1
|
Wang R, Lv Y, Dou T, Yang Q, Yu C, Guan Q. Autoimmune thyroid disease and ovarian hypofunction: a review of literature. J Ovarian Res 2024; 17:125. [PMID: 38877588 PMCID: PMC11177435 DOI: 10.1186/s13048-024-01451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Thyroid hormones(THs) are essential for the proper functioning of the ovaries, and multiple studies have shown that thyroid abnormalities, especially during adolescence and reproductive age, can lead to lifelong ovarian dysfunction. Autoimmune thyroid disease (AITD), one of the most common organ specific autoimmune diseases, is mainly mediated by cellular autoimmune reactions, and has strong inflammatory infiltration and immune active cells, including chemokines and cytokines, which are important components of ovarian aging. This suggests that autoimmune and inflammatory molecular processes may play a role in the emergence of ovarian dysfunction. The purpose of this review is to summarize recent in vivo and in vitro evidence of a complex relationship between AITD and ovarian dysfunction. AITD is closely related to the decline of ovarian function from the perspective of antibody, cytokine, oxidative stress, and genetic factors. Finally, some of the currently known treatments for AITD and hypo ovarian disease are summarized.
Collapse
Affiliation(s)
- Ru Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Youyuan Lv
- Internal Medicine Department of the Second Affiliated Hospital of Shandong University, Jinan, 250021, Shandong, China
| | - Tao Dou
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Qian Yang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China
| | - Chunxiao Yu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| | - Qingbo Guan
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging,Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital of Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic Diseases, Jinan, 250021, Shandong, China.
| |
Collapse
|
2
|
Nabil Salama A, Badr EAEF, Holah NS, El Barbary AA, Hessien M. Conservative Hypomethylation of Mesenchymal Stem Cells and Their Secretome Restored the Follicular Development in Cisplatin-Induced Premature Ovarian Failure Mice. Reprod Sci 2024; 31:1053-1068. [PMID: 37957472 PMCID: PMC10959784 DOI: 10.1007/s43032-023-01389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Premature ovarian failure (POF) is one of the main causes of infertility in women under the age of 40 years. Recently, epigenetic reprogramming, particularly DNA hypomethylation, has emerged as a promising strategy to enhance the therapeutic potential of mesenchymal stem cells (MSCs). Thus, it is crucial to elucidate how far global hypomethylation of MSCs genome can maintain their pluripotency and viability and improve their therapeutic effect in chemotherapy-induced POF mice. Herein, the genomic DNA of bone marrow-derived MSCs (BM-MSCs) was hypomethylated by the DNA methyltransferase inhibitor (5-Aza-dC), and the degree of global hypomethylation was assessed by methylation-sensitive HepII/MspI restriction analysis. Next, mildly hypomethylated cells and their secretome were independently transplanted (or infused) in POF mice, established via cisplatin-mediated gonadotoxicity. We found that conservative global hypomethylation of BM-MSCs genome with low doses of 5-Aza-dC (≤0.5 μM) has maintained cell viability and MSCs-specific clusters of differentiation (CD). Engraftment of mildly hypomethylated cells in POF mice, or infusion of their secretome, improved the concentrations of estradiol (E2), follicle-stimulating hormone (FSH), and anti-Mullerian hormone (AMH). Furthermore, mice restored their normal body weight, ovarian size, and ovarian follicle count. This was associated with improved follicular development, where the populations of healthy primordial, primary, secondary, and tertiary follicles were significantly ameliorated, relative to mice transplanted with normally methylated cells. This observational study suggests that transplantation of mildly hypomethylated BM-MSCs cells and their secretome can restore the structural and functional integrity of the damaged ovaries in POF mice. Also, it presents conservative hypomethylation of BM-MSCs and their secretome as a promising alternative to MSCs transplantation.
Collapse
Affiliation(s)
- Amira Nabil Salama
- Directorate of Health Affairs, Joint Regional Laboratories, Shebin El-Koum, Menoufia, 32511, Egypt
| | - Eman Abd El-Fatah Badr
- Department of Medical Biochemistry, Faculty of Medicine, Menoufia University, Shebin El-Koum City, 32511, Egypt
| | - Nanis Shawky Holah
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebin El-Koum City, 32511, Egypt
| | - Ahmed A El Barbary
- Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamed Hessien
- Directorate of Health Affairs, Joint Regional Laboratories, Shebin El-Koum, Menoufia, 32511, Egypt.
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
Hu L, Tan R, He Y, Wang H, Pu D, Wu J. Stem cell therapy for premature ovarian insufficiency: a systematic review and meta-analysis of animal and clinical studies. Arch Gynecol Obstet 2024; 309:457-467. [PMID: 37264272 DOI: 10.1007/s00404-023-07062-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE The aim of this systematic review and meta-analysis is to evaluate the efficacy of stem cell therapy in mouse models of POI and patients with POI. METHODS The PubMed, Web of Science, and Embase databases were searched from inception to February 2022 for relevant animal and clinical studies. The reference lists of the included reviews were manually searched to identify additional eligible studies. Data were independently extracted by two investigators, and disagreements were resolved by discussion. SYRCLE's risk of bias tool and the MINORS tool were used to assess the quality of animal and clinical studies by two independent investigators. All statistical analyses were conducted using Review Manager 5.3 software. RESULTS A total of twenty animal studies and six clinical studies were included in this meta-analysis. In animal studies, the results showed that stem cells could improve hormone levels, follicle count, estrous cycle and pregnancy outcome. For hormone levels, stem cells increased serum E2 and AMH levels and decreased serum FSH and LH levels compared with the control group (serum E2 level: SMD: 5.05, 95% CI 4.21-5.90, P < 0.00001; serum AMH level: SMD: 4.42, 95% CI 3.06-5.79, P < 0.00001; serum FSH level: SMD: - 3.79, 95% CI - 4.87 to - 2.70, P < 0.00001; serum LH level: SMD: - 1.31, 95% CI - 1.65 to - 0.96, P < 0.00001). All follicle counts, except for the antral follicle count, were significantly changed compared with the control group. (primordial follicle count: SMD: 4.61, 95% CI 3.65-5.56, P < 0.00001; primary follicle count: SMD: 3.35, 95% CI 1.08-5.63, P = 0.004; secondary follicle count: SMD: 3.23, 95% CI 1.92-4.55, P < 0.00001; total follicle count: SMD: 4.84, 95% CI 2.86-6.83, P < 0.00001; oocyte count: SMD: 7.56, 95% CI 5.92-9.20, P < 0.00001; atretic follicle count: SMD: - 1.79, 95% CI - 2.59 to - 1.00, P < 0.00001). For the estrous cycle, stem cell therapy increased the number of estrous cycles (WMD: 2.72, 95% CI 2.07-3.37, P < 0.00001) and decreased the duration of the estrous cycle (WMD: - 1.26, 95% CI - 1.84 to - 0.69, P < 0.0001) compared with the control group. For pregnancy outcomes, stem cell therapy increased the fertility rate (RR: 3.00, 95% CI 1.74-5.17, P < 0.0001) and litter size (WMD: 3.82, 95% CI 0.36-7.28, P = 0.03) compared with the control group. In animal studies, the asymmetric funnel plot of serum E2 and FSH levels indicated the possibility of publication bias. Unpublished and negative studies may be the source of publication bias. In clinical studies, the results showed that stem cell therapy could decrease serum FSH level (MD: - 30.32, 95% CI - 59.03 to - 1.01, P = 0.04) and increase AFC (MD: 1.07, 95% CI 0.70-1.43, P < 0.00001), pregnancy rate (RD: 0.19, 95% CI 0.04-0.34, P = 0.01) and live birth rate (RD: 0.19, 95% CI 0.07-0.31, P = 0.001) in POI patients. In addition, there was no significant difference in menstrual function regained (RD: 0.22, 95% CI - 0.03-0.46, P = 0.09), oocytes retrieved (MD: 1.00, 95% CI - 0.64-2.64, P = 0.23) and embryos (MD: 0.80, 95% CI - 0.15-1.76, P = 0.10) between different groups. CONCLUSION This meta-analysis suggested that stem cell therapy might be effective in POI mouse models and patients and could be considered a potential treatment to restore fertility capability in POI patients.
Collapse
Affiliation(s)
- Luanqian Hu
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongrong Tan
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuheng He
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiyuan Wang
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danhua Pu
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jie Wu
- Department of Obstetrics and Gynecology, Jiangsu Province Hospital, Jiangsu Women and Children Health Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Cucinella G, Gullo G, Catania E, Perino A, Billone V, Marinelli S, Napoletano G, Zaami S. Stem Cells and Infertility: A Review of Clinical Applications and Legal Frameworks. J Pers Med 2024; 14:135. [PMID: 38392569 PMCID: PMC10890184 DOI: 10.3390/jpm14020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Infertility is a condition defined by the failure to establish a clinical pregnancy after 12 months of regular, unprotected sexual intercourse or due to an impairment of a person's capacity to reproduce either as an individual or with their partner. The authors have set out to succinctly investigate, explore, and assess infertility treatments, harnessing the potential of stem cells to effectively and safely treat infertility; in addition, this paper will present the legal and regulatory complexities at the heart of stem cell research, with an overview of the legislative state of affairs in six major European countries. For couples who cannot benefit from assisted reproductive technologies (ART) to treat their infertility, stem-cells-based approaches have been shown to be a highly promising approach. Nonetheless, lingering ethical and immunological uncertainties require more conclusive findings and data before such treatment avenues can become mainstream and be applied on a large scale. The isolation of human embryonic stem cells (ESCs) is ethically controversial, since their collection involves the destruction of human embryonic tissue. Overall, stem cell research has resulted in important new breakthroughs in the treatment of infertility. The effort to untangle the complex web of ethical and legal issues associated with such therapeutic approaches will have to rely on evidence-based, broadly shared standards, guidelines, and best practices to make sure that the procreative rights of patients can be effectively reconciled with the core values at the heart of medical ethics.
Collapse
Affiliation(s)
- Gaspare Cucinella
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Giuseppe Gullo
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Erika Catania
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Antonio Perino
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | - Valentina Billone
- IVF Unit, Department of Obstetrics and Gynecology, Villa Sofia Cervello Hospital, University of Palermo, 90146 Palermo, Italy
| | | | - Gabriele Napoletano
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, "Sapienza" University of Rome, 00161 Rome, Italy
| |
Collapse
|
5
|
Sadeghi S, Mosaffa N, Huang B, Ramezani Tehrani F. Protective role of stem cells in POI: Current status and mechanism of action, a review article. Heliyon 2024; 10:e23271. [PMID: 38169739 PMCID: PMC10758796 DOI: 10.1016/j.heliyon.2023.e23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Premature ovarian insufficiency (POI) has far-reaching consequences on women's life quality. Due to the lack of full recognition of the etiology and complexity of this disease, there is no appropriate treatment for infected patients. Recently, stem cell therapy has attracted the attention of regenerative medicine scholars and offered promising outcomes for POI patients. Several kinds of stem cells, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) have been used for the treatment of ovarian diseases. However, their potential protective mechanisms are still unknown. Undoubtedly, a better understanding of the therapeutic molecular and cellular mechanisms of stem cells will address uncover strategies to increase their clinical application for multiple disorders such as POI. This paper describes a detailed account of the potential properties of different types of stem cells and provides a comprehensive review of their protective mechanisms, particularly MSC, in POI disorder. In addition, ongoing challenges and several strategies to improve the efficacy of MSC in clinical use are addressed. Therefore, this review will provide proof-of-concept for further clinical application of stem cells in POI.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, AL, USA
| |
Collapse
|
6
|
Cui J, Wang Y. Premature ovarian insufficiency: a review on the role of tobacco smoke, its clinical harm, and treatment. J Ovarian Res 2024; 17:8. [PMID: 38191456 PMCID: PMC10775475 DOI: 10.1186/s13048-023-01330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Premature ovarian insufficiency (POI) is a condition in which the quantity of follicles and the quality of oocytes gradually decrease. This results in an estrogen secretion disorder and abnormal follicle development, which can lead to related diseases, early onset of menopause, sexual dysfunction, and an increased risk of cardiovascular issues, osteoporosis, and depression, among others. This disease significantly impacts the physical and mental health and overall quality of life of affected women. Factors such as genetic abnormalities, oophorectomy, radiotherapy for malignancy, idiopathic conditions, and an unhealthy lifestyle, including smoking, can accelerate the depletion of the follicular pool and the onset of menopause. Extensive research has been conducted on the detrimental effects of tobacco smoke on the ovaries. This article aims to review the advancements in understanding the impact of tobacco smoke on POI, both in vivo and in vitro. Furthermore, we explore the potential adverse effects of common toxicants found in tobacco smoke, such as polycyclic aromatic hydrocarbons (PAHs), heavy metals like cadmium, alkaloids like nicotine and its major metabolite cotinine, benzo[a]pyrene, and aromatic amines. In addition to discussing the toxicants, this article also reviews the complications associated with POI and the current state of research and application of treatment methods. These findings will contribute to the development of more precise treatments for POI, offering theoretical support for enhancing the long-term quality of life for women affected by this condition.
Collapse
Affiliation(s)
- Jinghan Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| |
Collapse
|
7
|
Li Y, Yao G, Wang R, Zhu J, Li H, Yang D, Ma S, Fu Y, Liu C, Guan S. Maternal immune activation mediated prenatal chronic stress induces Th17/Treg cell imbalance may relate to the PI3K/Akt/NF-κB signaling pathway in offspring rats. Int Immunopharmacol 2024; 126:111308. [PMID: 38061121 DOI: 10.1016/j.intimp.2023.111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/28/2023]
Abstract
Maternal immune activation (MIA), defined as elevated levels of inflammatory markers beyond the normal range, can occur due to psychological stress, infection, and other disruptions during pregnancy. MIA affects the immune system development in offspring and increases the risk of immune-related disorders. Limited studies have investigated the effects of prenatal stress on offspring's immune system. In this study, pregnant rats were exposed to chronic unpredictable mild stress (CUMS) during pregnancy, involving seven different stressors. We examined the impact of prenatal stress stimuli on the offspring's immune system and observed activation of the PI3K/Akt/NF-κB signaling pathway, resulting in an imbalance of Th17/Treg cells in the offspring's spleen. Our findings revealed increased plasma levels of corticosterone, IL-1β, and IL-6 in female rats exposed to prenatal stress, as well as elevated serum levels of IL-6 and TNF-α in the offspring. Furthermore, we identified a correlation between cytokine levels in female rats and their offspring. Transcriptome sequencing and qPCR experiments indicated differentially expressed mRNAs in offspring exposed to prenatal stress, which may contribute to the imbalance of Th17/Treg cells through the activation of the Gng3-related PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Ye Li
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Guixiang Yao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Rui Wang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Jiashu Zhu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Hongyu Li
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Deguang Yang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Shuqin Ma
- General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Youjuan Fu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Can Liu
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China
| | - Suzhen Guan
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan 750004, China.
| |
Collapse
|
8
|
Wan Q, Huang J, Xiao Q, Zhang Z, Zhang Z, Huang L, Deng Y, Deng B, Zhao H, Zhong Y, Liu D. Astragalus Polysaccharide Alleviates Ulcerative Colitis by Regulating the Balance of mTh17/mTreg Cells through TIGIT/CD155 Signaling. Molecules 2024; 29:241. [PMID: 38202824 PMCID: PMC10780736 DOI: 10.3390/molecules29010241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The balance between memory Th17 cells (mTh17) and memory Treg cells (mTreg) plays a key role in the pathogenesis of ulcerative colitis (UC), and TIGIT signaling is involved in the differentiation of mTh17/mTreg cells. Astragalus polysaccharide (APS) has good immunomodulatory and anti-inflammatory effects. Here, the regulatory effects and potential mechanisms of APS on mTh17/mTreg cells in UC are explored. A UC model was induced with dextran sulfate sodium (DSS) and treated simultaneously with APS (200 mg/kg/day) for 10 days. After APS treatment, the mice showed a significant increase in colonic length and a significant decrease in colonic weight, colonic weight index and colonic weight/colonic length, and more intact mucosa and lighter inflammatory cell infiltration. Notably, APS significantly down-regulated the percentages of Th17 (CD4+CCR6+), cmTh17 (CD4+CCR7+CCR6+) and emTh17 (CD4+CCR7-CCR6+) cells and significantly up-regulated the percentages of cmTreg (CD4+CCR7+Foxp3+) and emTreg (CD4+CCR7-Foxp3+) cells in the mesenteric lymph nodes of the colitis mice. Importantly, APS reversed the expression changes in the TIGIT molecule on mTh17/mTreg cells in the colitis mice with fewer CD4+CCR6+TIGIT+, CD4+CCR7-CCR6+TIGIT+ and CD4+CCR7-CCR6+TIGIT+ cells and more CD4+Foxp3+TIGIT+, CD4+CCR7-Foxp3+TIGIT+ and CD4+CCR7-Foxp3+TIGIT+ cells. Meanwhile, APS significantly inhibited the protein expression of the TIGIT ligands CD155, CD113 and CD112 and downstream proteins PI3K and AKT in the colon tissues of the colitis mice. In conclusion, APS effectively alleviated DSS-induced UC in mice by regulating the balance between mTh17/mTreg cells, which was mainly achieved through regulation of the TIGIT/CD155 signaling pathway.
Collapse
Affiliation(s)
- Qi Wan
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Jiaqi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Qiuping Xiao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Zeyun Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Zheyan Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Li Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
| | - Yifei Deng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Y.D.); (B.D.); (H.Z.)
| | - Bailing Deng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Y.D.); (B.D.); (H.Z.)
| | - Haimei Zhao
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Y.D.); (B.D.); (H.Z.)
| | - Youbao Zhong
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (Q.W.); (J.H.); (Z.Z.); (Z.Z.); (L.H.)
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Duanyong Liu
- Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
9
|
Levit E, Singh B, Nylander E, Segars JH. A Systematic Review of Autoimmune Oophoritis Therapies. Reprod Sci 2024; 31:1-16. [PMID: 37500976 DOI: 10.1007/s43032-023-01299-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 07/09/2023] [Indexed: 07/29/2023]
Abstract
Autoimmune primary ovarian insufficiency (POI) is a devastating disease with limited clinical guidance. The objective of this systematic review was to identify treatments for autoimmune POI and analyze their efficacy. A comprehensive search of CINAHL, Cochrane, Embase, PubMed, Scopus, and Web of Science was performed from inception to April 2022. English language publications that evaluated women with autoimmune POI after a documented intervention were included. Animal models of autoimmune POI were also included. Risk of bias was assessed with the SYRCLE's risk of bias tool for animal studies or the NIH Quality Assessment Tool for Case Series as appropriate. Twenty-eight studies were included in this review, with 11 RCTs, 15 case reports, and 2 case series. Seventeen studies were in humans, and 11 were in animal models. No completed RCTs, cohort studies, or case-control studies were identified in humans. In observational human studies, corticosteroids were effective in select patients. In many case reports, adequate treatment of comorbid autoimmune conditions resulted in return of menses, hormonal normalization, or spontaneous pregnancy. In terms of assisted reproductive technologies, there was case report evidence for both in vitro fertilization (IVF) and in vitro maturation (IVM) in women wishing to conceive with their own oocytes. Ovulation induction, IVF, and IVM resulted in a total of 15 pregnancies and 14 live births. In animal models, there was additional evidence for stem cell therapies and treatments used in traditional Chinese medicine, although this research may not be generalizable to humans. Furthermore, litter size was not evaluated in any of the animal studies. Additional research is needed to establish the efficacy of current treatments for autoimmune POI with a controlled experimental design and larger sample size. Additionally, there is a critical need to develop novel therapies for this condition, as understanding of its pathophysiology and available tools to modulate the immune response have progressed.
Collapse
Affiliation(s)
- Elizabeth Levit
- University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Bhuchitra Singh
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elisabeth Nylander
- Informationist Services, Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James H Segars
- Division of Reproductive Sciences & Women's Health Research, Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Zynat J, Wang X, Han L, Xing S, Jvlaiti G, Liu Q, Dong L, Guo Y. Elevated Thyroglobulin Antibody Level is Associated with Decreased Anti-Müllerian Hormone in Women of Reproductive Age. Int J Endocrinol 2023; 2023:1861752. [PMID: 38125684 PMCID: PMC10733051 DOI: 10.1155/2023/1861752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/16/2022] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Women with Hashimoto's thyroiditis (HT) have an increased risk of ovarian insufficiency. However, whether thyroid antibodies affect the ovarian reserve remains controversial. The aim of this study was to explore the possible relationship between anti-Müllerian hormone (AMH) and thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TgAb) levels in women of reproductive age. Methods A total of 483 women between 18 and 45 years old who had their TPOAb, TgAb, thyroid-stimulating hormone (TSH), free thyroxine (FT4), and AMH levels measured on the same day were enrolled in this study. The levels of TSH, FT4, TPOAb, and TgAb, the prevalence of overt and subclinical hypothyroidism, and the positive rate of TPOAb and TgAb were compared between patients with low (below the 10th percentile), normal (10th to 90th percentile), and high (higher than the 90th percentile) AMH levels. Results The median AMH level was 1.72 (0.33-4.27) ng/mL. A total of 9.9% of patients had low AMH levels. The TgAb levels and the prevalence of TgAb positivity were higher in the low AMH group (37.62 (13.10-232.68) IU/mL, 35.42%) than in the normal (12.46 (10.0-67.04) IU/mL, 19.59%) and high (13.61 (10.0-95.74) IU/mL, 23.4%) AMH groups (p=0.001, p=0.040, respectively). Serum AMH levels were inversely correlated with TgAb levels (r = -0.114, p=0.013). Conclusion The AMH of women of reproductive age is affected by HT. Furthermore, women with the lowest AMH level had higher levels of TgAb and a positive rate of TgAb, and high TgAb levels may cause autoimmune damage to the ovaries.
Collapse
Affiliation(s)
- Jazyra Zynat
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Xinling Wang
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Li Han
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Shuqing Xing
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Guzailinuer Jvlaiti
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Qingqing Liu
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Lingling Dong
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, China
| | - Yanying Guo
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
11
|
Wang J, Zhao X, Luo R, Xia D, Liu Y, Shen T, Liang Y. The causal association between systemic inflammatory regulators and primary ovarian insufficiency: a bidirectional mendelian randomization study. J Ovarian Res 2023; 16:191. [PMID: 37710281 PMCID: PMC10502980 DOI: 10.1186/s13048-023-01272-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Recent studies have suggested a potential link between systemic inflammatory regulators and primary ovarian insufficiency (POI); however, a causal relationship between them remains unclear. In this study, we explored the causal link between systemic inflammatory regulators and POI risk using a bidirectional, two-sample Mendelian randomization (MR) strategy. RESULTS This approach utilized the most extensive genome-wide association study involving 41 systemic inflammatory regulators in a sample of 8,293 Finnish individuals and POI data from the FinnGen consortium (254 cases vs. 118,228 controls). The inverse variance weighting approach served as a primary MR method, and four additional MR techniques (Maximum Likelihood, MR-Egger, Weighted Median, and constrained maximum likelihood and model averaging Bayesian information criterion ) were applied to support and validate results. Cochran's Q statistics were used to assess the heterogeneity of instrumental variables, whereas the MR-Egger and MR Pleiotropy Residual Sum and Outlier tests detected horizontal pleiotropy. The MR Steiger test evaluated the strength of a causal association. Our findings suggest that lower levels of vascular endothelial growth factor (odds ratio [OR] = 0.73, 95% confidence interval [CI]: 0.54-0.99, P = 0.046) and interleukin-10 (OR = 0.54, 95% CI: 0.33-0.85, P = 0.021) are associated with an increased risk of POI. Reverse MR analysis revealed no significant effect of POI on the expression of these 41 systemic inflammatory regulators. No notable heterogeneity or horizontal pleiotropy was observed in the instrumental variables. CONCLUSIONS This study revealed a causal association between 41 systemic inflammatory regulators and POI, demonstrating that decreased levels of VEGF and IL-10 are linked to an elevated risk of POI. Further investigations are necessary to assess the potential of these biomarkers as early predictors, preventive strategies, and therapeutic targets for POI.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xia Zhao
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, 210009, Nanjing, China
| | - Rong Luo
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, 210009, Nanjing, China
| | - Di Xia
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Yi Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Tao Shen
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, 210009, Nanjing, China
| | - Yuanjiao Liang
- School of Medicine, Southeast University, 210009, Nanjing, China.
- Department of Reproductive Medicine, Zhongda Hospital Affiliated to Southeast University, 210009, Nanjing, China.
| |
Collapse
|
12
|
Yang X, Yang L. Current understanding of the genomic abnormities in premature ovarian failure: chance for early diagnosis and management. Front Med (Lausanne) 2023; 10:1194865. [PMID: 37332766 PMCID: PMC10274511 DOI: 10.3389/fmed.2023.1194865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023] Open
Abstract
Premature ovarian failure (POF) is an insidious cause of female infertility and a devastating condition for women. POF also has a strong familial and heterogeneous genetic background. Management of POF is complicated by the variable etiology and presentation, which are generally characterized by abnormal hormone levels, gene instability and ovarian dysgenesis. To date, abnormal regulation associated with POF has been found in a small number of genes, including autosomal and sex chromosomal genes in folliculogenesis, granulosa cells, and oocytes. Due to the complex genomic contributions, ascertaining the exact causative mechanisms has been challenging in POF, and many pathogenic genomic characteristics have yet to be elucidated. However, emerging research has provided new insights into genomic variation in POF as well as novel etiological factors, pathogenic mechanisms and therapeutic intervention approaches. Meanwhile, scattered studies of transcriptional regulation revealed that ovarian cell function also depends on specific biomarker gene expression, which can influence protein activities, thus causing POF. In this review, we summarized the latest research and issues related to the genomic basis for POF and focused on insights gained from their biological effects and pathogenic mechanisms in POF. The present integrated studies of genomic variants, gene expression and related protein abnormalities were structured to establish the role of etiological genes associated with POF. In addition, we describe the design of some ongoing clinical trials that may suggest safe, feasible and effective approaches to improve the diagnosis and therapy of POF, such as Filgrastim, goserelin, resveratrol, natural plant antitoxin, Kuntai capsule et al. Understanding the candidate genomic characteristics in POF is beneficial for the early diagnosis of POF and provides appropriate methods for prevention and drug treatment. Additional efforts to clarify the POF genetic background are necessary and are beneficial for researchers and clinicians regarding genetic counseling and clinical practice. Taken together, recent genomic explorations have shown great potential to elucidate POF management in women and are stepping from the bench to the bedside.
Collapse
Affiliation(s)
- Xu Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Yang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Chen M, Li L, Chai Y, Yang Y, Ma S, Pu X, Chen Y. Vitamin D can ameliorate premature ovarian failure by inhibiting neutrophil extracellular traps: A review. Medicine (Baltimore) 2023; 102:e33417. [PMID: 37000081 PMCID: PMC10063315 DOI: 10.1097/md.0000000000033417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/01/2023] Open
Abstract
The etiology of premature ovarian failure (POF) is mainly related to inflammatory diseases, autoimmune diseases, and tumor radiotherapy and chemotherapy; however, its specific pathogenesis has not been clarified. Vitamin D (VD), a fat-soluble vitamin, is an essential steroid hormone in the human body. Neutrophil extracellular traps (NETs) are meshwork structures that are formed when neutrophils are stimulated by inflammation and other factors and are closely associated with autoimmune and inflammatory diseases. Notably, VD inhibits NET formation and intervenes in the development of POF in terms of inflammatory and immune responses, oxidative stress, and tissue fibrosis. Therefore, this study aimed to theorize the relationship between NETs, VD, and POF and provide new ideas and targets for the pathogenesis and clinical treatment of POF.
Collapse
Affiliation(s)
- Menglu Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Lailai Li
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yihui Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yuqi Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Sibu Ma
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Xiang Pu
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| | - Yunzhi Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, Guizhou Province, China
| |
Collapse
|
14
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Asai T, Tsuji A, Matsuda S. Metabolic Associated Fatty Liver Disease as a Risk Factor for the Development of Central Nervous System Disorders. LIVERS 2023; 3:21-32. [DOI: 10.3390/livers3010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
MAFLD/NAFLD is the most ordinary liver disease categorized by hepatic steatosis with the increase of surplus fat in the liver and metabolic liver dysfunction, which is associated with bigger mortality and a high medical burden. An association between MAFLD/NAFLD and central nervous system disorders including psychological disorders has been demonstrated. Additionally, MAFLD/NAFLD has been correlated with various types of neurodegenerative disorders such as amyotrophic lateral sclerosis or Parkinson’s disease. Contrasted to healthy controls, patients with MAFLD/NAFLD have a greater prevalence risk of extrahepatic complications within multiple organs. Dietary interventions have emerged as effective strategies for MAFLD/NAFLD. The PI3K/AKT/mTOR signaling pathway involved in the regulation of Th17/Treg balance might promote the pathogenesis of several diseases including MAFLD/NAFLD. As extrahepatic complications may happen across various organs including CNS, cooperative care with individual experts is also necessary for managing patients with MAFLD/NAFLD.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Tomoko Asai
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
15
|
Regulatory T Cells Overexpressing Peli1 Show Better Efficacy in Repairing Ovarian Endocrine Function in Autoimmune Premature Ovarian Insufficiency. J Transl Med 2023; 103:100005. [PMID: 37039145 DOI: 10.1016/j.labinv.2022.100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/12/2022] [Accepted: 09/21/2022] [Indexed: 01/11/2023] Open
Abstract
Regulatory T (Treg) cell dysfunction is involved in the pathogenesis of autoimmune premature ovarian insufficiency (POI). Adoptive transfer of Treg cells has been shown to be effective in the treatment of autoimmune POI in mice. However, the therapeutic effect of Treg cell therapy is limited because the phenotype and function of Treg cells is not properly maintained when they are reinfused in an inflammatory environment. Therefore, enhancing the function of Treg cells using genetic engineering is of great significance for improving the efficacy of Treg cells in the treatment of immune diseases. In this study, we investigated the role of the E3 ubiquitinated ligase Pellino 1 (Peli1) in the proliferation and immunosuppressive function of Treg cells and the therapeutic effect of Treg cells overexpressing Peli1 on autoimmune POI. The results showed that the overexpression of Peli1 promoted cell proliferation and enhanced the immunosuppressive function of Treg cells in vitro. After the adoptive transfer of Treg cells overexpressing Peli1 in autoimmune POI mice, the apoptosis rate of ovarian granulosa cells declined. The levels of the inflammatory inhibitors interleukin 10 and transforming growth factor-β as well as the ovarian hormone estradiol were elevated. The number of primordial, primary, secondary, and mature follicles was restored to a certain extent compared with those in control subjects. These results revealed that the adoptive transfer of Treg cells overexpressing Peli1 promoted its efficacy against zona pellucida protein 3 peptide-induced POI, which provides new insights into the treatment of autoimmune POI.
Collapse
|
16
|
Babaei K, Aziminezhad M, Norollahi SE, Vahidi S, Samadani AA. Cell therapy for the treatment of reproductive diseases and infertility: an overview from the mechanism to the clinic alongside diagnostic methods. Front Med 2022; 16:827-858. [PMID: 36562947 DOI: 10.1007/s11684-022-0948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Infertility is experienced by 8%-12% of adults in their reproductive period globally and has become a prevalent concern. Besides routine therapeutic methods, stem cells are rapidly being examined as viable alternative therapies in regenerative medicine and translational investigation. Remarkable progress has been made in understanding the biology and purpose of stem cells. The affected pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) are further studied for their possible use in reproductive medicine, particularly for infertility induced by premature ovarian insufficiency and azoospermia. Accordingly, this study discusses current developments in the use of some kinds of MSCs such as adipose-derived stem cells, bone marrow stromal cells, umbilical cord MSCs, and menstrual blood MSCs. These methods have been used to manage ovarian and uterine disorders, and each technique presents a novel method for the therapy of infertility.
Collapse
Affiliation(s)
- Kosar Babaei
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Aziminezhad
- Non-Communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.,UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Sogand Vahidi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
17
|
Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells 2022; 11:cells11233713. [PMID: 36496972 PMCID: PMC9738202 DOI: 10.3390/cells11233713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.
Collapse
|
18
|
Liu M, Yan J, Wu Y, Zhu H, Huang Y, Wu K. The impact of herbal medicine in regulating intestinal flora on female reproductive disorders. Front Pharmacol 2022; 13:1026141. [PMID: 36313343 PMCID: PMC9614049 DOI: 10.3389/fphar.2022.1026141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
As an important part of the human intestinal microecology, the intestinal flora is involved in a number of physiological functions of the host. Several studies have shown that imbalance of intestinal flora and its regulation of the intestinal barrier, intestinal immune response, and intestinal flora metabolites (short-chain fatty acids and bile acids) can affect the development and regression of female reproductive disorders. Herbal medicine has unique advantages in the treatment of female reproductive disorders such as polycystic ovary syndrome, endometriosis and premature ovarian insufficiency, although its mechanism of action is still unclear. Therefore, based on the role of intestinal flora in the occurrence and development of female reproduction-related diseases, the progress of research on the diversity, structure and composition of intestinal flora and its metabolites regulated by botanical drugs, Chinese herbal formulas and active ingredients of Chinese herbal medicines is reviewed, with a view to providing reference for the research on the mechanism of action of Chinese herbal medicines in the treatment of female reproductive disorders and further development of new herbal medicines.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jin Yan
- Department of Gynecology, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hongqiu Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Yefang Huang, ; Keming Wu,
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Yefang Huang, ; Keming Wu,
| |
Collapse
|
19
|
Zhang H, Luo Q, Lu X, Yin N, Zhou D, Zhang L, Zhao W, Wang D, Du P, Hou Y, Zhang Y, Yuan W. Retraction Note: Effects of hPMSCs on granulosa cell apoptosis and AMH expression and their role in the restoration of ovary function in premature ovarian failure mice. Stem Cell Res Ther 2022; 13:504. [PMID: 36224609 PMCID: PMC9559009 DOI: 10.1186/s13287-022-03183-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hongqin Zhang
- School of Basic Medical Sciences & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Qianqian Luo
- School of Basic Medical Sciences & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xueyan Lu
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Na Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Dongli Zhou
- Health School of Laiyang, Laiyang, 265200, China
| | - Lianshuang Zhang
- School of Basic Medical Sciences & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wei Zhao
- School of Basic Medical Sciences & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Dong Wang
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Pengchao Du
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yun Hou
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yan Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wendan Yuan
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
20
|
Lu Y, Zhang J, Zeng F, Wang P, Guo X, Wang H, Qin Z, Tao T. Human PMSCs-derived small extracellular vesicles alleviate neuropathic pain through miR-26a-5p/Wnt5a in SNI mice model. J Neuroinflammation 2022; 19:221. [PMID: 36071475 PMCID: PMC9450435 DOI: 10.1186/s12974-022-02578-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSCs)-derived small Extracellular Vesicles (sEVs) are considered as a new cell-free therapy for pain caused by nerve injury, but whether human placental mesenchymal stem cell-derived sEVs relieve pain in sciatic nerve injury and its possible mechanism are still unclear. In this study, we investigated the roles of hPMSCs-derived sEVs and related mechanisms in neuropathic pain. METHODS The spared nerve injury (SNI) mouse model was employed. Intrathecal injection of sEVs or miR-26a-5p agomir was performed on the seventh day of modeling, to study its anti-nociceptive effect. sEVs' miRNA sequencing (miRNA-Seq) and bioinformatics analysis were performed to study the downstream mechanisms of miRNAs. RT-qPCR, protein assay and immunofluorescence were used for further validation. RESULTS A single intrathecal injection of sEVs durably reversed mechanical hypersensitivity in the left hind paw of mice with partial sciatic nerve ligation. Immunofluorescence studies found that PKH26-labeled sEVs were visible in neurons and microglia in the dorsal horn of the ipsilateral L4/5 spinal cord and more enriched in the ipsilateral. According to miRNA-seq results, we found that intrathecal injection of miR-26a-5p agomir, the second high counts microRNA in hPMSCs derived sEVs, significantly suppressed neuropathic pain and neuroinflammation in SNI mice. Bioinformatics analysis and dual-luciferase reporter gene analysis identified Wnt5a as a direct downstream target gene of miR-26a-5p. The results showed that overexpression of miR-26a-5p in vivo could significantly reduce the expression level of Wnt5a. In addition, Foxy5, a mimetic peptide of Wnt5a, can significantly reverse the inhibitory effect of miR-26a-5p on neuroinflammation and neuropathic pain, and at the same time, miR-26a-5p can rescue the effect of Foxy5 by overexpression. CONCLUSIONS We reported that hPMSCs derived sEVs as a promising therapy for nerve injury induced neuropathic pain. In addition, we showed that the miR-26a-5p in the sEVs regulated Wnt5a/Ryk/CaMKII/NFAT partly take part in the analgesia through anti-neuroinflammation, which suggests an alleviating pain effect through non-canonical Wnt signaling pathway in neuropathic pain model in vivo.
Collapse
Affiliation(s)
- Yitian Lu
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, People's Republic of China.,Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jintao Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.,Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fanning Zeng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Peng Wang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiangna Guo
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Haitao Wang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zaisheng Qin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Tao Tao
- Department of Anesthesiology, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, People's Republic of China.
| |
Collapse
|
21
|
Curcumin Inhibits Hyperandrogen-Induced IRE1α-XBP1 Pathway Activation by Activating the PI3K/AKT Signaling in Ovarian Granulosa Cells of PCOS Model Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2113293. [PMID: 36062194 PMCID: PMC9433213 DOI: 10.1155/2022/2113293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/06/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022]
Abstract
Background Hyperandrogenism is a common characteristic of polycystic ovary syndrome (PCOS). Long-term, continuous exposure to hyperandrogenic environments may cause excessive endoplasmic reticulum (ER) stress in ovarian granulosa cells (GCs). Curcumin is a polyphenol extracted from turmeric rhizomes which has several pharmacological effects that may benefit patients with PCOS. To explore whether curcumin can inhibit hyperandrogen-induced ER stress in ovarian GCs of PCOS rats and to elucidate the possible underlying mechanisms. Methods We developed PCOS model rats by exposure to hyperandrogenic conditions and divided the rats into control, PCOS, and PCOS+curcumin (200 mg/kg, for 8 weeks) groups. The levels of ER stress-related proteins and PI3K/AKT phosphorylation were measured in the ovarian tissue of all experimental groups by real-time quantitative PCR, western blotting, immunohistochemistry, and immunofluorescence. Subsequent in vitro analysis on primary cultured GCs was performed to confirm the influence of curcumin on ER stress inhibition by immunofluorescence and western blotting. Results Curcumin protects GCs from hyperandrogen-induced apoptosis in PCOS model rats by inhibiting the ER stress-related IRE1α-XBP1 pathway and activating the PI3K/AKT signaling pathway. Conclusions These observations indicate that curcumin might be a safe and useful supplement for PCOS patients.
Collapse
|
22
|
Luo Q, Tang Y, Jiang Z, Bao H, Fu Q, Zhang H. hUCMSCs reduce theca interstitial cells apoptosis and restore ovarian function in premature ovarian insufficiency rats through regulating NR4A1-mediated mitochondrial mechanisms. Reprod Biol Endocrinol 2022; 20:125. [PMID: 35986315 PMCID: PMC9389823 DOI: 10.1186/s12958-022-00992-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Human umbilical cord mesenchymal stem cells (hUCMSCs, retrospectively registered) have a lot of promise for treating theca interstitial cells(TICs) dysfunction in premature ovarian insufficiency (POI). The mechanisms, however, are still unknown. METHODS To examine the therapeutic and find the cause, we used both in vivo cisplatin-induced POI rat model and in vitro TICs model. HUCMSCs were injected into the tail veins of POI rats in an in vivo investigation. Then, using ELISA, HE staining, TUNEL apoptosis test kit, immunohistochemistry and western blot, researchers examined hormonal levels, ovarian morphology, TICs apoptosis, NR4A1 and Cyp17a1 in response to cisplatin treatment and hUCMSCs. TICs were obtained from the ovaries of rats and treated with the cisplatin, hUCMSCs supernatant, and the antagonist of NR4A1--DIM-C-pPhOH. ELISA, immunofluorescence, flow cytometry, JC-1 labeling and western blot analysis were used to detect T levels, Cyp17a1, NR4A1, and the anti-apoptotic protein Bcl-2, as well as pro-apoptotic proteins Bax, caspase-9, caspase-3, and cytochrome C(cytc). RESULTS We discovered that hUCMSCs restored the ovarian function, particularly TICs function based on measures of Cyp17a1 and T expression. NR4A1 was found in ovarian TICs of each group and NR4A1 expression was lower in the POI rats but higher following hUCMSCs therapy. The apoptosis of TICs generated by cisplatin was reduced after treatment with hUCMSCs. In vitro, NR4A1 was expressed in the nucleus of TICs, and NR4A1 as well as phospho-NR4A1 were decreased, following the apoptosis of TICs was emerged after cisplatin treatment. Interestingly, the localization of NR4A1 was translocated from the nucleus to the cytoplasm due to cisplatin. HUCMSCs were able to boost NR4A1 and phospho-NR4A1 expression while TICs' apoptosis and JC-1 polymorimonomor fluorescence ratios reduced. Furthermore, Bcl-2 expression dropped following cisplatin treatment, whereas Bax, cytc, caspase-9, and caspase-3 expression rose; however, hUCMSCs treatment reduced their expression. In addition, DIM-C-pPhOH had no effect on the NR4A1 expression, but it did increase the expression of apoptosis-related factors such as Bax, cytc, caspase-9, and caspase-3, causing the apoptosis of TICs. CONCLUSIONS These data show that hUCMSCs therapy improves ovarian function in POI rats by inhibiting TICs apoptosis through regulating NR4A1 -mediated mitochondrial mechanisms.
Collapse
Affiliation(s)
- Qianqian Luo
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China
| | - Yu Tang
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China
| | - Zhonglin Jiang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China
| | - Hongchu Bao
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Qiang Fu
- School of Pharmacology, Institute of Aging Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Hongqin Zhang
- Xu Rongxiang Regenerative Medicine Research Center, Binzhou Medical University, Yantai, 264003, Shandong, China.
- Basic Medical College, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
23
|
Shi L, Zhang Z, Deng M, Zheng F, Liu W, Ye S. Biological mechanisms and applied prospects of mesenchymal stem cells in premature ovarian failure. Medicine (Baltimore) 2022; 101:e30013. [PMID: 35960112 PMCID: PMC9371578 DOI: 10.1097/md.0000000000030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023] Open
Abstract
Premature ovarian failure (POF), also known as primary ovarian insufficiency (POI), refers to the loss of ovarian function in women after puberty and before the age of 40 characterized by high serum gonadotropins and low estrogen, irregular menstruation, amenorrhea, and decreased fertility. However, the specific pathogenesis of POF is unexplained, and there is no effective therapy for its damaged ovarian tissue structure and reduced reserve function. Mesenchymal stem cells (MSCs), with multidirectional differentiation potential and self-renewal ability, as well as the cytokines and exosomes they secrete, have been studied and tested to play an active therapeutic role in a variety of degenerative pathologies, and MSCs are the most widely used stem cells in regenerative medicine. MSCs can reverse POI and enhance ovarian reserve function through differentiation into granulosa cells (GCs), immune regulation, secretion of cytokines and other nutritional factors, reduction of GCs apoptosis, and promotion of GCs regeneration. Many studies have proved that MSCs may have a restorative effect on the structure and fertility of injured ovarian tissues and turn to be a useful clinical approach to the treatment of patients with POF in recent years. We intend to use MSCs-based therapy to completely reverse POI in the future.
Collapse
Affiliation(s)
- Lan Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhifen Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Miao Deng
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Fangyuan Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Wenhua Liu
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Shujin Ye
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
24
|
Huang QY, Chen SR, Zhao YX, Chen JM, Chen WH, Lin S, Shi QY. Melatonin enhances autologous adipose-derived stem cells to improve mouse ovarian function in relation to the SIRT6/NF-κB pathway. Stem Cell Res Ther 2022; 13:399. [PMID: 35927704 PMCID: PMC9351187 DOI: 10.1186/s13287-022-03060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Premature ovarian insufficiency (POI) is the main cause of female infertility. Adipose-derived stem cells (ADSCs) are ideal candidates for the treatment of POI. However, some deficient biological characteristics of ADSCs limit their utility. This study investigated whether melatonin (MLT)-pretreated autologous ADSCs were superior to ADSCs alone in the treatment of the POI mouse model. Methods Autologous ADSCs were isolated and cultured in MLT-containing medium. Surface markers of ADSCs were detected by flow cytometry. To determine the effect of MLT on ADSCs, CCK-8 assay was used to detect ADSCs proliferation and enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of cytokines. The POI model was established by intraperitoneal injection of cyclophosphamide and busulfan. Then, MLT-pretreated autologous ADSCs were transplanted into mice by intraovarian injection. After 7 days of treatment, ovarian morphology, follicle counts, and sex hormones levels were evaluated by hematoxylin and eosin (H&E) staining and ELISA, and the recovery of fertility was also observed. The expressions of SIRT6 and NF-κB were detected by immunohistochemical (IHC) staining and quantitative real-time polymerase chain reaction (qRT-PCR). Results Flow cytometry showed that autologous ADSCs expressed CD90 (99.7%) and CD29 (97.5%). MLT can not only promote the proliferation of ADSCs but also boost their secretory function, especially when ADSCs were pretreated with 5 µM MLT for 3 days, improving the interference effect. After transplantation of autologous ADSCs pretreated with 5 µM MLT, the serum hormone levels and reproductive function were significantly recovered, and the mean counts of primordial follicle increased. At the same time, the expression of SIRT6 was remarkably increased and the expression of NF-κB was significantly decreased in this group. Conclusions MLT enhances several effects of ADSCs in restoring hormone levels, mean primordial follicle counts, and reproductive capacity in POI mice. Meanwhile, our results suggest that the SIRT6/NF-κB signal pathway may be the potential therapeutic mechanism for ADSCs to treat POI.
Collapse
Affiliation(s)
- Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shao-Rong Chen
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yun-Xia Zhao
- Department of Gynaecology and Obstetrics, University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jia-Ming Chen
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Wei-Hong Chen
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China. .,Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, Second Affiliated Hospital of Fujian Medical University, No. 34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
25
|
Li Y, Yan MY, Chen QC, Xie YY, Li CY, Han FJ. Current Research on Complementary and Alternative Medicine in the Treatment of Premature Ovarian Failure: An Update Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2574438. [PMID: 35783509 PMCID: PMC9246583 DOI: 10.1155/2022/2574438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022]
Abstract
Complementary and alternative medicine (CAM) encompasses a wide range of different non-mainstream therapies that have been increasingly used for the treatment or adjunct treatment of various ailments, with premature ovarian failure (POF) being one of the most common conditions treated with CAM. This review updates the progress of CAM in the treatment of POF, and we focus specifically on reviewing the evidence for the efficacy and mechanisms of a range of CAM treatments in POF, including single herbal medicines and their active ingredients, compound Chinese medicines, acupuncture and moxibustion, psychotherapy, exercise, vitamins, massage, and dietary supplements. According to the literature, CAM is very helpful for improving POF symptoms, and we hope to provide some instructive suggestions for clinical treatment and experimental research in the future. However, more clinical trials are needed to prove the safety of CAM.
Collapse
Affiliation(s)
- Yue Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Meng-Yu Yan
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qiao-Chu Chen
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Ya-Ya Xie
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Chen-Yu Li
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng-Juan Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
26
|
Chen H, Song L, Xu X, Han Z, Peng F, Zhang Q, Liu C, Liang X. The effect of icariin on autoimmune premature ovarian insufficiency via modulation of Nrf2/HO-1/Sirt1 pathway in mice. Reprod Biol 2022; 22:100638. [PMID: 35344846 DOI: 10.1016/j.repbio.2022.100638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 03/12/2022] [Indexed: 12/21/2022]
Abstract
Primary ovarian insufficiency (POI) is a common gynecological disease. Autoimmunity is a common cause of POI. Icariin (ICA) plays a therapeutic role in many autoimmune diseases. This study aims to investigate the effect of ICA on autoimmune POI mice and its effect on immune regulation. Sixty-three female BALB/c mice were randomized into three groups (control, POI, POI + ICA). POI and POI + ICA group were hypodermically injected with zona pellucida three peptides (pZP3) to induce autoimmune POI. Then the POI + ICA group was gavaged with ICA. A vaginal smear was to observe estrous cycles, hematoxylin-eosin staining was to count follicles. Enzyme-linked immunosorbent analysis determined serum FSH, LH, AMH, and anti-zona pellucida antibody (AZPAb) levels. In addition, flow cytometry detected the expression of Th1 cells and Treg cells, and Western blot was used to detect the expression of Nuclear factor E2 related factor 2(Nrf2), heme oxygenase-1 (HO-1), and Sirtuin-1 (Sirt1) proteins. pZP3 treatment decreased serum AMH levels and increased FSH, LH, and AZPAb levels. Additionally, decreases in the number of healthy follicles at all stages and an increase in the number of atretic follicles. Abnormal ovarian structure and an arrested estrous cycle were also noted. However, ICA rescued POI through up-regulating Nrf2, HO-1, and Sirt1 expressions and up-regulating Treg expressions. ICA treatment improved the structure of the injured ovarian and its function in autoimmune POI mice. The mechanism is achieved by increasing the expression of Nrf2/HO-1/Sirt1 pathway in the ovary and increasing Treg cells' expression.
Collapse
Affiliation(s)
- Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Xiaofang Xu
- Department of Gynecology, Leping Maternal and Child Health Care Hospital, Leping, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Xin Liang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China.
| |
Collapse
|
27
|
TGFβ-Treated Placenta-Derived Mesenchymal Stem Cells Selectively Promote Anti-Adipogenesis in Thyroid-Associated Ophthalmopathy. Int J Mol Sci 2022; 23:ijms23105603. [PMID: 35628410 PMCID: PMC9145654 DOI: 10.3390/ijms23105603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
Orbital fibroblasts (OFs) in thyroid-associated ophthalmopathy (TAO) are differentiated from pre-adipocytes and mature adipocytes; increased lipid and fat expansion are the major characteristics of ophthalmic manifestations. Human placental mesenchymal stem cells (hPMSCs) were reported to immunomodulate pathogenesis and suppress adipogenesis in TAO OFs. Here, we prepared transforming growth factor β (TGFβ, 20 ng/mL)-treated hPMSCs (TGFβ-hPMSCs) in order to enhance anti-adipogenic effects in vitro and in TAO mice. TAO OFs were grown in a differentiation medium and then co-cultured with hPMSCs or TGFβ-hPMSCs. TAO OFs were analyzed via quantitative real-time polymerase chain reaction, Oil red O staining, and western blotting. The results showed that TGFβ-hPMSCs reduced the expression of adipogenic, lipogenic, and fibrotic genes better than hPMSCs in TAO OFs. Moreover, the adipose area decreased more in TAO mice injected with TGFβ-hPMSCs compared to those injected with hPMSCs or a steroid. Further, TGFβ-hPMSCs inhibited inflammation as effectively as a steroid. In conclusion, TGFβ-hPMSCs suppressed adipogenesis and lipogenesis in vitro and in TAO mice, and the effects were mediated by the SMAD 2/3 pathways. Furthermore, TGFβ-hPMSCs exhibited anti-inflammatory and anti-fibrotic functions, which suggests that they could be a new and safe method to promote the anti-adipogenic function of hPMSCs to treat TAO patients.
Collapse
|
28
|
Bao ZK, Mi YH, Xiong XY, Wang XH. Sulforaphane Ameliorates the Intestinal Injury in Necrotizing Enterocolitis by Regulating the PI3K/Akt/GSK-3 β Signaling Pathway. Can J Gastroenterol Hepatol 2022; 2022:6529842. [PMID: 35600210 PMCID: PMC9117068 DOI: 10.1155/2022/6529842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Necrotizing enterocolitis (NEC) is a serious neonatal disease; this study aims to investigate the role of sulforaphane (SFN) in NEC-induced intestinal injury. Methods An animal model of NEC was established in newborn mice and intragastrically administrated with SFN; then, the general status and survival of the mice were observed. H&E staining was used to observe the pathological changes of intestinal tissues. ELISA, immunohistochemical staining, and flow cytometry assays were used to detect the levels of inflammatory factors, including TNF-α, IL-6, and IL-17, the expression of Bax, Bcl-2, TLR4, and NF-κB, and the percentages of the Th17 and Treg cells, respectively. GSK-3β expression levels were measured by immunofluorescence. IEC-6 and FHC cells were induced with LPS to mimic NEC in vitro and coincubated with SFN; then, the inflammatory factor levels and cell apoptosis rate were detected. Finally, Western blot was used to assess the expression of PI3K/Akt/GSK-3β pathway-related proteins in vitro and in vivo. Results SFN improved the survival rate of NEC mice during modeling, alleviated the severity of the intestinal injury, and reduced the proportion of Th17/Treg cells. SFN could inhibit TLR4 and NF-κB levels, decrease the release of inflammatory factors TNF-α and IL-6, suppress Bax expression, increase Bcl-2 expression, and inhibit apoptosis both in in vitro and in vivo models of NEC. Meanwhile, SFN regulated the expression of PI3K/Akt/GSK-3β pathway-related proteins in vitro and in vivo. Conclusion SFN relieved the inflammatory response and apoptosis by regulating the PI3K/Akt/GSK-3β signaling pathway, thereby alleviating NEC in model mice and cells.
Collapse
Affiliation(s)
- Zhong-Kun Bao
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hong Mi
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Xiao-Yu Xiong
- Department of Neonatology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin-Hong Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
29
|
Huang QY, Chen SR, Chen JM, Shi QY, Lin S. Therapeutic options for premature ovarian insufficiency: an updated review. Reprod Biol Endocrinol 2022; 20:28. [PMID: 35120535 PMCID: PMC8815154 DOI: 10.1186/s12958-022-00892-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Primary ovarian insufficiency (POI) is a rare gynecological condition. This disease causes menstrual disturbances, infertility, and various health problems. Historically, hormone replacement therapy is the first-line treatment for this disorder. Women diagnosed with POI are left with limited therapeutic options. In order to remedy this situation, a new generation of therapeutic approaches, such as in vitro activation, mitochondrial activation technique, stem cell and exosomes therapy, biomaterials strategies, and platelet-rich plasma intra-ovarian infusion, is being developed. However, these emerging therapies are yet in the experimental stage and require precise design components to accelerate their conversion into clinical treatments. Thus, each medical practitioner bears responsibility for selecting suitable therapies for individual patients. In this article, we provide a timely analysis of the therapeutic strategies that are available for POI patients and discuss the prospects of POI therapy.
Collapse
Affiliation(s)
- Qiao-Yi Huang
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shao-Rong Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Qi-Yang Shi
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
30
|
Lange-Consiglio A, Capra E, Herrera V, Lang-Olip I, Ponsaerts P, Cremonesi F. Application of Perinatal Derivatives in Ovarian Diseases. Front Bioeng Biotechnol 2022; 10:811875. [PMID: 35141212 PMCID: PMC8818994 DOI: 10.3389/fbioe.2022.811875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Reproductive diseases could lead to infertility and have implications for overall health, most importantly due to psychological, medical and socio-economic consequences for individuals and society. Furthermore, economical losses also occur in animal husbandry. In both human and veterinary medicine, hormonal and surgical treatments, as well as assisted reproductive technologies are used to cure reproductive disorders, however they do not improve fertility. With ovarian disorders being the main reproductive pathology in human and bovine, over the past 2 decades research has approached regenerative medicine in animal model to restore normal function. Ovarian pathologies are characterized by granulosa cell and oocyte apoptosis, follicular atresia, decrease in oocyte quality and embryonic development potential, oxidative stress and mitochondrial abnormalities, ultimately leading to a decrease in fertility. At current, application of mesenchymal stromal cells or derivatives thereof represents a valid strategy for regenerative purposes. Considering their paracrine/autocrine mode of actions that are able to regenerate injured tissues, trophic support, preventing apoptosis and fibrosis, promoting angiogenesis, stimulating the function and differentiation of endogenous stem cells and even reducing the immune response, are all important players in their future therapeutic success. Nevertheless, obtaining mesenchymal stromal cells (MSC) from adult tissues requires invasive procedures and implicates decreased cell proliferation and a reduced differentiation capacity with age. Alternatively, the use of embryonic stem cells as source of cellular therapeutic encountered several ethical concerns, as well as the risk of teratoma formation. Therefore, several studies have recently focussed on perinatal derivatives (PnD) that can be collected non-invasively and, most importantly, display similar characteristics in terms of regenerating-inducing properties, immune-modulating properties and hypo-immunogenicity. This review will provide an overview of the current knowledge and future perspectives of PnD application in the treatment of ovarian hypofunction.
Collapse
Affiliation(s)
- Anna Lange-Consiglio
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Lodi, Italy
- Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università Degli Studi di Milano, Lodi, Italy
- *Correspondence: Anna Lange-Consiglio,
| | - Emanuele Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale Delle Ricerche IBBA CNR, Lodi, Italy
| | - Valentina Herrera
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Lodi, Italy
| | - Ingrid Lang-Olip
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Fausto Cremonesi
- Dipartimento di Medicina Veterinaria, Università Degli Studi di Milano, Lodi, Italy
- Centro Clinico-Veterinario e Zootecnico-Sperimentale di Ateneo, Università Degli Studi di Milano, Lodi, Italy
| |
Collapse
|
31
|
Xu Y, Lou J, Gao Z, Zhan M. Computed Tomography Image Features under Deep Learning Algorithm Applied in Staging Diagnosis of Bladder Cancer and Detection on Ceramide Glycosylation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7979523. [PMID: 35035524 PMCID: PMC8759889 DOI: 10.1155/2022/7979523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 11/18/2022]
Abstract
The research is aimed at investigating computed tomography (CT) image based on deep learning algorithm and the application value of ceramide glycosylation in diagnosing bladder cancer. The images of ordinary CT detection were improved. In this study, 60 bladder cancer patients were selected and performed with ordinary CT detection, and the detection results were processed by CT based on deep learning algorithms and compared with pathological diagnosis. In addition, Western Blot technology was used to detect the expression of glucose ceramide synthase (GCS) in the cell membrane of tumor tissues and normal tissues of bladder. The comparison results found that, in simple CT clinical staging, the coincidence rates of T1 stage, T2a stage, T2b stage, T3 stage, and T4 stage were 28.56%, 62.51%, 78.94%, 84.61%, and 74.99%, respectively; and the total coincidence rate of CT clinical staging was 63.32%, which was greatly different from the clinical staging of pathological diagnosis (P < 0.05). In the clinical staging of algorithm-based CT test results, the coincidence rates of T1 stage and T2a stage were 50.01% and 91.65%, respectively; and those of T2b stage, T3 stage, and T4 stage were 100.00%; and the total coincidence rate was 96.69%, which was not obviously different from the clinical staging of pathological diagnosis (P > 0.05). Therefore, it could be concluded that the algorithm-based CT detection results were more accurate, and the use of CT scans based on deep learning algorithms in the preoperative staging and clinical treatment of bladder cancer showed reliable guiding significance and clinical value. In addition, it was found that the expression level of GCS in normal bladder tissues was much lower than that in bladder cancer tissues. This indicated that the changes in GCS were closely related to the development and prognosis of bladder cancer. Therefore, it was believed that GCS may be an effective target for the treatment of bladder cancer in the future, and further research was needed for specific conditions.
Collapse
Affiliation(s)
- Yisheng Xu
- Department of Radiology, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Jianghua Lou
- Department of Radiology, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Zhiqin Gao
- Department of Radiology, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou 311201, China
| | - Ming Zhan
- Department of Radiology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou 311201, China
| |
Collapse
|
32
|
Huan P, Wang L, He Z, He J. The Role of Gut Microbiota in the Progression of Parkinson's Disease and the Mechanism of Intervention by Traditional Chinese Medicine. Neuropsychiatr Dis Treat 2022; 18:1507-1520. [PMID: 35923300 PMCID: PMC9341349 DOI: 10.2147/ndt.s367016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a common degenerative disease of the nervous system that seriously affects the quality of life of the patients. The pathogenesis of PD is not yet fully clear. Previous studies have confirmed that patients with PD exhibit obvious gut microbiota imbalance, while intervention of PD by regulating the gut microbiota has become an important approach to the prevention and treatment of this disease. Traditional Chinese medicine (TCM) has been shown to be safe and effective in treating PD. It has the advantages of affecting multiple targets. Studies have shown TCM can regulate gut microbiota. However, the specific mechanism of action is still unclear. Therefore, this article will mainly discuss the association of the alteration of the gut microbiota and the incidence of PD, the advantages of TCM in treating PD, and the mechanism of regulating gut microbiota by TCM to treat PD. It will clarify the target and mechanism of TCM treating PD by acting gut microbiota and provided a novel methodology for the prevention and treatment of PD.
Collapse
Affiliation(s)
- Pengfei Huan
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Li Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Zhuqing He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jiancheng He
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China.,Shanghai Key Laboratory of Health Identification and Assessment, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
33
|
Zhang Z, Yang Y, Lv X, Liu H. Interleukin-17 promotes proliferation, migration, and invasion of trophoblasts via regulating PPAR-γ/RXR-α/Wnt signaling. Bioengineered 2022; 13:1224-1234. [PMID: 35258399 PMCID: PMC8805847 DOI: 10.1080/21655979.2021.2020468] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
To investigate the effect of Interleukin 17 (IL-17) on the invasive capacity of trophoblast cells and the underlying mechanism, we collected placental tissues samples from pregnant women with preeclampsia (PE) and healthy pregnant women. The expression levels of IL-17 mRNA and protein in tissue samples were determined using qRT-PCR and Western blot, respectively. Cell viability and cell proliferation was determined using CCK-8 assay, and colony formation assay, respectively. Cell migration and invasion capacity were determined using transwell cell migration assay. Our results showed that the mRNA expression of IL-17 was significantly increased in PE patients and may be used as a sensitive biomarker for PE (P < 0.01). IL-17 overexpression promoted cell viability, migration, and invasion of human extravillous trophoblast cell line, HTR8/SVneo; however, IL-17 knockdown inhibited these effects. Additionally, IL-17 activated PPAR-γ/RXR-α signaling pathway, which promoted proliferation, migration, and invasion of trophoblast cells. Moreover, PPAR-γ/RXR-α heterodimers activated Wnt signaling. In conclusion, our study provides evidence that IL-17 is overexpressed in PE and promotes proliferation, migration and invasion of trophoblast cells via activating PPAR-γ/RXR-α/Wnt signaling.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| | - Yuhua Yang
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| | - Xiaomei Lv
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| | - Hongyuan Liu
- Department of Pathology, Shijiazhuang People’s Hospital, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
34
|
Wang J, Liu W, Yu D, Yang Z, Li S, Sun X. Research Progress on the Treatment of Premature Ovarian Failure Using Mesenchymal Stem Cells: A Literature Review. Front Cell Dev Biol 2021; 9:749822. [PMID: 34966738 PMCID: PMC8710809 DOI: 10.3389/fcell.2021.749822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Premature ovarian failure (POF) has become one of the main causes of infertility in women of childbearing age and the incidence of POF is increasing year by year, seriously affecting the physical and mental health of patients and increasing the economic burden on families and society as a whole. The etiology and pathogenesis of POF are complex and not very clear at present. Currently, hormone replacement therapy is mainly used to improve the symptoms of low estrogen, but cannot fundamentally solve the fertility problem. In recent years, stem cell (SC) transplantation has become one of the research hotspots in the treatment of POF. The results from animal experiments bring hope for the recovery of ovarian function and fertility in patients with POF. In this article, we searched the published literature between 2000 and 2020 from the PubMed database (https://pubmed.ncbi.nlm.nih.gov), and summarized the preclinical research data and possible therapeutic mechanism of mesenchymal stem cells (MSCs) in the treatment of POF. Our aim is to provide useful information for understanding POF and reference for follow-up research and treatment of POF.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Wanru Liu
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China
| | - Dehai Yu
- The Laboratory of Cancer Precision Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zongxing Yang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Sijie Li
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, China
| | - Xiguang Sun
- Hand Surgery Department, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
35
|
Wang Q, Fu R, Cheng H, Li Y, Sui S. Analysis of the resistance of small peptides from Periplaneta americana to hydrogen peroxide-induced apoptosis in human ovarian granular cells based on RNA-seq. Gene 2021; 813:146120. [PMID: 34915048 DOI: 10.1016/j.gene.2021.146120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Apoptosis of ovarian granular cells is closely related with weakening fertility of women. Hence, resisting apoptosis of human ovarian granular cells is of important significance. According to previous studies, DAPI fluorescence staining experiment and Western Blot test of Caspase-3 demonstrate that small peptides from Periplaneta americana (SPPA) can improve hydrogen peroxide (H2O2) -induced apoptosis of human ovarian granular cells (KGN cells). However, the molecular mechanism of SPPA resistance against apoptosis of granular cells still remains unknown. In this study, key genes and signaling pathways for SPPA to resist H2O2-induced apoptosis of KGN cells were determined through transcriptome sequencing (RNA-seq). Experiments were divided into three groups, namely, the control group, H2O2 group and H2O2 + SPPA group. A total of 1196 differentially expressed genes (DEGs) were screened by comparing the control group and the H2O2 group, and 2805 DEGs were screened by comparing the H2O2 group and H2O2 + SPPA group. It is important to note that 87 overlapping genes were identified upregulating in H2O2 exposure, but downregulating in SPPA repair. Another 151 overlapping genes were identified downregulating in H2O2 exposure, but upregulating in SPPA repair. These 238 overlapping genes have significant enrichment in multiple KEGG pathways. Among them, 13 genes play significant roles in SPPA resistance process of cell apoptosis: EIF3D, RAN, UPF1 and EIF2B4 participate in RNA transport; ACTG1, SIPA1 and CTNND1 participate in Leukocyte transendothelial migration; S100A7, S100A9, RELA and IL17RE participate in IL-17 signaling pathway; BCL2L13, EIF2AK3 and RELA participate in Mitophapy-animal. Ten genes were selected for florescence quantitative PCR (qPCR) verification and the expression level was consistent with sequencing results. Finally, a control network of SPPA resistance against the H2O2-induced KGN cell apoptosis was built based on the target genes screened by the RNA-seq technology. This study provides a direction and some references to further understand the molecular mechanism of SPPA resistance against the H2O2-induced KGN cell apoptosis.
Collapse
Affiliation(s)
- Qin Wang
- School of Public Health, Dali University, Dali, Yunnan Province 671000, China
| | - Rong Fu
- School of Public Health, Dali University, Dali, Yunnan Province 671000, China
| | - Honghan Cheng
- College of Mathematics and Computer Science, Dali University, Dali, Yunnan Province 671003, China
| | - Yi Li
- College of Mathematics and Computer Science, Dali University, Dali, Yunnan Province 671003, China
| | - Shiyan Sui
- School of Public Health, Dali University, Dali, Yunnan Province 671000, China.
| |
Collapse
|
36
|
Genetic Basis of Follicle Development in Dazu Black Goat by Whole-Transcriptome Sequencing. Animals (Basel) 2021; 11:ani11123536. [PMID: 34944311 PMCID: PMC8697922 DOI: 10.3390/ani11123536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The follicle development (FD) of a goat is precisely regulated by various noncoding RNAs (ncRNAs), especially by the regulatory mechanism of competing endogenous RNAs (ceRNAs). This study aimed to determine the expression patterns of messenger RNA (mRNA), long noncoding RNA, microRNA, and circular RNA during the FD of Dazhu black goats by whole-transcriptomic sequencing and analyze the regulatory mechanism of the ncRNA and ceRNA regulatory network. The results may lay a foundation for further research on FD and improving the reproductive performance of goats. Abstract The follicle development (FD) is an important factor determining litter size in animals. Recent studies have found that noncoding RNAs (ncRNAs) play an important role in FD. In particular, the role of the regulatory mechanism of competing endogenous RNAs (ceRNAs) that drive FD has attracted increasing attention. Therefore, this study explored the genetic basis of goat FD by obtaining the complete follicular transcriptome of Dazu black goats at different developmental stages. Results revealed that 128 messenger RNAs (mRNAs), 4 long noncoding RNAs (lncRNAs), 49 microRNAs (miRNAs), and 290 circular RNAs (circRNAs) were significantly differentially expressed (DE) between large and small follicles. Moreover, DEmRNAs were enriched in many signaling pathways related to FD, as well as GO terms related to molecular binding and enzyme activity. Based on the analysis of the ceRNA network (CRN), 34 nodes (1 DElncRNAs, 10 DEcircRNAs, 14 DEmiRNAs, and 9 DEmRNAs) and 35 interactions (17 DEcircRNAs–DEmRNAs, 2 DElncRNAs–DEmiRNAs, and 16 DEmRNA–DEmiRNAs) implied that the CRN could be involved in the FD of goats. In conclusion, we described gene regulation by DERNAs and lncRNA/circRNA–miRNA–mRNA CRNs in the FD of goats. This study provided insights into the genetic basis of FD in precise transcriptional regulation.
Collapse
|
37
|
Gao M, Yu Z, Yao D, Qian Y, Wang Q, Jia R. Mesenchymal stem cells therapy: A promising method for the treatment of uterine scars and premature ovarian failure. Tissue Cell 2021; 74:101676. [PMID: 34798583 DOI: 10.1016/j.tice.2021.101676] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022]
Abstract
Both intrauterine adhesions (IUA) and premature ovarian failure (POF) have plagued women all over the world for a long time. It is well known that all invasive operations involving the uterus can disrupt its structural and functional integrity to a varying degree, which inevitably lead to abnormal scar formation, such as IUA, also known as Asherman's syndrome with symptoms like hypomenorrhea or infertility. Another reproductive disorder that causes infertility is primary ovarian insufficiency (POI) or POF, which is a degenerative phenomenon in the ovary among women under the age of 40. In recent years, various types of stem cells, especially mesenchymal stem cells (MSCs) have been widely used in reproductive medicine due to their properties, such as immunoregulation, anti-inflammation, angiogenesis, anti-apoptosis, and trophicity. However, the extensive clinical application of cell therapy is impeded by their safety, cost, and manufacturing. In this review, we sought to summarize the recent advances in using different types of MSCs in treating uterine scars and POF. We also describe several biological pathways and molecules involved in animal studies and clinical application; extracellular vesicles secreted by MSCs may be a promising attractive tool to ensure the treatment of infertility by restoring normal reproductive function.
Collapse
Affiliation(s)
- Mingming Gao
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Zhaoer Yu
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Dan Yao
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, Jiangsu Province, China; Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Yating Qian
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Qi Wang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Ruizhe Jia
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China.
| |
Collapse
|
38
|
Cao Q, Li Y, Li Y, Li L. miR-151-5p alleviates corneal allograft rejection by activating PI3K/AKT signaling pathway and balancing Th17/Treg after corneal transplantation via targeting IL-2Rɑ. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1410. [PMID: 34733962 PMCID: PMC8506781 DOI: 10.21037/atm-21-2054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/26/2021] [Indexed: 12/29/2022]
Abstract
Background Worldwide, corneal transplantation (CT) is the most common type of tissue replacement and the increased rate of corneal graft rejection (CGR) after CT is a critical problem. Corneal endothelium cells (CECs) are often targets of the immune response mediated by graft-attacking effector T cells. However, the molecular mechanism underlying CGR remains poorly understood. Methods The differentially expressed microRNAs (miRNAs) and mRNA of graft-fail corneas were measured by transcriptome sequencing (RNA-Seq). real-time quantitative polymerase chain reaction was used to measure gene expression levels. Western blot and immunofluorescence staining were used to measure protein expression levels. Kaplan-Meier survival curves were constructed to assess corneal graft survival. Hematoxylin and eosin staining was used for histopathological examination. CCK-8 and ELISA staining were used to detect cell viability and inflammatory cytokines levels, respectively. Flow cytometry was used to detect cell apoptosis and the population of Treg and Th17. Transwell migration and wound-healing assays were used to measure cell migration. Results We identified 453 miRNAs and 4,279 mRNAs aberrant expression in the corneas showing CGR. The differentially expressed miR-151-5p and its potential target gene [interleukin 2 receptor subunit alpha (IL-2Rɑ)] were selected from the RNA-Seq microarrays. The levels of miR-151-5p and IL-2Rɑ were respectively downregulated and upregulated in the CGR. The luciferase activity assay suggested that IL-2Rɑ is a target of miR-151-5p in 293 T cells. In addition, the miR-151-5p inhibitor, si-IL-2Rɑ, and oe-IL-2Rɑ transfection tests in CECs further confirmed that miR-151-5p downregulation and IL-2Rɑ overexpression promoted apoptosis of CECs and inhibited CEC migration, tight junction-related protein ZO-1 and Claudin-5 expression, and PI3K/AKT signaling pathway activity; however, downregulation of IL-2Rɑ abolished the inhibitor effect of miR-151-5p. Similarly, upregulation of miR-151-5p alleviated CGR via activation of the PI3K/AKT signaling pathway and balancing of Th17/Treg, and upregulation of IL-2Rɑ abolished the alleviating effect of miR-151-5p. Conclusions Upregulation of miR-151-5p alleviated CGR by activating the PI3K/AKT signaling pathway and balancing Th17/Treg via targeting of IL-2Rɑ, which contributes to improving the results of CT.
Collapse
Affiliation(s)
- Qian Cao
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yunchuan Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Yong Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| | - Lan Li
- Department of Ophthalmology, The Affiliated Calmette Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
39
|
Li Z, Zhang M, Tian Y, Li Q, Huang X. Mesenchymal Stem Cells in Premature Ovarian Insufficiency: Mechanisms and Prospects. Front Cell Dev Biol 2021; 9:718192. [PMID: 34414193 PMCID: PMC8369507 DOI: 10.3389/fcell.2021.718192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a complex endocrine disease that severely affects the physiological and reproductive functions of females. The current conventional clinical treatment methods for POI are characterized by several side effects, and most do not effectively restore the physiological functions of the ovaries. Transplantation of mesenchymal stem cells (MSCs) is a promising regenerative medicine approach, which has received significant attention in the management of POI with high efficacy. Associated pre-clinical and clinical trials are also proceeding orderly. However, the therapeutic mechanisms underlying the MSCs-based treatment are complex and have not been fully elucidated. In brief, proliferation, apoptosis, immunization, autophagy, oxidative stress, and fibrosis of ovarian cells are modulated through paracrine effects after migration of MSCs to the injured ovary. This review summarizes therapeutic mechanisms of MSCs-based treatments in POI and explores their therapeutic potential in clinical practice. Therefore, this review will provide a theoretical basis for further research and clinical application of MSCs in POI.
Collapse
Affiliation(s)
- Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingle Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
40
|
Saha S, Roy P, Corbitt C, Kakar SS. Application of Stem Cell Therapy for Infertility. Cells 2021; 10:1613. [PMID: 34203240 PMCID: PMC8303590 DOI: 10.3390/cells10071613] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Infertility creates an immense impact on the psychosocial wellbeing of affected couples, leading to poor quality of life. Infertility is now considered to be a global health issue affecting approximately 15% of couples worldwide. It may arise from factors related to the male (30%), including varicocele, undescended testes, testicular cancer, and azoospermia; the female (30%), including premature ovarian failure and uterine disorders; or both partners (30%). With the recent advancement in assisted reproduction technology (ART), many affected couples (80%) could find a solution. However, a substantial number of couples cannot conceive even after ART. Stem cells are now increasingly being investigated as promising alternative therapeutics in translational research of regenerative medicine. Tremendous headway has been made to understand the biology and function of stem cells. Considering the minimum ethical concern and easily available abundant resources, extensive research is being conducted on induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSC) for their potential application in reproductive medicine, especially in cases of infertility resulting from azoospermia and premature ovarian insufficiency. However, most of these investigations have been carried out in animal models. Evolutionary divergence observed in pluripotency among animals and humans requires caution when extrapolating the data obtained from murine models to safely apply them to clinical applications in humans. Hence, more clinical trials based on larger populations need to be carried out to investigate the relevance of stem cell therapy, including its safety and efficacy, in translational infertility medicine.
Collapse
Affiliation(s)
- Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh 249203, India;
| | - Partha Roy
- Department of Biotechnology, Indian Institute of Technology, Roorkee 247667, India;
| | - Cynthia Corbitt
- Department of Biology, University of Louisville, Louisville, KY 40292, USA;
| | - Sham S. Kakar
- Department of Physiology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
41
|
Zhang C. The Roles of Different Stem Cells in Premature Ovarian Failure. Curr Stem Cell Res Ther 2021; 15:473-481. [PMID: 30868961 DOI: 10.2174/1574888x14666190314123006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Premature ovarian failure (POF) is characterized by amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40, which affects 1% of women in the general population. POF is complex and heterogeneous due to its pathogenetic mechanisms. It is one of the significant causes of female infertility. Although many treatments are available for POF, these therapies are less efficient and trigger many side effects. Therefore, to find effective therapeutics for POF is urgently required. Due to stem cells having self-renewal and regeneration potential, they may be effective for the treatment of ovarian failure and consequently infertility. Recent studies have found that stem cells therapy may be able to restore the ovarian structure and function in animal models of POF and provide an effective treatment method. The present review summarizes the biological roles and the possible signaling mechanisms of the different stem cells in POF ovary. Further study on the precise mechanisms of stem cells on POF may provide novel insights into the female reproduction, which not only enhances the understanding of the physiological roles but also supports effective therapy for recovering ovarian functions against infertility.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
42
|
Silva GAL, Araújo LB, Silva LCR, Gouveia BB, Barberino RS, Lins TLBG, Monte APO, Macedo TJS, Santos JMS, Menezes VG, Silva RLS, Matos MHT. Gallic acid promotes the in vitro development of sheep secondary isolated follicles involving the phosphatidylinositol 3-kinase pathway. Anim Reprod Sci 2021; 230:106767. [PMID: 34030069 DOI: 10.1016/j.anireprosci.2021.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
This study was conducted to evaluate the effect of addition of gallic acid as the single antioxidant to the base medium for in vitro culture of sheep secondary follicles and if the phosphatidylinositol 3-kinase (PI3K) pathway is involved in the action of gallic acid. Secondary follicles were isolated and cultured for 12 days in α-MEM supplemented with bovine serum albumin (BSA), insulin, glutamine, hypoxanthine, transferrin, selenium, and ascorbic acid (control medium: α-MEM+) or in α-MEM supplemented with BSA, insulin, glutamine, hypoxanthine and different concentrations of gallic acid (25, 50 or 100 μM), thus replacing transferrin, selenium and ascorbic acid in the medium. Follicle morphology, glutathione (GSH), and mitochondrial activity, and meiotic resumption were evaluated. Furthermore, inhibition of PI3K pathway was performed by pretreatment with LY294002. After 12 days of culture, the follicle survival in a medium containing 100 μM gallic acid was similar (P > 0.05) to α-MEM+ and greater (P < 0.05) compared with other gallic acid concentrations. Antrum formation, follicle diameter, GSH, and mitochondrial activity, and meiotic resumption, however, were greater (P < 0.05) when 100 μM gallic acid was included in the α-MEM+ culture medium compared with the control medium. Furthermore, LY294002 inhibited (P < 0.05) follicle survival, development, and meiotic resumption stimulated by 100 μM gallic acid. In conclusion, concentration of 100 μM of gallic acid can be a substitute for transferrin, selenium, and ascorbic acid in the base medium during in vitro culture of sheep secondary follicles, inducing follicle development likely through the PI3K pathway.
Collapse
Affiliation(s)
- Gizele A L Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Luana B Araújo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Larissa C R Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Bruna B Gouveia
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Ricássio S Barberino
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Thae Lanne B G Lins
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Alane P O Monte
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Taís J S Macedo
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Jamile M S Santos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Vanúzia G Menezes
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Regina L S Silva
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil
| | - Maria Helena T Matos
- Nucleus of Biotechnology Applied to Ovarian Follicle Development, Federal University of São Francisco Valley, Petrolina, PE, 56300-990, Brazil.
| |
Collapse
|
43
|
Human Mesenchymal Stem Cell Therapy and Other Novel Treatment Approaches for Premature Ovarian Insufficiency. Reprod Sci 2021; 28:1688-1696. [PMID: 33956339 PMCID: PMC8144118 DOI: 10.1007/s43032-021-00528-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Premature ovarian insufficiency (POI) is a condition characterized by amenorrhea, hypergonadotropic hypogonadism, estrogen deficiency, and reduced follicle counts leading to infertility under the age of 40. POI occurs in approximately 1-3% of women in the general population. Evaluation is warranted when the diagnosis of POI is made to rule out underlying etiologies, which could be multifactorial. This review serves to cover the novel treatment approaches reported in the literature.
Collapse
|
44
|
Wang MY, Wang YX, Li-Ling J, Xie HQ. Adult Stem Cell Therapy for Premature Ovarian Failure: From Bench to Bedside. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:63-78. [PMID: 33427039 DOI: 10.1089/ten.teb.2020.0205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Premature ovarian failure (POF) is a devastating condition for women of childbearing age with serious health consequences, including distress, infertility, osteoporosis, autoimmune disorders, ischemic heart disease, and increased mortality. In addition to the mainstay estrogen therapy, stem cell therapy has been tested as the result of rapid progress in cell biology and reprogramming research. We hereby provide a review for the latest research and issues related with stem cell-based therapy for POF, and provide a commentary on various methods for enhancing its effect. Large amount of animal studies have demonstrated an extensive benefit of stem cells for failed ovarian recovering. As shown by such studies, stem cell therapy can result in recovery of hormonal levels, follicular activation, ovarian angiogenesis, and functional restoration. Meanwhile, a study of molecular pathways revealed that the function of stem cells mainly depends on their paracrine actions, which can produce multiple factors for the promotion of ovarian angiogenesis and regulation of cellular functions. Nevertheless, studies using disease models also revealed certain drawbacks. Clinical trials have shown that menstrual cycle and even pregnancy may occur in POF patients following transplantation of stem cells, although the limitations, including inadequate number of cases and space for the improvement of transplantation methodology. Only with its safety and effect get substantial improvement through laboratory experiments and clinical trials, can stem cell therapy really bring benefits to more patients. Additionally, effective pretreatment and appropriate transplantation methods for stem cells are also required. Taken together, stem cell therapy has shown a great potential for the reversal of POF and is stepping from bench to bedside. Impact statement Premature ovarian failure (POF) is a devastating condition with serious clinical consequences. The purpose of this review was to summarize the current status of stem cell therapy for POF. Considering the diversity of cell types and functions, a rigorous review is required for the guidance for further research into this field. Meanwhile, the challenges and prospect for clinical application of stem cell treatment, methodological improvements, and innovations are addressed.
Collapse
Affiliation(s)
- Ming-Yao Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi-Xuan Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
45
|
Human Umbilical Cord Mesenchymal Stem Cells Improve Ovarian Function in Chemotherapy-Induced Premature Ovarian Failure Mice Through Inhibiting Apoptosis and Inflammation via a Paracrine Mechanism. Reprod Sci 2021; 28:1718-1732. [PMID: 33751459 DOI: 10.1007/s43032-021-00499-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
Human umbilical cord mesenchymal stem cell (UC-MSC) application is a promising arising therapy for the treatment of premature ovarian failure (POF). However, little is known about the inflammation regulatory effects of human umbilical cord MSCs (UC-MSCs) on chemotherapy-induced ovarian damage, regardless of in vivo or in vitro. This study was designed to investigate the therapeutic effects of UC-MSC transplantation and underlying mechanisms regarding both apoptosis and inflammation in POF mice. The chemotherapy-induced POF models were induced by intraperitoneal injection of cyclophosphamide. Ovarian function parameters, granulosa cell (GC) apoptosis, and inflammation were examined. Morphological staining showed that UC-MSC treatment increased the ovary size, and the numbers of primary and secondary follicles, but decreased the number of atretic follicles. Estradiol levels in the UC-MSC-treated group were increased while follicle-stimulating hormone levels were reduced compared to those in the POF group. UC-MSCs inhibited cyclophosphamide-induced GC apoptosis and inflammation. Meanwhile, phosphorylation of AKT and P38 was elevated after UC-MSC treatment. Tracking of UC-MSCs in vivo indicated that transplanted UC-MSCs were only located in the interstitium of ovaries rather than in follicles. Importantly, UC-MSC-derived extracellular vesicles protected GCs from alkylating agent-induced apoptosis and inflammation in vitro. Our results suggest that UC-MSC transplantation can reduce ovary injury and improve ovarian function in chemotherapy-induced POF mice through anti-apoptotic and anti-inflammatory effects via a paracrine mechanism.
Collapse
|
46
|
Fu YX, Ji J, Shan F, Li J, Hu R. Human mesenchymal stem cell treatment of premature ovarian failure: new challenges and opportunities. Stem Cell Res Ther 2021; 12:161. [PMID: 33658073 PMCID: PMC7931610 DOI: 10.1186/s13287-021-02212-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian failure (POF) is one of the common disorders found in women leading to 1% female infertility. Clinical features of POF are hypoestrogenism or estrogen deficiency, increased gonadotropin level, and, most importantly, amenorrhea. With the development of regenerative medicine, human mesenchymal stem cell (hMSC) therapy brings new prospects for POF. This study aimed to describe the types of MSCs currently available for POF therapy, their biological characteristics, and their mechanism of action. It reviewed the latest findings on POF to provide the theoretical basis for further investigation and clinical therapy.
Collapse
Affiliation(s)
- Yun-Xing Fu
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jing Ji
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Fang Shan
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jialing Li
- Ningxia Medical University, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Rong Hu
- Reproductive Medicine Center, General Hospital of Ningxia Medical University, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
47
|
Premature ovarian insufficiency: pathogenesis and therapeutic potential of mesenchymal stem cell. J Mol Med (Berl) 2021; 99:637-650. [PMID: 33641066 DOI: 10.1007/s00109-021-02055-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/29/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Primary ovarian insufficiency (POI) is defined as a reduction in ovarian function before the expected age of menopause. POI is known to increase the risk of cardiovascular disorders, osteoporosis, cognitive decline, and mood disorders, resulting in a reduced quality of life. Appropriate hormone replacement for premenopausal women decreases these adverse health risks and improves quality of life for women with POI, but does not prolong life expectancy. The potential etiologies of POI include chromosomal abnormalities and genetic mutations, autoimmune factors, and iatrogenic causes, including surgery, chemotherapy, and radiation therapy. A major association is suggested to exist between reproductive longevity and the DNA damage pathway response genes. DNA damage and repair in ovarian granulosa cells is strongly associated with POI. Depletion of oocytes with damaged DNA occurs through different cell death mechanisms, such as apoptosis, autophagy, and necroptosis, mediated by the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/forkhead transcription factors 3 (FOXO3) pathway. Mesenchymal stem cells (MSCs) are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues. Transplantation of MSCs has been shown to functionally restore ovarian reserve in a POI mouse model. Recent advances in stem cell therapy are likely to be translated to new therapeutic options bringing new hope to patients with POI. The aim of this review is to summarize the pathogenic mechanisms that involve cell death and DNA damage and repair pathways and to discuss the stem cell-based therapies as potential therapeutic options for this gynecologic pathology.
Collapse
|
48
|
Zhang Y, Zhou X, Zhu Y, Wang H, Xu J, Su Y. Current mechanisms of primordial follicle activation and new strategies for fertility preservation. Mol Hum Reprod 2021; 27:6128515. [PMID: 33538812 DOI: 10.1093/molehr/gaab005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is characterized by symptoms caused by ovarian dysfunction in patients aged <40 years. It is associated with a shortened reproductive lifespan. The only effective treatment for patients who are eager to become pregnant is IVF/Embryo Transfer (ET) using oocytes donated by young women. However, the use of the technique is constrained by the limited supply of oocytes and ethical issues. Some patients with POI still have some residual follicles in the ovarian cortex, which are not regulated by gonadotropin. These follicles are dormant. Therefore, activating dormant primordial follicles (PFs) to obtain high-quality oocytes for assisted reproductive technology may bring new hope for patients with POI. Therefore, this study aimed to explore the factors related to PF activation, such as the intercellular signaling network, the internal microenvironment of the ovary and the environment of the organism. In addition, we discussed new strategies for fertility preservation, such as in vitro activation and stem cell transplantation.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Xiaomei Zhou
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Ye Zhu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Hanbin Wang
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| | - Yiping Su
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing 210004, China
| |
Collapse
|
49
|
Monte APO, Bezerra MÉS, Menezes VG, Gouveia BB, Barberino RS, Lins TLBG, Barros VRP, Santos JMS, Donfack NJ, Matos MHT. Involvement of Phosphorylated Akt and FOXO3a in the Effects of Growth and Differentiation Factor-9 (GDF-9) on Inhibition of Follicular Apoptosis and Induction of Granulosa Cell Proliferation After In Vitro Culture of Sheep Ovarian Tissue. Reprod Sci 2021; 28:2174-2185. [DOI: 10.1007/s43032-020-00409-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022]
|
50
|
Zhang S, Zhu D, Mei X, Li Z, Li J, Xie M, Xie HJW, Wang S, Cheng K. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy. Bioact Mater 2020; 6:1957-1972. [PMID: 33426370 PMCID: PMC7773538 DOI: 10.1016/j.bioactmat.2020.12.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/24/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Primary ovarian insufficiency (POI) is an ovarian dysfunction that affects more than 1 % of women and is characterized by hormone imbalances that afflict women before the age of 40. The typical perimenopausal symptoms result from abnormal levels of sex hormones, especially estrogen. The most prevalent treatment is hormone replacement therapy (HRT), which can relieve symptoms and improve quality of life. However, HRT cannot restore ovarian functions, including secretion, ovulation, and fertility. Recently, as part of a developing field of regenerative medicine, stem cell therapy has been proposed for the treatment of POI. Thus, we recapitulate the literature focusing on the use of stem cells and biomaterials for POI treatment, and sum up the underlying mechanisms of action. A thorough understanding of the work already done can aid in the development of guidelines for future translational applications and clinical trials that aim to cure POI by using regenerative medicine and biomedical engineering strategies. This paper illustrates the in-vivo, in-vitro, and cell-free treatments for POI using stem cells and biomaterials. We provide basic theories and suggestions for future research and clinical therapy translation. This review can help researcher to develop guidelines on stem cells treating POI.
Collapse
Affiliation(s)
- Sichen Zhang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Mengjie Xie
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| | - Halle Jiang Williams Xie
- Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA
| | - Shaowei Wang
- Department of Gynecology and Obstetrics, Beijing Hospital, National Center of Gerontology, China. No.1 DaHua Road, Dong Dan, Beijing, 100730, PR China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, NO.9 Dong Dan Santiao, Beijing, 100730, PR China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27607, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|