1
|
Tian Z, Hu H, Chan CC, Hu T, Cai C, Li H, Rong L, Jiang G, Liu B. Self-Healing COCu-Tac Hydrogel Enhances iNSCs Transplantation for Spinal Cord Injury by Promoting Mitophagy via the FKBP52/AKT Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407757. [PMID: 39587837 PMCID: PMC11744648 DOI: 10.1002/advs.202407757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Indexed: 11/27/2024]
Abstract
In the realm of neural regeneration post-spinal cord injury, hydrogel scaffolds carrying induced neural stem cells (iNSCs) have demonstrated significant potential. However, challenges such as graft rejection and dysfunction caused by mitochondrial damage persist after transplantation, presenting formidable barriers. Tacrolimus, known for its dual role as an immunosuppressant and promoter of neural regeneration, holds the potential for enhancing iNSC transplantation. However, systemic administration of tacrolimus often comes with severe side effects. This study pioneers the development of a self-healing hydrogel with sustained-release tacrolimus (COCu-Tac), tailored specifically for iNSC transplantation after spinal cord injury. This research reveals that the sustained release of tacrolimus enhances axonal growth and improves mitochondrial quality control in iNSCs and neurons. Further analysis shows that tacrolimus targets FKBP52 rather than FKBP51, enhancing mitophagy via the FKBP52/AKT pathway. This advanced system demonstrates significant efficacy in promoting neural regeneration and restoring motor function following spinal cord injury.
Collapse
Affiliation(s)
- Zhenming Tian
- Department of Spine SurgeryThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine SurgeryGuangzhou510630China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine SurgeryGuangzhou510630China
| | - Han‐Jian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of EducationCollege of Materials and EnergySouth China Agricultural UniversityGuangzhou510642China
| | - Chun Cheung Chan
- Department of Spine SurgeryThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine SurgeryGuangzhou510630China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine SurgeryGuangzhou510630China
| | - Tian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of EducationCollege of Materials and EnergySouth China Agricultural UniversityGuangzhou510642China
| | - Chaoyang Cai
- Department of Spine SurgeryThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine SurgeryGuangzhou510630China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine SurgeryGuangzhou510630China
| | - Hong Li
- Department of Spine SurgeryThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine SurgeryGuangzhou510630China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine SurgeryGuangzhou510630China
| | - Limin Rong
- Department of Spine SurgeryThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine SurgeryGuangzhou510630China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine SurgeryGuangzhou510630China
| | - Gang‐Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of EducationCollege of Materials and EnergySouth China Agricultural UniversityGuangzhou510642China
| | - Bin Liu
- Department of Spine SurgeryThe Third Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhou510630China
- Guangdong Provincial Center for Quality Control of Minimally Invasive Spine SurgeryGuangzhou510630China
- Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine SurgeryGuangzhou510630China
| |
Collapse
|
2
|
Gupta S, Sharma A, Rajakannu M, Bisevac J, Rela M, Verma RS. Small Molecule-Mediated Stage-Specific Reprogramming of MSCs to Hepatocyte-Like Cells and Hepatic Tissue for Liver Injury Treatment. Stem Cell Rev Rep 2024; 20:2215-2235. [PMID: 39259445 PMCID: PMC11554881 DOI: 10.1007/s12015-024-10771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Derivation of hepatocytes from stem cells has been established through various protocols involving growth factor (GF) and small molecule (SM) agents, among others. However, mesenchymal stem cell-based derivation of hepatocytes still remains expensive due to the use of a cocktail of growth factors, and a long duration of differentiation is needed, thus limiting its potential clinical application. METHODS In this study, we developed a chemically defined differentiation strategy that is exclusively based on SM and takes 14 days, while the GF-based protocol requires 23-28 days. RESULTS We optimized a stage-specific differentiation protocol for the differentiation of rat bone marrow-derived mesenchymal stem cells (MSCs) into functional hepatocyte-like cells (dHeps) that involved four stages, i.e., definitive endoderm (DE), hepatic competence (HC), hepatic specification (HS) and hepatic differentiation and growth. We further generated hepatic tissue using human decellularized liver extracellular matrix and compared it with hepatic tissue derived from the growth factor-based protocol at the transcriptional level. dHep, upon transplantation in a rat model of acute liver injury (ALI), was capable of ameliorating liver injury in rats and improving liver function and tissue damage compared to those in the ALI model. CONCLUSIONS In summary, this is the first study in which hepatocytes and hepatic tissue were derived from MSCs utilizing a stage-specific strategy by exclusively using SM as a differentiation factor.
Collapse
Affiliation(s)
- Santosh Gupta
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
- Centre for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Akriti Sharma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Muthukumarassamy Rajakannu
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chromepet, Tamil Nadu, India
| | - Jovana Bisevac
- Centre for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mohamed Rela
- The Institute of Liver Disease & Transplantation, Dr. Rela Institute & Medical Centre, Bharath Institute of Higher Education & Research, Chromepet, Tamil Nadu, India
| | - Rama Shanker Verma
- Stem Cell and Molecular Biology, Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
3
|
Shi H, Ding Y, Sun P, Lv Z, Wang C, Ma H, Lu J, Yu B, Li W, Wang C. Chemical approaches targeting the hurdles of hepatocyte transplantation: mechanisms, applications, and advances. Front Cell Dev Biol 2024; 12:1480226. [PMID: 39544361 PMCID: PMC11560891 DOI: 10.3389/fcell.2024.1480226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocyte transplantation (HTx) has been a novel cell-based therapy for severe liver diseases, as the donor livers for orthotopic liver transplantation are of great shortage. However, HTx has been confronted with two main hurdles: limited high-quality hepatocyte sources and low cell engraftment and repopulation rate. To cope with, researchers have investigated on various strategies, including small molecule drugs with unique advantages. Small molecules are promising chemical tools to modulate cell fate and function for generating high quality hepatocyte sources. In addition, endothelial barrier, immune responses, and low proliferative efficiency of donor hepatocytes mainly contributes to low cell engraftment and repopulation rate. Interfering these biological processes with small molecules is beneficial for improving cell engraftment and repopulation. In this review, we will discuss the applications and advances of small molecules in modulating cell differentiation and reprogramming for hepatocyte resources and in improving cell engraftment and repopulation as well as its underlying mechanisms.
Collapse
Affiliation(s)
- Huanxiao Shi
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Yi Ding
- Experimental Teaching Center, Naval Medical University, Shanghai, China
| | - Pingxin Sun
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Zhuman Lv
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Chunyan Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Haoxin Ma
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Junyu Lu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Bing Yu
- Department of Cell Biology, Naval Medical University, Shanghai, China
| | - Wenlin Li
- Department of Cell Biology, Naval Medical University, Shanghai, China
- Shanghai Key Laboratory of Cell Engineering, Naval Medical University, Shanghai, China
| | - Chao Wang
- Department of Cell Biology, Naval Medical University, Shanghai, China
| |
Collapse
|
4
|
Choi SY, Kim TH, Kim MJ, Mun SJ, Kim TS, Jung KK, Oh IU, Oh JH, Son MJ, Lee JH. Validating Well-Functioning Hepatic Organoids for Toxicity Evaluation. TOXICS 2024; 12:371. [PMID: 38787150 PMCID: PMC11126009 DOI: 10.3390/toxics12050371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
"Organoids", three-dimensional self-organized organ-like miniature tissues, are proposed as intermediary models that bridge the gap between animal and human studies in drug development. Despite recent advancements in organoid model development, studies on toxicity using these models are limited. Therefore, in this study, we aimed to analyze the functionality and gene expression of pre- and post-differentiated human hepatic organoids derived from induced pluripotent stem cells and utilize them for toxicity assessment. First, we confirmed the functional similarity of this hepatic organoid model to the human liver through various functional assessments, such as glycogen storage, albumin and bile acid secretion, and cytochrome P450 (CYP) activity. Subsequently, utilizing these functionally validated hepatic organoids, we conducted toxicity evaluations with three hepatotoxic substances (ketoconazole, troglitazone, and tolcapone), which are well known for causing drug-induced liver injury, and three non-hepatotoxic substances (sucrose, ascorbic acid, and biotin). The organoids effectively distinguished between the toxicity levels of substances with and without hepatic toxicity. We demonstrated the potential of hepatic organoids with validated functionalities and genetic characteristics as promising models for toxicity evaluation by analyzing toxicological changes occurring in hepatoxic drug-treated organoids.
Collapse
Affiliation(s)
- Seo Yoon Choi
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Tae Hee Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Min Jeong Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Tae Sung Kim
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Ki Kyung Jung
- Division of Pharmacological Drug Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea;
| | - Il Ung Oh
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Jae Ho Oh
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Jin Hee Lee
- Division of Toxicological Research, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea; (S.Y.C.); (T.H.K.); (M.J.K.); (T.S.K.); (I.U.O.); (J.H.O.)
| |
Collapse
|
5
|
Gandhi N, Wills L, Akers K, Su Y, Niccum P, Murali TM, Rajagopalan P. Comparative transcriptomic and phenotypic analysis of induced pluripotent stem cell hepatocyte-like cells and primary human hepatocytes. Cell Tissue Res 2024; 396:119-139. [PMID: 38369646 DOI: 10.1007/s00441-024-03868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024]
Abstract
Primary human hepatocytes (PHHs) are used extensively for in vitro liver cultures to study hepatic functions. However, limited availability and invasive retrieval prevent their widespread use. Induced pluripotent stem cells exhibit significant potential since they can be obtained non-invasively and differentiated into hepatic lineages, such as hepatocyte-like cells (iHLCs). However, there are concerns about their fetal phenotypic characteristics and their hepatic functions compared to PHHs in culture. Therefore, we performed an RNA-sequencing (RNA-seq) analysis to understand pathways that are either up- or downregulated in each cell type. Analysis of the RNA-seq data showed an upregulation in the bile secretion pathway where genes such as AQP9 and UGT1A1 were higher expressed in PHHs compared to iHLCs by 455- and 15-fold, respectively. Upon immunostaining, bile canaliculi were shown to be present in PHHs. The TCA cycle in PHHs was upregulated compared to iHLCs. Cellular analysis showed a 2-2.5-fold increase in normalized urea production in PHHs compared to iHLCs. In addition, drug metabolism pathways, including cytochrome P450 (CYP450) and UDP-glucuronosyltransferase enzymes, were upregulated in PHHs compared to iHLCs. Of note, CYP2E1 gene expression was significantly higher (21,810-fold) in PHHs. Acetaminophen and ethanol were administered to PHH and iHLC cultures to investigate differences in biotransformation. CYP450 activity of baseline and toxicant-treated samples was significantly higher in PHHs compared to iHLCs. Our analysis revealed that iHLCs have substantial differences from PHHs in critical hepatic functions. These results have highlighted the differences in gene expression and hepatic functions between PHHs and iHLCs to motivate future investigation.
Collapse
Affiliation(s)
- Neeti Gandhi
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA
| | - Lauren Wills
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA
| | - Kyle Akers
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - Yiqi Su
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Parker Niccum
- Genetics, Bioinformatics, and Computational Biology Ph.D. Program, Virginia Tech, Blacksburg, VA, USA
| | - T M Murali
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, 333 Kelly Hall, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, USA.
| |
Collapse
|
6
|
Jin M, Yi X, Zhu X, Hu W, Wang S, Chen Q, Yang W, Li Y, Li S, Peng Q, Pan M, Gao Y, Xu S, Zhang Y, Zhou S. Schisandrin B promotes hepatic differentiation from human umbilical cord mesenchymal stem cells. iScience 2024; 27:108912. [PMID: 38323006 PMCID: PMC10844828 DOI: 10.1016/j.isci.2024.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Human umbilical cord mesenchymal stem cells (UC-MSCs)-derived hepatocyte-like cells (HLCs) have shown great promise in the treatment of liver diseases. However, most current induction protocols yield hepatocyte-like cells with limited function as compared with primary hepatocytes. Schisandrin B (Sch B) is one of the main components of Schisandra chinensis, which can prevent fibrosis progression and promote liver cell regeneration. Herein, we investigated the effects of Sch B on hepatic differentiation of UC-MSCs. We found that treatment with 10 μM Sch B from the second stage of the differentiation process increased hepatic marker levels and hepatic function. Additionally, RNA-seq analysis revealed that Sch B promoted hepatic differentiation via activating the JAK2/STAT3 pathway. When transplanted HLCs into mice with CCL4-induced liver fibrosis, Sch B-treated HLCs exhibited significant therapeutic effects. This study provides an optimized hepatic differentiation protocol for UC-MSCs based on Sch B, yielding functioning cells for liver disease treatment.
Collapse
Affiliation(s)
- Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xiaojuan Zhu
- Department of Anesthesiology, First People’s Hospital of Kashi, Kashi 844000, China
| | - Wei Hu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Simin Wang
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Ying Zhang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China
- Anesthesiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, China
| |
Collapse
|
7
|
Xu Y, Wang Y, Qi R, Li K, Wang X, Li X, Shi B. Role of connexin 32 in the directional differentiation of induced pluripotent stem cells into hepatocytes. Int J Med Sci 2024; 21:508-518. [PMID: 38250613 PMCID: PMC10797672 DOI: 10.7150/ijms.83973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024] Open
Abstract
This study aimed to explore the role of connexin 32 (Cx32) in the directional differentiation of induced pluripotent stem cells (iPSCs) into hepatocytes. Urine-derived epithelial cells were collected from the fresh urine of a healthy donor and transducted with reprogramming plasmid mixture to generate iPSCs. The iPSCs were then directionally differentiated into hepatocytes. During the differentiation, the upregulated and downregulated groups were treated with vitamin K2 (VK2) and 2-aminoethoxyboronate diphenylester (2-APB) to increase and inhibit Cx32 expression, respectively. The control group was not treated with the regulatory factor. Expression of Cx32 and hepatocyte-specific markers, including AFP, hepatocyte nuclear factor 4α (HNF-4α), albumin (ALB) and cytokeratin 18 (CK18) were detected. It indicated that Cx32 expression was not observed in iPSCs, but gradually increased during the process of hepatic differentiation from iPSCs. Upregulation of Cx32 expression by VK2 treatment promoted hepatocyte maturation and enhanced the expression of the aforementioned hepatic specific markers, whereas downregulation of Cx32 expression by 2-APB treatment had the opposite effects. In conclusion, urine-derived iPSCs could be directionally differentiated into hepatocytes. Up-regulation of Cx32 improves the efficiency and maturity of differentiation of iPSCs into hepatocytes, and Cx32 may be a promoting factor during the process of hepatic differentiation from iPSCs.
Collapse
Affiliation(s)
- Yan Xu
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yufeng Wang
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Ran Qi
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Kun Li
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xiuyan Wang
- Department of Ultrasonography, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xinbo Li
- Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Baomin Shi
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
- Department of General Surgery, Xinhua Hospital, School of medicine, Shanghai Jiaotong University, 200025, China
| |
Collapse
|
8
|
Luo J, Gong L, Yang Y, Zhang Y, Liu Q, Bai L, Fang X, Zhang B, Huang J, Liu M, Liu B, Tang Y, Wong CN, Huang J, Liu S, Li S, Ding T, Man K, Lee VHF, Li Y, Ma S, Guan XY. Enhanced mitophagy driven by ADAR1-GLI1 editing supports the self-renewal of cancer stem cells in HCC. Hepatology 2024; 79:61-78. [PMID: 36683360 DOI: 10.1097/hep.0000000000000299] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND AIMS Deregulation of adenosine-to-inosine editing by adenosine deaminase acting on RNA 1 (ADAR1) leads to tumor-specific transcriptome diversity with prognostic values for HCC. However, ADAR1 editase-dependent mechanisms governing liver cancer stem cell (LCSC) generation and maintenance have remained elusive. APPROACH AND RESULTS RNA-seq profiling identified ADAR1-responsive recoding editing events in HCC and showed editing frequency of GLI1 , rather than transcript abundance was clinically relevant. Functional differences in LCSC self-renewal and tumor aggressiveness between wild-type (GLI1 wt ) and edited GLI1 (GLI1 edit ) were elucidated. We showed that overediting of GLI1 induced an arginine-to-glycine (R701G) substitution, augmenting tumor-initiating potential and exhibiting a more aggressive phenotype. GLI1 R701G harbored weak affinity to SUFU, which in turn, promoted its cytoplasmic-to-nuclear translocation to support LCSC self-renewal by increased pluripotency gene expression. Moreover, editing predisposed to stabilize GLI1 by abrogating β-TrCP-GLI1 interaction. Integrative analysis of single-cell transcriptome further revealed hyperactivated mitophagy in ADAR1-enriched LCSCs. GLI1 editing promoted a metabolic switch to oxidative phosphorylation to control stress and stem-like state through PINK1-Parkin-mediated mitophagy in HCC, thereby conferring exclusive metastatic and sorafenib-resistant capacities. CONCLUSIONS Our findings demonstrate a novel role of ADAR1 as an active regulator for LCSCs properties through editing GLI1 in the highly heterogeneous HCC.
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lanqi Gong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuma Yang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qin Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lu Bai
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiaona Fang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Baifeng Zhang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jiao Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ming Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Beilei Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Ying Tang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ching Ngar Wong
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinlin Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shan Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shanshan Li
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
| | - Tao Ding
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwan Man
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yan Li
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Stephanie Ma
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Clinical Oncology, Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapy, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Dong S, Sun Y, Liu C, Li Y, Yu S, Zhang Q, Xu Y. Stage-specific requirement for m 6A RNA methylation during cardiac differentiation of pluripotent stem cells. Differentiation 2023; 133:77-87. [PMID: 37506593 DOI: 10.1016/j.diff.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Precise spatiotemporal control of gene expression patterns is critical for normal development. Pluripotent stem cells, including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), with the ability of unlimited self-renewal and differentiation into any cell type, provide a unique tool for understanding the underlying mechanism of development and disease in a dish. N6-methyl-adenosine (m6A) modification is the most extensive internal mRNA modification, which regulates almost all aspects of mRNA metabolism and thus extensively participates in gene expression regulation. However, the role of m6A during cardiogenesis still needs to be fully elucidated. Here, we found that core components of m6A methyltransferase decreased during cardiomyocyte differentiation. Impeding m6A deposition, by either deleting the m6A methyltransferase Mettl3 or overexpressing m6A demethylase alkB homolog 5 (Alkbh5), at early stages of cardiac differentiation of mouse pluripotent stem cells, led to inhibition of cardiac gene activation and retardation of the outgrowth of embryoid bodies, whereas interfering m6A modification at later stages of differentiation had minimal effects. Consistently, stage-specific inhibition of METTL3 with METTL3 inhibitor STM2457 during human ESCs (hESCs) cardiac differentiation demonstrated a similarly pivotal role of METTL3 for the induction of mesodermal cells while dispensable function for later stages. In summary, our study reveals a stage-specific requirement of m6A on the cardiac differentiation of pluripotent stem cells and demonstrates that precise tuning of m6A level is critical for cardiac differentiation.
Collapse
Affiliation(s)
- Shuai Dong
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuetong Sun
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chang Liu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanli Li
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Yu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Cell-gene Therapy Translational Medicine Research Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- Biotherapy Centre, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Trionfini P, Romano E, Varinelli M, Longaretti L, Rizzo P, Giampietro R, Caroli A, Aiello S, Todeschini M, Casiraghi F, Remuzzi G, Benigni A, Tomasoni S. Hypoimmunogenic Human Pluripotent Stem Cells as a Powerful Tool for Liver Regenerative Medicine. Int J Mol Sci 2023; 24:11810. [PMID: 37511568 PMCID: PMC10380710 DOI: 10.3390/ijms241411810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) have huge potential as cell therapy for various diseases, given their potential for unlimited self-renewal and capability to differentiate into a wide range of cell types. Although autologous iPSCs represents the ideal source for patient-tailored regenerative medicine, the high costs of the extensive and time-consuming production process and the impracticability for treating acute conditions hinder their use for broad applications. An allogeneic iPSC-based strategy may overcome these issues, but it carries the risk of triggering an immune response. So far, several approaches based on genome-editing techniques to silence human leukocyte antigen class I (HLA-I) or II (HLA-II) expression have been explored to overcome the immune rejection of allogeneic iPSCs. In this study, we employed the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9) system to delete the β2-Microglobulin (B2M) and the Class II Major Histocompatibility Complex Transactivator (CIITA) genes, essential for the correct surface expression of HLA-I and HLA-II proteins. The resulting hypoimmunogenic iPSC line has a normal karyotype, expresses the pluripotency stem cell markers, and is capable of differentiating into the three embryonic germ layers. Furthermore, we showed that it specifically retains the ability to differentiate towards different liver cells, such as endothelial-like cells, hepatocyte-like cells, and hepatic stellate-like cells. Our results indicate that hypoimmunogenic iPSCs could give a new cost-effective and off-the-shelf opportunity for cell therapy in liver diseases.
Collapse
Affiliation(s)
- Piera Trionfini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Elena Romano
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Marco Varinelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Lorena Longaretti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Paola Rizzo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Roberta Giampietro
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Annalina Caroli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Sistiana Aiello
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Marta Todeschini
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| | - Susanna Tomasoni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 24126 Bergamo, Italy
| |
Collapse
|
11
|
Marycz K, Bourebaba N, Serwotka-Suszczak A, Mularczyk M, Galuppo L, Bourebaba L. In Vitro Generated Equine Hepatic-Like Progenitor Cells as a Novel Potent Cell Pool for Equine Metabolic Syndrome (EMS) Treatment. Stem Cell Rev Rep 2023; 19:1124-1134. [PMID: 36658383 PMCID: PMC10185601 DOI: 10.1007/s12015-023-10507-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Equine metabolic syndrome (EMS) is recognized as one of the leading cause of health threatening in veterinary medicine worldwide. Recently, PTP1B inhibition has been proposed as an interesting strategy for liver insulin resistance reversion in both equines and humans, however as being a multifactorial disease, proper management of EMS horses further necessities additional interventional approaches aiming at repairing and restoring liver functions. In this study, we hypothesized that in vitro induction of Eq_ASCs hepatogenic differentiation will generate a specialized liver progenitor-like cell population exhibiting similar phenotypic characteristics and regenerative potential as native hepatic progenitor cells. Our obtained data demonstrated that Eq_ASCs-derived liver progenitor cells (Eq_HPCs) displayed typical flattened polygonal morphology with packed fragmented mitochondrial net, lowered mesenchymal CD105 and CD90 surface markers expression, and significant high expression levels of specific hepatic lineage genes including PECAM-1, ALB, AFP and HNF4A. therewith, generated Eq_HPCs exhibited potentiated stemness and pluripotency markers expression (NANOG, SOX-2 and OCT-4). Hence, in vitro generation of hepatic progenitor-like cells retaining high differentiation capacity represents a promising new approach for the establishment of cell-based targeted therapies for the restoration of proper liver functions in EMS affected horses.
Collapse
Affiliation(s)
- Krzysztof Marycz
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland.
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95516, USA.
| | - Nabila Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Anna Serwotka-Suszczak
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Malwina Mularczyk
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114, Wisznia Mała, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Larry Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95516, USA
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.
| |
Collapse
|
12
|
Wang R, Wu X, Tian Z, Hu T, Cai C, Wu G, Jiang GB, Liu B. Sustained release of hydrogen sulfide from anisotropic ferrofluid hydrogel for the repair of spinal cord injury. Bioact Mater 2023; 23:118-128. [DOI: 10.1016/j.bioactmat.2022.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/26/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022] Open
|
13
|
Bhat S, Ahanger IA, Kazim SN. Forthcoming Developments in Models to Study the Hepatitis B Virus Replication Cycle, Pathogenesis, and Pharmacological Advancements. ACS OMEGA 2023; 8:14273-14289. [PMID: 37125123 PMCID: PMC10134252 DOI: 10.1021/acsomega.2c07154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
Hepatitis, liver cirrhosis, and hepatocellular carcinoma are all manifestations of chronic hepatitis B. Its pathogenesis and molecular mechanism remain mysterious. As medical science progresses, different models are being used to study the disease from the physiological and molecular levels. Animal models have played an unprecedented role in achieving in-depth knowledge of the disease while posing no risk of harming humans throughout the study. The scarcity of acceptable animal models has slowed progress in hepatitis B virus (HBV) research and preclinical testing of antiviral medicines since HBV has a narrow species tropism and exclusively infects humans and higher primates. The development of human chimeric mice was supported by a better understanding of the obstacles to interspecies transmission, which has substantially opened the way for HBV research in vivo and the evaluation of possible chronic hepatitis B therapeutics. Animal models are cumbersome to handle, not accessible, and expensive. Hence, it is herculean to investigate the HBV replication cycle in animal models. Therefore, it becomes essential to build a splendid in vitro cell culture system to demonstrate the mechanisms attained by the HBV for its multiplication and sustenance. We also addressed the advantages and caveats associated with different models in examining HBV.
Collapse
Affiliation(s)
- Sajad
Ahmad Bhat
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Ishfaq Ahmad Ahanger
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Clinical
Biochemistry University of Kashmir, Srinagar, India
| | - Syed Naqui Kazim
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Phone: +91 9953621758.
| |
Collapse
|
14
|
Wu K, Zou J, Sack MN. The endo-lysosomal regulatory protein BLOC1S1 modulates hepatic lysosomal content and lysosomal lipolysis. Biochem Biophys Res Commun 2023; 642:1-10. [PMID: 36535215 PMCID: PMC9852072 DOI: 10.1016/j.bbrc.2022.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BLOC1S1 is a common component of BLOC and BORC multiprotein complexes which play distinct roles in endosome and lysosome biology. Recent human mutations in BLOC1S1 associate with juvenile leukodystrophy. As leukodystrophy is linked to perturbed lysosomal lipid storage we explored whether BLOC1S1 itself modulates this biology. Given the central role of the liver in lipid storage, our investigations were performed in hepatocyte specific liver bloc1s1 knockout (LKO) mice and in human hepatocyte-like lines (HLCs) derived from inducible pluripotential stem cells (iPSCs) from a juvenile leukodystrophy subject's with bloc1s1 mutations and from isogenic corrected iPSCs. Here we show that hepatocyte lipid stores are diminished in parallel with increased lysosomal content, increased lysosomal lipid uptake and lipolysis in LKO mice. The lysosomal lipolysis program was independent of macro- and chaperone-mediated lipophagy but dependent on cellular lysosome content. In parallel, genetic induction of lysosomal biogenesis in a transformed hepatocyte cell line replicated depletion of intracellular lipid stores. Interestingly bloc1s1 mutant and isogenic corrected HLCs both showed normal lysosomal enzyme activity. However, relative to the isogenic corrected HLCs, mutant bloc1s1 HLCs showed reduced lysosomal content and increased lipid storage. Together these data show distinct phenotypes in human mutant HLCs compared to murine knockout cells. At the same time, human blcs1s1 mutation and murine hepatocyte bloc1s1 depletion disrupt lysosome content and the cellular lipid storage. These data support that BLOC1S1 modulates lysosome content and lipid handling independent of autophagy and show that lysosomal lipolysis is dependent on the cellular content of functional lysosomes.
Collapse
Affiliation(s)
- Kaiyuan Wu
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA.
| | - Jizhong Zou
- Stem Cell Core Facility, NHLBI, NIH, Bethesda, MD, USA.
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, NHLBI, NIH, Bethesda, MD, USA.
| |
Collapse
|
15
|
Tsukamoto M, Kimura K, Yoshida T, Sugiura K, Hatoya S. Canine induced pluripotent stem cells efficiently differentiate into definitive endoderm in 3D cell culture conditions using high-dose activin A. Regen Ther 2022; 21:502-510. [DOI: 10.1016/j.reth.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
|
16
|
Zheng S, Bian H, Li J, Shen Y, Yang Y, Hu W. Differentiation therapy: Unlocking phenotypic plasticity of hepatocellular carcinoma. Crit Rev Oncol Hematol 2022; 180:103854. [PMID: 36257532 DOI: 10.1016/j.critrevonc.2022.103854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
|
17
|
Umrath F, Pfeifer A, Cen W, Danalache M, Reinert S, Alexander D, Naros A. How osteogenic is dexamethasone?—effect of the corticosteroid on the osteogenesis, extracellular matrix, and secretion of osteoclastogenic factors of jaw periosteum-derived mesenchymal stem/stromal cells. Front Cell Dev Biol 2022; 10:953516. [DOI: 10.3389/fcell.2022.953516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Dexamethasone (dexa) is commonly used to stimulate osteogenic differentiation of mesenchymal stem/stromal cells (MSCs) in vitro. However, it is paradoxical that glucocorticoids (GCs) such as dexa lead to bone loss and increased fracture risk in patients undergoing glucocorticoid therapy, causing glucocorticoid-induced osteoporosis (GIOP). In a recent publication, we demonstrated that osteogenic differentiation of progenitor cells isolated from jaw periosteal tissue (JPCs) does not depend on dexa, if the medium is supplemented with human platelet lysate (hPL) instead of fetal bovine serum (FBS). This allows the in vitro conditions to be much closer to the natural situation in vivo and enables us to compare osteogenic differentiation with and without dexa. In the present study, we demonstrate that the absence of dexa did not reduce mineralization capacity, but instead slightly improved the osteogenic differentiation of jaw periosteal cells. On the other hand, we show that dexa supplementation strongly alters the gene expression, extracellular matrix (ECM), and cellular communication of jaw periosteal cells. The secretome of periosteal cells previously treated with an osteogenic medium with and without dexa was used to investigate the changes in paracrine secretion caused by dexa. Dexa altered the secretion of several cytokines by jaw periosteal cells and strongly induced osteoclast differentiation of peripheral blood mononuclear cells (PBMCs). This study demonstrates how dexa supplementation can influence the outcome of in vitro studies and highlights a possible role of periosteal cells in the pathogenesis of glucocorticoid-induced osteoporosis. The methods used here can serve as a model for studying bone formation, fracture healing, and various pathological conditions such as (glucocorticoid-induced) osteoporosis, osteoarthritis, bone cancer, and others, in which the interactions of osteoblasts with surrounding cells play a key role.
Collapse
|
18
|
A comprehensive transcriptomic comparison of hepatocyte model systems improves selection of models for experimental use. Commun Biol 2022; 5:1094. [PMID: 36241695 PMCID: PMC9568534 DOI: 10.1038/s42003-022-04046-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
The myriad of available hepatocyte in vitro models provides researchers the possibility to select hepatocyte-like cells (HLCs) for specific research goals. However, direct comparison of hepatocyte models is currently challenging. We systematically searched the literature and compared different HLCs, but reported functions were limited to a small subset of hepatic functions. To enable a more comprehensive comparison, we developed an algorithm to compare transcriptomic data across studies that tested HLCs derived from hepatocytes, biliary cells, fibroblasts, and pluripotent stem cells, alongside primary human hepatocytes (PHHs). This revealed that no HLC covered the complete hepatic transcriptome, highlighting the importance of HLC selection. HLCs derived from hepatocytes had the highest transcriptional resemblance to PHHs regardless of the protocol, whereas the quality of fibroblasts and PSC derived HLCs varied depending on the protocol used. Finally, we developed and validated a web application (HLCompR) enabling comparison for specific pathways and addition of new HLCs. In conclusion, our comprehensive transcriptomic comparison of HLCs allows selection of HLCs for specific research questions and can guide improvements in culturing conditions.
Collapse
|
19
|
Bai F, Duan J, Yang D, Lai X, Zhu X, He X, Hu A. Integrative network analysis of circular RNAs reveals regulatory mechanisms for hepatic specification of human iPSC-derived endoderm. Stem Cell Res Ther 2022; 13:468. [PMID: 36076262 PMCID: PMC9461288 DOI: 10.1186/s13287-022-03160-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human-induced pluripotent stem cell (hiPSC)-derived functional hepatic endoderm (HE) is supposed to be an alternative option for replacement therapy for end-stage liver disease. However, the high heterogeneity of HE cell populations is still challenging. Hepatic specification of definitive endoderm (DE) is an essential stage for HE induction in vitro. Recent studies have suggested that circular RNAs (circRNAs) determine the fate of stem cells by acting as competing endogenous RNAs (ceRNAs). To date, the relationships between endogenous circRNAs and hepatic specification remain elusive. METHODS The identities of DE and HE derived from hiPSCs were determined by qPCR, cell immunofluorescence, and ELISA. Differentially expressed circRNAs (DEcircRNAs) were analysed using the Arraystar Human circRNA Array. qPCR was performed to validate the candidate DEcircRNAs. Intersecting differentially expressed genes (DEGs) of the GSE128060 and GSE66282 data sets and the DEcircRNA-predicted mRNAs were imported into Cytoscape for ceRNA networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were involved in the enrichment analysis. Hepatic markers and Wnt/β-catenin were detected in hsa_circ_004658-overexpressing cells by western blotting. Dual-luciferase reporter assays were used to evaluate the direct binding among hsa_circ_004658, miRNA-1200 and CDX2. DE cells were transfected with miR-1200 mimics, adenovirus containing CDX2, and Wnt/β-catenin was detected by western blotting. RESULTS hiPSC-derived DE and HE were obtained at 4 and 9 days after differentiation, as determined by hepatic markers. During hepatic specification, 626 upregulated and 208 downregulated DEcircRNAs were identified. Nine candidate DEcircRNAs were validated by qPCR. In the ceRNA networks, 111 circRNA-miRNA-mRNA pairs were involved, including 90 pairs associated with hsa_circ_004658. In addition, 53 DEGs were identified among the intersecting mRNAs of the GSE128060 and GSE66282 data sets and the hsa_circ_004658-targeted mRNAs. KEGG and GO analyses showed that the DEGs associated with hsa_circ_004658 were mainly enriched in the WNT signalling pathway. Furthermore, hsa_circ_004658 was preliminarily verified to promote hepatic specification, as determined by hepatic markers (AFP, ALB, HNF4A, and CK19) (p < 0.05). This promotive effect may be related to the inhibition of the Wnt/β-catenin signalling pathway (detected by β-catenin, p-β-catenin, and TCF4) when hsa_circ_004658 was overexpressed (p < 0.05). Dual-luciferase reporter assays showed that there were binding sites for miR-1200 in the hsa_circ_004658 sequence, and confirmed the candidate DEG (CDX2) as a miR-1200 target. The level of miR-1200 decreased and the level of CDX2 protein expression increased when hsa_circ_004658 was overexpressed (p < 0.05). In addition, the results showed that CDX2 may suppress the Wnt/β-catenin signalling during hepatic specification (p < 0.05). CONCLUSIONS This study analysed the profiles of circRNAs during hepatic specification. We identified the hsa_circ_004658/miR-1200/CDX2 axis and preliminarily verified its effect on the Wnt/β-catenin signalling pathway during hepatic specification. These results provide novel insight into the molecular mechanisms involved in hepatic specification and could improve liver development in the future.
Collapse
Affiliation(s)
- Fang Bai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinliang Duan
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Daopeng Yang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Xingqiang Lai
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China
| | - Anbin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, Guangdong, China. .,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
20
|
Liu J, Yuan Z, Wang Q. Pluripotent Stem Cell-derived Strategies to Treat Acute Liver Failure: Current Status and Future Directions. J Clin Transl Hepatol 2022; 10:692-699. [PMID: 36062278 PMCID: PMC9396313 DOI: 10.14218/jcth.2021.00353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 12/04/2022] Open
Abstract
Liver disease has long been a heavy health and economic burden worldwide. Once the disease is out of control and progresses to end-stage or acute organ failure, orthotopic liver transplantation (OLT) is the only therapeutic alternative, and it requires appropriate donors and aggressive administration of immunosuppressive drugs. Therefore, hepatocyte transplantation (HT) and bioartificial livers (BALs) have been proposed as effective treatments for acute liver failure (ALF) in clinics. Although human primary hepatocytes (PHs) are an ideal cell source to support these methods, the large demand and superior viability of PH is needed, which restrains its wide usage. Thus, a finding alternative to meet the quantity and quality of hepatocytes is urgent. In this context, human pluripotent stem cells (PSC), which have unlimited proliferative and differential potential, derived hepatocytes are a promising renewable cell source. Recent studies of the differentiation of PSC into hepatocytes has provided evidence that supports their clinical application. In this review, we discuss the recent status and future directions of the potential use of PSC-derived hepatocytes in treating ALF. We also discuss opportunities and challenges of how to promote such strategies in the common applications in clinical treatments.
Collapse
Affiliation(s)
- Jingfeng Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhiming Yuan
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qingwen Wang
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Miyoshi T, Hidaka M, Miyamoto D, Sakai Y, Murakami S, Huang Y, Hara T, Soyama A, Kanetaka K, Ochiya T, Eguchi S. Successful induction of human chemically induced liver progenitors with small molecules from damaged liver. J Gastroenterol 2022; 57:441-452. [PMID: 35294680 DOI: 10.1007/s00535-022-01869-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/27/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Human chemically induced liver progenitors (hCLiP) induced by small molecules produced by mature hepatocytes can potentially overcome issues related to hepatocyte transplantation, such as graft rejection or donor shortage. However, to our knowledge, no studies have explored the induction of hCLiP from mature hepatocytes (MHs) in damaged liver, indicated for liver transplantation. METHODS Liver tissues were collected from surgically resected livers, including damaged livers, of 86 patients at our department, and hepatocytes were isolated using the collagenase perfusion method. Hepatocytes isolated from 33 of these 86 donors were cultured in YAC medium containing Y-27632 (ROCK inhibitor), A-83-01 (TGF-β type I receptor inhibitor), and CHIR99021 (GSK-3 inhibitor) to induce hCLiP, and their functions were assessed. RESULTS Hepatocytes were isolated regardless of the liver fibrosis classifications (viability: F0,1: 87.2 ± 13.2%; F2,3: 87.8 ± 13.1%; and F4: 86.3 ± 4.2%). Most hepatocytes cultured in the YAC medium acquired the liver progenitor cell (LPC) gene. The expression of MH markers (ALB, HNF4α, G6PC, and CYP1A2) was lower in hCLiP than in MHs before reprogramming. Reverse transcription-polymerase chain reaction revealed that hCLiP markers (e.g., EpCAM, SOX9, CK19, and CD133) exhibited higher expression in LPCs than in MHs. Furthermore, hCLiPs had the ability to differentiate into hepatocytes, and were engrafted on the liver surface as mature hepatocytes. CONCLUSION Hepatocytes could be isolated from damaged liver. Furthermore, hCLiP may be obtained from hepatocytes isolated from damaged liver and may differentiate into MHs in vitro. Autologous hCLiP can potentially be transplanted without tumorigenesis and remodel damaged liver.
Collapse
Affiliation(s)
- Takayuki Miyoshi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Fukuoka, Japan
| | - Shunsuke Murakami
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan
| | - Takahiro Ochiya
- Department of Molecular Cell Therapy Research, Medical Research Institute, Tokyo Medical University, Tokyo, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, 852-8501, Japan.
| |
Collapse
|
22
|
Human iPSC-derived hepatocytes in 2D and 3D suspension culture for cryopreservation and in vitro toxicity studies. Reprod Toxicol 2022; 111:68-80. [DOI: 10.1016/j.reprotox.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 12/19/2022]
|
23
|
Li R, Zhao Y, Yourick JJ, Sprando RL, Gao X. Phenotypical, functional and transcriptomic comparison of two modified methods of hepatocyte differentiation from human induced pluripotent stem cells. Biomed Rep 2022; 16:43. [PMID: 35371477 PMCID: PMC8972237 DOI: 10.3892/br.2022.1526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Directed differentiation of human induced pluripotent stem cells (iPSCs) into hepatocytes could provide an unlimited source of liver cells, and therefore holds great promise for regenerative medicine, disease modeling, drug screening and toxicology studies. Various methods have been established during the past decade to differentiate human iPSCs into hepatocyte-like cells (HLCs) using growth factors and/or small molecules. However, direct comparison of the differentiation efficiency and the quality of the final HLCs between different methods has rarely been reported. In the current study, two hepatocyte differentiation methods were devised, termed Method 1 and 2, through modifying existing well-known hepatocyte differentiation strategies, and the resultant cells were compared phenotypically and functionally at different stages of hepatocyte differentiation. Compared to Method 1, higher differentiation efficiency and reproducibility were observed in Method 2, which generated highly homogeneous functional HLCs at the end of the differentiation process. The cells exhibited morphology closely resembling primary human hepatocytes and expressed high levels of hepatic protein markers. More importantly, these HLCs demonstrated several essential characteristics of mature hepatocytes, including major serum protein (albumin, fibronectin and α-1 antitrypsin) secretion, urea release, glycogen storage and inducible cytochrome P450 activity. Further transcriptomic comparison of the HLCs derived from the two methods identified 1,481 differentially expressed genes (DEGs); 290 Gene Ontology terms in the biological process category were enriched by these genes, which were further categorized into 34 functional classes. Pathway analysis of the DEGs identified several signaling pathways closely involved in hepatocyte differentiation of pluripotent stem cells, including 'signaling pathways regulating pluripotency of stem cells', 'Wnt signaling pathway', 'TGF-beta signaling pathway' and 'PI3K-Akt signaling pathway'. These results may provide a molecular basis for the differences observed between the two differentiation methods and suggest ways to further improve hepatocyte differentiation in order to obtain more mature HLCs for biomedical applications.
Collapse
Affiliation(s)
- Rong Li
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Yang Zhao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
24
|
Pan T, Wang N, Zhang J, Yang F, Chen Y, Zhuang Y, Xu Y, Fang J, You K, Lin X, Li Y, Li S, Liang K, Li YX, Gao Y. Efficiently generate functional hepatic cells from human pluripotent stem cells by complete small-molecule strategy. Stem Cell Res Ther 2022; 13:159. [PMID: 35410439 PMCID: PMC8996222 DOI: 10.1186/s13287-022-02831-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Various methods have been developed to generate hepatic cells from human pluripotent stem cells (hPSCs) that rely on the combined use of multiple expensive growth factors, limiting industrial-scale production and widespread applications. Small molecules offer an attractive alternative to growth factors for producing hepatic cells since they are more economical and relatively stable. METHODS We dissect small-molecule combinations and identify the ideal cocktails to achieve an optimally efficient and cost-effective strategy for hepatic cells differentiation, expansion, and maturation. RESULTS We demonstrated that small-molecule cocktail CIP (including CHIR99021, IDE1, and PD0332991) efficiently induced definitive endoderm (DE) formation via increased endogenous TGF-β/Nodal signaling. Furthermore, we identified that combining Vitamin C, Dihexa, and Forskolin (VDF) could substitute growth factors to induce hepatic specification. The obtained hepatoblasts (HBs) could subsequently expand and mature into functional hepatocyte-like cells (HLCs) by the established chemical formulas. Thus, we established a stepwise strategy with complete small molecules for efficiently producing scalable HBs and functionally matured HLCs. The small-molecule-derived HLCs displayed typical functional characteristics as mature hepatocytes in vitro and repopulating injured liver in vivo. CONCLUSION Our current small-molecule-based hepatic generation protocol presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery using.
Collapse
Affiliation(s)
- Tingcai Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ning Wang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaye Zhang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fan Yang
- Guangdong Key Laboratory of Non-Human Primate Models, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong, China
| | - Yan Chen
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuanqi Zhuang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yingying Xu
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ji Fang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kai You
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianhua Lin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China
| | - Kangyan Liang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China
| | - Yin-Xiong Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou , Guangdong, China. .,State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Blaszkiewicz J, Duncan SA. Advancements in Disease Modeling and Drug Discovery Using iPSC-Derived Hepatocyte-like Cells. Genes (Basel) 2022; 13:573. [PMID: 35456379 PMCID: PMC9030659 DOI: 10.3390/genes13040573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
Serving as the metabolic hub of the human body, the liver is a vital organ that performs a variety of important physiological functions. Although known for its regenerative potential, it remains vulnerable to a variety of diseases. Despite decades of research, liver disease remains a leading cause of mortality in the United States with a multibillion-dollar-per-year economic burden. Prior research with model systems, such as primary hepatocytes and murine models, has provided many important discoveries. However, progress has been impaired by numerous obstacles associated with these models. In recent years, induced pluripotent stem cell (iPSC)-based systems have emerged as advantageous platforms for studying liver disease. Benefits, including preserved differentiation and physiological function, amenability to genetic manipulation via tools such as CRISPR/Cas9, and availability for high-throughput screening, make these systems increasingly attractive for both mechanistic studies of disease and the identification of novel therapeutics. Although limitations exist, recent studies have made progress in ameliorating these issues. In this review, we discuss recent advancements in iPSC-based models of liver disease, including improvements in model system construction as well as the use of high-throughput screens for genetic studies and drug discovery.
Collapse
Affiliation(s)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
26
|
Feng Y, Luo J, Cheng J, Xu A, Qiu D, He S, Zheng D, Jia C, Zhang Q, Lin N. A Small-Molecule Cocktails-Based Strategy in Culture of Mesenchymal Stem Cells. Front Bioeng Biotechnol 2022; 10:819148. [PMID: 35360405 PMCID: PMC8963903 DOI: 10.3389/fbioe.2022.819148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/11/2022] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have a variety of unique properties, such as stem cell multipotency and immune regulation, making them attractive for use in cell therapy. Before infusion therapy, MSCs are required to undergo tissue separation, purification, and expansion in vitro for a certain duration. During the process of in vitro expansion of MSCs, the influence of culture time and environment can lead to cell senescence, increased heterogeneity, and function attenuation, which limits their clinical applications. We used a cocktail of three small-molecule compounds, ACY (A-83-01, CHIR99021, and Y-27632), to increase the proliferation activity of MSCs in vitro and reduce cell senescence. ACY inhibited the increase in heterogeneity of MSCs and conserved their differentiation potential. Additionally, ACY maintained the phenotype of MSCs and upregulated the expression of immunomodulatory factors. These results suggest that ACY can effectively improve the quantity and quality of MSCs.
Collapse
Affiliation(s)
- Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jintao Cheng
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Aimin Xu
- The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Dongbo Qiu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Sixiao He
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dayong Zheng
- The First People’s Hospital of Kashi Prefecture, Kashi, China
| | - Changchang Jia
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
27
|
Almeida JI, Tenreiro MF, Martinez-Santamaria L, Guerrero-Aspizua S, Gisbert JP, Alves PM, Serra M, Baptista PM. Hallmarks of the human intestinal microbiome on liver maturation and function. J Hepatol 2022; 76:694-725. [PMID: 34715263 DOI: 10.1016/j.jhep.2021.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022]
Abstract
As one of the most metabolically complex systems in the body, the liver ensures multi-organ homeostasis and ultimately sustains life. Nevertheless, during early postnatal development, the liver is highly immature and takes about 2 years to acquire and develop almost all of its functions. Different events occurring at the environmental and cellular levels are thought to mediate hepatic maturation and function postnatally. The crosstalk between the liver, the gut and its microbiome has been well appreciated in the context of liver disease, but recent evidence suggests that the latter could also be critical for hepatic function under physiological conditions. The gut-liver crosstalk is thought to be mediated by a rich repertoire of microbial metabolites that can participate in a myriad of biological processes in hepatic sinusoids, from energy metabolism to tissue regeneration. Studies on germ-free animals have revealed the gut microbiome as a critical contributor in early hepatic programming, and this influence extends throughout life, mediating liver function and body homeostasis. In this seminar, we describe the microbial molecules that have a known effect on the liver and discuss how the gut microbiome and the liver evolve throughout life. We also provide insights on current and future strategies to target the gut microbiome in the context of hepatology research.
Collapse
Affiliation(s)
- Joana I Almeida
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Miguel F Tenreiro
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Lucía Martinez-Santamaria
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain; Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Sara Guerrero-Aspizua
- Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, ISCIII), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Department. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Paula M Alves
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Margarida Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Pedro M Baptista
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Carlos III University of Madrid. Bioengineering and Aerospace Engineering, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
28
|
Graffmann N, Scherer B, Adjaye J. In vitro differentiation of pluripotent stem cells into hepatocyte like cells - basic principles and current progress. Stem Cell Res 2022; 61:102763. [DOI: 10.1016/j.scr.2022.102763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
|
29
|
Youhanna S, Kemas AM, Preiss L, Zhou Y, Shen JX, Cakal SD, Paqualini FS, Goparaju SK, Shafagh RZ, Lind JU, Sellgren CM, Lauschke VM. Organotypic and Microphysiological Human Tissue Models for Drug Discovery and Development-Current State-of-the-Art and Future Perspectives. Pharmacol Rev 2022; 74:141-206. [PMID: 35017176 DOI: 10.1124/pharmrev.120.000238] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
The number of successful drug development projects has been stagnant for decades despite major breakthroughs in chemistry, molecular biology, and genetics. Unreliable target identification and poor translatability of preclinical models have been identified as major causes of failure. To improve predictions of clinical efficacy and safety, interest has shifted to three-dimensional culture methods in which human cells can retain many physiologically and functionally relevant phenotypes for extended periods of time. Here, we review the state of the art of available organotypic culture techniques and critically review emerging models of human tissues with key importance for pharmacokinetics, pharmacodynamics, and toxicity. In addition, developments in bioprinting and microfluidic multiorgan cultures to emulate systemic drug disposition are summarized. We close by highlighting important trends regarding the fabrication of organotypic culture platforms and the choice of platform material to limit drug absorption and polymer leaching while supporting the phenotypic maintenance of cultured cells and allowing for scalable device fabrication. We conclude that organotypic and microphysiological human tissue models constitute promising systems to promote drug discovery and development by facilitating drug target identification and improving the preclinical evaluation of drug toxicity and pharmacokinetics. There is, however, a critical need for further validation, benchmarking, and consolidation efforts ideally conducted in intersectoral multicenter settings to accelerate acceptance of these novel models as reliable tools for translational pharmacology and toxicology. SIGNIFICANCE STATEMENT: Organotypic and microphysiological culture of human cells has emerged as a promising tool for preclinical drug discovery and development that might be able to narrow the translation gap. This review discusses recent technological and methodological advancements and the use of these systems for hit discovery and the evaluation of toxicity, clearance, and absorption of lead compounds.
Collapse
Affiliation(s)
- Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Lena Preiss
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Selgin D Cakal
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Francesco S Paqualini
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Sravan K Goparaju
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Reza Zandi Shafagh
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Johan Ulrik Lind
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.Y., A.M.K., L.P., Y.Z., J.X.S., S.K.G., R.Z.S., C.M.S., V.M.L.); Department of Drug Metabolism and Pharmacokinetics (DMPK), Merck KGaA, Darmstadt, Germany (L.P.); Department of Health Technology, Technical University of Denmark, Lyngby, Denmark (S.D.C., J.U.L.); Synthetic Physiology Laboratory, Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy (F.S.P.); Division of Micro- and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden (Z.S.); and Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.)
| |
Collapse
|
30
|
Xie Y, Yao J, Jin W, Ren L, Li X. Induction and Maturation of Hepatocyte-Like Cells In Vitro: Focus on Technological Advances and Challenges. Front Cell Dev Biol 2021; 9:765980. [PMID: 34901010 PMCID: PMC8662991 DOI: 10.3389/fcell.2021.765980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an urgent need to find substitutes for proliferation and cultivation of mature hepatocytes in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are considered good candidates because of their advantages in terms of cell source and in vitro expansion ability. However, the majority of induced HLCs are in an immature state, and their degree of differentiation is heterogeneous, diminishing their usability in basic research and limiting their clinical application. Therefore, various methods have been developed to promote the maturation of HLCs, including chemical approaches, alteration of cell culture systems, and genetic manipulation, to meet the needs of in vivo transplantation and in vitro model establishment. This review proposes different cell types for the induction of HLCs, and provide a comprehensive overview of various techniques to promote the generation and maturation of HLCs in vitro.
Collapse
Affiliation(s)
- Ye Xie
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Weilin Jin
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Institute of Cancer Neuroscience, The First Hospital of Lanzhou University, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longfei Ren
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.,The Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.,The Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou, China
| |
Collapse
|
31
|
Mennen RH, Oldenburger MM, Piersma AH. Endoderm and mesoderm derivatives in embryonic stem cell differentiation and their use in developmental toxicity testing. Reprod Toxicol 2021; 107:44-59. [PMID: 34861400 DOI: 10.1016/j.reprotox.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023]
Abstract
Embryonic stem cell differentiation models have increasingly been applied in non-animal test systems for developmental toxicity. After the initial focus on cardiac differentiation, attention has also included an array of neuro-ectodermal differentiation routes. Alternative differentiation routes in the mesodermal and endodermal germ lines have received less attention. This review provides an inventory of achievements in the latter areas of embryonic stem cell differentiation, with a view to possibilities for their use in non-animal test systems in developmental toxicology. This includes murine and human stem cell differentiation models, and also gains information from the field of stem cell use in regenerative medicine. Endodermal stem cell derivatives produced in vitro include hepatocytes, pancreatic cells, lung epithelium, and intestinal epithelium, and mesodermal derivatives include cardiac muscle, osteogenic, vascular and hemopoietic cells. This inventory provides an overview of studies on the different cell types together with biomarkers and culture conditions that stimulate these differentiation routes from embryonic stem cells. These models may be used to expand the spectrum of embryonic stem cell based new approach methodologies in non-animal developmental toxicity testing.
Collapse
Affiliation(s)
- R H Mennen
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands.
| | | | - A H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
32
|
Fernandez-Checa JC, Bagnaninchi P, Ye H, Sancho-Bru P, Falcon-Perez JM, Royo F, Garcia-Ruiz C, Konu O, Miranda J, Lunov O, Dejneka A, Elfick A, McDonald A, Sullivan GJ, Aithal GP, Lucena MI, Andrade RJ, Fromenty B, Kranendonk M, Cubero FJ, Nelson LJ. Advanced preclinical models for evaluation of drug-induced liver injury - consensus statement by the European Drug-Induced Liver Injury Network [PRO-EURO-DILI-NET]. J Hepatol 2021; 75:935-959. [PMID: 34171436 DOI: 10.1016/j.jhep.2021.06.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Drug-induced liver injury (DILI) is a major cause of acute liver failure (ALF) and one of the leading indications for liver transplantation in Western societies. Given the wide use of both prescribed and over the counter drugs, DILI has become a major health issue for which there is a pressing need to find novel and effective therapies. Although significant progress has been made in understanding the molecular mechanisms underlying DILI, our incomplete knowledge of its pathogenesis and inability to predict DILI is largely due to both discordance between human and animal DILI in preclinical drug development and a lack of models that faithfully recapitulate complex pathophysiological features of human DILI. This is exemplified by the hepatotoxicity of acetaminophen (APAP) overdose, a major cause of ALF because of its extensive worldwide use as an analgesic. Despite intensive efforts utilising current animal and in vitro models, the mechanisms involved in the hepatotoxicity of APAP are still not fully understood. In this expert Consensus Statement, which is endorsed by the European Drug-Induced Liver Injury Network, we aim to facilitate and outline clinically impactful discoveries by detailing the requirements for more realistic human-based systems to assess hepatotoxicity and guide future drug safety testing. We present novel insights and discuss major players in APAP pathophysiology, and describe emerging in vitro and in vivo pre-clinical models, as well as advanced imaging and in silico technologies, which may improve prediction of clinical outcomes of DILI.
Collapse
Affiliation(s)
- Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033.
| | - Pierre Bagnaninchi
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK
| | - Hui Ye
- Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Pau Sancho-Bru
- Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Juan M Falcon-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Bizkaia, 48015, Spain
| | - Felix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, 48160, Spain
| | - Carmen Garcia-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Spain; Liver Unit, Hospital Clínic, Barcelona, Spain; Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; USC Research Center for ALPD, Keck School of Medicine, Los Angeles, United States, CA 90033
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Turkey; Interdisciplinary Neuroscience Program, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Joana Miranda
- Research Institute for iMedicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Oleg Lunov
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alexandr Dejneka
- Department of Optical and Biophysical Systems, Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alistair Elfick
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Alison McDonald
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh EH8 3DW, UK
| | - Gareth J Sullivan
- University of Oslo and the Oslo University Hospital, Oslo, Norway; Hybrid Technology Hub-Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Department of Pediatric Research, Oslo University Hosptial, Oslo, Norway
| | - Guruprasad P Aithal
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospital NHS Trust and University of Nottingham, Nottingham, UK
| | - M Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, UICEC SCReN, Universidad de Málaga, Málaga, Spain
| | - Raul J Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación, Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Malaga, Spain
| | - Bernard Fromenty
- INSERM, Univ Rennes, INRAE, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculty of Medical Sciences, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, 28029, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Leonard J Nelson
- Center for Regenerative Medicine, Institute for Regenerative and Repair, The University of Edinburgh, Edinburgh, UK, EH16 4UU; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Faraday Building, Colin Maclaurin Road, EH9 3 DW, Scotland, UK; Institute of Biological Chemistry, Biophysics and Bioengineering (IB3), School of Engineering and Physical Sciences (EPS), Heriot-Watt University, Edinburgh EH12 2AS, Scotland, UK.
| |
Collapse
|
33
|
Li Y, Yang X, Plummer R, Hayashi Y, Deng XS, Nie YZ, Taniguchi H. Human Pluripotent Stem Cell-Derived Hepatocyte-Like Cells and Organoids for Liver Disease and Therapy. Int J Mol Sci 2021; 22:ijms221910471. [PMID: 34638810 PMCID: PMC8508923 DOI: 10.3390/ijms221910471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease is a global health issue that has caused an economic burden worldwide. Organ transplantation is the only effective therapy for end-stage liver disease; however, it has been hampered by a shortage of donors. Human pluripotent stem cells (hPSCs) have been widely used for studying liver biology and pathology as well as facilitating the development of alternative therapies. hPSCs can differentiate into multiple types of cells, which enables the generation of various models that can be applied to investigate and recapitulate a range of biological activities in vitro. Here, we summarize the recent development of hPSC-derived hepatocytes and their applications in disease modeling, cell therapy, and drug discovery. We also discuss the advantages and limitations of these applications and critical challenges for further development.
Collapse
Affiliation(s)
- Yang Li
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xia Yang
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Richie Plummer
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshihito Hayashi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Xiao-Shan Deng
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yun-Zhong Nie
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| | - Hideki Taniguchi
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan; (Y.L.); (X.Y.); (R.P.); (Y.H.); (X.-S.D.)
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Kanagawa, Japan
- Correspondence: (Y.-Z.N.); (H.T.); Tel.: +81-03-5449-5698 (H.T.)
| |
Collapse
|
34
|
Luo S, Ai Y, Xiao S, Wang B, Wang Y. Functional hit 1 (FH1)-based rapid and efficient generation of functional hepatocytes from human mesenchymal stem cells: a novel strategy for hepatic differentiation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1087. [PMID: 34422999 PMCID: PMC8339809 DOI: 10.21037/atm-21-2829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
Background Because the liver is central to the physiology of the body, primary hepatocytes are widely used in liver pathology and physiological research, such as liver drug screening, bioartificial liver support system, and cell therapy for liver diseases. However, the source of primary hepatocytes is limited. We describe a novel non-transgenic protocol that facilitates the rapid generation of hepatocyte-like cells from human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), providing a new source of functional hepatocytes. Methods In this study, we used hUC-MSCs and human induced pluripotent cells (iPSCs) derived mesenchymal stem cells (iMSCs) to investigate the new induction strategy. Passage 3 MSCs were induced into hepatocyte-like cells using small-molecule compounds combined with cell factors in vitro. Functional hit 1 (FH1), a promising small molecule compound was achieved to replace HGF in the hepatocyte maturation stage to induce the hepatocyte-like cells differentiation. Results We rapidly induced hUC-MSCs and human iMSCs into hepatocyte-like cells within 10 days in vitro, and the cells were morphologically similarly to both hepatocytes derived from the hepatocyte growth factor (HGF)-based method and the primary hepatocytes. They expressed mature hepatocyte special genes and achieved functions such as glycogen storage, albumin expression, urea secretion, cytochrome P450 activity, Low-density lipoprotein (LDL) uptake, and indocyanine green (ICG) uptake. Conclusions We successfully established a small-molecule protocol without using HGF to differentiate MSCs into hepatocyte-like cells, which provides a rapid and cost-effective platform for in vitro studies of liver disease.
Collapse
Affiliation(s)
- Sang Luo
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Ai
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Shuai Xiao
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Ben Wang
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Yefu Wang
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Pasqua M, Di Gesù R, Chinnici CM, Conaldi PG, Francipane MG. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int J Mol Sci 2021; 22:8227. [PMID: 34360991 PMCID: PMC8348238 DOI: 10.3390/ijms22158227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
The possibility to reproduce key tissue functions in vitro from induced pluripotent stem cells (iPSCs) is offering an incredible opportunity to gain better insight into biological mechanisms underlying development and disease, and a tool for the rapid screening of drug candidates. This review attempts to summarize recent strategies for specification of iPSCs towards hepatobiliary lineages -hepatocytes and cholangiocytes-and their use as platforms for disease modeling and drug testing. The application of different tissue-engineering methods to promote accurate and reliable readouts is discussed. Space is given to open questions, including to what extent these novel systems can be informative. Potential pathways for improvement are finally suggested.
Collapse
Affiliation(s)
- Mattia Pasqua
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Roberto Di Gesù
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
| | - Cinzia Maria Chinnici
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- Dipartimento della Ricerca, IRCCS ISMETT, 90127 Palermo, Italy;
| | | | - Maria Giovanna Francipane
- Fondazione Ri.MED, 90133 Palermo, Italy; (M.P.); (R.D.G.); (C.M.C.)
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
36
|
Thyroid Hormone Effect on the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like Cells. Pharmaceuticals (Basel) 2021; 14:ph14060544. [PMID: 34200130 PMCID: PMC8230271 DOI: 10.3390/ph14060544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great potential as an unlimited source for obtaining hepatocyte-like cells (HLCs) for drug research. However, current applications of HLCs have been severely limited by the inability to produce mature hepatocytes from hiPSCs in vitro. Thyroid hormones are one of the hormones that surge during the perinatal period when liver maturation takes place. Here we assessed the influence of thyroid hormone on hepatic progenitor differentiation to HLCs. We analyzed gene and protein expression of early and late hepatic markers and demonstrated the selective activity of thyroid hormone on different genes. Particularly, we demonstrated thyroid hormone-dependent inhibition of the fetal hepatic marker AFP. Our study sheds light on the role of thyroid hormone during liver differentiation and maturation.
Collapse
|
37
|
Harrison SP, Baumgarten SF, Verma R, Lunov O, Dejneka A, Sullivan GJ. Liver Organoids: Recent Developments, Limitations and Potential. Front Med (Lausanne) 2021; 8:574047. [PMID: 34026769 PMCID: PMC8131532 DOI: 10.3389/fmed.2021.574047] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Liver cell types derived from induced pluripotent stem cells (iPSCs) share the potential to investigate development, toxicity, as well as genetic and infectious disease in ways currently limited by the availability of primary tissue. With the added advantage of patient specificity, which can play a role in all of these areas. Many iPSC differentiation protocols focus on 3 dimensional (3D) or organotypic differentiation, as these offer the advantage of more closely mimicking in vivo systems including; the formation of tissue like architecture and interactions/crosstalk between different cell types. Ultimately such models have the potential to be used clinically and either with or more aptly, in place of animal models. Along with the development of organotypic and micro-tissue models, there will be a need to co-develop imaging technologies to enable their visualization. A variety of liver models termed "organoids" have been reported in the literature ranging from simple spheres or cysts of a single cell type, usually hepatocytes, to those containing multiple cell types combined during the differentiation process such as hepatic stellate cells, endothelial cells, and mesenchymal cells, often leading to an improved hepatic phenotype. These allow specific functions or readouts to be examined such as drug metabolism, protein secretion or an improved phenotype, but because of their relative simplicity they lack the flexibility and general applicability of ex vivo tissue culture. In the liver field these are more often constructed rather than developed together organotypically as seen in other organoid models such as brain, kidney, lung and intestine. Having access to organotypic liver like surrogates containing multiple cell types with in vivo like interactions/architecture, would provide vastly improved models for disease, toxicity and drug development, combining disciplines such as microfluidic chip technology with organoids and ultimately paving the way to new therapies.
Collapse
Affiliation(s)
- Sean Philip Harrison
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira Felicitas Baumgarten
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Rajneesh Verma
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Gareth John Sullivan
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
38
|
Development of a mechanically matched silk scaffolded 3D clear cell renal cell carcinoma model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112141. [PMID: 34082952 DOI: 10.1016/j.msec.2021.112141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 11/21/2022]
Abstract
Development of a 3D, biomaterials-based model for clear cell renal cell carcinoma (ccRCC) would be advantageous for understanding disease progression in vitro. This study demonstrated the development of lyophilized silk scaffolds that mechanically match the experimentally determined Young's modulus for ex vivo ccRCC samples and normal kidney tissue. Scaffolds fabricated from silk solutions ranging from 3 to 12% (w/v) were evaluated through mechanical testing. Following mechanical characterization of ccRCC samples, it was demonstrated that 6% silk scaffolds mechanically matched ccRCC samples. No impact of pathological grade and stage on the calculated ccRCC modulus was observed and all tumors evaluated mechanically matched the 6% silk scaffold formulation. Stratifying tissue specimens based upon histological observations (e.g. evidence of high levels of collagen deposition) resulted in no significant differences between groups. To investigate the impact of a mechanically matched culturing environment on in vitro ccRCC disease characteristics a model ccRCC cell line, 786-O, was utilized. Scaffolded 786-O cells demonstrated increased lipid droplet accumulation, a hallmark of ccRCC, compared to standard two-dimensional (2D) culture conditions. Additionally, scaffolded 786-O cells demonstrated increased expression of genes associated with ccRCC aggressiveness (ex. VEGFA, TNF, and IL-6) or immune markers under investigation as therapeutic targets (ex. PDL1, CTLA4). Comparison with 786-O cells grown on non-mechanically matched scaffolds demonstrated that these improved ccRCC characteristics were driven by scaffold modulus. Overall, our findings support the use of silk scaffolds in replicating physiologic tumor behavior for clear cell renal cell carcinoma and provide a platform for investigating disease progression.
Collapse
|
39
|
Augustine R, Dan P, Hasan A, Khalaf IM, Prasad P, Ghosal K, Gentile C, McClements L, Maureira P. Stem cell-based approaches in cardiac tissue engineering: controlling the microenvironment for autologous cells. Biomed Pharmacother 2021; 138:111425. [PMID: 33756154 DOI: 10.1016/j.biopha.2021.111425] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide. Cardiac tissue engineering strategies focusing on biomaterial scaffolds incorporating cells and growth factors are emerging as highly promising for cardiac repair and regeneration. The use of stem cells within cardiac microengineered tissue constructs present an inherent ability to differentiate into cell types of the human heart. Stem cells derived from various tissues including bone marrow, dental pulp, adipose tissue and umbilical cord can be used for this purpose. Approaches ranging from stem cell injections, stem cell spheroids, cell encapsulation in a suitable hydrogel, use of prefabricated scaffold and bioprinting technology are at the forefront in the field of cardiac tissue engineering. The stem cell microenvironment plays a key role in the maintenance of stemness and/or differentiation into cardiac specific lineages. This review provides a detailed overview of the recent advances in microengineering of autologous stem cell-based tissue engineering platforms for the repair of damaged cardiac tissue. A particular emphasis is given to the roles played by the extracellular matrix (ECM) in regulating the physiological response of stem cells within cardiac tissue engineering platforms.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | - Pan Dan
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France; Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| | | | - Parvathy Prasad
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Kajal Ghosal
- Dr. B. C. Roy College of Pharmacy and AHS, Durgapur 713206, India
| | - Carmine Gentile
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW 2007, Australia; School of Medicine, Faculty of Medicine and Health, University of Sydney, NSW 2000, Australia; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lana McClements
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Pablo Maureira
- Department of Cardiovascular and Transplantation Surgery, Regional Central Hospital of Nancy, Lorraine University, Nancy 54500, France
| |
Collapse
|
40
|
Huang Y, Miyamoto D, Li PL, Sakai Y, Hara T, Adachi T, Soyama A, Hidaka M, Kanetaka K, Gu WL, Eguchi S. Chemical conversion of aged hepatocytes into bipotent liver progenitor cells. Hepatol Res 2021; 51:323-335. [PMID: 33378128 DOI: 10.1111/hepr.13609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/03/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022]
Abstract
AIM In the aging society, understanding the influence of hepatocyte age on hepatocyte donation may inform efforts to expand alternative cell sources to mitigate liver donor shortage. A combination of the molecules Y27632, A-83-01, and CHIR99021 has been used to reprogram rodent young hepatocytes into chemically induced liver progenitor (CLiP) cells; however, whether it could also reprogram aged hepatocytes has not yet been elucidated. METHODS Primary hepatocytes were isolated from aged and young donor rats, respectively. Hepatic histological changes were evaluated. Differences in gene expression in hepatocytes were identified. The in vitro reprogramming plasticity of hepatocytes as evidenced by CLiP conversion and the hepatocyte and cholangiocyte maturation capacity of reprogrammed CLIPs were analyzed. The effect of hepatocyte growth factor (HGF) on cell propagation was also investigated. RESULTS The histological findings revealed ongoing liver damage with inflammation, fibrosis, senescence, and ductular reaction in aged livers. Microarray analysis showed altered gene expression profiles in hepatocytes from aged donors, especially with regard to metabolic pathways. Aged hepatocytes could be converted into CLiPs (Aged-CLiPs) expressing progenitor cell markers, but with a relatively low proliferative rate compared with young hepatocytes. Aged-CLiPs possessed both hepatocyte and cholangiocyte maturation capacity. HGF facilitated CLiP conversion in aged hepatocytes, which was partly related to the activation of Erk1 and Akt1 signaling. CONCLUSIONS Aged rat hepatocytes have retained reprogramming plasticity as evidenced by CLiP conversion in culture. HGF promoted proliferation and CLiP conversion in aged hepatocytes. Hepatocytes from aged donors may be used as an alternative cell source to mitigate donor shortage.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Pei-Lin Li
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Fukuoka, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Wei-Li Gu
- Department of Surgery, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
41
|
Pan T, Tao J, Chen Y, Zhang J, Getachew A, Zhuang Y, Wang N, Xu Y, Tan S, Fang J, Yang F, Lin X, You K, Gao Y, Li YX. Robust expansion and functional maturation of human hepatoblasts by chemical strategy. Stem Cell Res Ther 2021; 12:151. [PMID: 33632328 PMCID: PMC7908723 DOI: 10.1186/s13287-021-02233-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background Chemically strategies to generate hepatic cells from human pluripotent stem cells (hPSCs) for the potential clinical application have been improved. However, producing high quality and large quantities of hepatic cells remain challenging, especially in terms of step-wise efficacy and cost-effective production requires more improvements. Methods Here, we systematically evaluated chemical compounds for hepatoblast (HB) expansion and maturation to establish a robust, cost-effective, and reproducible methodology for self-renewal HBs and functional hepatocyte-like cell (HLC) production. Results The established chemical cocktail could enable HBs to proliferate nearly 3000 folds within 3 weeks with preserved bipotency. Moreover, those expanded HBs could be further efficiently differentiated into homogenous HLCs which displayed typical morphologic features and functionality as mature hepatocytes including hepatocyte identity marker expression and key functional activities such as cytochrome P450 metabolism activities and urea secretion. Importantly, the transplanted HBs in the injured liver of immune-defect mice differentiated as hepatocytes, engraft, and repopulate in the injured loci of the recipient liver. Conclusion Together, this chemical compound-based HLC generation method presents an efficient and cost-effective platform for the large-scale production of functional human hepatic cells for cell-based therapy and drug discovery application. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02233-9.
Collapse
Affiliation(s)
- Tingcai Pan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China
| | - Jiawang Tao
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yan Chen
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jiaye Zhang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Anteneh Getachew
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Yuanqi Zhuang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ning Wang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yingying Xu
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shenglin Tan
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Ji Fang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Fan Yang
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xianhua Lin
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Kai You
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China.,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong Province, China.
| | - Yin-Xiong Li
- Institute of Public Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, China. .,Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China. .,University of Chinese Academy of Science, Beijing, 100049, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| |
Collapse
|
42
|
Generation of Hepatic Progenitor Cells from the Primary Hepatocytes of Nonhuman Primates Using Small Molecules. Tissue Eng Regen Med 2021; 18:305-313. [PMID: 33591557 DOI: 10.1007/s13770-020-00327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Since primates have more biological similarities to humans than do other animals, they are a valuable resource in various field of research, including biomedicine, regenerative medicine, and drug discovery. However, there remain limitations to maintenance and expansion of primary hepatocytes derived from nonhuman primates. To overcome these limitations, we developed a novel culture system for primate cells. METHODS Primary hepatocytes from Macaca fascicularis (mf-PHs) were isolated from hepatectomized liver. To generate chemically derived hepatic progenitor cells (mf-CdHs), mf-PHs were cultured with reprogramming medium containing A83-01, CHIR99021, and hepatocyte growth factor (HGF). The bi-potent differentiation capacity of mf-CdHs into hepatocytes and biliary epithelial cells was confirmed by treatment with hepatic differentiation medium (HDM) and cholangiocytic differentiation medium (CDM), respectively. RESULTS mf-PHs cultured with reprogramming medium showed rapid proliferation capacity in vitro and expressed progenitor-specific markers. Moreover, when cultured in HDM, these progenitor cells stably differentiated into hepatocyte-like cells expressing the mature hepatic markers. On the other hand, when cultured in CDM, the differentiated biliary epithelial cells expressed mature cholangiocyte characteristics. CONCLUSION The results of the present study demonstrate that we successfully induced the formation of hepatic progenitor cells from mf-PHs by culturing them with a combination of small molecules, including growth factors. These results offer a means of expanding nonhuman primate hepatocytes without genetic manipulation for cellular resource, preclinical applications and regenerative medicine for the liver.
Collapse
|
43
|
Jin M, Yi X, Liao W, Chen Q, Yang W, Li Y, Li S, Gao Y, Peng Q, Zhou S. Advancements in stem cell-derived hepatocyte-like cell models for hepatotoxicity testing. Stem Cell Res Ther 2021; 12:84. [PMID: 33494782 PMCID: PMC7836452 DOI: 10.1186/s13287-021-02152-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of clinical trial failures and high drug attrition rates. Currently, the commonly used hepatocyte models include primary human hepatocytes (PHHs), animal models, and hepatic cell lines. However, these models have disadvantages that include species-specific differences or inconvenient cell extraction methods. Therefore, a novel, inexpensive, efficient, and accurate model that can be applied to drug screening is urgently needed. Owing to their self-renewable ability, source abundance, and multipotent competence, stem cells are stable sources of drug hepatotoxicity screening models. Because 3D culture can mimic the in vivo microenvironment more accurately than can 2D culture, the former is commonly used for hepatocyte culture and drug screening. In this review, we introduce the different sources of stem cells used to generate hepatocyte-like cells and the models for hepatotoxicity testing that use stem cell-derived hepatocyte-like cells.
Collapse
Affiliation(s)
- Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Liao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
44
|
Yasui R, Sekine K, Yamaguchi K, Furukawa Y, Taniguchi H. Robust parameter design of human induced pluripotent stem cell differentiation protocols defines lineage-specific induction of anterior-posterior gut tube endodermal cells. Stem Cells 2021; 39:429-442. [PMID: 33400835 DOI: 10.1002/stem.3326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
Tissues and cells derived from pluripotent stem cells (PSC) are likely to become widely used in disease modeling, drug screening, and regenerative medicine. For these applications, the in vitro PSC differentiation process must be elaborately investigated and controlled to reliably obtain the desired end products. However, because traditional experimental methods, such as one factor at a time or brute-force approaches, are impractical for detailed screening of complex PSC cultivation conditions, more strategic and effective screening based on statistical design of experiments (DOE) ought to be indispensable. Among various DOE approaches, we regard robust parameter design (RPD) as particularly suited for differentiation protocol optimization due to its suitability for multifactorial screening. We confirmed the adaptability of RPD for investigating human induced PSC lineage specification toward anterior-posterior gut tube endodermal cells and clarified both the contribution of each cell signaling pathway and the effect of cell signaling condition alteration on marker RNA expression levels, while increasing the efficiency of the screening in 243-fold (18 vs 4374) compared with that of a brute-force approach. Specific induction of anterior foregut, hepatic, pancreatic, or mid-hindgut cells was achieved using seven iPSC strains with the optimal culture protocols established on the basis of RPD analysis. RPD has the potential to enable efficient construction and optimization of PSC differentiation protocols, and its use is recommended from fundamental research to mass production of PSC-derived products.
Collapse
Affiliation(s)
- Ryota Yasui
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Fundamental Research Laboratory, Eiken Chemical Co., Ltd., Nogi, Tochigi, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan.,Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Advanced Medical Research Center, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, Japan
| |
Collapse
|
45
|
Mun SJ, Lee J, Chung KS, Son MY, Son MJ. Effect of Microbial Short-Chain Fatty Acids on CYP3A4-Mediated Metabolic Activation of Human Pluripotent Stem Cell-Derived Liver Organoids. Cells 2021; 10:cells10010126. [PMID: 33440728 PMCID: PMC7827634 DOI: 10.3390/cells10010126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The early and accurate prediction of the hepatotoxicity of new drug targets during nonclinical drug development is important to avoid postmarketing drug withdrawals and late-stage failures. We previously established long-term expandable and functional human-induced pluripotent stem cell (iPSC)-derived liver organoids as an alternative source for primary human hepatocytes. However, PSC-derived organoids are known to present immature fetal characteristics. Here, we treated these liver organoids with microbial short-chain fatty acids (SCFAs) to improve metabolic maturation based on microenvironmental changes in the liver during postnatal development. The effects of the three main SCFA components (acetate, propionate, and butyrate) and their mixture on liver organoids were determined. Propionate (1 µM) significantly promoted the CYP3A4/CYP3A7 expression ratio, and acetate (1 µM), propionate (1 µM), and butyrate (1 µM) combination treatment, compared to no treatment (control), substantially increased CYP3A4 activity and albumin secretion, as well as gene expression. More importantly, mixed SCFA treatment accurately revealed troglitazone-induced hepatotoxicity, which was redeemed on a potent CYP3A4 inhibitor ketoconazole treatment. Overall, we determined, for the first time, that SCFA mixture treatment might contribute to the accurate evaluation of the CYP3A4-dependent drug toxicity by improving metabolic activation, including CYP3A4 expression, of liver organoids.
Collapse
Affiliation(s)
- Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Jaeseo Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
| | - Kyung-Sook Chung
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Biomedical Translational Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (M.-Y.S.); (M.J.S.); Tel.: +82-42-860-4426 (M.-Y.S.); +82-42-860-4477 (M.J.S.)
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (S.J.M.); (J.L.); (K.-S.C.)
- Department of Functional Genomics, Korea University of Science & Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
- Correspondence: (M.-Y.S.); (M.J.S.); Tel.: +82-42-860-4426 (M.-Y.S.); +82-42-860-4477 (M.J.S.)
| |
Collapse
|
46
|
Cox CR, Lynch S, Goldring C, Sharma P. Current Perspective: 3D Spheroid Models Utilizing Human-Based Cells for Investigating Metabolism-Dependent Drug-Induced Liver Injury. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:611913. [PMID: 35047893 PMCID: PMC8757888 DOI: 10.3389/fmedt.2020.611913] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Drug-induced liver injury (DILI) remains a leading cause for the withdrawal of approved drugs. This has significant financial implications for pharmaceutical companies, places increasing strain on global health services, and causes harm to patients. For these reasons, it is essential that in-vitro liver models are capable of detecting DILI-positive compounds and their underlying mechanisms, prior to their approval and administration to patients or volunteers in clinical trials. Metabolism-dependent DILI is an important mechanism of drug-induced toxicity, which often involves the CYP450 family of enzymes, and is associated with the production of a chemically reactive metabolite and/or inefficient removal and accumulation of potentially toxic compounds. Unfortunately, many of the traditional in-vitro liver models fall short of their in-vivo counterparts, failing to recapitulate the mature hepatocyte phenotype, becoming metabolically incompetent, and lacking the longevity to investigate and detect metabolism-dependent DILI and those associated with chronic and repeat dosing regimens. Nevertheless, evidence is gathering to indicate that growing cells in 3D formats can increase the complexity of these models, promoting a more mature-hepatocyte phenotype and increasing their longevity, in vitro. This review will discuss the use of 3D in vitro models, namely spheroids, organoids, and perfusion-based systems to establish suitable liver models to investigate metabolism-dependent DILI.
Collapse
Affiliation(s)
- Christopher R. Cox
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- *Correspondence: Christopher R. Cox
| | - Stephen Lynch
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Christopher Goldring
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Parveen Sharma
- Department of Pharmacology and Experimental Therapeutics, MRC Centre for Drug Safety Science, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, Liverpool, United Kingdom
| |
Collapse
|
47
|
Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells 2020; 9:cells9112465. [PMID: 33198288 PMCID: PMC7696367 DOI: 10.3390/cells9112465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Type 2 diabetes, characterized by dysfunction of pancreatic β-cells and insulin resistance in peripheral organs, accounts for more than 90% of all diabetes. Despite current developments of new drugs and strategies to prevent/treat diabetes, there is no ideal therapy targeting all aspects of the disease. Restoration, however, of insulin-producing β-cells, as well as insulin-responsive cells, would be a logical strategy for the treatment of diabetes. In recent years, generation of transplantable cells derived from stem cells in vitro has emerged as an important research area. Pluripotent stem cells, either embryonic or induced, are alternative and feasible sources of insulin-secreting and glucose-responsive cells. This notwithstanding, consistent generation of robust glucose/insulin-responsive cells remains challenging. In this review, we describe basic concepts of the generation of induced pluripotent stem cells and subsequent differentiation of these into pancreatic β-like cells, myotubes, as well as adipocyte- and hepatocyte-like cells. Use of these for modeling of human disease is now feasible, while development of replacement therapies requires continued efforts.
Collapse
|
48
|
Zakeri N, Mirdamadi ES, Kalhori D, Solati-Hashjin M. Signaling molecules orchestrating liver regenerative medicine. J Tissue Eng Regen Med 2020; 14:1715-1737. [PMID: 33043611 DOI: 10.1002/term.3135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/06/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022]
Abstract
The liver is in charge of more than 500 functions in the human body, which any damage and failure to the liver can significantly compromise human life. Numerous studies are being carried out in regenerative medicine, as a potential driving force, toward alleviating the need for liver donors and fabrication of a 3D-engineered transplantable hepatic tissue. Liver tissue engineering brings three main factors of cells, extracellular matrix (ECM), and signaling molecules together, while each of these three factors tries to mimic the physiological state of the tissue to direct tissue regeneration. Signaling molecules play a crucial role in directing tissue fabrication in liver tissue engineering. When mimicking the natural in vivo process of regeneration, it is tightly associated with three main phases of differentiation, proliferation (progression), and tissue maturation through vascularization while directing each of these phases is highly regulated by the specific signaling molecules. The understanding of how these signaling molecules guide the dynamic behavior of regeneration would be a tool for further tailoring of bioengineered systems to help the liver regeneration with many cellular, molecular, and tissue-level functions. Hence, the signaling molecules come to aid all these phases for further improvements toward the clinical use of liver tissue engineering as the goal.
Collapse
Affiliation(s)
- Nima Zakeri
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Elnaz Sadat Mirdamadi
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Dianoosh Kalhori
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mehran Solati-Hashjin
- BioFabrication Lab (BFL), Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
49
|
Pek NMQ, Liu KJ, Nichane M, Ang LT. Controversies Surrounding the Origin of Hepatocytes in Adult Livers and the in Vitro Generation or Propagation of Hepatocytes. Cell Mol Gastroenterol Hepatol 2020; 11:273-290. [PMID: 32992051 PMCID: PMC7695885 DOI: 10.1016/j.jcmgh.2020.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
Epithelial cells in the liver (known as hepatocytes) are high-performance engines of myriad metabolic functions and versatile responders to liver injury. As hepatocytes metabolize amino acids, alcohol, drugs, and other substrates, they produce and are exposed to a milieu of toxins and harmful byproducts that can damage themselves. In the healthy liver, hepatocytes generally divide slowly. However, after liver injury, hepatocytes can ramp up proliferation to regenerate the liver. Yet, on extensive injury, regeneration falters, and liver failure ensues. It is therefore critical to understand the mechanisms underlying liver regeneration and, in particular, which liver cells are mobilized during liver maintenance and repair. Controversies continue to surround the very existence of hepatic stem cells and, if they exist, their spatial location, multipotency, degree of contribution to regeneration, ploidy, and susceptibility to tumorigenesis. This review discusses these controversies. Finally, we highlight how insights into hepatocyte regeneration and biology in vivo can inform in vitro studies to propagate primary hepatocytes with liver regeneration-associated signals and to generate hepatocytes de novo from pluripotent stem cells.
Collapse
Affiliation(s)
| | | | | | - Lay Teng Ang
- Correspondence Address correspondence to: Lay Teng Ang, PhD, Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California 94305.
| |
Collapse
|
50
|
Saito Y, Ikemoto T, Morine Y, Shimada M. Current status of hepatocyte-like cell therapy from stem cells. Surg Today 2020; 51:340-349. [PMID: 32754843 DOI: 10.1007/s00595-020-02092-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/14/2020] [Indexed: 12/17/2022]
Abstract
Organ liver transplantation and hepatocyte transplantation are not performed to their full potential because of donor shortage, which could be resolved by identifying new donor sources for the development of hepatocyte-like cells (HLCs). HLCs have been differentiated from some stem cell sources as alternative primary hepatocytes throughout the world; however, the currently available techniques cannot differentiate HLCs to the level of normal adult primary hepatocytes. The outstanding questions are as follows: which stem cells are the best cell sources? which protocol is the best way to differentiate them into HLCs? what is the definition of differentiated HLCs? how can we enforce the function of HLCs? what is the difference between HLCs and primary hepatocytes? what are the problems with HLC transplantation? This review summarizes the current status of HLCs, focusing on stem cell sources, the differentiation protocol for HLCs, the general characterization of HLCs, the generation of more functional HLCs, comparison with primary hepatocytes, and HLCs in cell-transplantation-based liver regeneration.
Collapse
Affiliation(s)
- Yu Saito
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan.
| | - Tetsuya Ikemoto
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Yuji Morine
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| | - Mitsuo Shimada
- Department of Surgery, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima, 770-8503, Japan
| |
Collapse
|