1
|
Oliver-Vila I, Sesma-Herrero E, Belda F, Seriola A, Ojosnegros S. Robust differentiation and potent immunomodulation of human mesenchymal stromal cells cultured with a xeno-free GMP protein supplement. Cytotherapy 2025; 27:552-561. [PMID: 39864016 DOI: 10.1016/j.jcyt.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND/AIMS Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited. Here, we evaluate a xeno-free human plasma-derived protein supplement (Plastem, Grifols) for the expansion and functional evaluation of hMSCs. METHODS hMSC from bone marrow, adipose tissue and umbilical cord were obtained from two suppliers and cultured in Dulbecco's modified Eagle's medium (DMEM/F-12) supplemented with fetal bovine serum 10% (FBS), human platelet lysate 5% (hPL) or Plastem 10%+ hPL0.5%. Cell proliferation was evaluated after culturing hMSC for 13 days with trypan blue exclusion. hMSC immunophenotype was assessed by flow cytometry of surface markers expression. Multipotentiality assay determined the ability of hMSC to differentiate into osteogenic, chondrogenic and adipogenic lineages after 21 days, by using specific staining. Immunomodulatory properties of hMSC were analyzed by measuring suppression of human peripheral blood mononuclear cell (PBMC) proliferation in co-culture with hMSC. RESULTS Plastem 10% + hPL 0.5% supported robust and sustained hMSC growth with a similar efficiency to the reference supplement FBS 10%. hMSC cultured with the xeno-free supplement presented a similar morphology comparable to FBS-supplemented cells and maintained typical expression of markers: positive (>95%) for CD90, CD73 and CD105; and negative (<5%) for CD45, CD14, CD19, CD34 and HLA-DR. Likewise, hMSC showed potent, in vitro differentiation potential into osteogenic, chondrogenic and adipogenic lineages, outperforming the results obtained with traditional reference supplements in several instances. They retained their immunomodulatory properties, inhibiting the proliferation of phytohemagglutinin (PHA)-stimulated PBMCs with a notable enhancement of the immunomodulatory capacity of hMSCs compared to conventional reference supplements. CONCLUSIONS Plastem allowed hMSC expansion while preserving phenotype and showed remarkable differentiation and immunomodulatory properties, supporting its use for cell therapy manufacturing processes as a robust, xeno-free alternative to FBS and hPL. Moreover, Plastem can be manufactured at an industrial level, making it a scalable solution for widespread application.
Collapse
Affiliation(s)
| | - Eduardo Sesma-Herrero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Francisco Belda
- Research and Development, Bio Supplies Division, Grifols, Sant Cugat del Vallès, Barcelona, Spain
| | - Anna Seriola
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Samuel Ojosnegros
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| |
Collapse
|
2
|
Golshan M, Dortaj H, Rajabi M, Omidi Z, Golshan M, Pourentezari M, Rajabi A. Animal origins free products in cell culture media: a new frontier. Cytotechnology 2025; 77:12. [PMID: 39654546 PMCID: PMC11625046 DOI: 10.1007/s10616-024-00666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/02/2024] [Indexed: 12/12/2024] Open
Abstract
Despite the importance of finding replacements for fetal bovine serum (FBS), very few studies have focused on this subject. Historically, the use of animals and their derivatives in growth, reproduction, and physiological studies has raised several concerns. The supplementation of culture media with FBS, also known as fetal calf serum, continues to be widespread, despite its limitations in quality, reproducibility, and implications for animal welfare. Moreover, the presence of counterfeit and illegal products can adversely affect cell cultures and treatments, prompting the search for alternative solutions. To reduce reliance on FBS, various substitutes have been introduced, such as plant-derived proteins, bovine eye fluid, sericin protein, human platelet lysate, and inactivated coelomic fluid, which can provide roles similar to that of FBS. Therefore, it is essential to develop serum-free and animal supplement-free environments suitable for therapeutic and clinical applications, tailored to the specific needs of different cell types. Among the alternatives, plant-based options have gained attention as sustainable and ethical solutions. These include plant-derived peptones from sources like soy and wheat, which are rich in amino acids and peptides essential for mammalian cell growth, as well as plant protein hydrolysates from beans and peas that serve as sources of amino acids and growth factors. Plant extracts, especially from soy and various seeds, contain necessary proteins and growth factors, while phytohormones such as cytokinins and plant polysaccharides can help regulate cell growth. While these alternatives offer benefits like reduced costs and lower risks of disease transmission, further research is necessary to refine and align them with the specific requirements of diverse cell types. Graphical abstract
Collapse
Affiliation(s)
- Mahsa Golshan
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| | - Hengameh Dortaj
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rajabi
- Department of Periodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Omidi
- Department of Cardiovascular Disease, Alzahra Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Golshan
- Shiraz Transplant Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Majid Pourentezari
- Department of Anatomical Sciences, School of Medicine Shahid, Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Neuroendocrine Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Rajabi
- Department of Tissue Engineering and Applied Cell Science, Shiraz University of Medical Science, P.O.Box: 7154614111, Shiraz, Iran
| |
Collapse
|
3
|
Che H, Hart ML, Lauer JC, Selig M, Voelker M, Kurz B, Rolauffs B. A xenogenic-free culture medium for cell micro-patterning systems as cell-instructive biomaterials for potential clinical applications. Biomed Mater 2025; 20:025008. [PMID: 39719129 DOI: 10.1088/1748-605x/ada335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/24/2024] [Indexed: 12/26/2024]
Abstract
Cell micro-patterning controls cell fate and function and has potential for generating therapeutically usable mesenchymal stromal cell (MSC) populations with precise functions. However, to date, the micro-patterning of human cells in a translational context has been impossible because only ruminant media supplements, e.g. fetal bovine serum (FBS), are established for use with micro-patterns (MPs). Thus, there are currently no good manufacturing practice (GMP)-compliant media available for MPs. This study tested a xenogenic-free human plasma and platelet lysate (hP + PL) medium supplement to determine its compatibility with MPs. Unfiltered hP + PL medium resulted in significant protein deposition, creating a 'carpet-like' layer that rendered MPs ineffective. Filtration (3×/5×) eliminated this effect. Importantly, quantitative comparison using droplet digital PCR revealed that human MSCs in all media types exhibited similar profiles with strong myogenic Calponin 1/Transgelin 2 (TAGLN2) and weaker osteogenic alkaline phosphatase/Runt-related transcription factor 2 marker expression, and much weaker adipogenic (lipoprotein lipase/peroxisome proliferator-activated receptor gamma) and chondrogenic (collagen type II/aggrecan) expression, with profiles being dominated by myogenic markers. Within these similar profiles, an even stronger induction of the myogenic marker TAGLN2 by all hP + PL- compared to FBS-containing media. Overall, this suggested that FBS can be replaced with hP + PL without altering differentiation profiles. However, assessing individual MSC responses to various MP types with defined categories revealed that unfiltered hP + PL medium was unusable. Importantly, FBS- and 3× filtered hP + PL media were comparable in each differentiation category. Summarized, this study recommends 3× filtered hP + PL as a xenogenic-free and potentially GMP-compliant alternative to FBS as a culture medium supplement for micro-patterning cell populations in both basic and translational research that will ensure consistent and reliable MSC micro-patterning for therapeutic use.
Collapse
Affiliation(s)
- Hui Che
- Orthopedics and Sports Medicine Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, People's Republic of China
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Jasmin C Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Marita Voelker
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| | - Bodo Kurz
- Department of Anatomy, Christian-Albrechts-University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, 79108 Freiburg im Breisgau, Germany
| |
Collapse
|
4
|
Moradian SA, Movahedin M. In vitro sperm generation from immature mouse testicular tissue using plasma rich in growth factors. Stem Cell Res Ther 2025; 16:17. [PMID: 39849580 PMCID: PMC11755862 DOI: 10.1186/s13287-025-04136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/10/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Culture medium enriched with Knockout serum replacement (KSR) can produce in vitro mouse sperm, but it is inefficient, strain-specific and contains bovine products, which limits its use in the human clinic. The study aimed to optimize the culture medium for testicular tissue by using plasma rich in growth factors (PRGF) as a serum supplement, addressing the limitations of KSR. METHODS Immature testicular tissues from NMRI mice were cultured for 14 days to identify the optimal PRGF concentration using histological analysis and tubular integrity scoring. Subsequently, tissues were cultured for 42 days with the optimal PRGF concentration and compared to a control group with 10% KSR, followed by evaluation through histological, tubular integrity, and immunofluorescence assays. RESULTS After 14 days, 5% PRGF media significantly preserved tubule integrity better than 10% and 20% PRGF, performing similarly to 10% KSR. However, after 42 days, the integrity scoring revealed significantly a higher percentage of well-preserved tubules in 5% PRGF compared to 10% KSR. Additionally, only PRGF supported spermatogenesis to the production of flagellated sperm. Real-time PCR analysis revealed that transcript levels of Plzf, Tekt1, and Tnp1 were significantly elevated in 5% PRGF compared to 10% KSR. Immunofluorescence and quantitative analysis confirmed enhanced spermatogenesis progression in 5% PRGF media, with significantly increased numbers of PLZF + spermatogonia, SYCP3 + spermatocytes, ACRBP + spermatids, and Ki67 + proliferating cells per tubule compared to 10% KSR. Moreover, 5% PRGF showed a significantly lower mean fluorescence intensity of the pro-apoptotic marker Bax, with no significant difference in the anti-apoptotic marker Bcl-2 compared to KSR. CONCLUSIONS The findings suggest that 5%PRGF is a viable alternative to KSR in mouse testicular tissue cultures, promoting structural integrity and spermatogenesis up to the production of flagellated sperm. The results highlight PRGF's potential to improve culture media for in vitro sperm production, suggesting promising avenues for future human research.
Collapse
Affiliation(s)
- Seyyed Amir Moradian
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
- Faculty of Medical Sciences, Department of Anatomical Sciences, Jalal-Ale-Ahmad Highway, Tarbiat Modares University, P.O.Box: 14115-331, Tehran, Iran.
| |
Collapse
|
5
|
Qiu D, Wang L, Wang L, Dong Y. Human platelet lysate: a potential therapeutic for intracerebral hemorrhage. Front Neurosci 2025; 18:1517601. [PMID: 39881806 PMCID: PMC11774881 DOI: 10.3389/fnins.2024.1517601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Intracerebral hemorrhage (ICH) is a major public health challenge worldwide, and is associated with elevated rates of mortality, disability, and morbidity, especially in low- and middle-income nations. However, our knowledge of the detailed molecular processes involved in ICH remains insufficient, particularly those involved in the secondary injury stage, resulting in a lack of effective treatments for ICH. Human platelet lysates (HPL) are abundant in bioactive factors, and numerous studies have demonstrated their beneficial effects on neurological diseases, including their anti-neuroinflammatory ability, anti-oxidant effects, maintenance of blood-brain barrier integrity, and promotion of neurogenesis. In this review, we thoroughly explore the potential of HPL for treating ICH from three critical perspectives: the rationale for selecting HPL as a treatment for ICH, the mechanisms through which HPL contributes to ICH management, and the additional measures necessary for HPL as a treatment for ICH. We elucidate the role of platelets in ICH pathophysiology and highlight the limitations of the current treatment options and advancements in preclinical research on the application of HPL in neurological disorders. Furthermore, historical developments and preparation methods of HPL in the field of biomedicine are discussed. Additionally, we summarize the bioactive molecules present in HPL and their potential therapeutic effects in ICH. Finally, we outline the issues that must be addressed regarding utilizing HPL as a treatment modality for ICH.
Collapse
Affiliation(s)
- Dachang Qiu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Lanlan Wang
- Department of Geriatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongfei Dong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Grivet-Brancot A, Buscemi M, Ciardelli G, Bronco S, Sartori S, Cassino C, Al Kayal T, Losi P, Soldani G, Boffito M. Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds. Pharmaceutics 2024; 16:1438. [PMID: 39598561 PMCID: PMC11597581 DOI: 10.3390/pharmaceutics16111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chronic skin wounds (CSWs) are a worldwide healthcare problem with relevant impacts on both patients and healthcare systems. In this context, innovative treatments are needed to improve tissue repair and patient recovery and quality of life. Cord blood platelet lysate (CB-PL) holds great promise in CSW treatment thanks to its high growth factors and signal molecule content. In this work, thermo-sensitive hydrogels based on an amphiphilic poly(ether urethane) (PEU) were developed as CB-PL carriers for CSW treatment. METHODS A Poloxamer 407®-based PEU was solubilized in aqueous medium (10 and 15% w/v) and added with CB-PL at a final concentration of 20% v/v. Hydrogels were characterized for their gelation potential, rheological properties, and swelling/dissolution behavior in a watery environment. CB-PL release was also tested, and the bioactivity of released CB-PL was evaluated through cell viability, proliferation, and migration assays. RESULTS PEU aqueous solutions with concentrations in the range 10-15% w/v exhibited quick (within a few minutes) sol-to-gel transition at around 30-37 °C and rheological properties modulated by the PEU concentration. Moreover, CB-PL loading within the gels did not affect the overall gel properties. Stability in aqueous media was dependent on the PEU concentration, and payload release was completed between 7 and 14 days depending on the polymer content. The CB-PL-loaded hydrogels also showed biocompatibility and released CB-PL induced keratinocyte migration and proliferation, with scratch wound recovery similar to the positive control (i.e., CB-PL alone). CONCLUSIONS The developed hydrogels represent promising tools for CSW treatment, with tunable gelation properties and residence time and the ability to encapsulate and deliver active biomolecules with sustained and controlled kinetics.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Marianna Buscemi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Gianluca Ciardelli
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Simona Bronco
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy;
| | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Monica Boffito
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| |
Collapse
|
7
|
Bzinkowska A, Sarnowska A. Assessment of the Dose-Dependent Effect of Human Platelet Lysate on Wharton's Jelly-Derived Mesenchymal Stem/Stromal Cells Culture for Manufacturing Protocols. Stem Cells Cloning 2024; 17:21-32. [PMID: 39386994 PMCID: PMC11463174 DOI: 10.2147/sccaa.s471118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Mesenchymal stem/stromal cells (MSCs)-based products have unique characteristics compared to other drugs because of their inherently variable effects depending on culture conditions and microenvironment. In some cases, cells can be produced individually, one batch at a time, for personalized therapy. Therefore, it is very important to optimize both culture conditions and medium composition under Good Manufacturing Practice (GMP) standards. MSCs properties have been exploited as potential cell therapies in regenerative medicine. The main mechanism of their protective and regenerative effect is based on their secretory activity. Simultaneously, their secretome is highly variable and sensitive to any change in environmental conditions. Depending on the type of damage and the target application, it is desirable to enhance the secretion of therapeutic factors. Changes in the modulation of environmental conditions can affect survival, migration ability, and both proliferative and clonogenic potentials. Materials and Methods This study cultured Wharton's jelly-derived MSCs (WJ-MSCs) in media with varying concentrations of human platelet lysate (hPL). Two groups were created: one with low hPL concentration and another with a high hPL concentration. The effects of these different hPL concentrations were analyzed by assessing mesenchymal phenotype retention, secretory activity, clonogenic potential, proliferation, and migration capabilities. Additionally, the secretion levels of key therapeutic factors, such as Hepatocyte Growth Factor (HGF), Brain-Derived Neurotrophic Factor (BDNF), and Chemokine Ligand 2 (CCL-2), were measured. Results WJ-MSCs maintained their mesenchymal phenotype regardless of hPL concentration. However, a higher concentration of hPL promoted cell clonogenic potential, proliferation, migration, and increased secretion of therapeutic factors. Conclusion Adjusting the hPL concentration in the culture medium modulates the response of WJ MSCs and enhances their therapeutic potential. Higher hPL concentration promotes increased secretory activity and improves the regenerative capacity of WJ-MSCs, suggesting a promising strategy to optimize MSC-based therapies.
Collapse
Affiliation(s)
- Aleksandra Bzinkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
8
|
Zhao L, Ni B, Li J, Liu R, Zhang Q, Zheng Z, Yang W, Yu W, Bi L. Evaluation of the impact of customized serum-free culture medium on the production of clinical-grade human umbilical cord mesenchymal stem cells: insights for future clinical applications. Stem Cell Res Ther 2024; 15:327. [PMID: 39334391 PMCID: PMC11438183 DOI: 10.1186/s13287-024-03949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The selection of suitable culture medium is critical for achieving good clinical outcomes in cell therapy. To support the commercial application of stem cell therapy, customized culture media not only need to promote stem cell proliferation, but also need to save costs and meet industrial requirements for inter-batch consistency, efficacy, and biosafety. In this study, we developed a series of serum-free media (SFM) and elucidated the effects between different SFM, as well as between SFM and serum-containing meida (SCM), on human umbilical cord mesenchymal stem cells (hUC-MSCs) phenotype and function. We analyze and emphasize from the perspectives of clinical and commercial application why research on customized culture media is critical for the success of enterprises developing novel cellular therapeutics. METHODS We cultured hUC-MSCs with identical cell seeding densities in different formulations of SFM and SCM until passage 10 and examined the changes in cell phenotype and function. We analyzed the results with the commercial application requirments of the cellular therapy industry to assess the potential impact of customized culture media on inter-batch consistency, efficacy, stability, biosafety, and cost-effectiveness of industrial-scale cell production. RESULTS hUC-MSCs cultured in SCM and SFM exhibit consistent cell morphology and surface molecule expression, but hUC-MSCs cultured in SFM demonstrate higher activity, superior proliferative capacity, and greater stability. Furthermore, hUC-MSCs cultured in different SFM exhibit differences in cell activity, proliferative capacity, senescent rate, and S/M ratio of cell cycle, while maintaining a normal karyotype after long-term in vitro cultivation. Moreover, we found that hUC-MSCs cultured in different media exhibit variations in paracrine capacity and in their support of hematopoietic stem cell (HSC) self-renewal. CONCLUSION Considering the substantial funding and time required for cell-based drug development, our results underscore the importances of comprehensively optimizing the composition of medium for the specific disease prior to conducting clinical trials of cell-based therapies. The criteria for selecting culture medium should be based on the requirements of the target disease for cellular function. In addition, we provide a way to formulate different customized SFM, which is beneficial for the development of cell therapy industry.
Collapse
Affiliation(s)
- Lan Zhao
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Beibei Ni
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Jinqing Li
- Division of Hematology and Oncology, Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People's Republic of China
| | - Rui Liu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Qi Zhang
- Vaccine Research Institute, Cell-Gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People's Republic of China
| | - Zhuangbin Zheng
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China
| | - Wenjuan Yang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, People's Republic of China.
| | - Wei Yu
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| | - Lijun Bi
- Guangzhou National Laboratory, Guangzhou, 510005, People's Republic of China.
| |
Collapse
|
9
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
10
|
Lauvrud AT, Giraudo MV, Wiberg R, Wiberg M, Kingham PJ, Brohlin M. The influence of xeno-free culture conditions on the angiogenic and adipogenic differentiation properties of adipose tissue-derived stem cells. Regen Ther 2024; 26:901-910. [PMID: 39822342 PMCID: PMC11736170 DOI: 10.1016/j.reth.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 01/19/2025] Open
Abstract
Introduction Before performing cell therapy clinical trials, it is important to understand how cells are influenced by different growth conditions and to find optimal xeno-free medium formulations. In this study we have investigated the properties of adipose tissue-derived stem cells (ASCs) cultured under xeno-free conditions. Methods Human lipoaspirate samples were digested to yield the stromal vascular fraction cells which were then seeded in i) Minimum Essential Medium-α (MEM-α) supplemented with 10 % (v/v) fetal bovine serum (FBS), ii) MEM-α supplemented with 2 % (v/v) human platelet lysate (PLT) or iii) PRIME-XV MSC expansion XSFM xeno-free, serum free medium (XV). Flow cytometry for ASCs markers CD73, CD90 and CD105 together with the putative pericyte marker CD146 was performed. Growth rates were monitored over multiple passages and adipogenic differentiation performed at early and expanded passage culture. Growth factor gene expression was analyzed and an in vitro angiogenesis assay performed. Results Cells in FBS and PLT grew at similar rates whereas the cells cultured in XV medium proliferated significantly faster up to 60 days in culture. All cultures were >98 % positive for CD73, CD90 and CD105, whereas CD146 expression was significantly higher in XV cells. Adipogenic differentiation was most pronounced in cells which had been cultured in XV medium whilst cells grown in PLT were inferior compared with cells from the FBS cultures. IGF1 gene expression was highest in cells cultured in PLT whilst cells grown in XV medium showed 10-fold lower expression compared with FBS cells. In contrast, HGF gene expression was 90-fold greater in cells cultured in XV medium compared with those cultured in FBS. Conditioned medium from XV cultured cells showed the most angiogenic activity, inducing the greatest endothelial cell network formation and maturation. Conclusion Culture under different conditions alters the ASCs characteristics. Since cells cultured in XV medium showed the best adipogenic and angiogenic profile this might be a preferred medium formulation for preparing cells required for reconstructive surgical applications such as cell-assisted fat grafting.
Collapse
Affiliation(s)
- Anne Therese Lauvrud
- Department of Medical and Translational Biology, Umeå University, SE-901 87 Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, SE-901 87 Umeå, Sweden
| | - Maria Vittoria Giraudo
- Department of Medical and Translational Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Rebecca Wiberg
- Department of Medical and Translational Biology, Umeå University, SE-901 87 Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, SE-901 87 Umeå, Sweden
| | - Mikael Wiberg
- Department of Medical and Translational Biology, Umeå University, SE-901 87 Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, SE-901 87 Umeå, Sweden
| | - Paul J. Kingham
- Department of Medical and Translational Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Maria Brohlin
- Department of Medical and Translational Biology, Umeå University, SE-901 87 Umeå, Sweden
- Department of Clinical Microbiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
11
|
Wang X, Li F, Wu S, Xing W, Fu J, Wang R, He Y. Research progress on optimization of in vitro isolation, cultivation and preservation methods of dental pulp stem cells for clinical application. Front Bioeng Biotechnol 2024; 12:1305614. [PMID: 38633667 PMCID: PMC11021638 DOI: 10.3389/fbioe.2024.1305614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Due to high proliferative capacity, multipotent differentiation, immunomodulatory abilities, and lack of ethical concerns, dental pulp stem cells (DPSCs) are promising candidates for clinical application. Currently, clinical research on DPSCs is in its early stages. The reason for the failure to obtain clinically effective results may be problems with the production process of DPSCs. Due to the different preparation methods and reagent formulations of DPSCs, cell characteristics may be affected and lead to inconsistent experimental results. Preparation of clinical-grade DPSCs is far from ready. To achieve clinical application, it is essential to transit the manufacturing of stem cells from laboratory grade to clinical grade. This review compares and analyzes experimental data on optimizing the preparation methods of DPSCs from extraction to resuscitation, including research articles, invention patents and clinical trials. The advantages and disadvantages of various methods and potential clinical applications are discussed, and factors that could improve the quality of DPSCs for clinical application are proposed. The aim is to summarize the current manufacture of DPSCs in the establishment of a standardized, reliable, safe, and economic method for future preparation of clinical-grade cell products.
Collapse
Affiliation(s)
- Xinxin Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Fenyao Li
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Shuting Wu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Wenbo Xing
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Jiao Fu
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Ruoxuan Wang
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- First Clinical College of the Ministry of Medicine, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
de Souza EB, Marin DD, Ramos AS, Homobono BP, Ramos PDCDA, de Brito VC, da Cruz GS, da Costa NN, Cordeiro MDS, Santos SDSD. Use of platelet-rich plasma on in vitro maturation during bovine embryo production. Anim Reprod 2024; 21:e20230107. [PMID: 38562606 PMCID: PMC10984563 DOI: 10.1590/1984-3143-ar2023-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
One of the crucial aspects to be considered for successful in vitro production (IVP) of embryos is the composition of the various media used throughout the stages of this reproductive biotechnology. The cell culture media employed should fulfill the metabolic requirements of both gametes during oocyte maturation and sperm development, as well as the embryo during its initial cell divisions. Most IVP protocols incorporate blood serum into the media composition as a source of hormones, proteins, growth factors, and nutrients. Numerous studies have suggested Platelet-Rich Plasma (PRP) as a substitute for fetal sera in cell culture, particularly for stem cells. Therefore, the objective of this study is to assess the potential use of PRP as a replacement for fetal bovine serum (FBS) during oocyte maturation for in vitro production of bovine embryos. During in vitro maturation (IVM), cumulus-oocyte complexes (COCs) were allocated into the following experimental groups: Group G1 (IVM medium with 5% PRP); Group G2 (MIV medium with 5% PRP and 5% SFB); Group G3 (MIV medium with 5% SFB); and Group G4 (MIV medium without either PRP or SFB). Subsequently, the cumulus-oocyte complexes were fertilized with semen from a single bull, and the resulting zygotes were cultured for seven days. Cleavage and blastocyst formation rates were assessed on days 2 and 7 of embryonic development, respectively. The quality of matured COCs was also evaluated by analyzing the gene expression of HSP70, an important protein associated with cellular stress. The results demonstrated that there were no significant differences among the experimental groups in terms of embryo production rates, both in the initial cleavage stages and blastocyst formation (except for the G4 group, which exhibited a lower blastocyst formation rate on D7, as expected). This indicates that PRP could be a cost-effective alternative to SFB in the IVP of embryos.
Collapse
Affiliation(s)
- Eduardo Baia de Souza
- Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas – ICB, Universidade Federal do Pará – UFPA, Belém, PA, Brasil
| | - Diego Dubeibe Marin
- Facultad de Medicina Veterinaria y Zootecnia, Universidad de Ciencias Aplicadas y Ambientales – UDCA, Bogotá, Colombia
| | - Anelise Sarges Ramos
- Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas – ICB, Universidade Federal do Pará – UFPA, Belém, PA, Brasil
| | - Bruno Porpino Homobono
- Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas – ICB, Universidade Federal do Pará – UFPA, Belém, PA, Brasil
| | | | - Vanessa Cunha de Brito
- Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas – ICB, Universidade Federal do Pará – UFPA, Belém, PA, Brasil
| | - Gabriela Santos da Cruz
- Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas – ICB, Universidade Federal do Pará – UFPA, Belém, PA, Brasil
| | - Nathalia Nogueira da Costa
- Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas – ICB, Universidade Federal do Pará – UFPA, Belém, PA, Brasil
| | - Marcela da Silva Cordeiro
- Laboratório de Fertilização in Vitro, Instituto de Ciências Biológicas – ICB, Universidade Federal do Pará – UFPA, Belém, PA, Brasil
| | | |
Collapse
|
13
|
Duarte Rojas JM, Restrepo Múnera LM, Estrada Mira S. Comparison between Platelet Lysate, Platelet Lysate Serum, and Fetal Bovine Serum as Supplements for Cell Culture, Expansion, and Cryopreservation. Biomedicines 2024; 12:140. [PMID: 38255245 PMCID: PMC10813006 DOI: 10.3390/biomedicines12010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
As cell culture supplements, human platelet lysate (PL) and human platelet lysate serum (PLS) are alternatives to fetal bovine serum (FBS) due to FBS-related issues such as ethical concerns, variability between batches, and the possible introduction of xenogenic contaminants. This study compared the composition and efficacy of PL, PLS, and FBS as supplements in the culture and cryopreservation of human dermal fibroblasts, Wharton's jelly-derived mesenchymal stem cells (WJ-MCS), and adipose tissue (AdMSC). Biochemical components, some growth factors, and cytokines present in each of them were analyzed; in addition, the cells were cultured in media supplemented with 5% PL, 5% PLS, and 10% FBS and exposed to different freezing and thawing solutions with the supplements under study. Biochemical parameters were found to be similar in PL and PLS compared to FBS, with some differences in fibrinogen and calcium concentration. Growth factors and cytokines were higher in PL and PLS compared to FBS. Cell proliferation and morphology showed no significant differences between the three culture media. Regarding the cryopreservation and thawing of cells, better results were obtained with PLS and FBS. In conclusion, PL and PLS are an excellent choice to replace the standard supplement of animal origin (FBS) in the media used for the culture and cryopreservation of fibroblasts, WJ-MSC, and AdMSC.
Collapse
Affiliation(s)
- Juan Manuel Duarte Rojas
- Tissue Engineering and Cellular Therapies Group—GITTC, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia; (L.M.R.M.); (S.E.M.)
- Biomedical Basic Sciences Academic Corporation, University of Antioquia, Medellín 050010, Colombia
| | - Luz Marina Restrepo Múnera
- Tissue Engineering and Cellular Therapies Group—GITTC, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia; (L.M.R.M.); (S.E.M.)
| | - Sergio Estrada Mira
- Tissue Engineering and Cellular Therapies Group—GITTC, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia; (L.M.R.M.); (S.E.M.)
- Cellular Therapy and Biobank Laboratory, Hospital Alma Mater de Antioquia, University of Antioquia, Medellín 050010, Colombia
| |
Collapse
|
14
|
Knab J, Rawson B, Harris D. Platelet Lysate. ESSENTIALS OF REGENERATIVE MEDICINE IN INTERVENTIONAL PAIN MANAGEMENT 2024:133-152. [DOI: 10.1007/978-3-031-50357-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Chen CF, Wang PF, Liao HT. Platelet-Rich Plasma Lysate Enhances the Osteogenic Differentiation of Adipose-Derived Stem Cells. Ann Plast Surg 2024; 92:S12-S20. [PMID: 38285990 DOI: 10.1097/sap.0000000000003765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ABSTRACT Adipose-derived stem cells (ADSCs) have become an accepted source of cells in bone tissue engineering. This study aimed to investigate whether platelet-rich plasma (PRP) lysate can replace traditional fetal bovine serum as a culture medium with the enhanced proliferation and osteogenic potential of ADSCs. We divided the experiment into 5 groups where the ADSCs were cultured in an osteogenic medium containing 2.5%, 5%, 7.5%, and 10% PRP lysate with 10% fetal bovine serum as the control group. The cell proliferation, alkaline phosphatase (ALP) activity, ALP stain, alizarin red stain, osteocalcin (OCN) protein expression, and osteogenic-specific gene expression were analyzed and compared among these groups. The outcome showed that all PRP lysate-treated groups had good ALP stain and ALP activity performance. Better alizarin red stains were found in the 2.5%, 5%, and 7.5% PRP lysate groups. The 2.5% and 5% PRP lysate groups showed superior results in OCN quantitative polymerase chain reaction, whereas the 5% and 7.5% PRP lysate groups showed higher OCN protein expressions. Early RUNX2 (Runt-related transcription factor 2 () genes were the most expressed in the 5% PRP lysate group, followed by the 2.5% PRP lysate group, and then the 7.5% PRP lysate group. Thus, we concluded that 5% PRP lysate seemed to provide the optimal effect on enhancing the osteogenic potential of ADSCs. Platelet-rich plasma lysate-treated ADSCs were considered to be a good cell source for application in treating nonunion or bone defects in the future.
Collapse
Affiliation(s)
- Chia-Fang Chen
- Division of Trauma Plastic Surgery, Department of Plastic and Reconstructive Surgery
| | | | | |
Collapse
|
16
|
Li DY, Li YM, Lv DY, Deng T, Zeng X, You L, Pang QY, Li Y, Zhu BM. Enhanced interaction between genome-edited mesenchymal stem cells and platelets improves wound healing in mice. J Tissue Eng 2024; 15:20417314241268917. [PMID: 39329066 PMCID: PMC11425747 DOI: 10.1177/20417314241268917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/26/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired wound healing poses a significant burden on the healthcare system and patients. Stem cell therapy has demonstrated promising potential in the treatment of wounds. However, its clinical application is hindered by the low efficiency of cell homing. In this study, we successfully integrated P-selectin glycoprotein ligand-1 (PSGL-1) into the genome of human adipose-derived mesenchymal stem cells (ADSCs) using a Cas9-AAV6-based genome editing tool platform. Our findings revealed that PSGL-1 knock-in enhanced the binding of ADSCs to platelets and their adhesion to the injured site. Moreover, the intravenous infusion of PSGL-1 -engineered ADSCs (KI-ADSCs) significantly improved the homing efficiency and residence rate at the site of skin lesions in mice. Mechanistically, PSGL-1 knock-in promotes the release of some therapeutic cytokines by activating the canonical WNT/β-catenin signaling pathway and accelerates the healing of wounds by promoting angiogenesis, re-epithelialization, and granulation tissue formation at the wound site. This study provides a novel strategy to simultaneously address the problem of poor migration and adhesion of mesenchymal stem cells (MSCs).
Collapse
Affiliation(s)
- De-Yong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan-Yi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Zeng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Yu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Li
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Chopra H, Daley MP, Kumar A, Sugai J, Dahlkemper A, Kaigler D, Sherley JL. Evaluation of the Precision of Kinetic Stem Cell (KSC) Counting for Specific Quantification of Human Mesenchymal Stem Cells in Heterogeneous Tissue Cell Preparations. Life (Basel) 2023; 14:51. [PMID: 38255666 PMCID: PMC10820168 DOI: 10.3390/life14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Kinetic stem cell (KSC) counting is a recently introduced first technology for quantifying tissue stem cells in vertebrate organ and tissue cell preparations. Previously, effective quantification of the fraction or dosage of tissue stem cells had been largely lacking in stem cell science and medicine. A general method for the quantification of tissue stem cells will accelerate progress in both of these disciplines as well as related industries like drug development. Triplicate samples of human oral alveolar bone cell preparations, which contain mesenchymal stem cells (MSCs), were used to estimate the precision of KSC counting analyses conducted at three independent sites. A high degree of intra-site precision was found, with coefficients of variation for determinations of MSC-specific fractions of 8.9% (p < 0.003), 13% (p < 0.006), and 25% (p < 0.02). The estimates of inter-site precision, 11% (p < 0.0001) and 26% (p < 0.0001), also indicated a high level of precision. Results are also presented to show the ability of KSC counting to define cell subtype-specific kinetics factors responsible for changes in the stem cell fraction during cell culture. The presented findings support the continued development of KSC counting as a new tool for advancing stem cell science and medicine.
Collapse
Affiliation(s)
- Hitesh Chopra
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (J.S.); (A.D.); (D.K.)
| | - Michael P. Daley
- Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA;
| | | | - James Sugai
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (J.S.); (A.D.); (D.K.)
| | - Alex Dahlkemper
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (J.S.); (A.D.); (D.K.)
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA; (H.C.); (J.S.); (A.D.); (D.K.)
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
18
|
Todtenhaupt P, Franken LA, Groene SG, van Hoolwerff M, van der Meeren LE, van Klink JMM, Roest AAW, de Bruin C, Ramos YFM, Haak MC, Lopriore E, Heijmans BT, van Pel M. A robust and standardized method to isolate and expand mesenchymal stromal cells from human umbilical cord. Cytotherapy 2023; 25:1057-1068. [PMID: 37516948 DOI: 10.1016/j.jcyt.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/22/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AIMS Human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs) are increasingly used in research and therapy. To obtain hUC-MSCs, a diversity of isolation and expansion methods are applied. Here, we report on a robust and standardized method for hUC-MSC isolation and expansion. METHODS Using 90 hUC donors, we compared and optimized critical variables during each phase of the multi-step procedure involving UC collection, processing, MSC isolation, expansion and characterization. Furthermore, we assessed the effect of donor-to-donor variability regarding UC morphology and donor attributes on hUC-MSC characteristics. RESULTS We demonstrated robustness of our method across 90 UC donors at each step of the procedure. With our method, UCs can be collected up to 6 h after birth, and UC-processing can be initiated up to 48 h after collection without impacting on hUC-MSC characteristics. The removal of blood vessels before explant cultures improved hUC-MSC purity. Expansion in Minimum essential medium α supplemented with human platelet lysate increased reproducibility of the expansion rate and MSC characteristics as compared with Dulbecco's Modified Eagle's Medium supplemented with fetal bovine serum. The isolated hUC-MSCs showed a purity of ∼98.9%, a viability of >97% and a high proliferative capacity. Trilineage differentiation capacity of hUC-MSCs was reduced as compared with bone marrow-derived MSCs. Functional assays indicated that the hUC-MSCs were able to inhibit T-cell proliferation demonstrating their immune-modulatory capacity. CONCLUSIONS We present a robust and standardized method to isolate and expand hUC-MSCs, minimizing technical variability and thereby lay a foundation to advance reliability and comparability of results obtained from different donors and different studies.
Collapse
Affiliation(s)
- Pia Todtenhaupt
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands; Neonatology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura A Franken
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Sophie G Groene
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands; Neonatology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcella van Hoolwerff
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Lotte E van der Meeren
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands; Department of Pathology, Erasmus Medical Center, Leiden, The Netherlands
| | - Jeanine M M van Klink
- Neonatology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arno A W Roest
- Pediatric Cardiology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Christiaan de Bruin
- Pediatric Endocrinology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yolande F M Ramos
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique C Haak
- Fetal Medicine, Department of Obstetrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Enrico Lopriore
- Neonatology, Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T Heijmans
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Melissa van Pel
- NecstGen, Leiden, The Netherlands; Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
19
|
Franchi-Mendes T, Silva M, Cartaxo AL, Fernandes-Platzgummer A, Cabral JMS, da Silva CL. Bioprocessing Considerations towards the Manufacturing of Therapeutic Skeletal and Smooth Muscle Cells. Bioengineering (Basel) 2023; 10:1067. [PMID: 37760170 PMCID: PMC10525286 DOI: 10.3390/bioengineering10091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tissue engineering approaches within the muscle context represent a promising emerging field to address the current therapeutic challenges related with multiple pathological conditions affecting the muscle compartments, either skeletal muscle or smooth muscle, responsible for involuntary and voluntary contraction, respectively. In this review, several features and parameters involved in the bioprocessing of muscle cells are addressed. The cell isolation process is depicted, depending on the type of tissue (smooth or skeletal muscle), followed by the description of the challenges involving the use of adult donor tissue and the strategies to overcome the hurdles of reaching relevant cell numbers towards a clinical application. Specifically, the use of stem/progenitor cells is highlighted as a source for smooth and skeletal muscle cells towards the development of a cellular product able to maintain the target cell's identity and functionality. Moreover, taking into account the need for a robust and cost-effective bioprocess for cell manufacturing, the combination of muscle cells with biomaterials and the need for scale-up envisioning clinical applications are also approached.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marília Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Luísa Cartaxo
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
20
|
Ali HRW, Suliman S, Osman TAH, Carrasco M, Bruland O, Costea DE, Ræder H, Mustafa K. Xeno-free generation of human induced pluripotent stem cells from donor-matched fibroblasts isolated from dermal and oral tissues. Stem Cell Res Ther 2023; 14:199. [PMID: 37559144 PMCID: PMC10410907 DOI: 10.1186/s13287-023-03403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 06/15/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Induced pluripotent stem cells (iPS) can be generated from various somatic cells and can subsequently be differentiated to multiple cell types of the body. This makes them highly promising for cellular therapy in regenerative medicine. However, to facilitate their clinical use and to ensure safety, iPS culturing protocols must be compliant with good manufacturing practice guidelines and devoid of xenogenic products. Therefore, we aimed to compare the efficiency of using humanized culture conditions, specifically human platelet lysate to fetal bovine serum, for iPS generation from different sources, and to evaluate their stemness. METHODS iPS were generated via a platelet lysate or fetal bovine serum-based culturing protocol from matched dermal, buccal and gingival human fibroblasts, isolated from healthy donors (n = 2) after informed consent, via episomal plasmid transfection. Pluripotency, genotype and phenotype of iPS, generated by both protocols, were then assessed by various methods. RESULTS More attempts were generally required to successfully reprogram xeno-free fibroblasts to iPS, as compared to xenogenic cultured fibroblasts. Furthermore, oral fibroblasts generally required more attempts for successful iPS generation as opposed to dermal fibroblasts. Morphologically, all iPS generated from fibroblasts formed tight colonies surrounded by a reflective "whitish" outer rim, typical for iPS. They also expressed pluripotency markers at both gene (SOX2, OCT4, NANOG) and protein level (SOX2, OCT4). Upon stimulation, all iPS showed ability to differentiate into the three primary germ layers via expression of lineage-specific markers for mesoderm (MESP1, OSR1, HOPX), endoderm (GATA4) and ectoderm (PAX6, RAX). Genome analysis revealed several amplifications and deletions within the chromosomes of each iPS type. CONCLUSIONS The xeno-free protocol had a lower reprogramming efficiency compared to the standard xenogenic protocol. The oral fibroblasts generally proved to be more difficult to reprogram than dermal fibroblasts. Xeno-free dermal, buccal and gingival fibroblasts can successfully generate iPS with a comparable genotype/phenotype to their xenogenic counterparts.
Collapse
Affiliation(s)
- Hassan R W Ali
- Department of Clinical Dentistry, Centre for Translational Oral Research (TOR), University of Bergen, 5009, Bergen, Norway
| | - Salwa Suliman
- Department of Clinical Dentistry, Centre for Translational Oral Research (TOR), University of Bergen, 5009, Bergen, Norway
| | - Tarig Al-Hadi Osman
- Department of Clinical Dentistry, Centre for Translational Oral Research (TOR), University of Bergen, 5009, Bergen, Norway
| | - Manuel Carrasco
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Ove Bruland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Daniela-Elena Costea
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- Gade Laboratory for Pathology, Haukeland University Hospital, Bergen, Norway
| | - Helge Ræder
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway.
| | - Kamal Mustafa
- Department of Clinical Dentistry, Centre for Translational Oral Research (TOR), University of Bergen, 5009, Bergen, Norway.
| |
Collapse
|
21
|
Kee LT, Lee YT, Ng CY, Hassan MNF, Ng MH, Mahmood Z, Abdul Aziz S, Law JX. Preparation of Fibrinogen-Depleted Human Platelet Lysate to Support Heparin-Free Expansion of Umbilical Cord-Derived Mesenchymal Stem Cells. BIOLOGY 2023; 12:1085. [PMID: 37626970 PMCID: PMC10452143 DOI: 10.3390/biology12081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023]
Abstract
Human platelet lysate (hPL) has high levels of fibrinogen and coagulation factors, which can lead to gel and precipitate formation during storage and cell culture. Heparin derived from animals is commonly added to minimize these risks, but cannot completely eliminate them. Thus, this study proposes an alternative method to prepare fibrinogen-depleted hPL (Fd-hPL) that supports heparin-free expansion of mesenchymal stem cells (MSCs). hPL was added to heparin to prepare heparin-hPL (H-hPL), whilst Fd-hPL was prepared by adding calcium salt to hPL to remove the fibrin clot. The concentrations of calcium, fibrinogen, and growth factors in H-hPL and Fd-hPL were compared. The effects of H-hPL and Fd-hPL on umbilical cord-derived MSCs (UC-MSCs) were assessed. The results showed that Fd-hPL possessed a significantly higher calcium concentration and a lower fibrinogen level than H-hPL. The concentrations of BDNF, TGF-β1, and PDGF-BB showed no significant difference between H-hPL and Fd-hPL, but Fd-hPL had a lower VEGF concentration. Fd-hPL retained the characteristics of UC-MSCs, as it did not affect the cell viability, proliferation, multilineage differentiation potential, or surface marker expression. In conclusion, Fd-hPL effectively supported the in vitro expansion of MSCs without compromising their characteristics, positioning it as a potential substitute for FBS in MSC culture.
Collapse
Affiliation(s)
- Li Ting Kee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| | - Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| | - Muhammad Najib Fathi Hassan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| | - Zalina Mahmood
- National Blood Centre of Malaysia, Kuala Lumpur 50400, Malaysia;
| | - Suria Abdul Aziz
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| |
Collapse
|
22
|
Adipose-Derived Stem Cells in Reinforced Collagen Gel: A Comparison between Two Approaches to Differentiation towards Smooth Muscle Cells. Int J Mol Sci 2023; 24:ijms24065692. [PMID: 36982766 PMCID: PMC10058441 DOI: 10.3390/ijms24065692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.
Collapse
|
23
|
Gardner OFW, Agabalyan N, Weil B, Ali MHI, Lowdell MW, Bulstrode NW, Ferretti P. Human platelet lysate enhances proliferation but not chondrogenic differentiation of pediatric mesenchymal progenitors. Cytotherapy 2023; 25:286-297. [PMID: 36599772 DOI: 10.1016/j.jcyt.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/26/2022] [Accepted: 11/20/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND AIMS Cell therapies have the potential to improve reconstructive procedures for congenital craniofacial cartilage anomalies such as microtia. Adipose-derived stem cells (ADSCs) and auricular cartilage stem/progenitor cells (CSPCs) are promising candidates for cartilage reconstruction, but their successful use in the clinic will require the development of xeno-free expansion and differentiation protocols that can maximize their capacity for chondrogenesis. METHODS We assessed the behavior of human ADSCs and CSPCs grown either in qualified fetal bovine serum (FBS) or human platelet lysate (hPL), a xeno-free alternative, in conventional monolayer and 3-dimensional spheroid cultures. RESULTS We show that CSPCs and ADSCs display greater proliferation rate in hPL than FBS and express typical mesenchymal stromal cell surface antigens in both media. When expanded in hPL, both cell types, particularly CSPCs, maintain a spindle-like morphology and lower surface area over more passages than in FBS. Both media supplements support chondrogenic differentiation of CSPCs and ADSCs grown either as monolayers or spheroids. However, chondrogenesis appears less ordered in hPL than FBS, with reduced co-localization of aggrecan and collagen type II in spheroids. CONCLUSIONS hPL may be beneficial for the expansion of cells with chondrogenic potential and maintaining stemness, but not for their chondrogenic differentiation for tissue engineering or disease modeling.
Collapse
Affiliation(s)
- Oliver F W Gardner
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, London, UK
| | - Natacha Agabalyan
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, London, UK
| | - Ben Weil
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Mohammed H I Ali
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, London, UK; Department of Zoology, Faculty of Science, South Valley University, Qena, Egypt
| | - Mark W Lowdell
- Centre for Cell, Gene & Tissue Therapeutics, Royal Free London NHS Foundation Trust, London, United Kingdom; Cancer Institute, UCL, London, United Kingdom
| | - Neil W Bulstrode
- Department of Plastic Surgery, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Patrizia Ferretti
- Developmental Biology and Cancer Department, UCL GOS Institute of Child Health, London, UK.
| |
Collapse
|
24
|
Sherley JL. A Kinetic Stem Cell Counting Analysis of the Specific Effects of Cell Culture Medium Growth Factors on Adipose-Derived Mesenchymal Stem Cells. Life (Basel) 2023; 13:life13030614. [PMID: 36983770 PMCID: PMC10058732 DOI: 10.3390/life13030614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
A recently described kinetic stem cell (KSC) counting method was used to investigate the stem-cell-specific effects of commercial growth factor supplements used for expanding stem cells in adipose-tissue-derived mesenchymal cell preparations. The supplements were a proprietary growth factor product, a source of fetal bovine serum, two sources of pooled human sera, and two sources of human platelet lysate. KSC counting analyses were performed to monitor effects on the fraction and viability of stem cells in serial cultures with their respective supplements. Serial cultures supplemented with the proprietary growth factor product or fetal bovine serum showed a similar high degree of maintenance of stem cell fraction with passage. In contrast, cultures supplemented with human sera or human platelet lysate showed rapid declines in stem cell fraction. KSC counting was used to discover the cellular basis for the decreasing stem cell fractions. For human platelet lysate, it was attributable to lower rates of self-renewing symmetric stem cell divisions. For human sera, both low rates of symmetric division and high rates of stem cell death were responsible. These results demonstrate the power of the KSC counting method to provide previously inaccessible information for improving future tissue stem cell biomanufacturing.
Collapse
|
25
|
Kamel Farag R, Dawood M, Elesawi M. Safety and efficacy of eye drops from umbilical cord blood platelet lysate to treat resistant corneal ulcer. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2023; 11:189-202. [PMID: 37641608 PMCID: PMC10460244 DOI: 10.51329/mehdiophthal1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/24/2022] [Indexed: 08/31/2023]
Abstract
Background Umbilical cord blood (UCB) is a novel treatment of resistant corneal ulcers owing to the unique anti-inflammatory molecules and growth factors it contains. Platelet lysates are a potential future alternative. The aim of the present study was to assess the role of human UCB platelet lysate in treating resistant corneal ulcers. Methods This was prospective, non-comparative, interventional case series involving 40 eyes of patients aged 6 - 65 years with persistent corneal ulcers from the Mansoura Ophthalmic Center and Mansoura Research Center for Cord Stem Cells. Patients were classified according to the cause of persistent corneal ulcer into four groups: group I, including 14 eyes with dry eye disease; group II, including six eyes post-keratoplasty; group III, including four eyes with corneal chemical burn; and group IV, including 16 eyes with persistent corneal ulcer from other causes. All participants underwent detailed ophthalmic examinations, and baseline and final best-corrected distance visual acuity (BCDVA) were recorded. Eye drops were prepared from UCB platelet lysate and administered to all patients along with detailed meticulous instructions for the method of use. Clinical progression of wound healing was continuously observed. The treatment response was identified as complete healing, improvement, or treatment failure. Results BCDVA improved significantly in all studied groups (all P < 0.05). In group I, complete healing, improvement, and treatment failure occurred in 71%, 29%, and 0% of cases. In group II, complete healing, improvement, and treatment failure occurred in 67%, 33%, and 0% of cases. In group III, complete healing, improvement, and treatment failure occurred in 50%, 50%, and 0% of cases. In group IV, complete healing, improvement, and treatment failure occurred in 63%, 12%, and 25% of cases. No adverse events associated with the treatment were observed or subjectively self-reports in the study period. Conclusions Eye drops from UCB platelet lysate were a novel therapeutic blood component with unique growth factors and anti-inflammatory compounds that could be an effective and safe treatment option in managing persistent corneal ulcers of different causes. A future randomized clinical trial with a large sample size and a longer follow-up is required to confirm these preliminary outcomes.
Collapse
Affiliation(s)
- Rania Kamel Farag
- Ophthalmology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mervat Dawood
- Clinical Pathology, Mansoura Research Center for Cord Stem Cells (MARC-CSC), Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maher Elesawi
- Obstetrics and Gynecology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
26
|
Delabie W, De Bleser D, Vandewalle V, Vandekerckhove P, Compernolle V, Feys HB. Single step method for high yield human platelet lysate production. Transfusion 2023; 63:373-383. [PMID: 36426732 PMCID: PMC10099704 DOI: 10.1111/trf.17188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND We aimed to develop a single step method for the production of human platelet lysate (hPL). The method must result in high hPL yields, be closed system and avoid heparin use. STUDY DESIGN AND METHODS The method aimed at using glass beads and calcium. An optimal concentration of calcium and glass beads was determined by serial dilution. This was translated to a novel method and compared to known methods: freeze-thawing and high calcium. Quality outcome measures were transmittance, fibrinogen and growth factor content, and cell doubling time. RESULTS An optimal concentration of 5 mM Ca2+ and 0.2 g/ml glass beads resulted in hPL with yields of 92% ± 1% (n = 50) independent of source material (apheresis or buffy coat-derived). The transmittance was highest (56% ± 9%) compared to known methods (<39%). The fibrinogen concentration (7.0 ± 1.1 μg/ml) was well below the threshold, avoiding the need for heparin. Growth factor content was similar across hPL production methods. The cell doubling time of adipose derived stem cells was 25 ± 1 h and not different across methods. Batch consistency was determined across six batches of hPL (each n = 25 constituting concentrates) and was <11% for all parameters including cell doubling time. Calcium precipitation formed after 4 days of culturing stem cells in media with hPL prepared by the high (15 mM) Ca2+ method, but not with hPL prepared by glass bead method. DISCUSSION The novel method transforms platelet concentrates to hPL with little hands-on time. The method results in high yield, is closed system, without heparin and non-inferior to published methods.
Collapse
Affiliation(s)
- Willem Delabie
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Dominique De Bleser
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Vicky Vandewalle
- Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Philippe Vandekerckhove
- Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium.,Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium.,Department of Global Health, Stellenbosch University, Stellenbosch, South Africa
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Blood Services, Belgian Red Cross-Flanders, Mechelen, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Platelet-Derived Mitochondria Attenuate 5-FU-Induced Injury to Bone-Associated Mesenchymal Stem Cells. Stem Cells Int 2023; 2023:7482546. [PMID: 36756493 PMCID: PMC9902133 DOI: 10.1155/2023/7482546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 02/03/2023] Open
Abstract
Background Myelosuppression is a common condition during chemotherapy. Bone-associated mesenchymal stem cells (BA-MSCs) play an essential role in the composition of the hematopoietic microenvironment and support hematopoietic activity. However, chemotherapy-induced damage to BA-MSCs is rarely studied. Recent studies have shown that platelets promote the wound-healing capability of MSCs by mitochondrial transfer. Therefore, this study is aimed at investigating the chemotherapy-induced damage to BA-MSCs and the therapeutic effect of platelet-derived mitochondria. Material/Methods. We established in vivo and in vitro BA-MSC chemotherapy injury models using the chemotherapy agent 5-fluorouracil (5-FU). Changes in the mitochondrial dynamics were detected by transmission electron microscopy, and the expression of mitochondrial fusion and fission genes was analyzed by qRT-PCR. In addition, mitochondrial functions were also explored by flow cytometry and luminometer. Platelet-derived mitochondria were incubated with 5-FU-damaged BA-MSCs to repair the injury, and BA-MSC functional changes were examined to assess the therapy efficacy. The mechanism of treatment was explored by studying the expression of mitochondrial fission and fusion genes and hematopoietic regulatory factor genes in BA-MSCs. Results Stimulation with 5-FU increased the apoptosis and suppressed cell cycle progression of BA-MSCs both in vivo and in vitro. In addition, 5-FU chemotherapy inhibited the hematopoietic regulatory ability and disrupted the mitochondrial dynamics and functions of BA-MSCs. The mitochondrial membrane potential and ATP content of 5-FU-injured BA-MSCs were decreased. Interestingly, when platelet-derived mitochondria were transferred to BA-MSCs, the 5-FU-induced apoptosis was alleviated, and the hematopoietic regulatory ability of 5-FU-injured BA-MSCs was effectively improved by upregulating the expression of mitochondrial fusion genes and hematopoietic regulatory factor genes. Conclusion BA-MSCs were severely damaged by 5-FU chemotherapy both in vivo and in vitro. Meanwhile, platelet-derived mitochondria could attenuate the 5-FU-induced injury to BA-MSCs, which provides future research directions for exploring the treatment strategies for chemotherapy-injured BA-MSCs and establishes a research basis for related fields.
Collapse
|
28
|
Shang L, Zhang R, Yan J, Lu Y, Zhang S, Sun Y, Cheng H, Liu Y, Lin J. Sustainable Production and Activity Determination of Serum-Free Conditioned Medium from Menstrual Blood-Derived Endometrial Stem Cells. Appl Biochem Biotechnol 2023; 195:1109-1121. [PMID: 36327033 PMCID: PMC9630812 DOI: 10.1007/s12010-022-04205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Mesenchymal stem cells (MSCs) have exhibited great potential as a regenerative medicine, and MSC-derived paracrine effects, mainly including the secretion of various bioactive factors, play critical roles in MSC-based therapies. MSC-derived serum-free conditioned medium (MSC-CM) is defined as the secretome of MSC-derived bioactive factors and is considered a new cell-free therapeutic agent for disease treatment. However, the MSC-CM used in previous studies was prepared by a nearly disposable method that the MSCs were discarded after preparing MSC-CM, and the preparation time was variable; simultaneously, the viability changes of MSCs after MSC-CM preparation are still unknown. Therefore, this study takes MenSCs as a research project and aims to explore the suitable period of sustainable MenSC-CM preparation rather than using a disposable method. As expected, our results confirmed that MenSC-CM improves viability of both naïve targeted cells and H2O2-injured targeted cells, and suggested that 36 h is suitable for sustainable MenSC-CM preparation in which the angiogenic factors almost reach to the peak. Simultaneously, the MenSCs used to prepare the MenSC-CM for 36 h also maintained preferable cell viability and could be sustainably used for further MenSC-CM preparation. Moreover, the in vivo results further confirmed the improvement of MenSC-CM on promoting skin wound healing. Consequently, our results not only provide support for optimizing MSC-CM sustainable preparation based on various MSCs but also promote the comprehensive application of MenSCs in the clinic.
Collapse
Affiliation(s)
- Lingrui Shang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Ruiyun Zhang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Jiaxing Yan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003 China
| | - Yilin Lu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Yuliang Sun
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China ,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
| | - Hongbin Cheng
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China ,The Third Medical Center of Chinese PLA General Hospital, Beijing, 100039 China
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, College of Life Science and Technology, Xinxiang Medical University, East of JinSui Road, Xinxiang, 453003 Henan Province China ,College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, 453003 China
| |
Collapse
|
29
|
Jalili Z, Emamgolizadeh B, Abbaszadeh H, Jalili S, Derakhshani M, Yousefi M, Talebi M, Shams Asenjan K, Movassaghpour AA. Effect of Replacement of Wharton Acellular Jelly With FBS on the Expression of Megakaryocyte Linear Markers in Hematopoietic Stem Cells CD34. Asian Pac J Cancer Prev 2022; 23:3281-3286. [PMID: 36308350 PMCID: PMC9924313 DOI: 10.31557/apjcp.2022.23.10.3281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Animal environments for the growth of stem cells cause the transmission of some diseases and immune problems for the recipient. Accordingly, replacing these environments with healthy environments, at least with human resources, is essential. One of the media that can be used as an alternative to animal serums is Wharton acellular jelly (AWJ). Therefore, in this study, we intend to replace FBS with Wharton jelly and investigate its effect on the expression of megakaryocyte-related genes and markers in stem cells. MATERIALS AND METHODS In this study, cord blood-derived CD34 positive HSCs were cultured and expanded in the presence of cytokines including SCF, TPO, and FLT3-L. Then, the culture of expanded CD34 positive HSCs was performed in two groups: 1) IMDM culture medium containing 10% FBS and 100 ng / ml thrombopoietin cytokine 2) IMDM culture medium containing 10% AWJ, 100 ng / ml thrombopoietin cytokine. Finally, CD41 expressing cells were analyzed with the flow cytometry method. The genes related to megakaryocyte lineage including FLI1 and GATA2 were also evaluated using the RT-PCR technique. Results: The expression of CD41, a specific marker of megakaryocyte lineage in culture medium containing Wharton acellular jelly was increased compared to the FBS group. Additionally, the expression of GATA2 and FLI1 genes was significantly increased related to the control group. CONCLUSION This study provided evidence of differentiation of CD34 positive hematopoietic stem cells from umbilical cord blood to megakaryocytes in a culture medium containing AWJ.<br />.
Collapse
Affiliation(s)
- Zahra Jalili
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behnam Emamgolizadeh
- Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran. ,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. ,Urmia University of Medical Sciences, Imam Khomeini Hospital of Urmia, Urmia, Iran.
| | - Hossein Abbaszadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shahla Jalili
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Derakhshani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Yousefi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Karim Shams Asenjan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran. ,For Correspondence: ,
| | - Ali Akbar Movassaghpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran. ,For Correspondence: ,
| |
Collapse
|
30
|
Mallis P, Michalopoulos E, Sarri EF, Papadopoulou E, Theodoropoulou V, Katsimpoulas M, Stavropoulos-Giokas C. Evaluation of the Regenerative Potential of Platelet-Lysate and Platelet-Poor Plasma Derived from the Cord Blood Units in Corneal Wound Healing Applications: An In Vitro Comparative Study on Corneal Epithelial Cells. Curr Issues Mol Biol 2022; 44:4415-4438. [PMID: 36286018 PMCID: PMC9600746 DOI: 10.3390/cimb44100303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cord blood platelet lysate (CB-PL) and cord blood platelet poor plasma (CB-PPP) have been applied with success in wound healing applications. Pathologies such as Sjogrens's Syndrome (SS) and chronic graft versus host disease (cGVHD) can lead to severe ophthalmology issues. The application of CB-PL and CB-PPP may be strongly considered for damaged cornea healing. This study aimed to the evaluation of the beneficial properties of CB-PL and CB-PPP in corneal wound healing applications. METHODS Initially, the CB-PL and CB-PPP were produced from donated cord blood units (CBUs), followed by biochemical analysis. Corneal epithelial cells (CECs) were isolated from wistar rats and then cultured with medium containing 20% v/v either of CB-PL or CB-PPP. To define the impact of CB-PL and CB-PPP, biochemical, morphological analysis, scratch-wound assays, and immunoassays in CECs were performed. RESULTS CB-PL and CB-PPP were characterized by good biochemical parameters, regarding their quality characteristics and biomolecule content. CECs' morphological features did not change after their cultivation with CB-PL or CB-PPP. A scratch wound assay and molecular analysis of CECs expanded with CB-PL indicated higher migratory capacity compared to those cultured with CB-PPP. CONCLUSION CB-PL and CB-PPP exhibited good properties with respect to cell migration and proliferation, and could be considered an alternative source for eye drop production, to possibly be used in cornea wound healing applications.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece
| | - Eirini Faidra Sarri
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece
| | - Elena Papadopoulou
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece
| | - Vasiliki Theodoropoulou
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece
| | - Michalis Katsimpoulas
- Experimental Surgery Unit, Center of Clinical, Experimental Surgery and Translational Research, Βιοmedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank (HCBB), Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou, 115 27 Athens, Greece
| |
Collapse
|
31
|
Anitua E, de la Fuente M, Troya M, Zalduendo M, Alkhraisat MH. Autologous Platelet Rich Plasma (PRGF) Preserves Genomic Stability of Gingival Fibroblasts and Alveolar Osteoblasts after Long-Term Cell Culture. Dent J (Basel) 2022; 10:dj10090173. [PMID: 36135168 PMCID: PMC9497518 DOI: 10.3390/dj10090173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Plasma rich in growth factors (PRGF) has several applications in dentistry that may require repeated applications of PRGF. Furthermore, it has been used for ex vivo expansion of human origin cells for their clinical application. One of the most relevant issues in these applications is to guarantee the genetic stability of cells. In this study, the chromosomal stability of gingival fibroblasts and alveolar osteoblasts after long-term culture was evaluated. Cells were expanded with PRGF or foetal bovine serum (FBS) as a culture medium supplement until passage 7 or 8 for gingival fibroblast or alveolar osteoblasts, respectively. A comparative genomic hybridization (CGH) array was used for the genetic stability study. This analysis was performed at passage 3 and after long-term culture with the corresponding culture medium supplements. The cell proliferative rate was superior after PRGF culture. Array CGH analysis of cells maintained with all the three supplements did not reveal the existence of alterations in copy number or genetic instability. The autologous PRGF technology preserves the genomic stability of cells and emerges as a safe substitute for FBS as a culture medium supplement for the clinical translation of cell therapy.
Collapse
|
32
|
Sun J, Hu Y, Fu Y, Zou D, Lu J, Lyu C. Emerging roles of platelet concentrates and platelet-derived extracellular vesicles in regenerative periodontology and implant dentistry. APL Bioeng 2022; 6:031503. [PMID: 36061076 PMCID: PMC9439711 DOI: 10.1063/5.0099872] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
Platelet concentrates (PCs) are easily obtained from autogenous whole blood after centrifugation and have evolved through three generations of development to include platelet-rich plasma, platelet-rich fibrin, and concentrated growth factor. Currently, PCs are widely used for sinus floor elevation, alveolar ridge preservation, periodontal bone defects, guided bone regeneration, and treatment of gingival recession. More recently, PCs have been leveraged for tissue regeneration to promote oral soft and hard tissue regeneration in implant dentistry and regenerative periodontology. PCs are ideal for this purpose because they have a high concentration of platelets, growth factors, and cytokines. Platelets have been shown to release extracellular vesicles (P-EVs), which are thought to be essential for PC-induced tissue regeneration. This study reviewed the clinical application of PCs and P-EVs for implant surgery and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Jiayue Sun
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yinxin Fu
- Wuhan Fourth Hospital, Wuhan, Hubei 430032, China
| | - Derong Zou
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Chengqi Lyu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
33
|
Mantripragada VP, Muschler GF. Improved biological performance of human cartilage-derived progenitors in platelet lysate xenofree media in comparison to fetal bovine serum media. Curr Res Transl Med 2022; 70:103353. [PMID: 35940083 DOI: 10.1016/j.retram.2022.103353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/31/2023]
Abstract
Primary articular cartilage-derived cells are among the preferred contenders for cell-based therapy approaches for cartilage repair. Limited access to primary human cartilage tissue necessitates the process of in vitro cell expansion to obtain sufficient cells for therapeutic purposes. Therapeutic outcomes of such cell-based approaches become highly dependent on the quality of the in vitro culture-expanded cells. The objective of this study was to determine the differential biological effects of human platelet lysate (hPL) xeno-free defined media vs FBS containing traditional media on primary human cartilage-derived cells. Our goal in pursuing this work was to identify a preferred xenofree media alternative, that can be used as a platform for expansion of cells intended for clinical applications. Primary cartilage-derived cells obtained from five patients were simultaneously cultured in two expansion media's: (1) traditional (DMEM+10%FBS+1%P/S) and (2) defined xenofree (Nutristem® complete media+0.5%hPL). Connective tissue progenitors (CTPs) were assayed by standard colony forming unit assay, morphology, proliferation in early and late passages, expression of MSC associated cell-surface markers (CD73, CD90 and CD105) and trilineage differentiation (adipogenesis, osteogenesis and chondrogenesis) were considered for comparison of biological performance. Early biological performance of primary cartilage-derived cells was significantly improved in Nutristem® expansion media in comparison to traditional expansion media with respect to (1) Colony forming efficiency tended to be higher (p = 0.058) and (2) CTPs formed larger colonies with respect to total cells per colony and colony area (p < 0.01). In the culture expanded cell population, Nutristem® expansion media was superior to traditional expansion media with respect to: (1) overall proliferation rate through passages 1-4 (p = 0.027), (2) total cells harvested at end of passage 4 (p = 0.028) and (3) total positive stain area of CD73 (p = 0.006), CD90 (p = 0.001) and CD105 (p = 0.049). Nutristem®-hPL expanded cells when differentiated in respective xenofree serum-free defined MSCgo™ differentiated media's, also showed significant improvement in adipogenic, osteogenic and chondrogenic marker expression. Overall, we convincingly demonstrated that a low concentration of hPL in combination with defined xenofree media is an effective and economic growth supplement to culture expand primary cartilage-derived cells. It can be manufactured under cGMP conditions to improve clinical-grade cell products' quality for therapeutic applications.
Collapse
Affiliation(s)
- Venkata P Mantripragada
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | - George F Muschler
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Department of Orthopedic Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
34
|
Willer H, Spohn G, Morgenroth K, Thielemann C, Elvers-Hornung S, Bugert P, Delorme B, Giesen M, Schmitz-Rixen T, Seifried E, Pfarrer C, Schäfer R, Bieback K. Pooled human bone marrow-derived mesenchymal stromal cells with defined trophic factors cargo promote dermal wound healing in diabetic rats by improved vascularization and dynamic recruitment of M2-like macrophages. Front Immunol 2022; 13:976511. [PMID: 36059533 PMCID: PMC9437960 DOI: 10.3389/fimmu.2022.976511] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Human Mesenchymal Stromal Cells (hMSCs) are a promising source for cell-based therapies. Yet, transition to phase III and IV clinical trials is remarkably slow. To mitigate donor variabilities and to obtain robust and valid clinical data, we aimed first to develop a manufacturing concept balancing large-scale production of pooled hMSCs in a minimal expansion period, and second to test them for key manufacture and efficacy indicators in the clinically highly relevant indication wound healing. Our novel clinical-scale manufacturing concept is comprised of six single donor hMSCs master cell banks that are pooled to a working cell bank from which an extrapolated number of 70,000 clinical doses of 1x106 hMSCs/cm2 wound size can be manufactured within only three passages. The pooled hMSC batches showed high stability of key manufacture indicators such as morphology, immune phenotype, proliferation, scratch wound healing, chemotactic migration and angiogenic support. Repeated topical hMSCs administration significantly accelerated the wound healing in a diabetic rat model by delivering a defined growth factor cargo (specifically BDNF, EGF, G-CSF, HGF, IL-1α, IL-6, LIF, osteopontin, VEGF-A, FGF-2, TGF-β, PGE-2 and IDO after priming) at the specific stages of wound repair, namely inflammation, proliferation and remodeling. Specifically, the hMSCs mediated epidermal and dermal maturation and collagen formation, improved vascularization, and promoted cell infiltration. Kinetic analyses revealed transient presence of hMSCs until day (d)4, and the dynamic recruitment of macrophages infiltrating from the wound edges (d3) and basis (d9), eventually progressing to the apical wound on d11. In the wounds, the hMSCs mediated M2-like macrophage polarization starting at d4, peaking at d9 and then decreasing to d11. Our study establishes a standardized, scalable and pooled hMSC therapeutic, delivering a defined cargo of trophic factors, which is efficacious in diabetic wound healing by improving vascularization and dynamic recruitment of M2-like macrophages. This decision-making study now enables the validation of pooled hMSCs as treatment for impaired wound healing in large randomized clinical trials.
Collapse
Affiliation(s)
- Hélène Willer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Gabriele Spohn
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Kimberly Morgenroth
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Corinna Thielemann
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Susanne Elvers-Hornung
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
| | | | | | | | - Erhard Seifried
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
| | - Christiane Pfarrer
- Institute for Anatomy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt am Main, Germany
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Freiburg, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Donor Service Baden-Württemberg - Hessen, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- FlowCore, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
35
|
Lozano Navarro LV, Chen X, Giratá Viviescas LT, Ardila-Roa AK, Luna-Gonzalez ML, Sossa CL, Arango-Rodríguez ML. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential. Stem Cell Res Ther 2022; 13:345. [PMID: 35883198 PMCID: PMC9327195 DOI: 10.1186/s13287-022-03043-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022] Open
Abstract
Peripheral arterial disease is atherosclerotic occlusive disease of the lower extremity arteries and afflicts hundreds of millions of individuals worldwide. Its most severe manifestation is chronic limb-threatening ischemia (Petersen et al. (Science 300(5622):1140–2, 2003)), which is associated with severe pain at rest in the limbs, which progresses to necrosis, limb amputation, and/or death of the patient. Consequently, the care of these patients is considered a financial burden for both patients and health systems. Multidisciplinary endeavors are required to address this refractory disease and to find definitive solutions that lead to improved living conditions. Revascularization is the cornerstone of therapy for preventing limb amputation, and both open vascular surgery and endovascular therapy play a key role in the treatment of patients with CLI. Around one-third of these patients are not candidates for conventional surgical treatment, however, leading to higher amputation rates (approaching 20–25% at one year) with high morbidity and lower quality of life. Advances in regenerative medicine have enabled the development of cell-based therapies that promote the formation of new blood vessels. Particularly, mesenchymal stem cells (MSCs) have emerged as an attractive therapeutic agent in various diseases, including CLI, due to their role in tissue regeneration and immunomodulation. This review discusses the characteristics of MSCs, as well as their regenerative properties and their action mechanisms on CLI.
Collapse
Affiliation(s)
- Laura V Lozano Navarro
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Xueyi Chen
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia
| | - Lady Tatiana Giratá Viviescas
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Andrea K Ardila-Roa
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia
| | - Maria L Luna-Gonzalez
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia
| | - Claudia L Sossa
- Faculty of Health Sciences, Universidad Autónoma de Bucaramanga (UNAB), 681004153, Bucaramanga, Colombia.,Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.,Programa Para el Tratamiento y Estudio de Enfermedades Hematológicas y Oncológicas de Santander (PROTEHOS), 681004153, Floridablanca, Colombia.,Universidad de Valencia, Valencia, Spain
| | - Martha L Arango-Rodríguez
- Banco Multitejidos y Centro de Terapias Avanzadas, Fundación Oftalmológica de Santander-FOSCAL, 681004153, Floridablanca, Colombia.
| |
Collapse
|
36
|
Ivanovska A, Wang M, Arshaghi TE, Shaw G, Alves J, Byrne A, Butterworth S, Chandler R, Cuddy L, Dunne J, Guerin S, Harry R, McAlindan A, Mullins RA, Barry F. Manufacturing Mesenchymal Stromal Cells for the Treatment of Osteoarthritis in Canine Patients: Challenges and Recommendations. Front Vet Sci 2022; 9:897150. [PMID: 35754551 PMCID: PMC9230578 DOI: 10.3389/fvets.2022.897150] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
The recent interest in advanced biologic therapies in veterinary medicine has opened up opportunities for new treatment modalities with considerable clinical potential. Studies with mesenchymal stromal cells (MSCs) from animal species have focused on in vitro characterization (mostly following protocols developed for human application), experimental testing in controlled studies and clinical use in veterinary patients. The ability of MSCs to interact with the inflammatory environment through immunomodulatory and paracrine mechanisms makes them a good candidate for treatment of inflammatory musculoskeletal conditions in canine species. Analysis of existing data shows promising results in the treatment of canine hip dysplasia, osteoarthritis and rupture of the cranial cruciate ligament in both sport and companion animals. Despite the absence of clear regulatory frameworks for veterinary advanced therapy medicinal products, there has been an increase in the number of commercial cell-based products that are available for clinical applications, and currently the commercial use of veterinary MSC products has outpaced basic research on characterization of the cell product. In the absence of quality standards for MSCs for use in canine patients, their safety, clinical efficacy and production standards are uncertain, leading to a risk of poor product consistency. To deliver high-quality MSC products for veterinary use in the future, there are critical issues that need to be addressed. By translating standards and strategies applied in human MSC manufacturing to products for veterinary use, in a collaborative effort between stem cell scientists and veterinary researchers and surgeons, we hope to facilitate the development of quality standards. We point out critical issues that need to be addressed, including a much higher level of attention to cell characterization, manufacturing standards and release criteria. We provide a set of recommendations that will contribute to the standardization of cell manufacturing methods and better quality assurance.
Collapse
Affiliation(s)
- Ana Ivanovska
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Mengyu Wang
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Tarlan Eslami Arshaghi
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | - Georgina Shaw
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| | | | | | | | - Russell Chandler
- Orthopaedic Referral Service, Alphavet Veterinary Centre, Newport, United Kingdom
| | - Laura Cuddy
- Small Animal Surgery, Canine Sports Medicine and Rehabilitation, Veterinary Specialists Ireland, Summerhill, Ireland
| | - James Dunne
- Knocknacarra Veterinary Clinic, Ark Vets Galway, Galway, Ireland
| | - Shane Guerin
- Small Animal Surgery, Gilabbey Veterinary Hospital, Cork, Ireland
| | | | - Aidan McAlindan
- Northern Ireland Veterinary Specialists, Hillsborough, United Kingdom
| | - Ronan A Mullins
- Department of Small Animal Surgery, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
37
|
Lehoczky G, Trofin RE, Vallmajo-Martin Q, Chawla S, Pelttari K, Mumme M, Haug M, Egloff C, Jakob M, Ehrbar M, Martin I, Barbero A. In Vitro and Ectopic In Vivo Studies toward the Utilization of Rapidly Isolated Human Nasal Chondrocytes for Single-Stage Arthroscopic Cartilage Regeneration Therapy. Int J Mol Sci 2022; 23:ijms23136900. [PMID: 35805907 PMCID: PMC9267018 DOI: 10.3390/ijms23136900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 02/05/2023] Open
Abstract
Nasal chondrocytes (NCs) have a higher and more reproducible chondrogenic capacity than articular chondrocytes, and the engineered cartilage tissue they generate in vitro has been demonstrated to be safe in clinical applications. Here, we aimed at determining the feasibility for a single-stage application of NCs for cartilage regeneration under minimally invasive settings. In particular, we assessed whether NCs isolated using a short collagenase digestion protocol retain their potential to proliferate and chondro-differentiate within an injectable, swiftly cross-linked and matrix-metalloproteinase (MMP)-degradable polyethylene glycol (PEG) gel enriched with human platelet lysate (hPL). NC-hPL-PEG gels were additionally tested for their capacity to generate cartilage tissue in vivo and to integrate into cartilage/bone compartments of human osteochondral plugs upon ectopic subcutaneous implantation into nude mice. NCs isolated with a rapid protocol and embedded in PEG gels with hPL at low cell density were capable of efficiently proliferating and of generating tissue rich in glycosaminoglycans and collagen II. NC-hPL-PEG gels developed into hyaline-like cartilage tissues upon ectopic in vivo implantation and integrated with surrounding native cartilage and bone tissues. The delivery of NCs in PEG gels containing hPL is a feasible strategy for cartilage repair and now requires further validation in orthotopic in vivo models.
Collapse
Affiliation(s)
- Gyözö Lehoczky
- Department of Orthopaedic Surgery and Traumatology, University Hospital of Basel, 4031 Basel, Switzerland; (G.L.); (M.M.); (C.E.)
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| | - Raluca Elena Trofin
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| | - Queralt Vallmajo-Martin
- Department of Obstetrics, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (Q.V.-M.); (M.E.)
| | - Shikha Chawla
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| | - Karoliina Pelttari
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| | - Marcus Mumme
- Department of Orthopaedic Surgery and Traumatology, University Hospital of Basel, 4031 Basel, Switzerland; (G.L.); (M.M.); (C.E.)
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
- Department of Orthopaedic Surgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
| | - Martin Haug
- Department of Plastic, Reconstructive and Aesthetic Surgery and Hand Surgery, University Hospital of Basel, 4031 Basel, Switzerland;
| | - Christian Egloff
- Department of Orthopaedic Surgery and Traumatology, University Hospital of Basel, 4031 Basel, Switzerland; (G.L.); (M.M.); (C.E.)
| | | | - Martin Ehrbar
- Department of Obstetrics, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland; (Q.V.-M.); (M.E.)
| | - Ivan Martin
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
- Correspondence: ; Tel.: +41-61-2652384; Fax: +41-61-2653990
| | - Andrea Barbero
- Department of Biomedicine, Tissue Engineering Laboratory, University Hospital Basel, University of Basel, 4031 Basel, Switzerland; (R.E.T.); (S.C.); (K.P.); (A.B.)
| |
Collapse
|
38
|
de Wildt BWM, Ito K, Hofmann S. Human Platelet Lysate as Alternative of Fetal Bovine Serum for Enhanced Human In Vitro Bone Resorption and Remodeling. Front Immunol 2022; 13:915277. [PMID: 35795685 PMCID: PMC9251547 DOI: 10.3389/fimmu.2022.915277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction To study human physiological and pathological bone remodeling while addressing the principle of replacement, reduction and refinement of animal experiments (3Rs), human in vitro bone remodeling models are being developed. Despite increasing safety-, scientific-, and ethical concerns, fetal bovine serum (FBS), a nutritional medium supplement, is still routinely used in these models. To comply with the 3Rs and to improve the reproducibility of such in vitro models, xenogeneic-free medium supplements should be investigated. Human platelet lysate (hPL) might be a good alternative as it has been shown to accelerate osteogenic differentiation of mesenchymal stromal cells (MSCs) and improve subsequent mineralization. However, for a human in vitro bone model, hPL should also be able to adequately support osteoclastic differentiation and subsequent bone resorption. In addition, optimizing co-culture medium conditions in mono-cultures might lead to unequal stimulation of co-cultured cells. Methods We compared supplementation with 10% FBS vs. 10%, 5%, and 2.5% hPL for osteoclast formation and resorption by human monocytes (MCs) in mono-culture and in co-culture with (osteogenically stimulated) human MSCs. Results and Discussion Supplementation of hPL can lead to a less donor-dependent and more homogeneous osteoclastic differentiation of MCs when compared to supplementation with 10% FBS. In co-cultures, osteoclastic differentiation and resorption in the 10% FBS group was almost completely inhibited by MSCs, while the supplementation with hPL still allowed for resorption, mostly at low concentrations. The addition of hPL to osteogenically stimulated MSC mono- and MC-MSC co-cultures resulted in osteogenic differentiation and bone-like matrix formation, mostly at high concentrations. Conclusion We conclude that hPL could support both osteoclastic differentiation of human MCs and osteogenic differentiation of human MSCs in mono- and in co-culture, and that this can be balanced by the hPL concentration. Thus, the use of hPL could limit the need for FBS, which is currently commonly accepted for in vitro bone remodeling models.
Collapse
|
39
|
Ladeira BMF, Gomes MC, Custódio CA, Mano JF. High-Throughput Production of Microsponges from Platelet Lysate for Tissue Engineering Applications. Tissue Eng Part C Methods 2022; 28:325-334. [PMID: 35343236 DOI: 10.1089/ten.tec.2022.0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell-based therapies require a large number of cells, as well as appropriate methods to deliver the cells to damaged tissue. Microcarriers provide an optimal platform for large-scale cell culture while also improving cell retention during cell delivery. However, this technology still presents significant challenges due to low-throughput fabrication methods and an inability of the microcarriers to recreate the properties of human tissue. This work proposes, for the first time, the use of methacryloyl platelet lysates (PLMA), a photocrosslinkable material derived from human platelet lysates, to produce porous microcarriers. Initially, high quantities of PLMA/alginate core-shell microcapsules are produced using coaxial electrospray. Subsequently, the microcapsules are collected, irradiated with ultraviolet light, washed, and freeze dried yielding PLMA microsponges. These microsponges are able to support the adhesion and proliferation of human adipose-derived stem cells, while also displaying potential in the assembly of autologous microtissues. Cell-laden microsponges were shown to self-organize into aggregates, suggesting possible applications in bottom-up tissue engineering applications. Impact Statement Microcarriers have increasingly been used as delivery platforms in cell therapy. Herein, the encapsulation of human-derived proteins in alginate microcapsules is proposed as a method to produce microcarriers from photopolymerizable materials. The capsules function as a template structure, which is then processed into spherical microparticles, which can be used in cell culture, cell delivery, and bottom-up assembly. As a proof of concept, this method was combined with lyophilization to process methacryloyl platelet lysates into injectable microsponges for cell delivery.
Collapse
Affiliation(s)
- Bruno M F Ladeira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Maria C Gomes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Catarina A Custódio
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
40
|
Li Y, Hao J, Hu Z, Yang YG, Zhou Q, Sun L, Wu J. Current status of clinical trials assessing mesenchymal stem cell therapy for graft versus host disease: a systematic review. Stem Cell Res Ther 2022; 13:93. [PMID: 35246235 PMCID: PMC8895864 DOI: 10.1186/s13287-022-02751-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
Background Graft-versus-host disease (GVHD) is a common fatal complication of hematopoietic stem cell transplantation (HSCT), where steroids are used as a treatment option. However, there are currently no second-line treatments for patients that develop steroid-resistance (SR). Mesenchymal stem cells (MSCs) have immunomodulatory functions and can exert immunosuppressive effects on the inflammatory microenvironment. A large number of in vitro experiments have confirmed that MSCs can significantly inhibit the proliferation or activation of innate and adaptive immune cells. In a mouse model of GVHD, MSCs improved weight loss and increased survival rate. Therefore, there is great promise for the clinical translation of MSCs for the prevention or treatment of GVHD, and several clinical trials have already been conducted to date. Main body In this study, we searched multiple databases and found 79 clinical trials involving the use of MSCs to prevent or treat GVHD and summarized the characteristics of these clinical trials, including study design, phase, status, and locations. We analyzed the results of these clinical trials, including the response and survival rates, to enable researchers to obtain a comprehensive understanding of the field’s progress, challenges, limitations, and future development trends. Additionally, factors that might result in inconsistencies in clinical trial results were discussed. Conclusion In this study, we attempted to analyze the clinical trials for MSCs in GVHD, identify the most suitable group of patients for MSC therapy, and provide a new perspective for the design of such trials in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02751-0.
Collapse
Affiliation(s)
- Ying Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China.,Department of Gastroenterology, The First Hospital, Jilin University, Changchun, 130021, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China.,International Center of Future Science, Jilin University, Changchun, 130021, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liguang Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China. .,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130061, China.
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
41
|
Pfeffer BA, Fliesler SJ. Reassessing the suitability of ARPE-19 cells as a valid model of native RPE biology. Exp Eye Res 2022; 219:109046. [DOI: 10.1016/j.exer.2022.109046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Abouelnaga H, El-Khateeb D, Moemen Y, El-Fert A, Elgazzar M, Khalil A. Characterization of mesenchymal stem cells isolated from Wharton’s jelly of the human umbilical cord. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-021-00165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Isolation of post-partum umbilical cord Wharton’s jelly stem cells has gained attention as an alternative source of the bone marrow. Because easy isolation, lack of ethical concerns, and the presence of both embryonic and adult stem cells have made them a valuable source for use in therapeutic applications and regenerative medicine. The study utilized a modified protocol using in-house human pooled cord blood serum for isolation and expansion of the mesenchymal stem cells obtained from the human umbilical cord Wharton’s jelly. Cell proliferation and population doubling time and tri-lineage differentiation were assessed, and the expressions of mesenchymal cell surface markers CD44, CD90, CD105, and CD34 were assessed by flow cytometry and RT-PCR. The genetic stability of the isolated cells was assessed by chromosomal karyotype.
Results
The isolated cells displayed fibroblastic-like morphology and tri-lineage differentiation into adipocyte, chondrocyte, and osteocyte. The isolated cells maintained the proliferative competence with a doubling time ranged from 38 to 42h and corresponded well with the standard positive and negative molecular markers (CD44+, CD90+, CD 105+, and CD34−). Cell senescence occurred at the later passage of the cells (P15) affecting, about 25% of the population. Metaphases spread of the cells showed normal diploid karyotypes, with typical chromosomal plates indicating genetic stability of the isolated cells.
Conclusion
The primary cultures exhibited success in isolating the umbilical cord Wharton’s jelly mesenchymal stem cells, which maintained their tri-lineage differentiation potential, phenotypes and karyotype characteristics on further passage and expansion.
Collapse
|
43
|
Kachroo U, Zachariah SM, Thambaiah A, Tabasum A, Livingston A, Rebekah G, Srivastava A, Vinod E. Comparison of Human Platelet Lysate versus Fetal Bovine Serum for Expansion of Human Articular Cartilage-Derived Chondroprogenitors. Cartilage 2021; 13:107S-116S. [PMID: 32406256 PMCID: PMC8804717 DOI: 10.1177/1947603520918635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Articular chondroprogenitors, a suitable contender for cell-based therapy in cartilage repair, routinely employ fetal bovine serum (FBS) for expansion and differentiation. The possibility of transplant rejections or zoonoses transmissions raise a need for xeno-free alternatives. Use of human platelet lysate (hPL), a nutrient supplement abundant in growth factors, has not been reported for human chondroprogenitor expansion thus far. Our aim was to compare the biological profile of chondroprogenitors grown in hPL versus FBS. METHODS Chondroprogenitors were isolated from 3 osteoarthritic knee joints. Following differential fibronectin adhesion assay, passage 0 cells grown in (a) 10% FBS and (b) 10% hPL were considered for assessment of growth kinetics, surface marker expression, gene expression, and trilineage differentiation. Latent transforming growth factor-β1 (TGFβ1) levels were also measured for each culture medium used. RESULTS Cellular proliferation was significantly higher in cells grown with hPL (P < 0.01). Surface marker expression was comparable except in CD-146 where hPL group had significantly higher values (P = 0.03). Comparison of mRNA expression revealed notably low values of collagen I, collagen X, aggrecan, and collagen II (P < 0.05). Trilineage differentiation was seen in both groups with higher alizarin red uptake noted in hPL. There were also significantly higher levels of latent TGFβ1 in the medium containing hPL as compared to FBS. CONCLUSIONS This is the first in vitro xeno-free study to affirm that hPL can serve as an optimal growth supplement for expansion of articular chondroprogenitors, although an in-depth assessment of resident growth factors and evaluation of different dilutions of hPL is required to assess suitability for use in translational research.
Collapse
Affiliation(s)
- Upasana Kachroo
- Department of Physiology, Christian
Medical College, Vellore, Tamil Nadu, India
| | | | - Augustine Thambaiah
- Centre for Stem Cell Research, (A unit
of InStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India
| | - Aleya Tabasum
- Centre for Stem Cell Research, (A unit
of InStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India
| | - Abel Livingston
- Department of Orthopaedics, Christian
Medical College, Vellore, Tamil Nadu, India
| | - Grace Rebekah
- Department of Biostatistics, Christian
Medical College, Vellore, Tamil Nadu, India
| | - Alok Srivastava
- Centre for Stem Cell Research, (A unit
of InStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India,Department of Haematology, Christian
Medical College, Vellore, Tamil Nadu, India
| | - Elizabeth Vinod
- Department of Physiology, Christian
Medical College, Vellore, Tamil Nadu, India,Centre for Stem Cell Research, (A unit
of InStem, Bengaluru), Christian Medical College, Vellore, Tamil Nadu, India,Elizabeth Vinod, Department of Physiology,
Christian Medical College, Vellore, Tamil Nadu 632002, India.
| |
Collapse
|
44
|
Arzi B, Webb TL, Koch TG, Volk SW, Betts DH, Watts A, Goodrich L, Kallos MS, Kol A. Cell Therapy in Veterinary Medicine as a Proof-of-Concept for Human Therapies: Perspectives From the North American Veterinary Regenerative Medicine Association. Front Vet Sci 2021; 8:779109. [PMID: 34917671 PMCID: PMC8669438 DOI: 10.3389/fvets.2021.779109] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/13/2021] [Indexed: 01/27/2023] Open
Abstract
In the past decade, the potential to translate scientific discoveries in the area of regenerative therapeutics in veterinary species to novel, effective human therapies has gained interest from the scientific and public domains. Translational research using a One Health approach provides a fundamental link between basic biomedical research and medical clinical practice, with the goal of developing strategies for curing or preventing disease and ameliorating pain and suffering in companion animals and humans alike. Veterinary clinical trials in client-owned companion animals affected with naturally occurring, spontaneous disease can inform human clinical trials and significantly improve their outcomes. Innovative cell therapies are an area of rapid development that can benefit from non-traditional and clinically relevant animal models of disease. This manuscript outlines cell types and therapeutic applications that are currently being investigated in companion animals that are affected by naturally occurring diseases. We further discuss how such investigations impact translational efforts into the human medical field, including a critical evaluation of their benefits and shortcomings. Here, leaders in the field of veterinary regenerative medicine argue that experience gained through the use of cell therapies in companion animals with naturally occurring diseases represent a unique and under-utilized resource that could serve as a critical bridge between laboratory/preclinical models and successful human clinical trials through a One-Health approach.
Collapse
Affiliation(s)
- Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Tracy L Webb
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Thomas G Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States
| | - Dean H Betts
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Ashlee Watts
- Department of Large Animal Clinical Sciences, Veterinary Medicine and Biological Sciences, Texas A&M University, Killeen, TX, United States
| | - Laurie Goodrich
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Michael S Kallos
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, and Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Amir Kol
- Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
45
|
Cell-based therapeutics for the treatment of hematologic diseases inside the bone marrow. J Control Release 2021; 339:1-13. [PMID: 34536449 DOI: 10.1016/j.jconrel.2021.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022]
Abstract
Cell-based therapies could overcome the limitations of traditional drugs for the treatment of refractory diseases. Cell exchange between the bone marrow and blood is bidirectional. Several kinds of cells in the blood have the capability to enter the bone marrow by interacting with sinusoidal cells under specific physiological or pathological conditions. These cells are the potential living therapeutics or delivery vehicles to treat or prevent bone marrow-related hematologic diseases. In this review, we summarized the in vivo molecular mechanisms and kinetics of these cells in entering the bone marrow. The advances in the fabrication of living cell drugs and the strategies to design cell-based carriers into the bone marrow were discussed. The latest studies on how to use blood cells as living drugs or as drug carriers to improve therapeutic outcomes of hematologic diseases inside the bone marrow were highlighted.
Collapse
|
46
|
Le Clainche T, Moisan A, Coll JL, Martel-Frachet V. The disc-shaped microcarriers: A new tool for increasing harvesting of adipose-derived mesenchymal stromal cells. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Ahani-Nahayati M, Niazi V, Moradi A, Pourjabbar B, Roozafzoon R, Baradaran-Rafii A, Keshel SH. Umbilical cord mesenchymal stem/stromal cells potential to treat organ disorders; an emerging strategy. Curr Stem Cell Res Ther 2021; 17:126-146. [PMID: 34493190 DOI: 10.2174/1574888x16666210907164046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Currently, mesenchymal stem/stromal cells (MSCs) have attracted growing attention in the context of cell-based therapy in regenerative medicine. Following the first successful procurement of human MSCs from bone marrow (BM), these cells isolation has been conducted from various origins, in particular, the umbilical cord (UC). Umbilical cord-derived mesenchymal stem/stromal cells (UC-MSCs) can be acquired by a non-invasive plan and simply cultured, and thereby signifies their superiority over MSCs derived from other sources for medical purposes. Due to their unique attributes, including self-renewal, multipotency, and accessibility concomitant with their immunosuppressive competence and lower ethical concerns, UC-MSCs therapy is described as encouraging therapeutic options in cell-based therapies. Regardless of their unique aptitude to adjust inflammatory response during tissue recovery and delivering solid milieu for tissue restoration, UC-MSCs can be differentiated into a diverse spectrum of adult cells (e.g., osteoblast, chondrocyte, type II alveolar, hepatocyte, and cardiomyocyte). Interestingly, they demonstrate a prolonged survival and longer telomeres compared with MSCs derived from other sources, suggesting that UC-MSCs are desired source to use in regenerative medicine. In the present review, we deliver a brief review of UC-MSCs isolation, expansion concomitantly with immunosuppressive activities, and try to collect and discuss recent pre-clinical and clinical researches based on the use of UC-MSCs in regenerative medicine, focusing on with special focus on in vivo researches.
Collapse
Affiliation(s)
- Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Science, Tehran. Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| | | | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran. Iran
| |
Collapse
|
48
|
Ma L, Huang Z, Wu D, Kou X, Mao X, Shi S. CD146 controls the quality of clinical grade mesenchymal stem cells from human dental pulp. Stem Cell Res Ther 2021; 12:488. [PMID: 34461987 PMCID: PMC8404346 DOI: 10.1186/s13287-021-02559-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022] Open
Abstract
Background Human mesenchymal stem cells from dental pulp (hMSC-DP), including dental pulp stem cells from permanent teeth and exfoliated deciduous teeth, possess unique MSC characteristics such as expression of specific surface molecules and a high proliferation rate. Since hMSC-DP have been applied in numerous clinical studies, it is necessary to establish criteria to evaluate their potency for cell-based therapies. Methods We compared stem cell properties of hMSC-DP at passages 5, 10 and 20 under serum (SE) and serum-free (SF) culture conditions. Cell morphology, proliferation capacity, chromosomal stability, surface phenotypic profiles, differentiation and immunoregulation ability were evaluated. In addition, we assessed surface molecule that regulates hMSC-DP proliferation and immunomodulation. Results hMSC-DP exhibited a decrease in proliferation rate and differentiation potential, as well as a reduced expression of CD146 when cultured under continuous passage conditions. SF culture conditions failed to alter surface marker expression, chromosome stability or proliferation rate when compared to SE culture. SF-cultured hMSC-DP were able to differentiate into osteogenic, adipogenic and neural cells, and displayed the capacity to regulate immune responses. Notably, the expression level of CD146 showed a positive correlation with proliferation, differentiation, and immunomodulation, suggesting that CD146 can serve as a surface molecule to evaluate the potency of hMSC-DP. Mechanistically, we found that CD146 regulates proliferation and immunomodulation of hMSC-DP through the ERK/p-ERK pathway. Conclusion This study indicates that SF-cultured hMSC-DP are appropriate for producing clinical-grade cells. CD146 is a functional surface molecule to assess the potency of hMSC-DP. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02559-4.
Collapse
Affiliation(s)
- Lan Ma
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Zhiqing Huang
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Di Wu
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Xueli Mao
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China
| | - Songtao Shi
- South China Center of Craniofacial Stem Cell Research and Guangdong Province Key Laboratory of Stomatology, Guanghua School and Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| |
Collapse
|
49
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Rajagopalan K, Yesudhason BV, Venkatachalam S, Mohan M, Chellathurai Vasantha N, Selvan Christyraj JRS. Alternative to FBS in animal cell culture - An overview and future perspective. Heliyon 2021; 7:e07686. [PMID: 34401573 PMCID: PMC8349753 DOI: 10.1016/j.heliyon.2021.e07686] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/31/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023] Open
Abstract
Fetal bovine serum (FBS) is a widely used growth supplement in the in vitro culturing of animal and human cells, tissues and organs, notably due to the occurrence of abundant micro- and macronutrients, along with growth factors. Over the years, increasing demand, high price, batch-to-batch variability in quality and composition, increasing ethical concerns lead to the search for an alternative to FBS. Several approaches have been suggested and employed in the past, but none is implemented as widely as FBS, and each supplement has its own disadvantages. In this review, we described the importance of FBS in cell culture, discussed the issues associated with FBS use and presented the efforts made in the recent past to reduce or replace FBS. The potential of four different alternative sources to FBS, namely, bovine ocular fluid, sericin protein, human platelet lysate and earthworm heat inactivated coelomic fluid was evaluated. In the end, we present the conceptual perspective using the Human Platelet Lysate (HPL) and earthworm Heat Inactivated Coelomic Fluid (HI-CF) combination to alternate FBS and its context in scientific and economic impacts.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Jackson Durairaj Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Kamarajan Rajagopalan
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Saravanakumar Venkatachalam
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Manikandan Mohan
- Pharmaceutical & Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, USA
| | - Niranjan Chellathurai Vasantha
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamilnadu, India
| |
Collapse
|
50
|
da Fonseca L, Santos GS, Huber SC, Setti TM, Setti T, Lana JF. Human platelet lysate - A potent (and overlooked) orthobiologic. J Clin Orthop Trauma 2021; 21:101534. [PMID: 34386346 PMCID: PMC8339333 DOI: 10.1016/j.jcot.2021.101534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/25/2021] [Accepted: 07/25/2021] [Indexed: 01/03/2023] Open
Abstract
The knowledge of the essential role of platelets in tissue healing is gradually increasing and as regenerative medicine prompts new solutions, platelet-derived bioproducts have been proposed as a potential tool in this field. In orthopaedics and sports medicine, the use of PRP has been rapidly increasing in popularity as patients seek novel non-surgical approaches to acute and chronic musculoskeletal conditions. The concept of having platelets as a secretory organ other than a mere sponge-like coagulation component opens up new frontiers for the use of the platelet secretome. Platelet lysate is a solution saturated by growth factors, proteins, cytokines, and chemokines involved in crucial healing processes and is administered to treat different diseases such as alopecia, oral mucositis, radicular pain, osteoarthritis, and cartilage and tendon disorders. For this purpose, the abundant presence of growth factors and chemokines stored in platelet granules can be naturally released by different strategies, mostly through lyophilization, thrombin activation or ultrasound baths (ultrasonication). As a result, human platelet lysate can be produced and applied as a pure orthobiologic. This review outlines the current knowledge about human platelet lysate as a powerful adjuvant in the orthobiological use for the treatment of musculoskeletal injuries, without however failing to raise some of its most applicable basic science.
Collapse
Affiliation(s)
- Lucas da Fonseca
- Orthopaedic Department – UNIFESP/EPM, 715 Napoleão de Barros St – Vila Clementino, 04024-002, São Paulo, SP, Brazil
| | - Gabriel Silva Santos
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil,Corresponding author. IOC – Instituto do Osso e da Cartilagem/The Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – 2nd floor, Room #29, Indaiatuba, São Paulo, 13334-170, Brazil. Tel.: +551930174366, +5519989283863.
| | - Stephany Cares Huber
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| | - Taís Mazzini Setti
- Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - Thiago Setti
- Indolor - Centro Intervencionista de Controle da Dor, 583 Sul Brasil Avenue – Room #406 – Centro, 89814-210, Maravilha, SC, Brazil
| | - José Fábio Lana
- IOC – Instituto Do Osso e da Cartilagem/the Bone and Cartilage Institute, 1386 Presidente Kennedy Avenue – Cidade Nova I, 13334-170, Indaiatuba, SP, Brazil
| |
Collapse
|