- 3 Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital , Toronto, Canada
| | - Mark B Hurtig
- 4 Ontario Veterinary College, University of Guelph , Guelph, Canada
| | - Ehsan Toyserkani
- 5 Mechanical and Mechatronics Engineering, University of Waterloo , Waterloo, Canada
| | - J Paul Santerre
- 1 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Canada
| | - Rita A Kandel
- 1 Institute of Biomaterials and Biomedical Engineering, University of Toronto , Toronto, Canada .,2 BioEngineering of Skeletal Tissues Team, Pathology and Laboratory Medicine, Mount Sinai Hospital, Lunenfeld Tanenbaum Research Institute, University of Toronto , Toronto, Canada
| |
Collapse
|
25
|
Bai XD, Li XC, Chen JH, Guo ZM, Hou LS, Wang DL, He Q, Ruan DK. * Coculture with Partial Digestion Notochordal Cell-Rich Nucleus Pulposus Tissue Activates Degenerative Human Nucleus Pulposus Cells. Tissue Eng Part A 2017; 23:837-846. [PMID: 28145804 DOI: 10.1089/ten.tea.2016.0428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies suggested that notochordal cells (NCs) and NC-conditioned medium (NCCM) can stimulate cell viability and matrix production of nucleus pulposus cells (NPCs). However, the potential of notochordal cell-rich nucleus pulposus (NRNP) incorporating the native environment of the intervertebral disc (IVD) has not been evaluated. The objective of this study was to develop an optimal NRNP model and test whether it can allow a significant level of NPC activation in vitro. Rabbit NRNP explants were divided into three groups according to different digestion time: digestion NRNP of 8 h, partial digestion NRNP of 2 h, and natural NRNP. Cell viability and NC phenotype were compared between these groups after 14 days of incubation. The products of the selected partial digestion NRNP group were then cocultured with human degenerated NPCs for 14 days. NPC viability, cell proliferation and senescence, the production of glycosaminoglycan (GAG) found in extracellular matrix, and NP matrix production by NPCs were assessed. The results showed that coculturing with partial digestion NRNP significantly improved the cell proliferation, cell senescence, and disc matrix gene expression of NPCs compared with those in the monoculture group. In addition, GAG/DNA ratio in the coculture group increased significantly, while the level of collagen II protein remained unchanged. In this study, we demonstrated that partial digestion NRNP may show a promising potential for NPC regeneration in IVD tissue engineering.
Collapse
Affiliation(s)
- Xue-Dong Bai
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Xiao-Chuan Li
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
- 2 Department of Orthopedic Surgery, Gaozhou People's Hospital , Guangdong, People's Republic of China
| | - Jia-Hai Chen
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Zi-Ming Guo
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Li-Sheng Hou
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - De-Li Wang
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Qing He
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| | - Di-Ke Ruan
- 1 Department of Orthopedic Surgery, Navy General Hospital , Beijing, People's Republic of China
| |
Collapse
|
26
|
Bendtsen M, Bunger C, Colombier P, Le Visage C, Roberts S, Sakai D, Urban JPG. Biological challenges for regeneration of the degenerated disc using cellular therapies. Acta Orthop 2016; 87:39-46. [PMID: 28287303 PMCID: PMC5389430 DOI: 10.1080/17453674.2017.1297916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/07/2017] [Indexed: 02/08/2023] Open
Affiliation(s)
| | - Cody Bunger
- Department of Orthopaedics, Aarhus University Hospital, Denmark
| | - Pauline Colombier
- INSERM UMR 1229, Regenerative Medecine and Skeleton, University of Nantes, France
| | - Catherine Le Visage
- INSERM UMR 1229, Regenerative Medecine and Skeleton, University of Nantes, France
| | - Sally Roberts
- Spinal Studies and ISTM (Keele University), Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Daisuke Sakai
- Department of Orthopaedics, Tokai University Hospital, Japan
| | - Jill P G Urban
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford, UK
| |
Collapse
|
27
|
Tekari A, Chan SCW, Sakai D, Grad S, Gantenbein B. Angiopoietin-1 receptor Tie2 distinguishes multipotent differentiation capability in bovine coccygeal nucleus pulposus cells. Stem Cell Res Ther 2016; 7:75. [PMID: 27216150 PMCID: PMC4878031 DOI: 10.1186/s13287-016-0337-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The intervertebral disc (IVD) has limited self-healing potential and disc repair strategies require an appropriate cell source such as progenitor cells that could regenerate the damaged cells and tissues. The objective of this study was to identify nucleus pulposus-derived progenitor cells (NPPC) and examine their potential in regenerative medicine in vitro. METHODS Nucleus pulposus cells (NPC) were obtained from 1-year-old bovine coccygeal discs by enzymatic digestion and were sorted for the angiopoietin-1 receptor Tie2. The obtained Tie2- and Tie2+ fractions of cells were differentiated into osteogenic, adipogenic, and chondrogenic lineages in vitro. Colony-forming units were prepared from both cell populations and the colonies formed were analyzed and quantified after 8 days of culture. In order to improve the preservation of the Tie2+ phenotype of NPPC in monolayer cultures, we tested a selection of growth factors known to have stimulating effects, cocultured NPPC with IVD tissue, and exposed them to hypoxic conditions (2 % O2). RESULTS After 3 weeks of differentiation culture, only the NPC that were positive for Tie2 were able to differentiate into osteocytes, adipocytes, and chondrocytes as characterized by calcium deposition (p < 0.0001), fat droplet formation (p < 0.0001), and glycosaminoglycan content (p = 0.0095 vs. Tie2- NPC), respectively. Sorted Tie2- and Tie2+ subpopulations of cells both formed colonies; however, the colonies formed from Tie2+ cells were spheroid in shape, whereas those from Tie2- cells were spread and fibroblastic. In addition, Tie2+ cells formed more colonies in 3D culture (p = 0.011) than Tie2- cells. During expansion, a fast decline in the fraction of Tie2+ cells was observed (p < 0.0001), which was partially reversed by low oxygen concentration (p = 0.0068) and supplementation of the culture with fibroblast growth factor 2 (FGF2) (p < 0.0001). CONCLUSIONS Our results showed that the bovine nucleus pulposus contains NPPC that are Tie2+. These cells fulfilled formally progenitor criteria that were maintained in subsequent monolayer culture for up to 7 days by addition of FGF2 or hypoxic conditions. We propose that the nucleus pulposus represents a niche of precursor cells for regeneration of the IVD.
Collapse
Affiliation(s)
- Adel Tekari
- Tissue and Organ Mechanobiology, Institute for Surgical Technology & Biomechanics, Medical Faculty, University of Bern, Bern, Switzerland.
| | - Samantha C W Chan
- Tissue and Organ Mechanobiology, Institute for Surgical Technology & Biomechanics, Medical Faculty, University of Bern, Bern, Switzerland.,Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, St Gallen, Switzerland
| | - Daisuke Sakai
- Department for Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan.,AO Spine Research Network, AO Spine International, Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland.,AO Spine Research Network, AO Spine International, Davos, Switzerland
| | - Benjamin Gantenbein
- Tissue and Organ Mechanobiology, Institute for Surgical Technology & Biomechanics, Medical Faculty, University of Bern, Bern, Switzerland.,AO Spine Research Network, AO Spine International, Davos, Switzerland
| |
Collapse
|
28
|
Jacobson RS, Thurston RL, Shrestha B, Vertes A. In Situ Analysis of Small Populations of Adherent Mammalian Cells Using Laser Ablation Electrospray Ionization Mass Spectrometry in Transmission Geometry. Anal Chem 2015; 87:12130-6. [PMID: 26558336 DOI: 10.1021/acs.analchem.5b02971] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most cultured cells used for biomedical research are cultured adherently, and the requisite detachment prior to biochemical analysis might induce chemical changes. This is especially crucial if accurate metabolic measurements are desired, given the rapid turnover of metabolites in living organisms. There are only a few methods available for the nontargeted in situ analysis of small adherent cell populations. Here we show that laser ablation electrospray ionization (LAESI) mass spectrometry (MS) can be used to analyze adherent cells directly, while still attached to the culture surface. To reduce the size of the analyzed cell population, the spot size constraints of conventional focusing in reflection geometry (rg) LAESI had to be eliminated. By introducing transmission geometry (tg) LAESI and incorporating an objective with a high numerical aperture, spot sizes of 10-20 μm were readily achieved. As few as five adherent cells could be specifically selected for analysis in their culturing environment. The importance of in situ analysis was highlighted by comparing the metabolite composition of adherent versus suspended cells. For example, we observed that cells analyzed adherently yielded higher values for the adenylate energy charge (0.90 ± 0.09 for adherent cells vs 0.09 ± 0.03 for suspended cells). Additionally, due to the smaller focal spot size, tg-LAESI enabled the analysis of ∼20 times smaller cell populations compared to rg-LAESI.
Collapse
Affiliation(s)
- Rachelle S Jacobson
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University , Washington DC, 20052, United States
| | - Richard L Thurston
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University , Washington DC, 20052, United States
| | - Bindesh Shrestha
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University , Washington DC, 20052, United States
| | - Akos Vertes
- Department of Chemistry, W. M. Keck Institute for Proteomics Technology and Applications, The George Washington University , Washington DC, 20052, United States
| |
Collapse
|