1
|
Li J, Luo J, Wang T, Tian X, Xu C, Wang W, Zhang D. DNA methylation associated with the serum alanine aminotransferase concentration: evidence from Chinese monozygotic twins. Clin Epigenetics 2025; 17:65. [PMID: 40296130 PMCID: PMC12039056 DOI: 10.1186/s13148-025-01869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND To identify nongenetic factors influences on DNA methylation (DNAm) variations associated with blood Alanine Aminotransferase (ALT) concentration, this study conducted an epigenome-wide association study (EWAS) on Chinese monozygotic twins. METHODS A total of 61 pairs of Chinese monozygotic twins involved in this study. Whole blood samples were analyzed for DNAm profiling using the Reduced Representation Bisulfite Sequencing (RRBS) technique. We examined the relationship between DNAm levels at each CpG site and serum ALT using a linear mixed-effects model. Enrichment analysis and causal inference analysis was conducted, and differentially methylated regions (DMRs) were further identified. Candidate CpGs were validated in a community sample. Genome-wide significance were calculated by Bonferroni correction (p < 2.14 × 10-7). RESULTS We identified 85 CpGs reaching genome-wide significance (p < 2.14 × 10-7), located in 16 genes including FLT4, ADARB2, MRPS31P2, and RELB. Causal inference suggested that DNAm at 61 out of 85 significant CpGs within 14 genes influenced ALT level. 52 DMRs and 1765 pathways such as low voltage-gated calcium channel activity and focal adhesion were identified having influences on ALT levels. Further validation using community population found four CpGs mapped to FLT4 and three to RELB showing hypomethylation and hypermethylation in cases with abnormal ALT (ALT > 40 U/L), respectively. CONCLUSION This study identified several differentially methylated CpG sites associated with serum ALT in the Chinese population, particularly within FLT4 and RELB. These findings provide new insights into the epigenetic modifications underlying liver function.
Collapse
Affiliation(s)
- Jingxian Li
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Tong Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Xiaocao Tian
- Qingdao Municipal Centre for Disease Control and Prevention, No.175 Shandong Road, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Chunsheng Xu
- Qingdao Municipal Centre for Disease Control and Prevention, No.175 Shandong Road, Qingdao, 266033, Shandong Province, People's Republic of China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, No.308 Ningxia Road, Qingdao, 266071, Shandong Province, People's Republic of China.
| |
Collapse
|
2
|
Thirumoorthy C, Sharma KK, Deepa M, Yogaprabhu S, Sneha J, Rekha RP, Venkatesan U, Hemavathy S, Nikhil J, Srikumar BN, Binukumar B, Radha V, Sharma S, Grallert H, Ball G, Ram U, Anjana RM, Balasubramanyam M, Tandon N, Mohan V, Saravanan P, Gokulakrishnan K. Epigenome-wide association study identifies a specific panel of DNA methylation signatures for antenatal and postpartum depressive symptoms. J Affect Disord 2025; 383:195-206. [PMID: 40286927 DOI: 10.1016/j.jad.2025.04.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Depression during pregnancy and postpartum poses significant risks to both maternal and child well-being. The underlying biological mechanisms are unclear, but epigenetic variation could be exploited as a plausible candidate for early detection. We investigated whether DNA methylation signatures are associated with antenatal depressive symptoms (ADS) and whether early alterations in methylation patterns could be used to predict postpartum depressive symptoms (PDS). 201 pregnant women in early pregnancy, without a prior history of depressive disorders, from the STratification of Risk of Diabetes in Early Pregnancy study (STRiDE) were recruited. Using the Patient Health Questionnaire-9 (PHQ-9), 92 women were identified with ADS, while 109 served as controls. Edinburgh Postnatal Depression Scale (EPDS) was used to assess PDS during 6-12 weeks after delivery. The dataset was split into 80 % for training and testing and 20 % for validation, to discern potential CpGs for ADS using a support vector machine classifier. Analysis revealed 591 CpGs significantly associated with ADS, from which a panel of 7 CpGs was identified to discriminate between ADS and controls with high sensitivity and specificity (AUC: 0.85 in test, 0.73 in validation). Pathway analysis highlighted involvement in inositol phosphate metabolism, notch, and calcium signaling. The same 7 CpGs predicted PDS with an AUC of 0.76 (95 % CI: 0.66-0.87). Integration of CpG data with patient-reported information significantly enhanced PDS prediction. Our study identified DNA methylation signatures that could potentially differentiate ADS from controls and predict PDS. This suggests potential for developing a CpG panel for diagnostic and preventive strategies for perinatal depression.
Collapse
Affiliation(s)
- Chinnasamy Thirumoorthy
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | - Kuldeep Kumar Sharma
- Biostatistics, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | - Mohan Deepa
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF), Chennai, India
| | - Saravanan Yogaprabhu
- Department of Molecular Genetics, Madras Diabetes Research Foundation (MDRF), Affiliated to University of Madras, Chennai, India
| | - Janaki Sneha
- Department of Molecular Genetics, Madras Diabetes Research Foundation (MDRF), Affiliated to University of Madras, Chennai, India
| | - Ravikumar Pavithra Rekha
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Saite Hemavathy
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF), Chennai, India
| | - Joyappa Nikhil
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | - Bettadapura N Srikumar
- Neurophysiology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation (MDRF), Affiliated to University of Madras, Chennai, India
| | - Sapna Sharma
- Institute of Epidemiology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | HZM, Germany
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | HZM, Germany
| | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, UK
| | - Uma Ram
- Seethapathy Clinic & Hospital, Chennai, India
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF), Chennai, India
| | | | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF), Chennai, India
| | - Ponnusamy Saravanan
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, UK; Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, UK; Centre for Global Health, University of Warwick, UK.
| | - Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India.
| |
Collapse
|
3
|
Lundin JI, Peters U, Hu Y, Ammous F, Avery CL, Benjamin EJ, Bis JC, Brody JA, Carlson C, Cushman M, Gignoux C, Guo X, Haessler J, Haiman C, Joehanes R, Kasela S, Kenny E, Lapalainien T, Levy D, Liu C, Liu Y, Loos RJ, Lu A, Matise T, North KE, Park SL, Ratliff SM, Reiner A, Rich SS, Rotter JI, Smith JA, Sotoodehnia N, Tracy R, Van den Berg D, Xu H, Ye T, Zhao W, Raffield LM, Kooperberg C. Methylation patterns associated with C-reactive protein in racially and ethnically diverse populations. Epigenetics 2024; 19:2333668. [PMID: 38571307 PMCID: PMC10996836 DOI: 10.1080/15592294.2024.2333668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.
Collapse
Affiliation(s)
- Jessica I. Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yao Hu
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Christy L. Avery
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emelia J. Benjamin
- Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston University School of Public Health, Boston, MA, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Chris Carlson
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Chris Gignoux
- Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jeff Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Chris Haiman
- Department of Environmental Medicine and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, USA
| | | | - Eimear Kenny
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yongmei Liu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Ruth J.F. Loos
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ake Lu
- Department of Human Genetics, University of California LA, Los Angeles, CA, USA
| | - Tara Matise
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Kari E. North
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Sungshim L. Park
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Alex Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, and Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Harborview Medical Center, Seattle, WA, USA
| | - Russell Tracy
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - David Van den Berg
- Department of Environmental Medicine and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Huichun Xu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ting Ye
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - On Behalf of the PAGE Study
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston University School of Public Health, Boston, MA, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
- Interdisciplinary Quantitative Biology, University of Colorado, Boulder, CO, USA
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Environmental Medicine and Public Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute of the National Institutes of Health, Bethesda, MD, USA
- New York Genome Center, New York, NY
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
- Department of Human Genetics, University of California LA, Los Angeles, CA, USA
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Epidemiology, School of Public Health, and Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Cardiovascular Health Research Unit, Harborview Medical Center, Seattle, WA, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Zhu H, Wei M, Liu X, Li X, Liu X, Chen W. Placenta Thickness Mediates the Association Between AKIP1 Methylation in Maternal Peripheral Blood and Full-Term Small for Gestational Age Neonates. Genes (Basel) 2024; 15:1510. [PMID: 39766778 PMCID: PMC11675766 DOI: 10.3390/genes15121510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES A-kinase-interacting protein 1 (AKIP1) has been discovered to be a pivotal signaling adaptor in the regulation of human labor and associated with preterm birth, but its effect on fetal growth was still unclear. Meanwhile, the regulation role of DNA methylation (DNAm) on placental and fetal development has been demonstrated. Therefore, we aimed to investigate the association of AKIP1 DNAm in maternal peripheral blood with placental development and full-term small for gestational age (FT-SGA) neonates, and to explore whether placenta mediate the association between AKIP1 DNAm and FT-SGA; Methods: This study was a case-control study including 84 FT-SGAs and 84 FT-AGAs derived from the Shenzhen Birth Cohort Study. The DNA methylation analysis of CpG in the target region of the AKIP1 gene was measured by the Sequenom MassARRAY EpiTYPER approach. Multiple-variable logistic and linear regression analyses were used to estimate the association between the DNAm of three validated CpG sites in the AKIP1 gene, placental thickness, and FT-SGA. Mediation analysis was used to examine the mediation effect of placental development on the association between the DNAm of AKIP1 and FT-SGA. RESULTS For every increment in standard deviation in the DNAm of CpG4 (cg00061907) at AKIP1, the risk of FT-SGA elevated by 2.01-fold (aOR = 2.01, 95%CI = 1.39~3.01), and the thickness of the placenta significantly decreased by a 0.19 standard deviation (β = -0.19, 95%CI = -0.32~ -0.06). Placental thickness mediated the 22.96% of the effect of the DNAm of CpG4 at AKIP1 on the risk of FT-SGA with statistical significance. CONCLUSIONS The findings in the present study suggested the mediating effect of placental thickness on the association of the DNAm of AKIP1 in maternal peripheral blood and the risk of FT-SGA, providing new evidence for the mechanism of maternal epigenetics in placental and fetal development.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| | - Min Wei
- Department of Science and Education, Shenzhen Birth Cohort Study Center, Nanshan Maternity and Child Healthcare Hospital, Shenzhen 518067, China; (M.W.); (X.L.); (X.L.); (X.L.)
| | - Xuemei Liu
- Department of Science and Education, Shenzhen Birth Cohort Study Center, Nanshan Maternity and Child Healthcare Hospital, Shenzhen 518067, China; (M.W.); (X.L.); (X.L.); (X.L.)
| | - Xiuxiu Li
- Department of Science and Education, Shenzhen Birth Cohort Study Center, Nanshan Maternity and Child Healthcare Hospital, Shenzhen 518067, China; (M.W.); (X.L.); (X.L.); (X.L.)
| | - Xuhua Liu
- Department of Science and Education, Shenzhen Birth Cohort Study Center, Nanshan Maternity and Child Healthcare Hospital, Shenzhen 518067, China; (M.W.); (X.L.); (X.L.); (X.L.)
| | - Weiqing Chen
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China;
| |
Collapse
|
5
|
Lopes C, Almeida TC, Macedo-Silva C, Costa J, Paulino S, Jerónimo C, Libânio D, Dinis-Ribeiro M, Pereira C. MIR124-3 and NKX6-1 hypermethylation profiles accurately predict metachronous gastric lesions in a Caucasian population. Clin Epigenetics 2024; 16:113. [PMID: 39169394 PMCID: PMC11340155 DOI: 10.1186/s13148-024-01712-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Early gastric cancer is treated endoscopically, but patients require surveillance due to the risk of metachronous gastric lesions (MGLs). Epigenetic alterations, particularly aberrant DNA methylation in genes, such as MIR124-3, MIR34b/c, NKX6-1, EMX1, MOS and CDO1, have been identified as promising biomarkers for MGL in Asian populations. We aimed to determine whether these changes could predict MGL risk in intermediate-risk Caucasian patients. METHODS This case-cohort study included 36 patients who developed MGL matched to 48 patients without evidence of MGL in the same time frame (controls). Multiplex quantitative methylation-specific PCR was performed using DNA extracted from the normal mucosa adjacent to the primary lesion. The overall risk of progression to MGL was assessed using Kaplan-Meier and Cox proportional hazards model analyses. RESULTS MIR124-3, MIR34b/c and NKX6-1 were successfully analyzed in 77 samples. MIR124-3 hypermethylation was detected in individuals who developed MGL (relative quantification 78.8 vs 50.5 in controls, p = 0.014), particularly in females and Helicobacter pylori-negative patients (p = 0.021 and p = 0.0079, respectively). This finding was further associated with a significantly greater risk for MGL development (aHR = 2.31, 95% CI 1.03-5.17, p = 0.042). Similarly, NKX6-1 was found to be hypermethylated in patients with synchronous lesions (relative quantification 7.9 vs 0.0 in controls, p = 0.0026). A molecular-based methylation model incorporating both genes was significantly associated with a threefold increased risk for MGL development (aHR = 3.10, 95% CI 1.07-8.95, p = 0.037). CONCLUSIONS This preliminary study revealed an association between MIR124-3 and NKX6-1 hypermethylation and the development of MGL in a Western population. These findings may represent a burden reduction and a greener approach to patient care.
Collapse
Affiliation(s)
- Catarina Lopes
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS@RISE), University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Tatiana C Almeida
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Catarina Macedo-Silva
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
| | - João Costa
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Sofia Paulino
- Department of Pathology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Porto, Portugal
- Department of Pathology and Molecular Immunology, School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Diogo Libânio
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Gastroenterology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Mário Dinis-Ribeiro
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
- Department of Gastroenterology, Portuguese Institute of Oncology of Porto, Porto, Portugal
| | - Carina Pereira
- Precancerous Lesions and Early Cancer Management Group, Research Center of IPO Porto (CI-IPOP)/CI-IPOP@RISE (Health Research Group), Portuguese Institute of Oncology of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.
| |
Collapse
|
6
|
Sayer M, Ng DQ, Chan R, Kober K, Chan A. Current evidence supporting associations of DNA methylation measurements with survivorship burdens in cancer survivors: A scoping review. Cancer Med 2024; 13:e7470. [PMID: 38963018 PMCID: PMC11222976 DOI: 10.1002/cam4.7470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
INTRODUCTION Identifying reliable biomarkers that reflect cancer survivorship symptoms remains a challenge for researchers. DNA methylation (DNAm) measurements reflecting epigenetic changes caused by anti-cancer therapy may provide needed insights. Given lack of consensus describing utilization of DNAm data to predict survivorship issues, a review evaluating the current landscape is warranted. OBJECTIVE Provide an overview of current studies examining associations of DNAm with survivorship burdens in cancer survivors. METHODS A literature review was conducted including studies if they focused on cohorts of cancer survivors, utilized peripheral blood cell DNAm data, and evaluated the associations of DNAm and survivorship issues. RESULTS A total of 22 studies were identified, with majority focused on breast (n = 7) or childhood cancer (n = 9) survivors, and half studies included less than 100 patients (n = 11). Survivorship issues evaluated included those related to neurocognition (n = 5), psychiatric health (n = 3), general wellness (n = 9), chronic conditions (n = 5), and treatment specific toxicities (n = 4). Studies evaluated epigenetic age metrics (n = 10) and DNAm levels at individual CpG sites or regions (n = 12) for their associations with survivorship issues in cancer survivors along with relevant confounding factors. Significant associations of measured DNAm in the peripheral blood samples of cancer survivors and survivorship issues were identified. DISCUSSION/CONCLUSION Studies utilizing epigenetic age metrics and differential methylation analysis demonstrated significant associations of DNAm measurements with survivorship burdens. Associations were observed encompassing diverse survivorship outcomes and timeframes relative to anti-cancer therapy initiation. These findings underscore the potential of these measurements as useful biomarkers in survivorship care and research.
Collapse
Affiliation(s)
- Michael Sayer
- School of Pharmacy and Pharmaceutical SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Ding Quan Ng
- School of Pharmacy and Pharmaceutical SciencesUniversity of California IrvineIrvineCaliforniaUSA
| | - Raymond Chan
- School of Nursing and Health SciencesFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Kord Kober
- School of NursingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Alexandre Chan
- School of Pharmacy and Pharmaceutical SciencesUniversity of California IrvineIrvineCaliforniaUSA
| |
Collapse
|
7
|
Palumbo S, Palumbo D, Cirillo G, Giurato G, Aiello F, Miraglia Del Giudice E, Grandone A. Methylome analysis in girls with idiopathic central precocious puberty. Clin Epigenetics 2024; 16:82. [PMID: 38909248 PMCID: PMC11193236 DOI: 10.1186/s13148-024-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Genetic and environmental factors are implicated in many developmental processes. Recent evidence, however, has suggested that epigenetic changes may also influence the onset of puberty or the susceptibility to a wide range of diseases later in life. The present study aims to investigate changes in genomic DNA methylation profiles associated with pubertal onset analyzing human peripheral blood leukocytes from three different groups of subjects: 19 girls with central precocious puberty (CPP), 14 healthy prepubertal girls matched by age and 13 healthy pubertal girls matched by pubertal stage. For this purpose, the comparisons were performed between pre- and pubertal controls to identify changes in normal pubertal transition and CPP versus pre- and pubertal controls. RESULTS Analysis of methylation changes associated with normal pubertal transition identified 1006 differentially methylated CpG sites, 86% of them were found to be hypermethylated in prepubertal controls. Some of these CpG sites reside in genes associated with the age of menarche or transcription factors involved in the process of pubertal development. Analysis of methylome profiles in CPP patients showed 65% and 55% hypomethylated CpG sites compared with prepubertal and pubertal controls, respectively. In addition, interestingly, our results revealed the presence of 43 differentially methylated genes coding for zinc finger (ZNF) proteins. Gene ontology and IPA analysis performed in the three groups studied revealed significant enrichment of them in some pathways related to neuronal communication (semaphorin and gustation pathways), estrogens action, some cancers (particularly breast and ovarian) or metabolism (particularly sirtuin). CONCLUSIONS The different methylation profiles of girls with normal and precocious puberty indicate that regulation of the pubertal process in humans is associated with specific epigenetic changes. Differentially methylated genes include ZNF genes that may play a role in developmental control. In addition, our data highlight changes in the methylation status of genes involved in signaling pathways that determine the migration and function of GnRH neurons and the onset of metabolic and neoplastic diseases that may be associated with CPP in later life.
Collapse
Affiliation(s)
- Stefania Palumbo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy.
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Grazia Cirillo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesca Aiello
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Anna Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| |
Collapse
|
8
|
Patel D, McElroy JP, Weng DY, Sahar K, Reisinger SA, Freudenheim JL, Wewers MD, Shields PG, Song MA. Sex-related DNA methylation is associated with inflammation and gene expression in the lungs of healthy individuals. Sci Rep 2024; 14:14280. [PMID: 38902313 PMCID: PMC11190195 DOI: 10.1038/s41598-024-65027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
Lung cancer exhibits sex-biased molecular characteristics and epidemiological trends, suggesting a need for sex-specific approaches to understanding its etiology and treatment. DNA methylation alterations play critical roles in lung carcinogenesis and may serve as valuable biomarkers for precision medicine strategies. We employed the Infinium MethylationEPIC array to identify autosomal sex-related differentially methylated CpG sites (DM-CpGs) in lung epithelium of healthy individuals (32 females and 37 males) while controlling for age, BMI, and tobacco use. We correlated DM-CpGs with gene expression in lung epithelium and immune responses in bronchoalveolar lavage. We validated these DM-CpGs in lung tumors and adjacent normal tissue from The Cancer Genome Atlas (TCGA). Among 522 identified DM-CpGs, 61% were hypermethylated in females, predominantly located in promoter regions. These DM genes were implicated in cell-to-cell signaling, cellular function, transport, and lipid metabolism. Correlation analysis revealed sex-specific patterns between DM-CpGs and gene expression. Additionally, several DM-CpGs were correlated significantly with cytokines (IL-1β, IL-4, IL-12p70, and IFN-γ), macrophage, and lymphocyte counts. Also, some DM-CpGs were observed in TCGA lung adenocarcinoma, squamous cell carcinoma, and adjacent normal tissues. Our findings highlight sex-specific DNA methylation patterns in healthy lung epithelium and their associations with lung gene expression and lung immune biomarkers. These findings underscore the potential role of lung sex-related CpGs as epigenetic predispositions influencing sex disparities in lung cancer risk and outcomes, warranting further investigation for personalized lung cancer management strategies.
Collapse
Affiliation(s)
- Devki Patel
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Joseph P McElroy
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Daniel Y Weng
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Kamel Sahar
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Sarah A Reisinger
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA
| | - Jo L Freudenheim
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Mark D Wewers
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Peter G Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH, USA.
- Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Buckley DN, Lewinger JP, Gooden G, Spillman M, Neuman M, Guo XM, Tew BY, Miller H, Khetan VU, Shulman LP, Roman L, Salhia B. OvaPrint-A Cell-free DNA Methylation Liquid Biopsy for the Risk Assessment of High-grade Serous Ovarian Cancer. Clin Cancer Res 2023; 29:5196-5206. [PMID: 37812492 PMCID: PMC10722131 DOI: 10.1158/1078-0432.ccr-23-1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE High-grade serous ovarian carcinoma (HGSOC) is the most lethal epithelial ovarian cancer (EOC) and is often diagnosed at late stage. In women with a known pelvic mass, surgery followed by pathologic assessment is the most reliable way to diagnose EOC and there are still no effective screening tools in asymptomatic women. In the current study, we developed a cell-free DNA (cfDNA) methylation liquid biopsy for the risk assessment of early-stage HGSOC. EXPERIMENTAL DESIGN We performed reduced representation bisulfite sequencing to identify differentially methylated regions (DMR) between HGSOC and normal ovarian and fallopian tube tissue. Next, we performed hybridization probe capture for 1,677 DMRs and constructed a classifier (OvaPrint) on an independent set of cfDNA samples to discriminate HGSOC from benign masses. We also analyzed a series of non-HGSOC EOC, including low-grade and borderline samples to assess the generalizability of OvaPrint. A total of 372 samples (tissue n = 59, plasma n = 313) were analyzed in this study. RESULTS OvaPrint achieved a positive predictive value of 95% and a negative predictive value of 88% for discriminating HGSOC from benign masses, surpassing other commercial tests. OvaPrint was less sensitive for non-HGSOC EOC, albeit it may have potential utility for identifying low-grade and borderline tumors with higher malignant potential. CONCLUSIONS OvaPrint is a highly sensitive and specific test that can be used for the risk assessment of HGSOC in symptomatic women. Prospective studies are warranted to validate OvaPrint for HGSOC and further develop it for non-HGSOC EOC histotypes in both symptomatic and asymptomatic women with adnexal masses.
Collapse
Affiliation(s)
- David N. Buckley
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Juan Pablo Lewinger
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California
| | - Gerald Gooden
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Monique Spillman
- Division of Gynecologic Oncology, Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Monica Neuman
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - X. Mona Guo
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Ben Yi Tew
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Heather Miller
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Varun U. Khetan
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Lee P. Shulman
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Lynda Roman
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Keck School of Medicine of University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, California
- USC Norris Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
10
|
Kalyakulina A, Yusipov I, Kondakova E, Bacalini MG, Giuliani C, Sivtseva T, Semenov S, Ksenofontov A, Nikolaeva M, Khusnutdinova E, Zakharova R, Vedunova M, Franceschi C, Ivanchenko M. Epigenetics of the far northern Yakutian population. Clin Epigenetics 2023; 15:189. [PMID: 38053163 PMCID: PMC10699032 DOI: 10.1186/s13148-023-01600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Yakuts are one of the indigenous populations of the subarctic and arctic territories of Siberia characterized by a continental subarctic climate with severe winters, with the regular January average temperature in the regional capital city of Yakutsk dipping below - 40 °C. The epigenetic mechanisms of adaptation to such ecologies and environments and, in particular, epigenetic age acceleration in the local population have not been studied before. RESULTS This work reports the first epigenetic study of the Yakutian population using whole-blood DNA methylation data, supplemented with the comparison to the residents of Central Russia. Gene set enrichment analysis revealed, among others, geographic region-specific differentially methylated regions associated with adaptation to climatic conditions (water consumption, digestive system regulation), aging processes (actin filament activity, cell fate), and both of them (channel activity, regulation of steroid and corticosteroid hormone secretion). Further, it is demonstrated that the epigenetic age acceleration of the Yakutian representatives is significantly higher than that of Central Russia counterparts. For both geographic regions, we showed that epigenetically males age faster than females, whereas no significant sex differences were found between the regions. CONCLUSIONS We performed the first study of the epigenetic data of the Yakutia cohort, paying special attention to region-specific features, aging processes, age acceleration, and sex specificity.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia.
| | - Igor Yusipov
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Elena Kondakova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | | | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126, Bologna, Italy
| | - Tatiana Sivtseva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Sergey Semenov
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Artem Ksenofontov
- State Budgetary Institution of the Republic of Sakha (Yakutia) Republican Center for Public Health and Medical Prevention, Yakutsk, 677001, Russia
| | - Maria Nikolaeva
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia, 450054
| | - Raisa Zakharova
- Research Center of the Medical Institute of the North-Eastern Federal University M.K. Ammosova, Yakutsk, 677013, Russia
| | - Maria Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
11
|
Reiner A, Bakulski KM, Fisher JD, Dou JF, Schneper L, Mitchell C, Notterman DA, Zawistowski M, Ware EB. Sex-specific DNA methylation in saliva from the multi-ethnic Future of Families and Child Wellbeing Study. Epigenetics 2023; 18:2222244. [PMID: 37300819 PMCID: PMC10259311 DOI: 10.1080/15592294.2023.2222244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence and severity of many diseases differs by sex, potentially due to sex-specific patterns in DNA methylation. Autosomal sex-specific differences in DNA methylation have been observed in cord blood and placental tissue but are not well studied in saliva or in diverse populations. We sought to characterize sex-specific DNA methylation on autosomal chromosomes in saliva samples from children in the Future of Families and Child Wellbeing Study, a multi-ethnic prospective birth cohort containing an oversampling of Black, Hispanic and low-income families. DNA methylation from saliva samples was analysed on 796 children (50.6% male) at both ages 9 and 15 with DNA methylation measured using the Illumina HumanMethylation 450k array. An epigenome-wide association analysis of the age 9 samples identified 8,430 sex-differentiated autosomal DNA methylation sites (P < 2.4 × 10-7), of which 76.2% had higher DNA methylation in female children. The strongest sex-difference was in the cg26921482 probe, in the AMDHD2 gene, with 30.6% higher DNA methylation in female compared to male children (P < 1 × 10-300). Treating the age 15 samples as an internal replication set, we observed highly consistent results between the ages 9 and 15 measurements, indicating stable and replicable sex-differentiation. Further, we directly compared our results to previously published DNA methylation sex differences in both cord blood and saliva and again found strong consistency. Our findings support widespread and robust sex-differential DNA methylation across age, human tissues, and populations. These findings help inform our understanding of potential biological processes contributing to sex differences in human physiology and disease.
Collapse
Affiliation(s)
- Allison Reiner
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly M. Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Jonah D. Fisher
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - John F Dou
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa Schneper
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Colter Mitchell
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Matthew Zawistowski
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Erin B. Ware
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Peng G, Sosnowski DW, Murphy SK, Johnson SB, Skaar D, Schleif WS, Hernandez RG, Monforte H, Zhao H, Hoyo C. An epigenetic clock for gestational age based on human umbilical vein endothelial cells from a diverse population of newborns. RESEARCH SQUARE 2023:rs.3.rs-3112428. [PMID: 37461438 PMCID: PMC10350106 DOI: 10.21203/rs.3.rs-3112428/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Background Epigenetic clocks are emerging as a useful tool in many areas of research. Many epigenetic clocks have been developed for adults; however, there are fewer clocks focused on newborns and most are trained using blood from European ancestry populations. In this study, we built an epigenetic clock based on primary human umbilical vein endothelial cells from a racially and ethnically diverse population. Results Using human umbilical vein endothelial cell [HUVEC]-derived DNA, we calculated epigenetic gestational age using 83 CpG sites selected through elastic net regression. In this study with newborns from different racial/ethnic identities, epigenetic gestational age and clinical gestational age were more highly correlated (r = 0.85), than epigenetic clocks built from adult and other pediatric populations. The correlation was also higher than clocks based on blood samples from newborns with European ancestry. We also found that birth weight was positively associated with epigenetic gestational age acceleration (EGAA), while NICU admission was associated with lower EGAA. Newborns self-identified as Hispanic or non-Hispanic Black had lower EGAA than self-identified as non-Hispanic White. Conclusions Epigenetic gestational age can be used to estimate clinical gestational age and may help index neonatal development. Caution should be exercised when using epigenetic clocks built from adults with children, especially newborns. We highlight the importance of cell type-specific epigenetic clocks and general pan tissue epigenetic clocks derived from a large racially and ethnically diverse population.
Collapse
Affiliation(s)
- Gang Peng
- Indiana University School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bruun SB, Madsen JB, Brasen CL. Establishing Sex-Dependent Reference Intervals for KL-6 in Danish Adults. Diagnostics (Basel) 2023; 13:diagnostics13111951. [PMID: 37296803 DOI: 10.3390/diagnostics13111951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Krebs von den Lungen-6 (KL-6) is a promising biomarker for the diagnosis and prognosis of interstitial lung disease. However, reference intervals in Northern Europeans remain to be established using a latex-particle-enhanced turbidimetric immunoassay. The participants were Danish blood donors subjected to strict health requirements. Analyses were performed using the Nanopia KL-6 reagent on the cobas 8000 module c502. Sex-partitioned reference intervals were determined using a parametric quantile approach according to the Clinical and Laboratory Standards Institute guideline EP28-A3c. The study included 240 participants-121 females and 119 males. The common reference interval was 59.4-398.5 U/mL (95% confidence intervals (CI) for the lower and upper limits were 47.3-71.9 and 369.5-430.1, respectively). For females, the reference interval was 56.8-324.0 U/mL (95% CIs for the lower and upper limits were 36.1-77.6 and 303.3-344.7, respectively). For males, the reference interval was 51.5-448.7 U/mL (95% CIs for the lower and upper limits were 32.8-71.2 and 397.3-508.1, respectively). These results emphasize the importance of sex partitioning when evaluating KL-6 reference intervals. The reference intervals increase the clinical applicability of the KL-6 biomarker and provide a basis for future scientific studies of its utility in patient management.
Collapse
Affiliation(s)
- Stine Bakkensen Bruun
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| | - Jeppe Buur Madsen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
| | - Claus Lohman Brasen
- Department of Biochemistry and Immunology, Lillebaelt Hospital, University Hospital of Southern Denmark, Beriderbakken 4, 7100 Vejle, Denmark
- Department of Regional Health Research, University of Southern Denmark, J. B. Winsløwsvej 19, 5000 Odense, Denmark
| |
Collapse
|
14
|
Grolaux R, Hardy A, Olsen C, Van Dooren S, Smits G, Defrance M. Identification of differentially methylated regions in rare diseases from a single-patient perspective. Clin Epigenetics 2022; 14:174. [PMID: 36527161 PMCID: PMC9758859 DOI: 10.1186/s13148-022-01403-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND DNA methylation (5-mC) is being widely recognized as an alternative in the detection of sequence variants in the diagnosis of some rare neurodevelopmental and imprinting disorders. Identification of alterations in DNA methylation plays an important role in the diagnosis and understanding of the etiology of those disorders. Canonical pipelines for the detection of differentially methylated regions (DMRs) usually rely on inter-group (e.g., case versus control) comparisons. However, these tools might perform suboptimally in the context of rare diseases and multilocus imprinting disturbances due to small cohort sizes and inter-patient heterogeneity. Therefore, there is a need to provide a simple but statistically robust pipeline for scientists and clinicians to perform differential methylation analyses at the single patient level as well as to evaluate how parameter fine-tuning may affect differentially methylated region detection. RESULT We implemented an improved statistical method to detect differentially methylated regions in correlated datasets based on the Z-score and empirical Brown aggregation methods from a single-patient perspective. To accurately assess the predictive power of our method, we generated semi-simulated data using a public control population of 521 samples and investigated how the size of the control population, methylation difference, and region size affect DMR detection. In addition, we validated the detection of methylation events in patients suffering from rare multi-locus imprinting disturbance and evaluated how this method could complement existing tools in the context of clinical diagnosis. CONCLUSION In this study, we present a robust statistical method to perform differential methylation analysis at the single patient level and describe its optimal parameters to increase DMRs identification performance. Finally, we show its diagnostic utility when applied to rare disorders.
Collapse
Affiliation(s)
- Robin Grolaux
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexis Hardy
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Catharina Olsen
- grid.8767.e0000 0001 2290 8069Clinical Sciences, Research Group Reproduction and Genetics, Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Interuniversity Institute of Bioinformatics in Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Sonia Van Dooren
- grid.8767.e0000 0001 2290 8069Clinical Sciences, Research Group Reproduction and Genetics, Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium ,grid.8767.e0000 0001 2290 8069Interuniversity Institute of Bioinformatics in Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Guillaume Smits
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium ,grid.4989.c0000 0001 2348 0746Center of Human Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Defrance
- grid.4989.c0000 0001 2348 0746Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
15
|
Lucia RM, Huang WL, Pathak KV, McGilvrey M, David-Dirgo V, Alvarez A, Goodman D, Masunaka I, Odegaard AO, Ziogas A, Pirrotte P, Norden-Krichmar TM, Park HL. Association of Glyphosate Exposure with Blood DNA Methylation in a Cross-Sectional Study of Postmenopausal Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:47001. [PMID: 35377194 PMCID: PMC8978648 DOI: 10.1289/ehp10174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Glyphosate is the most commonly used herbicide in the world and is purported to have a variety of health effects, including endocrine disruption and an elevated risk of several types of cancer. Blood DNA methylation has been shown to be associated with many other environmental exposures, but to our knowledge, no studies to date have examined the association between blood DNA methylation and glyphosate exposure. OBJECTIVE We conducted an epigenome-wide association study to identify DNA methylation loci associated with urinary glyphosate and its metabolite aminomethylphosphonic acid (AMPA) levels. Secondary goals were to determine the association of epigenetic age acceleration with glyphosate and AMPA and develop blood DNA methylation indices to predict urinary glyphosate and AMPA levels. METHODS For 392 postmenopausal women, white blood cell DNA methylation was measured using the Illumina Infinium MethylationEPIC BeadChip array. Glyphosate and AMPA were measured in two urine samples per participant using liquid chromatography-tandem mass spectrometry. Methylation differences at the probe and regional level associated with glyphosate and AMPA levels were assessed using a resampling-based approach. Probes and regions that had an false discovery rate q < 0.1 in ≥ 90 % of 1,000 subsamples of the study population were considered differentially methylated. Differentially methylated sites from the probe-specific analysis were combined into a methylation index. Epigenetic age acceleration from three epigenetic clocks and an epigenetic measure of pace of aging were examined for associations with glyphosate and AMPA. RESULTS We identified 24 CpG sites whose methylation level was associated with urinary glyphosate concentration and two associated with AMPA. Four regions, within the promoters of the MSH4, KCNA6, ABAT, and NDUFAF2/ERCC8 genes, were associated with glyphosate levels, along with an association between ESR1 promoter hypomethylation and AMPA. The methylation index accurately predicted glyphosate levels in an internal validation cohort. AMPA, but not glyphosate, was associated with greater epigenetic age acceleration. DISCUSSION Glyphosate and AMPA exposure were associated with DNA methylation differences that could promote the development of cancer and other diseases. Further studies are warranted to replicate our results, determine the functional impact of glyphosate- and AMPA-associated differential DNA methylation, and further explore whether DNA methylation could serve as a biomarker of glyphosate exposure. https://doi.org/10.1289/EHP10174.
Collapse
Affiliation(s)
- Rachel M. Lucia
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Wei-Lin Huang
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Khyatiben V. Pathak
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Marissa McGilvrey
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Victoria David-Dirgo
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Andrea Alvarez
- Department of Medicine, University of California, Irvine, California, USA
| | - Deborah Goodman
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Irene Masunaka
- Department of Medicine, University of California, Irvine, California, USA
| | - Andrew O. Odegaard
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Argyrios Ziogas
- Department of Medicine, University of California, Irvine, California, USA
| | - Patrick Pirrotte
- Integrated Mass Spectrometry Shared Resource, City of Hope Comprehensive Cancer Center, Duarte, California, USA
- Cancer & Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | - Hannah Lui Park
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, USA
| |
Collapse
|
16
|
Levy MA, McConkey H, Kerkhof J, Barat-Houari M, Bargiacchi S, Biamino E, Bralo MP, Cappuccio G, Ciolfi A, Clarke A, DuPont BR, Elting MW, Faivre L, Fee T, Fletcher RS, Cherik F, Foroutan A, Friez MJ, Gervasini C, Haghshenas S, Hilton BA, Jenkins Z, Kaur S, Lewis S, Louie RJ, Maitz S, Milani D, Morgan AT, Oegema R, Østergaard E, Pallares NR, Piccione M, Pizzi S, Plomp AS, Poulton C, Reilly J, Relator R, Rius R, Robertson S, Rooney K, Rousseau J, Santen GWE, Santos-Simarro F, Schijns J, Squeo GM, St John M, Thauvin-Robinet C, Traficante G, van der Sluijs PJ, Vergano SA, Vos N, Walden KK, Azmanov D, Balci T, Banka S, Gecz J, Henneman P, Lee JA, Mannens MMAM, Roscioli T, Siu V, Amor DJ, Baynam G, Bend EG, Boycott K, Brunetti-Pierri N, Campeau PM, Christodoulou J, Dyment D, Esber N, Fahrner JA, Fleming MD, Genevieve D, Kerrnohan KD, McNeill A, Menke LA, Merla G, Prontera P, Rockman-Greenberg C, Schwartz C, Skinner SA, Stevenson RE, Vitobello A, Tartaglia M, Alders M, Tedder ML, Sadikovic B. Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. HGG ADVANCES 2022; 3:100075. [PMID: 35047860 PMCID: PMC8756545 DOI: 10.1016/j.xhgg.2021.100075] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Overlapping clinical phenotypes and an expanding breadth and complexity of genomic associations are a growing challenge in the diagnosis and clinical management of Mendelian disorders. The functional consequences and clinical impacts of genomic variation may involve unique, disorder-specific, genomic DNA methylation episignatures. In this study, we describe 19 novel episignature disorders and compare the findings alongside 38 previously established episignatures for a total of 57 episignatures associated with 65 genetic syndromes. We demonstrate increasing resolution and specificity ranging from protein complex, gene, sub-gene, protein domain, and even single nucleotide-level Mendelian episignatures. We show the power of multiclass modeling to develop highly accurate and disease-specific diagnostic classifiers. This study significantly expands the number and spectrum of disorders with detectable DNA methylation episignatures, improves the clinical diagnostic capabilities through the resolution of unsolved cases and the reclassification of variants of unknown clinical significance, and provides further insight into the molecular etiology of Mendelian conditions.
Collapse
Affiliation(s)
- Michael A Levy
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Haley McConkey
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Mouna Barat-Houari
- Autoinflammatory and Rare Diseases Unit, Medical Genetic Department for Rare Diseases and Personalized Medicine, CHU Montpellier, Montpellier, France
| | - Sara Bargiacchi
- Medical Genetics Unit, "A. Meyer" Children's Hospital of Florence, Florence, Italy
| | - Elisa Biamino
- Department of Pediatrics, University of Turin, Turin, Italy
| | - María Palomares Bralo
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Gerarda Cappuccio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Angus Clarke
- Cardiff University School of Medicine, Cardiff, UK
| | | | - Mariet W Elting
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Laurence Faivre
- INSERM-Université de Bourgogne UMR1231 GAD « Génétique Des Anomalies du Développement », FHU-TRANSLAD, UFR Des Sciences de Santé, Dijon, France.,Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Timothy Fee
- Greenwood Genetic Center, Greenwood, SC 29646, USA
| | | | - Florian Cherik
- Genetic medical center, CHU Clermont Ferrand, France.,Montpellier University, Reference Center for Rare Disease, Medical Genetic Department for Rare Disease and Personalize Medicine, Inserm Unit 1183, CHU Montpellier, Montpellier, France
| | - Aidin Foroutan
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | | | - Cristina Gervasini
- Division of Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Sadegheh Haghshenas
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | | | - Zandra Jenkins
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Simranpreet Kaur
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Suzanne Lewis
- BC Children's and Women's Hospital and Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Silvia Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, Hospital San Gerardo, Monza, Italy
| | - Donatella Milani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angela T Morgan
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Ruiz Pallares
- Autoinflammatory and Rare Diseases Unit, Medical Genetic Department for Rare Diseases and Personalized Medicine, CHU Montpellier, Montpellier, France
| | - Maria Piccione
- Medical Genetics Unit Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Simone Pizzi
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Astrid S Plomp
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Cathryn Poulton
- Undiagnosed Diseases Program, Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada
| | - Rocio Rius
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Stephen Robertson
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Kathleen Rooney
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Justine Rousseau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Gijs W E Santen
- Department of Clinical Genetics, LUMC, Leiden, the Netherlands
| | - Fernando Santos-Simarro
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Josephine Schijns
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Gabriella Maria Squeo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Miya St John
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Christel Thauvin-Robinet
- INSERM-Université de Bourgogne UMR1231 GAD « Génétique Des Anomalies du Développement », FHU-TRANSLAD, UFR Des Sciences de Santé, Dijon, France.,Centre de Référence Maladies Rares «Anomalies du Développement et Syndromes Malformatifs », Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France.,Unité Fonctionnelle d'Innovation Diagnostique des Maladies Rares, FHU-TRANSLAD, France Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon Bourgogne, CHU Dijon Bourgogne, Dijon, France.,Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital D'Enfants, CHU Dijon Bourgogne, 21000 Dijon, France
| | - Giovanna Traficante
- Medical Genetics Unit, "A. Meyer" Children's Hospital of Florence, Florence, Italy
| | | | - Samantha A Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA, USA.,Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Niels Vos
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, Amsterdam, the Netherlands
| | | | - Dimitar Azmanov
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, QEII Medical Centre, Perth, Australia
| | - Tugce Balci
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON N6A 3K7, Canada.,Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON N6A5W9, Canada
| | - Siddharth Banka
- Division of Evolution, Infection & Genomics, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jozef Gecz
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA 5005, Australia
| | - Peter Henneman
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | | | - Marcel M A M Mannens
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, Australia.,Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, Australia.,New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, Australia.,Centre for Clinical Genetics, Sydney Children's Hospital, Sydney, Australia
| | - Victoria Siu
- Department of Pediatrics, Division of Medical Genetics, Western University, London, ON N6A 3K7, Canada.,Medical Genetics Program of Southwestern Ontario, London Health Sciences Centre and Children's Health Research Institute, London, ON N6A5W9, Canada
| | - David J Amor
- Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Gareth Baynam
- Undiagnosed Diseases Program, Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia.,Undiagnosed Diseases Program, Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, Australia.,Division of Paediatrics and Telethon Kids Institute, Faculty of Health and Medical Sciences, Perth, Australia
| | | | - Kym Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Philippe M Campeau
- CHU Sainte-Justine Research Center, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute and Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - David Dyment
- Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | - Jill A Fahrner
- Departments of Genetic Medicine and Pediatrics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - David Genevieve
- Montpellier University, Reference Center for Rare Disease, Medical Genetic Department for Rare Disease and Personalize Medicine, Inserm Unit 1183, CHU Montpellier, Montpellier, France
| | - Kristin D Kerrnohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Alisdair McNeill
- Department of Neuroscience, University of Sheffield, Sheffield Children's Hospital NHS Foundation Trust, Sheffield, UK
| | - Leonie A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Giuseppe Merla
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.,Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (Foggia), Italy
| | - Paolo Prontera
- Medical Genetics Unit, University of Perugia Hospital SM della Misericordia, Perugia, Italy
| | - Cheryl Rockman-Greenberg
- Department of Pediatrics and Child Health, Rady Faculty of Health Sciences, University of Manitoba and Program in Genetics and Metabolism, Shared Health MB, Winnipeg, MB, Canada
| | | | | | | | - Antonio Vitobello
- INSERM-Université de Bourgogne UMR1231 GAD « Génétique Des Anomalies du Développement », FHU-TRANSLAD, UFR Des Sciences de Santé, Dijon, France.,Unité Fonctionnelle d'Innovation Diagnostique des Maladies Rares, FHU-TRANSLAD, France Hospitalo-Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD), Centre Hospitalier Universitaire Dijon Bourgogne, CHU Dijon Bourgogne, Dijon, France
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146 Rome, Italy
| | - Marielle Alders
- Amsterdam UMC, University of Amsterdam, Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | | | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre; London Health Sciences Centre, London, ON N6A 5W9, Canada.,Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|