1
|
Stieger RB, Lilaj B, Hönigl GP, Pock S, Cvikl B. Flow Cytometry Illuminates Dental Stem Cells: a Systematic Review of Immunomodulatory and Regenerative Breakthroughs. Stem Cell Rev Rep 2025:10.1007/s12015-025-10883-y. [PMID: 40279028 DOI: 10.1007/s12015-025-10883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Dental stem cells hold significant potential in regenerative medicine due to their multipotency, accessibility, and immunomodulatory effects. Flow cytometry is a critical tool for analyzing these cells, particularly in identifying and characterizing immunomodulatory markers that enhance their clinical applications. This systematic review aims to answer the question: "How does flow cytometry facilitate the identification and characterization of immunomodulatory markers in dental stem cells to enhance their application in regenerative medicine?". METHODS An exhaustive literature search was conducted in PubMed, retrieving 430 studies, of which 284 met inclusion criteria. Studies were selected based on the use of flow cytometry to analyze immunomodulatory markers in dental stem cells, focusing on methodologies, key findings, and challenges. RESULTS Of the 284 articles, 229 employed flow cytometry, with 115 reporting relevant results. Flow cytometry revealed important insights into the immunological interactions of various dental stem cells, including dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, and stem cells from the apical papilla, by identifying and characterizing immunomodulatory markers such as PD-L1, IDO, and TGF-β1. CONCLUSIONS Flow cytometry is essential for advancing the understanding of dental stem cells' immunomodulatory properties. Standardization of methodologies is required to overcome technical challenges and enhance the clinical applications of dental stem cells in regenerative medicine and immunotherapy.
Collapse
Affiliation(s)
- Robert B Stieger
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria.
| | - Bledar Lilaj
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria
| | - Gernot P Hönigl
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria
| | - Sophie Pock
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria
| | - Barbara Cvikl
- Department of Conservative Dentistry, Sigmund Freud University, Vienna, Austria.
| |
Collapse
|
2
|
Su W, Liao C, Liu X. Angiogenic and neurogenic potential of dental-derived stem cells for functional pulp regeneration: A narrative review. Int Endod J 2025; 58:391-410. [PMID: 39660369 DOI: 10.1111/iej.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/26/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Dental pulp tissue engineering is expected to become an ideal treatment for irreversible pulpitis and apical periodontitis. However, angiogenesis and neurogenesis for functional pulp regeneration have not yet met the standard for large-scale clinical application, and need further research. OBJECTIVE This review focused on the potential mechanisms of angiogenesis and neurogenesis in pulp regeneration, including stem cell types, upstream and downstream regulatory molecules and cascade signalling pathways, thereby providing a theoretical basis and inspiring new ideas to improve the effectiveness of dental pulp tissue engineering. METHODS An electronic literature search was carried out using the keywords of 'pulp regeneration', 'stem cell transplantation', 'dental pulp stem cells', 'angiogenesis' and 'neurogenesis'. The resulting literature was screened and reviewed. RESULTS Stem cells used in dental pulp tissue engineering can be classified as dental-derived and non-dental-derived stem cells, amongst which dental pulp stem cells (DPSC) have achieved promising results in animal experiments and clinical trials. Multiple molecules and signalling pathways are involved in the process of DPSC-mediated angiogenic and neurogenetic regeneration. In order to promote angiogenesis and neurogenesis in pulp regeneration, feasible measures include the addition of growth factors, the modulation of transcription factors and signalling pathways, the use of extracellular vesicles and the modification of bioscaffold materials. CONCLUSION Dental pulp tissue engineering has had breakthroughs in preclinical and clinical studies in vivo. Overcoming difficulties in pulpal angiogenesis and neurogenesis, and achieving functional pulp regeneration will lead to a significant impact in endodontics.
Collapse
Affiliation(s)
- Wanting Su
- School of Stomatology, Jinan University, Guangzhou, China
| | - Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China
- Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China
- Hospital of stomatology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Zhang L, Thalakiriyawa DS, Liu J, Yang S, Wang Y, Dissanayaka WL. Semaphorin-4D signaling in recruiting dental stem cells for vascular stabilization. Stem Cell Res Ther 2025; 16:25. [PMID: 39865283 PMCID: PMC11770943 DOI: 10.1186/s13287-025-04149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Achieving a stable vasculature is crucial for tissue regeneration. Endothelial cells initiate vascular morphogenesis, followed by mural cells that stabilize new vessels. This study investigated the in vivo effects of Sema4D-Plexin-B1 signaling on stem cells from human exfoliated deciduous teeth (SHED)-supported angiogenesis, focusing on its mechanism in PDGF-BB secretion. We also explored macrophages as an endogenous source of Sema4D for vascular stabilization. METHODS The in vivo Matrigel plug angiogenesis assay was conducted to examine the impact of Sema4D on vessel formation and stabilization supported by SHED. Knockdown of Plexin-B1 in human umbilical vein endothelial cells (HUVECs) and PDGFR-β inhibitors were utilized to explore the fundamental regulatory mechanisms. Furthermore, the m6A methylation levels of total RNA and the expression of Methyltransferase-like 3 (METTL3) were assessed under conditions of Sema4D treatment in vitro. An ELISA was employed to measure the levels of Sema4D in the supernatants derived from THP-1 cell-mediated macrophages. Additionally, a three-dimensional vasculature-on-a-chip microfluidic device was used to investigate the role of M2c macrophage-derived Sema4D in the stabilization of vascular structures. RESULTS Sema4D induced the formation of a greater number of perfused vessels by HUVECs and enhanced the coverage of these vessels by SM22α-positive SHED (SM22α+SHED). Conversely, the knockdown of the Plexin-B1 receptor in HUVECs or inhibition of PDGFR-β reversed the Sema4D-induced vascular stabilization, thereby confirming the regulatory role of the Plexin-B1/PDGF-BB axis in the recruitment of mural cells mediated by Sema4D. Mechanistically, Sema4D was found to upregulate the expression of methyltransferases, specifically METTL3, and to elevate the level of m6A modification in HUVECs. This modification was determined to be critical for enhancing PDGF-BB secretion, suggesting that Sema4D activates an epigenetic regulatory mechanism. Additionally, we investigated the secretion of Sema4D by various macrophage phenotypes, identifying that M2c macrophages secrete significant levels of Sema4D. This secretion recruited SM22α+SHED as mural cells by inducing endothelial PDGF production on a vasculature-on-a-chip platform, indicating a potential role for macrophages in facilitating vascular stabilization. CONCLUSIONS Sema4D acts on Plexin-B1, inducing METTL3-mediated PDGF-BB secretion to recruit SHED to stabilize vessels. Macrophages could be a key source of Sema4D for vascular stabilization.
Collapse
Affiliation(s)
- Lili Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR
| | - Dineshi Sewvandi Thalakiriyawa
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR
| | - Jiawei Liu
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR
| | - Shengyan Yang
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR
| | - Yan Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Prince Philip Dental Hospital, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong, Hong Kong SAR.
| |
Collapse
|
4
|
He H, Yang YH, Yang X, Huang Y. The growth factor multimodality on treating human dental mesenchymal stem cells: a systematic review. BMC Oral Health 2024; 24:290. [PMID: 38429689 PMCID: PMC10905837 DOI: 10.1186/s12903-024-04013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Ensuring the quantity, quality, and efficacy of human dental mesenchymal stem cells (MSCs) has become an urgent problem as their applications increase. Growth factors (GFs) have low toxicity, good biocompatibility, and regulate stem cell survival and differentiation. They bind to specific receptors on target cells, initiating signal transduction and triggering biological functions. So far, relatively few studies have been conducted to summarize the effect of different GFs on the application of dental MSCs. We have reviewed the literature from the past decade to examine the effectiveness and mechanism of applying one or multiple GFs to human dental MSCs. Our review is based on the premise that a single dental MSC cannot fulfill all applications and that different dental MSCs react differently to GFs. METHODS A search for published articles was carried out using the Web of Science core collection and PubMed. The study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. This review considered studies from 2014 to 2023 that examined the effects of GFs on human dental MSCs. The final selection of articles was made on the 15th of July 2023. RESULTS Three thousand eight hundred sixty-seven pieces of literature were gathered for this systematic review initially, only 56 of them were selected based on their focus on the effects of GFs during the application of human dental MSCs. Out of the 56, 32 literature pieces were focused on a single growth factor while 24 were focused on multiple growth factors. This study shows that GFs can regulate human dental MSCs through a multi-way processing manner. CONCLUSION Multimodal treatment of GFs can effectively regulate human dental MSCs, ensuring stem cell quality, quantity, and curative effects.
Collapse
Affiliation(s)
- Huiying He
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Yun-Hsuan Yang
- School of Stomatology, Jinan University, Guangzhou, 510632, China
| | - Xuesong Yang
- Clinical Research Center, Clifford Hospital, Guangzhou, 511495, China.
| | - Yue Huang
- School of Stomatology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Zhang Y, Zhong J, Lin S, Hu M, Liu J, Kang J, Qi Y, Basabrain MS, Zou T, Zhang C. Direct contact with endothelial cells drives dental pulp stem cells toward smooth muscle cells differentiation via TGF-β1 secretion. Int Endod J 2023; 56:1092-1107. [PMID: 37294792 DOI: 10.1111/iej.13943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/11/2023]
Abstract
AIM Prevascularization is vital to accelerate functional blood circulation establishment in transplanted engineered tissue constructs. Mesenchymal stem cells (MSCs) or mural cells could promote the survival of implanted endothelial cells (ECs) and enhance the stabilization of newly formed blood vessels. However, the dynamic cell-cell interactions between MSCs, mural cells and ECs in the angiogenic processes remain unclear. This study aimed to explore the interactions of human umbilical vein ECs (HUVECs) and dental pulp stem cells (DPSCs) in an in vitro cell coculture model. METHODOLOGY Human umbilical vascular ECs and DPSCs were directly cocultured or indirectly cocultured with transwell inserts in endothelial basal media-2 (EBM-2) supplemented with 5% FBS for 6 days. Expression of SMC-specific markers in DPSCs monoculture and HUVEC+DPSC cocultures was assessed by western blot and immunofluorescence. Activin A and transforming growth factor-beta 1 (TGF-β1) in conditioned media (CM) of HUVECs monoculture (E-CM), DPSCs monoculture (D-CM) and HUVEC+DPSC cocultures (E+D-CM) were analysed by enzyme-linked immunosorbent assay. TGF-β RI kinase inhibitor VI, SB431542, was used to block TGF-β1/ALK5 signalling in DPSCs. RESULTS The expression of SMC-specific markers, α-SMA, SM22α and Calponin, were markedly increased in HUVEC+DPSC direct cocultures compared to that in DPSCs monoculture, while no differences were demonstrated between HUVEC+DPSC indirect cocultures and DPSCs monoculture. E+D-CM significantly upregulated the expression of SMC-specific markers in DPSCs compared to E-CM and D-CM. Activin A and TGF-β1 were considerably higher in E+D-CM than that in D-CM, with upregulated Smad2 phosphorylation in HUVEC+DPSC cocultures. Treatment with activin A did not change the expression of SMC-specific markers in DPSCs, while treatment with TGF-β1 significantly enhanced these markers' expression in DPSCs. In addition, blocking TGF-β1/ALK5 signalling inhibited the expression of α-SMA, SM22α and Calponin in DPSCs. CONCLUSIONS TGF-β1 was responsible for DPSC differentiation into SMCs in HUVEC+DPSC cocultures, and TGF-β1/ALK5 signalling pathway played a vital role in this process.
Collapse
Affiliation(s)
- Yuchen Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jialin Zhong
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Shulan Lin
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mingxin Hu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Junqing Liu
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Jun Kang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Yubingqing Qi
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Mohammed S Basabrain
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ting Zou
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Endodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
6
|
Dabaghi M, Carpio MB, Saraei N, Moran-Mirabal JM, Kolb MR, Hirota JA. A roadmap for developing and engineering in vitro pulmonary fibrosis models. BIOPHYSICS REVIEWS 2023; 4:021302. [PMID: 38510343 PMCID: PMC10903385 DOI: 10.1063/5.0134177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/03/2023] [Indexed: 03/22/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe form of pulmonary fibrosis. IPF is a fatal disease with no cure and is challenging to diagnose. Unfortunately, due to the elusive etiology of IPF and a late diagnosis, there are no cures for IPF. Two FDA-approved drugs for IPF, nintedanib and pirfenidone, slow the progression of the disease, yet fail to cure or reverse it. Furthermore, most animal models have been unable to completely recapitulate the physiology of human IPF, resulting in the failure of many drug candidates in preclinical studies. In the last few decades, the development of new IPF drugs focused on changes at the cellular level, as it was believed that the cells were the main players in IPF development and progression. However, recent studies have shed light on the critical role of the extracellular matrix (ECM) in IPF development, where the ECM communicates with cells and initiates a positive feedback loop to promote fibrotic processes. Stemming from this shift in the understanding of fibrosis, there is a need to develop in vitro model systems that mimic the human lung microenvironment to better understand how biochemical and biomechanical cues drive fibrotic processes in IPF. However, current in vitro cell culture platforms, which may include substrates with different stiffness or natural hydrogels, have shortcomings in recapitulating the complexity of fibrosis. This review aims to draw a roadmap for developing advanced in vitro pulmonary fibrosis models, which can be leveraged to understand better different mechanisms involved in IPF and develop drug candidates with improved efficacy. We begin with a brief overview defining pulmonary fibrosis and highlight the importance of ECM components in the disease progression. We focus on fibroblasts and myofibroblasts in the context of ECM biology and fibrotic processes, as most conventional advanced in vitro models of pulmonary fibrosis use these cell types. We transition to discussing the parameters of the 3D microenvironment that are relevant in pulmonary fibrosis progression. Finally, the review ends by summarizing the state of the art in the field and future directions.
Collapse
Affiliation(s)
- Mohammadhossein Dabaghi
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Mabel Barreiro Carpio
- Department of Chemistry and Chemical Biology, McMaster University, Arthur N. Bourns Science Building, 1280 Main Street West, Hamilton, Ontario L8S 4M1, Canada
| | - Neda Saraei
- School of Biomedical Engineering, McMaster University, Engineering Technology Building, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | | | - Martin R. Kolb
- Firestone Institute for Respiratory Health—Division of Respirology, Department of Medicine, McMaster University, St. Joseph's Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | | |
Collapse
|
7
|
Ruan Q, Tan S, Guo L, Ma D, Wen J. Prevascularization techniques for dental pulp regeneration: potential cell sources, intercellular communication and construction strategies. Front Bioeng Biotechnol 2023; 11:1186030. [PMID: 37274160 PMCID: PMC10232868 DOI: 10.3389/fbioe.2023.1186030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
One of the difficulties of pulp regeneration is the rapid vascularization of transplanted engineered tissue, which is crucial for the initial survival of the graft and subsequent pulp regeneration. At present, prevascularization techniques, as emerging techniques in the field of pulp regeneration, has been proposed to solve this challenge and have broad application prospects. In these techniques, endothelial cells and pericytes are cocultured to induce intercellular communication, and the cell coculture is then introduced into the customized artificial vascular bed or induced to self-assembly to simulate the interaction between cells and extracellular matrix, which would result in construction of a prevascularization system, preformation of a functional capillary network, and rapid reconstruction of a sufficient blood supply in engineered tissue after transplantation. However, prevascularization techniques for pulp regeneration remain in their infancy, and there remain unresolved problems regarding cell sources, intercellular communication and the construction of prevascularization systems. This review focuses on the recent advances in the application of prevascularization techniques for pulp regeneration, considers dental stem cells as a potential cell source of endothelial cells and pericytes, discusses strategies for their directional differentiation, sketches the mechanism of intercellular communication and the potential application of communication mediators, and summarizes construction strategies for prevascularized systems. We also provide novel ideas for the extensive application and follow-up development of prevascularization techniques for dental pulp regeneration.
Collapse
Affiliation(s)
| | | | | | - Dandan Ma
- *Correspondence: Dandan Ma, ; Jun Wen,
| | - Jun Wen
- *Correspondence: Dandan Ma, ; Jun Wen,
| |
Collapse
|
8
|
Zhao J, Zhou YH, Zhao YQ, Gao ZR, Ouyang ZY, Ye Q, Liu Q, Chen Y, Tan L, Zhang SH, Feng Y, Hu J, Dusenge MA, Feng YZ, Guo Y. Oral cavity-derived stem cells and preclinical models of jaw-bone defects for bone tissue engineering. Stem Cell Res Ther 2023; 14:39. [PMID: 36927449 PMCID: PMC10022059 DOI: 10.1186/s13287-023-03265-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Jaw-bone defects caused by various diseases lead to aesthetic and functional complications, which can seriously affect the life quality of patients. Current treatments cannot fully meet the needs of reconstruction of jaw-bone defects. Thus, the research and application of bone tissue engineering are a "hot topic." As seed cells for engineering of jaw-bone tissue, oral cavity-derived stem cells have been explored and used widely. Models of jaw-bone defect are excellent tools for the study of bone defect repair in vivo. Different types of bone defect repair require different stem cells and bone defect models. This review aimed to better understand the research status of oral and maxillofacial bone regeneration. MAIN TEXT Data were gathered from PubMed searches and references from relevant studies using the search phrases "bone" AND ("PDLSC" OR "DPSC" OR "SCAP" OR "GMSC" OR "SHED" OR "DFSC" OR "ABMSC" OR "TGPC"); ("jaw" OR "alveolar") AND "bone defect." We screened studies that focus on "bone formation of oral cavity-derived stem cells" and "jaw bone defect models," and reviewed the advantages and disadvantages of oral cavity-derived stem cells and preclinical model of jaw-bone defect models. CONCLUSION The type of cell and animal model should be selected according to the specific research purpose and disease type. This review can provide a foundation for the selection of oral cavity-derived stem cells and defect models in tissue engineering of the jaw bone.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ying-Hui Zhou
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.,National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Ya-Qing Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Zheng-Rong Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ze-Yue Ouyang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Shao-Hui Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Marie Aimee Dusenge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Zhang L, Han Y, Chen Q, Dissanayaka WL. Sema4D-plexin-B1 signaling in recruiting dental stem cells for vascular stabilization on a microfluidic platform. LAB ON A CHIP 2022; 22:4632-4644. [PMID: 36331411 DOI: 10.1039/d2lc00632d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The recruitment of mural cells is critical for stabilization of nascent vessels. Stem cells from human exfoliated deciduous teeth (SHED) are considered to have mural cell-like properties. However, the signaling mechanisms that regulate the cross-talk between endothelial cells and SHED in recruiting them as mural cells is much less well understood. Herein, using a 3D biomimetic microfluidic device, for the first time, we unraveled the role of semaphorin 4D (Sema4D)-plexin-B1 signaling in the recruitment of SHED as mural cells during angiogenic sprouting and vasculature formation by endothelial cells (ECs) in a 3D fibrin matrix. The specific compartmentalized design of the microfluidic chip facilitated recreation of the multi-step dynamic process of angiogenesis in a time and space dependent manner. Enabled by the chip design, different morphogenic steps of angiogenesis including endothelial proliferation, migration & invasion, vascular sprout formation and recruitment of mural cells as well as functional aspects including perfusion and permeability were examined under various pharmacological and genetic manipulations. The results showed that Sema4D facilitates the interaction between endothelial cells and SHED and promotes the recruitment of SHED as mural cells in vascular stabilization. Our results further demonstrated that Sema4D exerts these effects by acting on endothelial-plexin-B1 by inducing expression of platelet-derived growth factor (PDGF)-BB, which is a major mural cell recruitment factor.
Collapse
Affiliation(s)
- Lili Zhang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| | - Yuanyuan Han
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| | - Qixin Chen
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
10
|
Guo R, Yu J. Multipotency and Immunomodulatory Benefits of Stem Cells From Human Exfoliated Deciduous Teeth. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.805875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cells derived from human exfoliated deciduous teeth (SHEDs) are considered a promising cell population for cell-based or cell-free therapy and tissue engineering because of their proliferative, multipotency and immunomodulator. Based on recent studies, we find that SHEDs show the superior ability of nerve regeneration in addition to the potential of osteogenesis, odontogenesis owing to their derivation from the neural crest. Besides, much evidence suggests that SHEDs have a paracrine effect and can function as immunomodulatory regents attributing to their capability of secreting cytokines and extracellular vesicles. Here, we review the characteristic of SHEDs, their multipotency to regenerate damaged tissues, specifically concentrating on bones or nerves, following the paracrine activity or immunomodulatory benefits of their potential for clinical application in regenerative medicine.
Collapse
|
11
|
Vakhrushev IV, Nezhurina EK, Karalkin PA, Tsvetkova AV, Sergeeva NS, Majouga AG, Yarygin KN. Heterotypic Multicellular Spheroids as Experimental and Preclinical Models of Sprouting Angiogenesis. BIOLOGY 2021; 11:18. [PMID: 35053016 PMCID: PMC8772844 DOI: 10.3390/biology11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Sprouting angiogenesis is the common response of live tissues to physiological and pathological angiogenic stimuli. Its accurate evaluation is of utmost importance for basic research and practical medicine and pharmacology and requires adequate experimental models. A variety of assays for angiogenesis were developed, none of them perfect. In vitro approaches are generally less physiologically relevant due to the omission of essential components regulating the process. However, only in vitro models can be entirely non-xenogeneic. The limitations of the in vitro angiogenesis assays can be partially overcome using 3D models mimicking tissue O2 and nutrient gradients, the influence of the extracellular matrix (ECM), and enabling cell-cell interactions. Here we present a review of the existing models of sprouting angiogenesis that are based on the use of endothelial cells (ECs) co-cultured with perivascular or other stromal cells. This approach provides an excellent in vitro platform for further decoding of the cellular and molecular mechanisms of sprouting angiogenesis under conditions close to the in vivo conditions, as well as for preclinical drug testing and preclinical research in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Igor V. Vakhrushev
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Elizaveta K. Nezhurina
- P.A. Hertsen Moscow Oncology Research Center, National Medical Research Radiological Center, 125284 Moscow, Russia;
| | - Pavel A. Karalkin
- Institute for Cluster Oncology, Sechenov University, 119435 Moscow, Russia;
| | | | - Nataliya S. Sergeeva
- Department of Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| |
Collapse
|
12
|
Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Dental Pulp Stem Cells (DPSCs) Display a Similar Profile with Pericytes. Stem Cells Int 2021; 2021:8859902. [PMID: 34349804 PMCID: PMC8328701 DOI: 10.1155/2021/8859902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Background Pericytes play an important role in forming functional blood vessels and establishing stable and effective microcirculation, which is crucial for vascular tissue engineering. The slow ex vivo expansion rate, limited proliferative capacity, and variability of tissue-specific phenotypes would hinder experimental studies and clinical translation of primary pericytes. In this study, the angiogenic and pericyte functions of stem cells from human exfoliated deciduous teeth (SHEDs) and postnatal human dental pulp stem cells (DPSCs) were investigated. Methods Osteogenic and adipogenic induction assays were performed to evaluate the mesenchymal potential of SHEDs, DPSCs, and pericytes. An in vitro Matrigel angiogenesis assay was conducted to reveal the ability of SHEDs, DPSCs, and pericytes to stabilize vascular-like structures. Quantitative real-time polymerase chain reaction (RT-qPCR) was performed to evaluate mRNA expression. Flow cytometry, western blotting, and immunostaining were used to assess the protein expression. Wound healing and transwell assays were performed to evaluate the migration ability of SHEDs, DPSCs, and pericytes. Results The osteogenic and adipogenic induction assays showed that SHEDs, DPSCs, and pericytes exhibited similar stem cell characteristics. The mRNA expression levels of PDGFR-β, α-SMA, NG2, and DEMSIN in SHEDs and DPSCs cultured in EC medium were significantly higher than those in the control groups on day 7 (P < 0.05), but significantly higher than those in the pericytes group on day 14 (P < 0.05). Flow cytometry showed that high proportions of SHEDs and DPSCs were positive for various pericyte markers on day 7. The DPSCs, SHEDs, and pericytes displayed strong migration ability; however, there was no significant difference among the groups (P > 0.05). Conclusion The SHEDs and DPSCs display a profile similar to that of pericytes. Our study lays a solid theoretical foundation for the clinical use of dental pulp stem cells as a potential candidate to replace pericytes.
Collapse
|
13
|
Han Y, Chen Q, Zhang L, Dissanayaka WL. Indispensable Role of HIF-1α Signaling in Post-implantation Survival and Angio-/Vasculogenic Properties of SHED. Front Cell Dev Biol 2021; 9:655073. [PMID: 34368116 PMCID: PMC8343099 DOI: 10.3389/fcell.2021.655073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/21/2021] [Indexed: 11/16/2022] Open
Abstract
Objectives Post-implantation survival and timely vascularization of stem-cell based constructs are critical factors in achieving successful outcomes in tissue regeneration approaches. Hypoxia inducible factor-1α (HIF-1α) is known to mediate adaptive functions to ischemic stress in many different cell types. The current study aimed to explore the role of HIF-1α in post-implantation survival and angio-/vasculogenesis of stem cells from human exfoliated deciduous teeth (SHED). Methods HIF-1α in SHED was suppressed using siRNA or chemical inhibitor (YC-1) and used in Matrigel plug assay conducted on severe combined immunodeficient mice. The plugs were retrieved on day 3 or 7 post-injection and analyzed for hypoxia status, ki67 expression, DNA fragmentation (TUNEL), cellularity, and vascularization by histology and immunohistochemistry for CD31, HIF-1α, pyruvate dehydrogenase kinase-1 (PDK1), hexokinase 2 (HK2), and glucose transporter 1 (Glut1). Cell viability of HIF-1α silenced SHED under different stress conditions (hypoxia, H2O2, and low glucose) in vitro was measured by CCK-8 assay. CM-H2DCFDA and MitoSOX Red were used to detect cellular and mitochondrial reactive oxygen species (ROS) levels, respectively. PDK1, HK2, and Glut1 expression were measured by western blotting and immunofluorescence. Secretory protein levels of vascular endothelial growth factor (VEGF) and the respective paracrine effects on endothelial cell proliferation and migration were detected by ELISA, CCK-8 assay, and trans-well assay, respectively. Results Histological analysis of Matrigel plugs showed significantly reduced cell survival in HIF-1α silenced or chemically inhibited SHED groups, which could be attributed to diminished metabolic adaptations as shown by decreased PDK1, HK2, and Glut1 expression. HIF-1α inhibition in SHED also resulted in significantly low blood vessel formation as observed by a low number of perfused and non-perfused vessels of human or mouse CD31 origin. The viability of HIF-1α silenced SHED was significantly affected under hypoxia, H2O2, and low-glucose conditions in vitro, which was reflected in increased cytoplasmic and mitochondrial ROS levels. Significantly reduced levels of VEGF in HIF-1α silenced SHED resulted in decreased paracrine angiogenic effects as shown by low proliferation and migration of endothelial cells. Conclusion HIF-1α plays an indispensable role in post-implantation survival and angio-/vasculogenic properties of SHED by maintaining ROS homeostasis, inducing metabolic adaptations, and VEGF secretion.
Collapse
Affiliation(s)
- Yuanyuan Han
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Qixin Chen
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Lili Zhang
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
14
|
Shoushrah SH, Transfeld JL, Tonk CH, Büchner D, Witzleben S, Sieber MA, Schulze M, Tobiasch E. Sinking Our Teeth in Getting Dental Stem Cells to Clinics for Bone Regeneration. Int J Mol Sci 2021; 22:6387. [PMID: 34203719 PMCID: PMC8232184 DOI: 10.3390/ijms22126387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig- Strasse. 20, 53359 Rheinbach, Germany; (S.H.S.); (J.L.T.); (C.H.T.); (D.B.); (S.W.); (M.A.S.); (M.S.)
| |
Collapse
|
15
|
Asthmatic Eosinophils Promote Contractility and Migration of Airway Smooth Muscle Cells and Pulmonary Fibroblasts In Vitro. Cells 2021; 10:cells10061389. [PMID: 34199925 PMCID: PMC8229663 DOI: 10.3390/cells10061389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/25/2022] Open
Abstract
Enhanced contractility and migration of airway smooth muscle cells (ASMC) and pulmonary fibroblasts (PF) are part of airway remodeling in asthma. Eosinophils are the central inflammatory cells that participate in airway inflammation. However, the role of asthmatic eosinophils in ASMC and PF contractility, migration, and differentiation to contractile phenotype has not yet been precisely described. A total of 38 individuals were included in this study: 13 steroid-free non-severe allergic asthma (AA) patients, 11 severe non-allergic eosinophilic asthma (SNEA) patients, and 14 healthy subjects (HS). For AA patients and HS groups, a bronchial allergen challenge with D. pteronyssinus was performed. Individual combined cell cultures were prepared from isolated peripheral blood eosinophils and immortalized ASMC or commercial PF cell lines separately. The migration of ASMC and PF was evaluated using wound healing assay and contractility using collagen gel assay. Gene expression of contractile apparatus proteins, COL1A1, COL5A1, and FN, in ASMC and PF was evaluated using qRT-PCR. We found that contractility and migration of ASMC and PF significantly increased after incubation with asthmatic eosinophils compared to HS eosinophils, p < 0.05, and SNEA eosinophils demonstrated the highest effect on contractility of ASMC and migration of both cell lines, p < 0.05. AA and SNEA eosinophils significantly increased gene expression of contractile apparatus proteins, COL1A1 and FN, in both cell lines, p < 0.05. Furthermore, the allergen-activated AA eosinophils significantly increased the contractility of ASMC, and migration and gene expression in ASMC and PF, p < 0.05. Thus, asthmatic eosinophils change ASMC and PF behavior by increasing their contractility and migration, contributing to airway remodeling.
Collapse
|
16
|
Yin JY, Luo XH, Feng WQ, Miao SH, Ning TT, Lei Q, Jiang T, Ma DD. Multidifferentiation potential of dental-derived stem cells. World J Stem Cells 2021; 13:342-365. [PMID: 34136070 PMCID: PMC8176842 DOI: 10.4252/wjsc.v13.i5.342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/10/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Tooth-related diseases and tooth loss are widespread and are a major public health issue. The loss of teeth can affect chewing, speech, appearance and even psychology. Therefore, the science of tooth regeneration has emerged, and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology. As undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells (DMSCs), which are a desirable source of autologous stem cells, play a significant role in tooth regeneration. Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs. Moreover, DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency. This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like tissues, hepatic-like tissues, eye tissues and glands and the influence of various regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration. The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized, and the factors that regulate their differentiation can be well controlled.
Collapse
Affiliation(s)
- Jing-Yao Yin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Xing-Hong Luo
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Wei-Qing Feng
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Sheng-Hong Miao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Ting-Ting Ning
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| | - Qian Lei
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Tao Jiang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, China
| | - Dan-Dan Ma
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, China
| |
Collapse
|
17
|
Zhang Y, Liu J, Zou T, Qi Y, Yi B, Dissanayaka WL, Zhang C. DPSCs treated by TGF-β1 regulate angiogenic sprouting of three-dimensionally co-cultured HUVECs and DPSCs through VEGF-Ang-Tie2 signaling. Stem Cell Res Ther 2021; 12:281. [PMID: 33971955 PMCID: PMC8112067 DOI: 10.1186/s13287-021-02349-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background Maintaining the stability and maturation of blood vessels is of paramount importance for the vessels to carry out their physiological function. Smooth muscle cells (SMCs), pericytes, and mesenchymal stem cells (MSCs) are involved in the maturation process of the newly formed vessels. The aim of this study was to investigate whether transforming growth factor beta 1 (TGF-β1) treatment could enhance pericyte-like properties of dental pulp stem cells (DPSCs) and how TGF-β1-treated DPSCs for 7 days (T-DPSCs) stabilize the newly formed blood vessels. Methods We utilized TGF-β1 to treat DPSCs for 1, 3, 5, and 7 days. Western blotting and immunofluorescence were used to analyze the expression of SMC markers. Functional contraction assay was conducted to assess the contractility of T-DPSCs. The effects of T-DPSC-conditioned media (T-DPSC-CM) on human umbilical vein endothelial cell (HUVEC) proliferation and migration were examined by MTT, wound healing, and trans-well migration assay. Most importantly, in vitro 3D co-culture spheroidal sprouting assay was used to investigate the regulating role of vascular endothelial growth factor (VEGF)-angiopoietin (Ang)-Tie2 signaling on angiogenic sprouting in 3D co-cultured spheroids of HUVECs and T-DPSCs. Angiopoietin 2 (Ang2) and VEGF were used to treat the co-cultured spheroids to explore their roles in angiogenic sprouting. Inhibitors for Tie2 and VEGFR2 were used to block Ang1/Tie2 and VFGF/VEGFR2 signaling. Results Western blotting and immunofluorescence showed that the expression of SMC-specific markers (α-SMA and SM22α) were significantly increased after treatment with TGF-β1. Contractility of T-DPSCs was greater compared with that of DPSCs. T-DPSC-CM inhibited HUVEC migration. In vitro sprouting assay demonstrated that T-DPSCs enclosed HUVECs, resembling pericyte-like cells. Compared to co-culture with DPSCs, a smaller number of HUVEC sprouting was observed when co-cultured with T-DPSCs. VEGF and Ang2 co-stimulation significantly enhanced sprouting in HUVEC and T-DPSC co-culture spheroids, whereas VEGF or Ang2 alone exerted insignificant effects on HUVEC sprouting. Blocking Tie2 signaling reversed the sprouting inhibition by T-DPSCs, while blocking VEGF receptor (VEGFR) signaling boosted the sprouting inhibition by T-DPSCs. Conclusions This study revealed that TGF-β1 can induce DPSC differentiation into functional pericyte-like cells. T-DPSCs maintain vessel stability through Ang1/Tie2 and VEGF/VEGFR2 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02349-y.
Collapse
Affiliation(s)
- Yuchen Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Junqing Liu
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Ting Zou
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yubingqing Qi
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Baicheng Yi
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Waruna Lakmal Dissanayaka
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
18
|
Chen WJ, Xie J, Lin X, Ou MH, Zhou J, Wei XL, Chen WX. The Role of Small Extracellular Vesicles Derived from Lipopolysaccharide-preconditioned Human Dental Pulp Stem Cells in Dental Pulp Regeneration. J Endod 2021; 47:961-969. [PMID: 33775732 DOI: 10.1016/j.joen.2021.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Regenerative endodontics has created a desirable shift in the treatment paradigm despite current limitations of regenerative outcomes. Mesenchymal stem cells (MSCs) facilitate tissue regeneration and repair in a mild inflammatory environment. Small extracellular vesicles (sEVs) derived from MSCs play an imperative role in the paracrine modulation of regenerative responses modulated by MSCs. However, it remains unknown whether MSCs enhance dental pulp regeneration or whether this enhancement is mediated by sEVs in a mild inflammatory environment. The present study aimed to elucidate the effects of sEVs originated from lipopolysaccharide (LPS)-preconditioned human dental pulp stem cells (hDPSCs) on dental pulp regeneration. METHODS All sEVs were isolated from hDPSCs cultured with or without LPS (ie, N-sEVs and L-sEVs, respectively). The effect of N-sEVs and L-sEVs on proliferation, migration, angiogenesis, and differentiation of rat bone marrow MSCs was identified in vitro. Moreover, N-sEVs or L-sEVs were implanted into rat pulpless root canal models, and the regenerated tissue in root canals was assessed via hematoxylin-eosin staining, Masson staining, and immunohistochemistry after 30 days of transplantation. RESULTS Both N-sEVs and L-sEVs could modulate BMSC proliferation, migration, angiogenesis, and differentiation. Both kinds of sEVs enhanced the structure of the regenerated tissue closer to that of a normal dental pulp in vivo. L-sEVs had a more significant effect than N-sEVs. CONCLUSIONS sEVs released by hDPSCs in a mild inflammatory microenvironment are capable of facilitating the regeneration of dental pulp through functional healing instead of scar healing, which has potential applications in regenerative endodontics.
Collapse
Affiliation(s)
- Wen-Jin Chen
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Jing Xie
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Xi Lin
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Ming-Hang Ou
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Jun Zhou
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Xiao-Lang Wei
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China
| | - Wen-Xia Chen
- Conservative Dentistry & Endodontics Department, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi, China; Guangxi Health Commission Key Laboratory of prevention and treatment for oral infectious diseases, Guangxi, China.
| |
Collapse
|
19
|
Human Dental Pulp-Derived Mesenchymal Stem Cell Potential to Differentiate into Smooth Muscle-Like Cells In Vitro. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8858412. [PMID: 33553433 PMCID: PMC7846403 DOI: 10.1155/2021/8858412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022]
Abstract
Previous studies have shown that mesenchymal stem cells (MSCs) derived from various tissue sources can be differentiated into smooth muscle-like cells (SMLCs) in vitro. In this paper, dental pulp-derived mesenchymal stem cells (DPSCs) were evaluated for their differentiation ability towards smooth muscle-like cells (SMLCs) under the effect of widely used cytokines (TGF-β1 and PDGF-BB) with special focus on different culturing environments. For this purpose, both the commercially used culturing plates (Norm-c) and 0.1% gelatin-precoated (Gel-c) plates were used. Isolated cells displayed plastic adherence, pluripotency and cell surface marker profiling, and adipogenic and osteogenic differentiation potential with lineage specific marker expression. Differentiated cells induced under different culturing plates showed successful differentiation into SMLCs by positively expressing smooth muscle cell (SMC) specific markers both at the mRNA and protein levels. Gelatin coating could substantially enhance DPSC differentiation potential than Norm-c-induced cells. However, the absence of mature marker MHY-11 by immunostaining results from all treatment groups further indicated the development of immature and synthetic SMLCs. Finally, it was concluded that DPSC differentiation ability into SMLCs can be enhanced under cytokine treatment as well as by altering the cellular niche by precoating the culturing plates with suitable substrates. However, to get fully functional, contractile, and mature SMLCs, still many different cytokine cocktail combinations and more suitable coating substrates will be needed.
Collapse
|
20
|
Yi B, Dissanayaka WL, Zhang C. Growth Factors and Small-molecule Compounds in Derivation of Endothelial Lineages from Dental Stem Cells. J Endod 2020; 46:S63-S70. [PMID: 32950197 DOI: 10.1016/j.joen.2020.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Incorporating fully assembled microvascular networks into bioengineered dental pulp constructs can significantly enhance functional blood flow and tissue survival upon transplantation. Endothelial cells (ECs), cellular building blocks of vascular tissue, play an essential role in the process of prevascularization. However, obtaining sufficient ECs from a suitable source for translational application is challenging. Dental stem cells (DSCs), which exhibit a robust proliferative ability and immunocompatibility because of their autologous origin, could be a promising alternative cell source for the derivation of endothelial lineages. Under specific culture conditions, DSCs differentiate into osteo/odontogenic, adipogenic, chondrogenic, and neurogenic cell lineages. METHODS Recently, a new approach has been developed to directly reprogram cells using chemical cocktails and growth factors. Compared with the traditional reprogramming approach based on the forced expression of exogenous transcription factors, the chemical strategy avoids the risk associated with lentiviral transduction while offering a more viable methodology to drive cell lineage switch. The aim of this review was to unveil the concept of the use of small-molecule compounds and growth factors modulating key signaling pathways to derive ECs from DSCs. RESULTS In addition, our preliminary study showed that stem cells from the apical papilla could be induced into EC-like cells using small-molecule compounds and growth factors. These EC-like cells expressed endothelial specific genes (CD31 and VEGFR2) and proteins (CD31, VEGF receptor 2, and vascular endothelial cadherin) as well as gave rise to vessel-like tubular structures in vitro. CONCLUSIONS Our preliminary results suggest that chemical reprogramming might offer a novel way to generate EC-like cells from dental stem cells.
Collapse
Affiliation(s)
- Baicheng Yi
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Waruna Lakmal Dissanayaka
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Chengfei Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Special Administrative Region, China.
| |
Collapse
|
21
|
Yan D, Liu X, Xu H, Guo SW. Platelets induce endothelial-mesenchymal transition and subsequent fibrogenesis in endometriosis. Reprod Biomed Online 2020; 41:500-517. [PMID: 32709523 DOI: 10.1016/j.rbmo.2020.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/07/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
RESEARCH QUESTION Do endometriotic lesions undergo endothelial-mesenchymal transition (EndoMT)? DESIGN Lesion samples from 30 patients with ovarian endometriomas and deep endometriosis, and control endometrial tissue samples from 30 women without endometriosis, were analysed. In-vitro experimentation using the human umbilical vein endothelial cell (HUVEC) line were conducted. Immunofluorescence staining and immunohistochemistry analysis using antibodies against endothelial cell and mesenchymal cell markers were conducted. The HUVEC cells were co-cultured with activated platelets or control medium with and without neutralization of TGF-β1 PDGFR, or both. Their morphology, proliferation and expression levels of genes and proteins known to be involved in EndoMT were evaluated, along with their migratory and invasive propensity, contractility and collagen production capability. RESULTS The proportion of CD31 and FSP-1 dual-positive cells in FSP-1+ fibroblasts was 74.7% (±5.4%) in ovarian endometrioma lesions, significantly higher than that in deep endometriosis lesions (26.8% ± 26.0%; P = 5.7 × 10-5), and was zero in normal endometrium. The extent of lesional fibrosis correlated positively with staining levels of the lesional mesenchymal markers FSP-1 and α-SMA (r = 0.91; P < 2.2 × 10-16, r = 0.81; P = 5.8 × 10-15, respectively). Human endothelial cells co-cultured with activated platelets acquire a morphology suggestive of EndoMT, concomitant with increased proliferation, loss of CD31 but marked increase in expression of mesenchymal markers. Morphological and gene and protein expression changes are accompanied by functional differentiation reflected by increased migratory and invasive capacity, contractility and collagen production. Neutralization of TGF-β1 and PDGFR signalling abolished platelet-induced EndoMT in human endothelial cells. CONCLUSIONS Multiple sources of myofibroblasts exist in endometriotic lesions, and implicates platelets, EndoMT, or both, as potential therapeutic targets for treating endometriosis.
Collapse
Affiliation(s)
- Dingmin Yan
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Xishi Liu
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China
| | - Hong Xu
- Department of Obstetrics and Gynecology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 100045, China
| | - Sun-Wei Guo
- Shanghai Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
22
|
Han Y, Gong T, Zhang C, Dissanayaka WL. HIF-1α Stabilization Enhances Angio-/Vasculogenic Properties of SHED. J Dent Res 2020; 99:804-812. [PMID: 32298193 DOI: 10.1177/0022034520912190] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The outcome of regenerative procedures could be augmented by enhancing the biological performances of stem cells prior to their transplantation. The current study aimed to investigate whether hypoxic preconditioning through stabilization of hypoxia-inducible factor 1α (HIF-1α) could enhance the angio-/vasculogenic properties of stem cells from human exfoliated deciduous teeth (SHED). HIF-1α expression in SHED under normoxia was stabilized by silencing the expression of prolyl hydroxylase domain-containing protein 2 (PHD2) via lentiviral small hairpin RNA. This in turn significantly increased the expression of an angiogenic factor: vascular endothelial growth factor. Conditioned medium of HIF-1α-stabilized SHED increased the migration and proliferation of human umbilical vein endothelial cells (HUVECs), indicating enhanced paracrine signaling of SHED following PHD2 knockdown (P < 0.05). Furthermore, the coculture of HIF-1α-stabilized SHED with HUVECs directly and in fibrin beads demonstrated significantly longer vascular sprouts through juxtacrine and paracrine effects (P < 0.05). When HIF-1α-stabilized SHED were added to a preformed HUVEC vascular tube network on Matrigel, it not only stabilized the vessels, as shown by the increased thickness (P < 0.05) and junctional area (P < 0.01) of tubes, but also gave rise to new sprouting (P < 0.01). This observation, with the morphologic changes and increased CD31 expression, suggested that HIF-1α stabilization enhanced the endothelial differentiation capacity of SHED through autocrine signaling. In vivo Matrigel plug assay demonstrated that HIF-1α-stabilized SHED alone could give rise to a vasculature that was significantly higher than that of control SHED ± HUVECs and similar to that of HIF-1α-stabilized SHED + HUVECs. In addition to vasculogenesis by endothelial differentiation, HIF-1α-stabilized SHED recruited host blood vessels into the implant by exerting a significant paracrine effect. Taken together, our results confirmed that HIF-1α-stabilized SHED could replace the function of HUVECs and act as the sole cell source of vascularization. Thus, targeting PHD2 to stabilize HIF-1α expression is an appealing strategy that enables the use of a single cell source for achieving vascularized tissue regeneration.
Collapse
Affiliation(s)
- Y Han
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - T Gong
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - C Zhang
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| | - W L Dissanayaka
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR
| |
Collapse
|
23
|
Li HT, Liu Y, Liu H, Sun X. Effect for Human Genomic Variation During the BMP4-Induced Conversion From Pluripotent Stem Cells to Trophoblast. Front Genet 2020; 11:230. [PMID: 32318089 PMCID: PMC7154154 DOI: 10.3389/fgene.2020.00230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/26/2020] [Indexed: 12/19/2022] Open
Abstract
The role of genomic variation in differentiation is currently not well understood. Here, the genomic variations were determined with the whole-genome sequencing for three pairs of pluripotent stem cell lines and their corresponding BMP4-induced trophoblast cell lines. We identified ∼3,500 single nucleotide variations and ∼4,500 indels by comparing the genome sequenced data between the stem cell lines and the matched BMP4-induced trophoblast cell lines and annotated them by integrating the epigenomic and transcriptomic datasets. Relatively, introns enrich more variations. We found ∼45% (42 genes) of the differentially expressed genes in trophoblasts that associate genomic variations. Six variations, located at transcription factor binding sites where H3K4me3 and H3K27ac are enriched in both H1 and H1_BMP4, were identified. The epigenetic status around the genomic variations in H1 was similar to that in H1_BMP4. This means that the variation-associated gene’s expression change can not be attributed to epigenetic alteration. The genes associated with the six variations were upregulated in differentiation. We inferred that during the differentiation, an increased in the expression level of the MEF2C gene is due to a genomic variation in chromosomes 5: 88179358 A > G, which is at a binding site of TFs KLF16, NR2C2, and ZNF740 to MEF2C. Allele G shows a higher affinity to the TFs in the induced cells. The increased expression of MEF2C leads to an increased expression of TF MEF2C’s target genes, subsequently affecting the differentiation. Although genomic variation should not be a dominant factor in differentiation, we believe that genomic variation could indeed play a role in the differentiation from stem cells into trophoblast.
Collapse
Affiliation(s)
- Hai-Tao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yajun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University Translational Medicine Platform, Zhengzhou University, Zhengzhou, China
| | - Hongde Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
24
|
Naduthottathil MR, Avolio E, Carrabba M, Davis S, Caputo M, Madeddu P, Su B. The Effect of Matrix Stiffness of Biomimetic Gelatin Nanofibrous Scaffolds on Human Cardiac Pericyte Behavior. ACS APPLIED BIO MATERIALS 2019; 2:4385-4396. [PMID: 35021398 DOI: 10.1021/acsabm.9b00608] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Congenital heart disease (CHD) is the most common and deadly congenital anomaly, accounting for up to 7.5% of all infant deaths. Survival in children born with CHD has improved dramatically over the past several decades (this positive trend being counterbalanced by the fact that more patients develop heart failure). Seminal data indicate an alteration of the extracellular matrix occurs with time in these hearts due to diffuse and abundant interstitial fibrosis. This results in an escalation in the stiffness of the local myocardial microenvironment. However, the influence of matrix stiffness in regulating the function of resident human stromal cells has not been reported. The objective of this study was to determine the impact of scaffold stiffness on the antigenic and functional profile of cardiac pericytes (CPs) isolated from patients with CHD. To this end, we have first manufactured gelatin nanofibrous scaffolds with varying degrees of stiffness using an in situ cross-linking electrospinning technique in a pure water solvent system. We assessed Young's modulus and performed a comprehensive physicochemical characterization of the scaffolds employing scanning electron microscopy and Fourier transform infrared spectroscopy. We next evaluated the changes induced by a different scaffold stiffness on CP morphology, antigenic profile, viability, proliferation, angiocrine activity, and induced differentiation. Results indicate that soft matrixes with a fiber diameter of ∼400 nm increase CP proliferation, secretion of angiopoietin 2, and F-actin stress fiber formation, without affecting the antigenic profile, viability, or differentiation. These data indicate for the first time that human CPs can be functionally influenced by slight changes in matrix stiffness. The study elucidates the importance of mechanical/morphological cues in modulating the behavior of stromal cells isolated from patients with CHD.
Collapse
Affiliation(s)
- Mincy Raj Naduthottathil
- Bristol Centre for Functional Nanomaterials (BCFN), University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Elisa Avolio
- Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom
| | - Michele Carrabba
- Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom
| | - Sean Davis
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Massimo Caputo
- Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom
| | - Paolo Madeddu
- Bristol Medical School, University of Bristol, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom
| | - Bo Su
- Bristol Dental School, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom
| |
Collapse
|
25
|
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 2019; 76:3479-3496. [PMID: 31049600 PMCID: PMC6697717 DOI: 10.1007/s00018-019-03104-6] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Abnormal placentation is considered as an underlying cause of various pregnancy complications such as miscarriage, preeclampsia and intrauterine growth restriction, the latter increasing the risk for the development of severe disorders in later life such as cardiovascular disease and type 2 diabetes. Despite their importance, the molecular mechanisms governing human placental formation and trophoblast cell lineage specification and differentiation have been poorly unravelled, mostly due to the lack of appropriate cellular model systems. However, over the past few years major progress has been made by establishing self-renewing human trophoblast stem cells and 3-dimensional organoids from human blastocysts and early placental tissues opening the path for detailed molecular investigations. Herein, we summarize the present knowledge about human placental development, its stem cells, progenitors and differentiated cell types in the trophoblast epithelium and the villous core. Anatomy of the early placenta, current model systems, and critical key regulatory factors and signalling cascades governing placentation will be elucidated. In this context, we will discuss the role of the developmental pathways Wingless and Notch, controlling trophoblast stemness/differentiation and formation of invasive trophoblast progenitors, respectively.
Collapse
Affiliation(s)
- Martin Knöfler
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria.
| | - Sandra Haider
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Leila Saleh
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Jürgen Pollheimer
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Teena K J B Gamage
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
Zhou C, Li J, Liu L, Tang Z, Wan F, Lan L. Expression and localization of MrgprD in mouse intestinal tract. Cell Tissue Res 2019; 377:259-268. [PMID: 30919047 PMCID: PMC6647478 DOI: 10.1007/s00441-019-03017-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/09/2019] [Indexed: 12/16/2022]
Abstract
MrgprD, a Mas-related G protein-coupled receptor, is initially identified in sensory neurons of mouse dorsal root ganglia (DRG) and has been suggested to participate in somatosensation. However, MrgprD has recently been found to be expressed outside the nervous system such as in aortic endothelia cells and neutrophils. In this study, we used immunohistochemistry to detect the expression and localization of MrgprD in mouse intestinal tract. The immunoreactivity (IR) of MrgprD was found in the smooth muscle layers of small intestine, colon and rectum. In addition, MrgprD IR was colocalized with F4/80-positive macrophages and CD3-positive T lymphocytes resident in the lamina propria of intestinal mucosa. MrgprD was also found to be expressed in primary peritoneal macrophages and splenic T lymphocytes. Furthermore, the presence of MrgprD mRNA and its protein was detected in murine macrophage-like RAW 264.7 and human T lymphocyte Jurkat cell lines. Our study shows, for the first time, the expression and localization of MrgprD in the intestinal tract and in macrophages and T lymphocytes, indicating the potential roles of MrgprD in intestinal mobility and immunity.
Collapse
Affiliation(s)
- Chenxing Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu People’s Republic of China
| | - Jia Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu People’s Republic of China
| | - Lin Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu People’s Republic of China
| | - Zongxiang Tang
- Key Laboratory of Chinese Medicine for Prevention and Treatment of Neurological Diseases, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu People’s Republic of China
| | - Fengyi Wan
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205 USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205 USA
| | - Lei Lan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 Jiangsu People’s Republic of China
| |
Collapse
|
27
|
Gong T, Xu J, Heng B, Qiu S, Yi B, Han Y, Lo ECM, Zhang C. EphrinB2/EphB4 Signaling Regulates DPSCs to Induce Sprouting Angiogenesis of Endothelial Cells. J Dent Res 2019; 98:803-812. [PMID: 31017515 DOI: 10.1177/0022034519843886] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are capable of facilitating angiogenesis resembling pericytes when located adjacent to endothelial cells (ECs). Nevertheless, the precise mechanisms orchestrating their proangiogenic functions remain unclear. Using a 3-dimensional (3-D) fibrin gel model, we aimed to investigate whether EphrinB2/EphB4 signaling in DPSCs plays a role in supporting vascular morphogenesis mediated by ECs, together with the underlying mechanism involved. The EphrinB2/EphB4 signaling was inhibited either by a pharmacological inhibitor of EphB4 receptor or by knocking down the expressions of EphrinB2 and EphB4 using lentiviral small hairpin RNA (shRNA). DPSCs were either encapsulated in fibrin gel together with human umbilical vein endothelial cells (HUVECs) or cultured as a monolayer on top of HUVECs to investigate both paracrine and juxtacrine interactions simultaneously. Following 10 d of direct coculture, we found that pharmacological inhibition of EphrinB2/EphB4 signaling severely impaired vessel formation and laminin deposition. When directly cocultured with HUVECs, knockdown of EphrinB2 or EphB4 in DPSCs significantly inhibited endothelial sprouting, resulting in less capillary sprouts with reduced vessel length (P < 0.05). By contrast, when DPSCs were not in direct contact with HUVECs, attenuation of EphrinB2 or EphB4 expression levels in DPSCs did not exert any significant effects on capillary morphogenesis. Noticeably, exogenous stimulation with soluble EphrinB2-Fc or EphB4-Fc (1 µg/mL) enhanced vascular endothelial growth factor (VEGF) secretion from DPSCs, thereby moderately promoting angiogenic cascades in the fibrin matrix. This study, for the first time, reveals a crucial role of EphrinB2/EphB4 signaling in regulating the capacity of DPSCs to induce sprouting angiogenesis. These findings advance our understanding of postnatal angiogenesis and may have future regenerative medicine applications.
Collapse
Affiliation(s)
- T Gong
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,4 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - J Xu
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - B Heng
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - S Qiu
- 2 Shenzhen Key Laboratory of ENT, Institute of ENT & Longgang ENT Hospital, Shenzhen, China
| | - B Yi
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Y Han
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - E C M Lo
- 3 Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Zhang
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Pokfulam, Hong Kong, China.,4 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| |
Collapse
|
28
|
Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Am J Cancer Res 2019; 9:2694-2711. [PMID: 31131062 PMCID: PMC6525984 DOI: 10.7150/thno.31801] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
A stem cell-mediated bioengineered tooth root (bio-root) has proven to be a prospective tool for the treatment of tooth loss. As shown in our previous studies, dental follicle cells (DFCs) are suitable seeding cells for the construction of bio-roots. However, the DFCs which can only be obtained from unerupted tooth germ are restricted. Stem cells from human exfoliated deciduous teeth (SHEDs), which are harvested much more easily through a minimally invasive procedure, may be used as an alternative seeding cell. In this case, we compared the odontogenic characteristics of DFCs and SHEDs in bio-root regeneration. Methods: The biological characteristics of SHEDs and DFCs were determined in vitro. The cells were then induced to secrete abundant extracellular matrix (ECM) and form macroscopic cell sheets. We combined the cell sheets with treated dentin matrix (TDM) for subcutaneous transplantation into nude mice and orthotopic jaw bone implantation in Sprague-Dawley rats to further verify their regenerative potential. Results: DFCs exhibited a higher proliferation rate and stronger osteogenesis and adipogenesis capacities, while SHEDs displayed increased migration ability and excellent neurogenic potential. Both dental follicle cell sheets (DFCSs) and sheets of stem cells from human exfoliated deciduous teeth (SHEDSs) expressed not only ECM proteins but also osteogenic and odontogenic proteins. Importantly, similar to DFCSs/TDM, SHEDSs/TDM also successfully achieved the in vivo regeneration of the periodontal tissues, which consist of periodontal ligament fibers, blood vessels and new born alveolar bone. Conclusions: Both SHEDs and DFCs possessed a similar odontogenic differentiation capacity in vivo, and SHEDs were regarded as a prospective seeding cell for use in bio-root regeneration in the future.
Collapse
|
29
|
Boss AL, Chamley LW, James JL. Placental formation in early pregnancy: how is the centre of the placenta made? Hum Reprod Update 2019; 24:750-760. [PMID: 30257012 DOI: 10.1093/humupd/dmy030] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Correct development of the placenta is critical to establishing pregnancy and inadequate placentation leads to implantation failure and miscarriage, as well as later gestation pregnancy disorders. Much attention has been focused on the placental trophoblasts and it is clear that the trophoblast lineages arise from the trophectoderm of the blastocyst. In contrast, the cells of the placental mesenchyme are thought to arise from the inner cell mass, but the details of this process are limited. Due to ethical constraints and the inaccessibility of very early implantation tissues, our knowledge of early placentation has been largely based on historical histological sections. More recently, stem cell technologies have begun to shed important new light on the origins of the placental mesenchymal lineages. OBJECTIVE AND RATIONALE This review aims to amalgamate the older and more modern literature regarding the origins of the non-trophoblast lineages of the human placenta. We highlight ways in which rapidly developing stem cell technologies may shed new light on these crucial peri-implantation events. SEARCH METHODS Relevant articles were identified using the PubMed database and Google Scholar search engines. A pearl growing method was used to expand the scope of papers relevant to the cell differentiation events of non-trophoblast placental lineages. OUTCOMES At the start of pregnancy, cells of the extraembyronic mesoderm migrate to underlie the primitive trophoblast layers forming the first placental villi. The mesenchymal cells in the villus core most likely originate from the hypoblast of the embryo, but whether cells from the epiblast also contribute is yet to be determined. This is important because, following the formation of the villus core, vasculogenesis and haematopoiesis take place in the nascent placenta before it is connected to the embryonic circulation, making it likely that haematopoietic foci, placental macrophages, endothelial cells and vascular smooth muscle cells all arise in the placenta de novo. Evidence from the stem cell field indicates that these cells could directly differentiate from the extraembryonic mesoderm. However, the lineage hierarchy involved in cell fate decisions has not been well-established. Mesodermal progenitors capable of differentiating into both vascular and haematopoietic lineages can be derived from human embryonic stem cells, but the identification of such stem cells in the placenta is lacking. Future work profiling rare progenitor populations in early placentae will aid our understanding of early placentation. WIDER IMPLICATIONS Understanding the origins of the cell lineages of the normal placenta will help us understand why so many pregnancies fail and address mechanisms that may salvage some of these losses.
Collapse
Affiliation(s)
- Anna L Boss
- Department of Obstetrics and Gynecology, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynecology, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynecology, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| |
Collapse
|
30
|
Gupta P, Moses JC, Mandal BB. Surface Patterning and Innate Physicochemical Attributes of Silk Films Concomitantly Govern Vascular Cell Dynamics. ACS Biomater Sci Eng 2018; 5:933-949. [PMID: 33405850 DOI: 10.1021/acsbiomaterials.8b01194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional impairment of vascular cells is associated with cardiovascular pathologies. Recent literature clearly presents evidence relating cell microenvironment and their function. It is crucial to understand the cell-material interaction while designing a functional tissue engineered vascular graft. Natural silk biopolymer has shown potential for various tissue-engineering applications. In the present work, we aimed to explore the combinatorial effect of variable innate physicochemical properties and topographies of silk films on functional behavior of vascular cells. Silk proteins from different varieties (mulberry Bombyx mori, BM; and non-mulberry Antheraea assama, AA) possess unique inherent amino acid composition that leads to variable surface properties (roughness, wettability, chemistry, and mechanical stiffness). In addition, we engineered the silk film surfaces and printed a microgrooved pattern to induce unidirectional cell orientation mimicking their native form. Patterned silk films induced unidirectional alignment of porcine vascular cells. Regardless of alignment, endothelial cells (ECs) proliferated favorably on AA films; however, it suppressed production of nitric oxide (NO), an endogenous vasodilator. Unidirectional alignment of smooth muscle cells (SMCs) encouraged contractile phenotype as indicated by minimal cell proliferation, increment of quiescent (G0) phase cells, and upregulation of contractile genes. Moderately hydrophilic flat BM films induced cell aggregation and augmented the expression of contractile genes (for SMCs) and endothelial nitric oxide synthase, eNOS (for ECs). Functional studies further confirmed SMCs' alignment improving collagen production, remodeling ability (matrix metalloproteinase, MMP-2 and MMP-9 production) and physical contraction. Altogether, this study confirms vascular cells' functional behavior is crucially regulated by synergistic effect of their alignment and cell-substrate interfacial properties.
Collapse
Affiliation(s)
- Prerak Gupta
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Joseph Christakiran Moses
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
31
|
Wang P, Zhu S, Yuan C, Wang L, Xu J, Liu Z. Shear stress promotes differentiation of stem cells from human exfoliated deciduous teeth into endothelial cells via the downstream pathway of VEGF-Notch signaling. Int J Mol Med 2018; 42:1827-1836. [PMID: 30015843 PMCID: PMC6108868 DOI: 10.3892/ijmm.2018.3761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/21/2018] [Indexed: 12/31/2022] Open
Abstract
Effects of shear stress on endotheliaxl differentiation of stem cells from human exfoliated deciduous teeth (SHEDs) were investigated. SHEDs were treated with shear stress, then reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to analyse the mRNA expression of arterial markers and western blot analysis was performed to analyse protein expression of angiogenic markers. Additionally, in vitro matrigel angiogenesis assay was performed to evaluate vascular-like structure formation. The secreted protein expression levels of the vascular endothelial growth factor (VEGF) of SHEDs after shear stress was also quantified using corresponding ELISA kits. Untreated SHEDs seeded on Matrigel cannot form vessel-like structures at any time points, whereas groups treated with shear stress formed a few vessel-like structures at 4, 8 and 12 h. When SHEDs were treated with EphrinB2-siRNA for 24, the capability of vessel-like structure formation was suppressed. After being treated with shear stress, the expression of VEGF, VEGFR2, DLL4, Notch1, EphrinB2, Hey1 and Hey2 (arterial markers) gene expression was significantly upregulated, moreover, the protein levels of VEGFR2, EphrinB2, CD31, Notch1, DLL4, Hey1, and Hey2 were also significantly up-regulated. Both the mRNA and protein expression levels of EphB4 (venous marker) were downregulated. The average VEGF protein concentration in supernatants secreted by shear stress treated SHEDs groups increased significantly. In conclusion, shear stress was able to induce arterial endothelial differentiation of stem cells from human exfoliated deciduous teeth, and VEGF-DLL4/Notch‑EphrinB2 signaling was involved in this process.
Collapse
Affiliation(s)
- Penglai Wang
- Dental Implant Center, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| | - Shaoyue Zhu
- Department of Orthodontics, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| | - Changyong Yuan
- Dental Implant Center, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| | - Lei Wang
- Department of Periodontics, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| | - Jianguang Xu
- The Discipline of Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Zongxiang Liu
- Department of ExperDignosis, Xuzhou Stomatological Hospital, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|
32
|
Tang X, Li B, Ding J, Zhang L, Zhu L. A gene expression profile analysis of the differentiation of muscle-derived stem cells into smooth muscle cells from sheep. Am J Transl Res 2018; 10:1195-1204. [PMID: 29736212 PMCID: PMC5934578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To analyze gene expression profiles analysis during the differentiation of sheep muscle-derived stem cells (MDSCs) into smooth muscle cells (SMCs) in sheep. METHODS A modified preplate technique was employed to isolation of the MDSCs from sheep. The MDSCs were subjected to flow cytometry analysis targeting CD44, CD31, CD45, CD14, and CD49f and were treated with TGF-β1 at a concentration of 10 ng/ml for ten days. The expression levels of smooth muscle α-actin (α-SMA) and calponin after treatment with TGF-β1 were determined by western blotting and immunofluorescence staining. A microarray analysis was performed to screen for differentially expressed genes (DEGs) during MDSC differentiation using total RNA extracted from MDSCs and SMCs generated from MDSCs. Molecule Annotation System (MAS) 3.0, which employs KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) Consortium annotations, was used to identify global biological trends in the gene expression data. RESULTS The expression levels of the SMC-specific contractile proteins α-SMA and calponin were dramatically increased after treatment with TGF-β1. Immunofluorescece staining showed that the TGF-β1-treated MDSCs were positive for α-SMA. We identified 486 genes that were differentially expressed between the MDSCs and TGF-β1-treated MDSCs. 260 of which were up-regulated and 226 of which were down-regulated. Twenty-one genes exhibited a greater than ten-fold change, 13 of which were up-regulated and 8 of which were down-regulated. TGF-β1 treatment up-regulated both the SMAD and MAPK signaling pathways during the differentiation of these sheep cells. The PPAR and Wnt signaling pathways were also found to be involved in the differentiation process. CONCLUSIONS TGF-β1 can successfully induce the differentiation of sheep MDSCs into SMCs. For the first time, we analyzed the gene expression profiles associated with this differentiation process, and the results showed that both the SMAD and MAPK signaling pathways are involved. This study indicated that multiple signaling networks coordinate the development and differentiation of MDSCs into SMCs.
Collapse
Affiliation(s)
- Xiang Tang
- Department of Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical UniversityGuangzhou, China
| | - Bin Li
- Department of Gynecology and Obstetrics, Shaanxi Provincial People’s HospitalXi’an, China
| | - Jing Ding
- Department of Gynecology, Harbin Medical University Cancer HospitalHarbin, China
| | - Lei Zhang
- Department of Gynecology and Obstetrics, Peking University First HospitalPeking, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical SciencesBeijing, China
| |
Collapse
|
33
|
Dou L, Yan Q, Liang P, Zhou P, Zhang Y, Ji P. iTRAQ-Based Proteomic Analysis Exploring the Influence of Hypoxia on the Proteome of Dental Pulp Stem Cells under 3D Culture. Proteomics 2018; 18. [PMID: 29327447 DOI: 10.1002/pmic.201700215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Indexed: 12/14/2022]
Abstract
Hypoxic preconditioning is commonly applied to enhance mesenchymal stem cells (MSCs) therapeutic effect before transplantation. Elucidating the effect of hypoxic preconditioning would be beneficial for improved application. However, the influence of hypoxia on dental tissue derived MSCs cultured in 3D was unknown. Thus, the present study is to investigate gene expression and proteome of dental pulp stem cells (DPSCs) after hypoxic preconditioning. DPSCs were isolated, cultured in a 3D system under the normoxic and hypoxic conditions. The gene expression was examined with reverse transcription polymerase chain reaction, and the proteome was analyzed using iTRAQ-based mass spectrometry. The expressions of HIF-1α, VEGFA, KDR at mRNA level was upregulated while BMP-2 was downregulated. Two thousand one hundred and fifteen proteins were identified and 57 proteins exhibited significant differences after hypoxic preconditioning (30 up-regulated, 27 down-regulated). Bioinformatic analysis revealed the majority of up-regulated proteins are involved in cellular process, angiogenesis, protein binding and transport, regulation of response to stimulus, metabolic processes, and immune response. Increased IL-6 and decreased TGF-1β protein expression under hypoxic condition were verified by ELISA. Hypoxic preconditioning partly affected the gene and protein expression in DPSCs under 3D culture and may enhance the efficacy of MSCs transplantation.
Collapse
Affiliation(s)
- Lei Dou
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Qifang Yan
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Panpan Liang
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Pengfei Zhou
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Yan Zhang
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| | - Ping Ji
- Stomatological hospital of Chongqing medical university, Chongqing, P. R. China.,Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, P. R. China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, P. R. China
| |
Collapse
|
34
|
Xu JG, Gong T, Wang YY, Zou T, Heng BC, Yang YQ, Zhang CF. Inhibition of TGF-β Signaling in SHED Enhances Endothelial Differentiation. J Dent Res 2017; 97:218-225. [PMID: 28972822 DOI: 10.1177/0022034517733741] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Low efficiency of deriving endothelial cells (ECs) from adult stem cells hampers their utilization in tissue engineering studies. The purpose of this study was to investigate whether suppression of transforming growth factor beta (TGF-β) signaling could enhance the differentiation efficiency of dental pulp-derived stem cells into ECs. We initially used vascular endothelial growth factor A (VEGF-A) to stimulate 2 dental pulp-derived stem cells (dental pulp stem cells and stem cells from human exfoliated deciduous teeth [SHED]) and compared their differentiation capacity into ECs. We further evaluated whether the vascular endothelial growth factor receptor I (VEGF-RI)-specific ligand placental growth factor-1 (PlGF-1) could mediate endothelial differentiation. Finally, we investigated whether the TGF-β signaling inhibitor SB-431542 could enhance the inductive effect of VEGF-A on endothelial differentiation, as well as the underlying mechanisms involved. ECs differentiated from dental pulp-derived stem cells exhibited the typical phenotypes of primary ECs, with SHED possessing a higher endothelial differentiation potential than dental pulp stem cells. VEGFR1-specific ligand-PLGF exerted a negligible effect on SHED-ECs differentiation. Compared with VEGF-A alone, the combination of VEGF-A and SB-431542 significantly enhanced the endothelial differentiation of SHED. The presence of SB-431542 inhibited the phosphorylation of Suppressor of Mothers Against Decapentaplegic 2/3 (SMAD2/3), allowing for VEGF-A-dependent phosphorylation and upregulation of VEGFR2. Our results indicate that the combination of VEGF-A and SB-431542 could enhance the differentiation of dental pulp-derived stem cells into endothelial cells, and this process is mediated through enhancement of VEGF-A-VEGFR2 signaling and concomitant inhibition of TGF-β-SMAD2/3 signaling.
Collapse
Affiliation(s)
- J G Xu
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - T Gong
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,2 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - Y Y Wang
- 3 Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, China
| | - T Zou
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,2 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - B C Heng
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,2 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| | - Y Q Yang
- 4 Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - C F Zhang
- 1 Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.,2 HKU Shenzhen Institute of Research and Innovation, Hong Kong, China
| |
Collapse
|