1
|
Cheng C, Liu S, Yu Z, Zhu K, Liu R, Li X, Zhang J. Frontiers of premature ovarian insufficiency research: an analysis from the top 100 most influential articles in the field. Gynecol Endocrinol 2025; 41:2470986. [PMID: 40019489 DOI: 10.1080/09513590.2025.2470986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 12/18/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025] Open
Abstract
Objectives: Premature ovarian insufficiency (POI) is a serious condition that affects women worldwide, In recent years, the number of research publications on POI has increased over the last decades because of the advancement of cutting-edge research in gynecology and the deepening of disciplinary interactions. At the same time, there is a more urgent need to systematically analyze and review existing studies to generalize the research paradigm and disciplinary structure of the field under technological changes. Materials and methods: We selected the top 100 most cited papers in the Web of Science (WOS) SCI-Expanded database. Knowledge graphs were constructed through the VOS viewer, Cite Space, and Scimago Graphica software, and then relevant information retrieved from the literature was edited using Excel to assess research priorities and trends in the field. Results: A total of 53 periodicals from 34 different nations and regions published the 100 most-cited publications between 1999 and 2024. The Journal of Clinical Endocrinology & Metabolism published the majority of the papers, while The Lancet had the highest average number of citations per piece. The United States of America produced the highest contribution in terms of publications, with China and France closely trailing after. In terms of total publications, Erasmus MC, Shanghai Jiao Tong University, and Shandong University each contributed the highest number of papers. The main categories were obstetrics and gynecology, endocrinology and metabolism, and reproductive biology. The top five keywords were: failure, women, ANTI-MULLERIAN HORMONE, NATURAL MENOPAUSE, and AGE. The study of HERITAGE AND GENETICS, CARDIOVASCULAR DISEASES, and CELL BIOLOGY AND IMMUNOGENETICS is becoming more and more popular in POI, as shown by cluster analysis. Conclusions: Bibliometric analysis enables POI researchers to efficiently and visibly pinpoint the cutting-edge areas and focal points of their study. Potential topics of future study may include genetic and molecular biological pathways, cardiovascular pathology, and immunology.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Suhua Liu
- Community Health Service Center, Yunhong Sub-district Office, Leling City, Dezhou, Shandong, China
| | - Ziqing Yu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Kexuan Zhu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Rui Liu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xuhao Li
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Zhang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
2
|
Yu P, Liu B, Dong C, Chang Y. Induced Pluripotent Stem Cells-Based Regenerative Therapies in Treating Human Aging-Related Functional Decline and Diseases. Cells 2025; 14:619. [PMID: 40277944 PMCID: PMC12025799 DOI: 10.3390/cells14080619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
A significant increase in life expectancy worldwide has resulted in a growing aging population, accompanied by a rise in aging-related diseases that pose substantial societal, economic, and medical challenges. This trend has prompted extensive efforts within many scientific and medical communities to develop and enhance therapies aimed at delaying aging processes, mitigating aging-related functional decline, and addressing aging-associated diseases to extend health span. Research in aging biology has focused on unraveling various biochemical and genetic pathways contributing to aging-related changes, including genomic instability, telomere shortening, and cellular senescence. The advent of induced pluripotent stem cells (iPSCs), derived through reprogramming human somatic cells, has revolutionized disease modeling and understanding in humans by addressing the limitations of conventional animal models and primary human cells. iPSCs offer significant advantages over other pluripotent stem cells, such as embryonic stem cells, as they can be obtained without the need for embryo destruction and are not restricted by the availability of healthy donors or patients. These attributes position iPSC technology as a promising avenue for modeling and deciphering mechanisms that underlie aging and associated diseases, as well as for studying drug effects. Moreover, iPSCs exhibit remarkable versatility in differentiating into diverse cell types, making them a promising tool for personalized regenerative therapies aimed at replacing aged or damaged cells with healthy, functional equivalents. This review explores the breadth of research in iPSC-based regenerative therapies and their potential applications in addressing a spectrum of aging-related conditions.
Collapse
Affiliation(s)
- Peijie Yu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Bin Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hunghom, Hong Kong 999077, China; (P.Y.); (B.L.)
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
3
|
Ghasroldasht MM, Park HS, Ali FL, Beckman A, Mohammadi M, Hafner N, Al-Hendy A. Adapted Exosomes for Addressing Chemotherapy-induced Premature Ovarian Insufficiency. Stem Cell Rev Rep 2025; 21:779-796. [PMID: 39921838 DOI: 10.1007/s12015-024-10820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 02/10/2025]
Abstract
BACKGROUND Premature ovarian insufficiency (POI) presents a multifaceted challenge with limited treatment options. This study explored the therapeutic potential of exosome-based interventions for chemotherapy-induced POI. METHODS Adapted exosomes were engineered from umbilical cord mesenchymal stem cells (UC-MSCs) under a specific co-culture system and used for treating in vitro and in vivo models of chemotherapy-induced premature ovarian insufficiency. RESULTS In vitro models revealed the significant impact of adapted exosomes, which promoted granulosa cell proliferation, decrease apoptosis, and enhanced ovarian functional markers. The findings in an in vivo chemotherapy-induced POI mouse model indicated the restoration of ovarian morphology, follicle numbers, and fertility in both the naïve and adapted exosome-treated groups. Notably, the adapted exosome group demonstrated a heightened pregnancy rate, increased numbers of primary follicles, and a significant reduction in ovarian apoptosis. MiRNA profiling revealed distinctive cargo in the adapted exosomes, among which miR-20b-5p played a pivotal role in regulating apoptosis and inflammation; this finding is especially important given that apoptosis is one of the primary complications of chemotherapy-induced POI. Furthermore, cells treated with adapted exosomes demonstrated significant overexpression of miR-20b-5p, resulting in decreased PTEN expression and the activation of the PI3K-AKT pathway-a crucial mechanism in mitigating chemotherapy-induced POI. CONCLUSIONS This study introduces an exosome-based therapeutic approach, emphasizing the importance of exosome cargo composition in treating disorders. Further investigation into the identified miRNA profile in adapted exosomes is necessary to clarify the underlying mechanisms, potentially leading to the development of a new treatment for clinical premature ovarian insufficiency.
Collapse
Affiliation(s)
| | - Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Analea Beckman
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Mahya Mohammadi
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Nina Hafner
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, 60637, USA.
- Department of Medical Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Zhang X, Ma L, Liu X, Zhou X, Wang A, Lai Y, Zhang J, Li Y, Chen S. Sustained release of miR-21 carried by mesenchymal stem cell-derived exosomes from GelMA microspheres inhibits ovarian granulosa cell apoptosis in premature ovarian insufficiency. Mater Today Bio 2025; 31:101469. [PMID: 39906205 PMCID: PMC11790500 DOI: 10.1016/j.mtbio.2025.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Background Premature ovarian insufficiency (POI) refers to the severe decline or failure of ovarian function in women younger than 40 years of age. It is a serious hazard to women's physical and mental health, but current treatment options are limited. Mesenchymal stem cell-derived exosomes (MSC-Exo) exhibit promising potential as a therapeutic approach for POI. However, their clinical application is hindered by their instability and low long-term retention rate in vivo. Methods and results In this study, miR-21 was identified as the predominant miRNA with low-expression in follicular fluid exosomes of POI patients and was shown to possess antiapoptotic activity. Next, we loaded miR-21 agomir to MSC-Exo to form Agomir21-Exo, which significantly reversed the apoptosis of granulosa cells in vitro. Moreover, we successfully developed GelMA hydrogel microspheres for encapsulating Agomir21-Exo through microfluidic technology, named GelMA-Ag21Exo, which had good injectability and significantly enhanced the stability and long-term retention of Agomir21-Exo in mice through sustained release. The release of Agomir21-Exo from GelMA-Ag21Exo notably alleviated the apoptosis of ovarian granulosa cells and improved the ovarian reserve and fertility in POI mice. Conclusion Our findings illustrate that activating miR-21 through Agomir21-Exo could improve the function of ovarian granulosa cells. The GelMA-Ag21Exo enhanced the exosome-based therapeutic efficacy of the Agomir21-Exo in vivo. These findings provide a novel and promising treatment strategy for POI patients.
Collapse
Affiliation(s)
| | | | | | - Xingyu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ao Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yunhui Lai
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shiling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
5
|
Zhang Y, Chen X, Li J, Chen X, Zhao J, Liu Q, Li X, Wang X, Xiao Z. Seminal plasma exosome derived miR-26-5p can regulate decidual macrophage polarization via PTEN / PI3K / AKT signaling pathway. Sci Rep 2025; 15:9192. [PMID: 40097471 PMCID: PMC11914418 DOI: 10.1038/s41598-025-92880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
The immunomodulatory effects of seminal plasma (SP) on the maternal immune system play an important role in the implantation and development of the embryo. Decidual macrophages (dMΦs) are one of the major immune cells in the maternal-fetal immune microenvironment, and their M2-type polarization facilitates the establishment and maintenance of pregnancy. However, the role of SP on the polarization of dMΦs is unknown. In this study, we investigated the role and mechanism of SP on the polarization of dMΦs by gene chip sequencing as well as in vitro and in vivo experiments. The results revealed that SP promoted dMΦs M2-type polarization. Gene chip sequencing revealed that miR-26-5p was highly expressed in seminal exosomes (SEs) which could act on PTEN/PI3K/AKT signaling pathway and significantly promote MΦs M2 polarization. Moreover, SEs supplementation significantly reduced embryo resorption in spontaneously aborted mice. In conclusion, our study demonstrated that the SEs derived miR-26-5p in SP promoted the M2 polarization of dMΦs by targeting PTEN/PI3K/AKT signaling pathway, which created an immune-tolerant environment conducive to embryo implantation and development. This study provided new ideas for clinical SP-assisted therapy to improve pregnancy outcomes.
Collapse
Affiliation(s)
- Yan Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaolin Chen
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jie Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xin Chen
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jing Zhao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qing Liu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiaoling Li
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xinyu Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhuoni Xiao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
6
|
Kavaldzhieva K, Mladenov N, Markova M, Belemezova K. Mesenchymal Stem Cell Secretome: Potential Applications in Human Infertility Caused by Hormonal Imbalance, External Damage, or Immune Factors. Biomedicines 2025; 13:586. [PMID: 40149563 PMCID: PMC11940137 DOI: 10.3390/biomedicines13030586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are a source of a wide range of soluble factors, including different proteins, growth factors, cytokines, chemokines, and DNA and RNA molecules, in addition to numerous secondary metabolites and byproducts of their metabolism. MSC secretome can be formally divided into secretory and vesicular parts, both of which are very important for intercellular communication and are involved in processes such as angiogenesis, proliferation, and immunomodulation. Exosomes are thought to have the same content and function as the MSCs from which they are derived, but they also have a number of advantages over stem cells, including low immunogenicity, unaltered functional activity during freezing and thawing, and a lack of tumor formation. In addition, MSC pre-treatment with various inflammatory factors or hypoxia can alter their secretomes so that it can be modified into a more effective treatment. Paracrine factors secreted by MSCs improve the survival of other cell populations by several mechanisms, including immunomodulatory (mostly anti-inflammatory) activity and anti-apoptotic activity partly based on Hsp27 upregulation. Reproductive medicine is one of the fields in which this cell-free approach has been extensively researched. This review presents the possible applications and challenges of using MSC secretome in the treatment of infertility. MSCs and their secretions have been shown to have beneficial effects in various models of female and male infertility resulting from toxic damage, endocrine disorders, trauma, infectious agents, and autoimmune origin.
Collapse
Affiliation(s)
| | | | | | - Kalina Belemezova
- Department of Biology, Medical Faculty, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.K.); (N.M.); (M.M.)
| |
Collapse
|
7
|
Dlamini NH, Bridi A, da Silveira JC, Feugang JM. Unlocking Gamete Quality Through Extracellular Vesicles: Emerging Perspectives. BIOLOGY 2025; 14:198. [PMID: 40001966 PMCID: PMC11851576 DOI: 10.3390/biology14020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Extracellular vesicles (EVs) are gaining recognition for their essential role in enhancing gamete quality and improving outcomes in assisted reproductive technologies. These nanosized particles, released by cells, carry proteins, lipids, and RNAs, facilitating critical cell communication and offering the potential to enhance gamete maturation and improve fertilization rates. Most research on males has concentrated on seminal plasma, a complex fluid produced by the testes and accessory glands vital in modulating sperm fertility potential. The components of seminal plasma significantly affect sperm functionality, embryo survival, and placental development, making this a prominent area of interest in reproductive biology. The EVs within seminal plasma contribute to maintaining sperm membrane stability, enhancing motility, and promoting capacitation, which may influence the female reproductive tract following mating. In females, EVs have been identified in both the follicular and uterine environments, where effective embryo-maternal communication is crucial. The oviduct epithelium supports gamete transport and early embryonic development, with EVs found in oviductal fluid playing a key role in reproductive processes. These EVs support the embryo's growth in the nutrient-rich uterine environment. These important studies underscore the significant role of EVs in transporting essential molecular compounds to gametes and embryos, leading to an enhanced understanding and potential manipulation of reproductive processes. This review aims to summarize the current research on the benefits of EVs in gamete manipulation and embryo development, highlighting their promising implications for reproductive health.
Collapse
Affiliation(s)
- Notsile H. Dlamini
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA;
| | - Alessandra Bridi
- University of the West of Santa Catarina, Xanxerê 89820-000, SC, Brazil;
| | | | - Jean M. Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39759, USA;
| |
Collapse
|
8
|
Hassanpour Khodaei S, Sabetkam S, Kalarestaghi H, Dizaji Asl K, Mazloumi Z, Bahramloo M, Norouzi N, Naderali E, Rafat A. Mesenchymal stem cells and mesenchymal stem cell-derived exosomes: attractive therapeutic approaches for female reproductive dysfunction. Mol Biol Rep 2024; 52:10. [PMID: 39576370 DOI: 10.1007/s11033-024-10106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Infertility is a reproductive health problem in the male or female reproductive system. Traditional assisted reproductive technology (ART) has been unable to solve various cases of infertility for years. Clinical researchers have sought to treat infertility using new methods that are more effective and noninvasive than the old methods. Recently, Mesenchymal stem cells (MSCs) and MSCs-derived Exosomes (MSC-Exos) via paracrine activity play an important role in treating various causes of infertility and improving pregnancy outcomes. In this review, we focus on the roles of MSCs and MSC-Exos cell therapy in female infertility in the different types of female reproductive disorders.
Collapse
Affiliation(s)
- Sepideh Hassanpour Khodaei
- Department of Dentistry, Eastern Mediterranean University (EMU) Famagusta, North Cyprus Mersin 10, Famagusta, Turkey
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, University of Kyrenia, Kyrenia, Northern Cyprus
| | - Hossein Kalarestaghi
- Research Laboratory for Embryology and Stem Cell, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Khadijeh Dizaji Asl
- Department of Histopathology and Anatomy, Faculty of Medical Sciences, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Zeinab Mazloumi
- Department of Medical Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadmahdi Bahramloo
- Department of Medical Sciences, Student Research Committee, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nahid Norouzi
- Nursing Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Elahe Naderali
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Firouzabadi SR, Mohammadi I, Ghafourian K, Mofidi SA, Firouzabadi SR, Hashemi SM, Tehrani FR, Jafarabady K. Mesenchymal stem cell-derived extracellular vesicles therapy for primary ovarian insufficiency: a systematic review and meta-analysis of pre-clinical studies. J Ovarian Res 2024; 17:200. [PMID: 39402602 PMCID: PMC11472498 DOI: 10.1186/s13048-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) manifests with hormonal imbalances, menstrual irregularities, follicle loss, and infertility. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) are emerging as a promising treatment for POI. This systematic review aims to assess the effects of MSC-EVs on follicle number, hormonal profile, and fertility in POI animal models. METHODS A systematic search of PubMed, Scopus, and Web of Science databases up to December 14th, 2023 was conducted. Two reviewers independently conducted screening, risk of bias assessment, and data extraction. Meta-analysis was performed to analyze treatment versus control outcomes using a random effects model. Publication bias was assessed using Egger's regression test and sensitivity analysis was assessed using the leave-one-out method. Subgroup analyses and meta-regressions were conducted based on EV source, induction model, type of animal, study quality, administration route, administration frequency and route, and dose. RESULTS a total of 29 studies were included. MSC-EVs treatment significantly increased total follicle count (SMD, (95CI), p-value; 3.56, (0.91, 6.21), < 0.001), including primordial (SMD, (95CI), p-value; 2.86, (1.60, 4.12), < 0.001), primary (SMD, (95CI), p-value; 3.17, (2.28, 4.06), < 0.001), mature (SMD, (95CI), p-value; 2.26, (1.02, 3.50), < 0.001), and antral follicles (SMD, (95CI), p-value; 2.44, (1.21, 3.67), < 0.001). Administration frequency and route did not affect this outcome, but EV source affected primordial, primary, secondary and antral follicle count. Additionally, MSC-EVs treatment elevated anti-müllerian hormone (SMD, (95CI); 3.36, (2.14, 4.58)) and estradiol (SMD, (95CI); 3.19, (2.20, 4.17)) levels while reducing follicle stimulating hormone levels (SMD, (95CI); -2.68, (-4.42, -0.94)). Unlike EV source, which had a significant impact on all three hormones, administration frequency, route, and EV dose did not affect this outcome. Moreover, treatment increased offspring number (SMD, (95CI); 3.70, (2.17, 5.23)) and pregnancy odds (OR, (95CI); 10.25, (4.29, 24.46)) compared to controls. Publication bias and a high level of heterogeneity was evident in all analyses, except for the analysis of the pregnancy odds. However, sensitivity analysis indicated that all of the analyses were stable. CONCLUSION MSC-EVs therapy shows promise for POI treatment, potentially facilitating clinical translation. However, Further research is warranted to optimize methodology and assess side effects.
Collapse
Affiliation(s)
| | - Ida Mohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Ghafourian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mofidi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kyana Jafarabady
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
10
|
Lin J, Wu Z, Zheng Y, Shen Z, Gan Z, Ma S, Liu Y, Xiong F. Plasma-derived exosomal miRNA profiles reveal potential epigenetic pathogenesis of premature ovarian failure. Hum Genet 2024; 143:1021-1034. [PMID: 38054996 DOI: 10.1007/s00439-023-02618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/11/2023] [Indexed: 12/07/2023]
Abstract
The role of plasma-derived exosomal miRNA in premature ovarian failure (POF) remains unclear. This study aimed to investigate the epigenetic pathogenesis of POF through exosomal miRNA sequencing. Exosomes were isolated and characterized from six POF patients and four healthy individuals using nanoparticle tracking analysis, transmission electron microscopy and western blot analysis. Exosomal miRNA sequencing was performed to identify differentially expressed miRNAs with |fold change| greater than 1.5 and p value less than 0.05. Bioinformatics analysis in GSE39501 dataset and our sequencing data was conducted to investigate underlying mechanisms of POF. The functional role of hsa-miR-19b-3p was assessed using CCK8, western blot, flow cytometry and fluorescence staining. The regulatory effect of hsa-miR-19b-3p on BMPR2 was investigated through miRNA transfection, qPCR analysis, and luciferase reporter assay. Statistical significance was determined using t-tests and one-way ANOVA (p < 0.05). Exosomal miRNA sequencing revealed 18 dysregulated miRNAs in POF patients compared to healthy controls. Functional enrichment analysis demonstrated their involvement in cell growth, oocyte meiosis and PI3K-Akt signaling pathways. Moreover, the constructed miRNA-mRNA network unveiled potential regulatory mechanisms underlying POF, particularly implicating hsa-miR-19b-3p in the regulation of BMPR2. In vitro assays conducted on KGN cells confirmed that hsa-miR-19b-3p promoted apoptosis, as evidenced by reduced cell viability, decayed mitochondrial membrane potential and increased apoptotic rate, thereby supporting its role in POF. Notably, hsa-miR-19b-3p was found to significantly downregulate BMPR2 expression via targeting its 3'UTR, while co-expression analysis revealed strong associations between BMPR2 and POF-related processes. This study sheds light on the epigenetic pathogenesis of POF by investigating exosomal miRNA profiles. Particularly, hsa-miR-19b-3p emerged as a potential regulator of BMPR2 and demonstrated its functional significance in POF through modulation of apoptosis.
Collapse
Affiliation(s)
- Jiaqiong Lin
- Dongguan Maternal and Child Health Care Hospital, Postdoctoral Innovation Practice Base of Southern Medical University, Dongguan, China
| | - Zhihong Wu
- Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yingchun Zheng
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zongrui Shen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhongzhi Gan
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shunfei Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanhui Liu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Fu Xiong
- Department of Medical Genetics/Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- Department of Fetal Medicine and Prenatal Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Yahyavi Y, Kheradi N, Karimi A, Ebrahimi-Kalan A, Ramezani F, Yousefi S, Teymouri Nobari S, Sadrekarimi H, Nouri M, Edalati M. Novel Advances in Cell-Free Therapy for Premature Ovarian Failure (POF): A Comprehensive Review. Adv Pharm Bull 2024; 14:543-557. [PMID: 39494249 PMCID: PMC11530876 DOI: 10.34172/apb.2024.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/23/2024] [Accepted: 07/30/2024] [Indexed: 11/05/2024] Open
Abstract
Premature ovarian failure (POF), is a condition characterized by the early decline of ovulation function. POF is a complex disorder that can be caused by various factors, and the idiopathic form represents a significant proportion of POF patients. Hormone replacement therapy (HRT) is currently considered the first-line treatment for POF. This review aims to provide a comprehensive overview of recent advancements in platelet-rich plasma (PRP), in vitro activation (IVA), stem cell therapy, exosome therapy, microRNAs, and mitochondrial targeting therapies as a promising cell-free therapeutic approach in reproductive medicine. PLT-Exos, a new generation of cells, has been used to treat POF for more than a decade and has been shown to attenuate oocyte morphology and promote the differentiation of theca cells through the upregulation of PI3K/Akt and Bcl2, as well as the downregulation of the Smad and Bax signaling pathways. This review summarizes the current state of the art in the field of PLT-Exos and discusses the advantages and limitations of their potential clinical applications.
Collapse
Affiliation(s)
- Yahya Yahyavi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Kheradi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Yousefi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Teymouri Nobari
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hourieh Sadrekarimi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Edalati
- Department of Laboratory Science, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Elahi N, Astaneh ME, Ai J, Makoolati Z. Histological assessment for investigation of dose-dependent ovarian toxicity of cyclophosphamide in the rat. Heliyon 2024; 10:e36767. [PMID: 39281529 PMCID: PMC11400909 DOI: 10.1016/j.heliyon.2024.e36767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Background Cyclophosphamide (CPA) have significant effects on ovarian follicles which lead to ovarian toxicity and impair the normal female reproductive function. This study aimed to evaluate the dose-dependent effects of CPA on rat follicle numbers. Methods The experimental groups consisted of rats administered a single intraperitoneal injection of CPA at doses of either 50, 75,150, or 200 mg/kg followed by daily doses of 8 mg/kg for 14 days and control group given no treatment. After the treatment period, the histological evaluation was done. Results Primordial and primary follicles were affected by all doses of CPA, but differential follicle counts revealed that graaf and preantral follicles were most sensitive to CPA, followed by primary and primordial follicles. The greatest reduction in all type of studied follicles caused by CPA doses of 50 mg/kg. Conclusion Differential follicle counts revealed that CPA-induced ovarian toxicity is exhibited in structural feature of the ovary, particularly in destruction of graaf and preantral follicles in a dose-dependent manner so that the highest decrease in all type of studied follicles caused by 50 mg/kg of CPA and is suggested as the best concentration for ovotoxicity induction. These findings give insight into ovarian response to structural disruption of folliculogenesis.
Collapse
Affiliation(s)
- Narges Elahi
- Students Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Makoolati
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
13
|
Luo Y, Chen J, Ning J, Sun Y, Chai Y, Xiao F, Huang B, Li G, Tian F, Hao J, Zhang Q, Zhao J, Li Y, Li H. Stem cell-derived extracellular vesicles in premature ovarian failure: an up-to-date meta-analysis of animal studies. J Ovarian Res 2024; 17:182. [PMID: 39252114 PMCID: PMC11382489 DOI: 10.1186/s13048-024-01489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND There has been a significant surge in animal studies of stem cell-derived extracellular vesicles (EVs) therapy for the treatment of premature ovarian failure (POF) but its efficacy remains unknown and a comprehensive and up-to-date meta-analysis is lacking. Before clinical translation, it is crucial to thoroughly understand the overall impact of stem cell-derived EVs on POF. METHODS PubMed, EMBASE, Cochrane Library, Web of Science were searched up to February 18, 2024. The risk of bias was evaluated according to Cochrane Handbook criteria, while quality of evidence was assessed using the SYRCLE system. The PRISMA guidance was followed. Trial sequential analysis was conducted to assess outcomes, and sensitivity analysis and publication bias analysis were performed using Stata 14. RESULTS Data from 25 studies involving 339 animals were extracted and analyzed. The analysis revealed significant findings: stem cell-derived EVs increase ovary weight (SMD = 3.88; 95% CI: 2.50 ~ 5.25; P < 0.00001; I2 = 70%), pregnancy rate (RR = 3.88; 95% CI: 1.94 ~ 7.79; P = 0.0001; I2 = 0%), count of births (SMD = 2.17; 95% CI: 1.31 ~ 3.04; P < 0.00001; I2 = 69%) and counts of different types of follicles. In addition, it elevates the level of AMH (SMD = 4.15; 95% CI: 2.75 ~ 5.54; P < 0.00001; I2 = 88%) and E2 (SMD = 2.88; 95% CI: 2.02 ~ 3.73; P < 0.00001; I2 = 80%) expression, while reducing FSH expression (SMD = -5.05; 95% CI: -6.60 ~ -3.50; P < 0.00001; I2 = 90%). Subgroup analysis indicates that the source of EVs, animal species, modeling method, administration route, and test timepoint affected efficacy. Trial sequential analysis showed that there was sufficient evidence to confirm the effects of stem cell-derived EVs on birth counts, ovarian weights, and follicle counts. However, the impact of stem cell-derived EVs on pregnancy rates needs to be further demonstrated through more animal experimental evidence. CONCLUSIONS Stem cell-derived EVs demonstrate safety and efficacy in treating POF animal models, with potential improvements in fertility outcomes. TRIAL REGISTRATION PROSPERO registration number: CRD42024509699.
Collapse
Affiliation(s)
- Yan Luo
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Jingjing Chen
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Jinyao Ning
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanyuan Sun
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Yitong Chai
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Medicine Eight-Year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Fen Xiao
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bixia Huang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Ge Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Fen Tian
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Jie Hao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Qiong Zhang
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Jing Zhao
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Yanping Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China
| | - Hui Li
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province, 410008, China.
- Clinical Research Center for Women's, Reproductive Health in Hunan Province, Hunan Province, Changsha, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Kunicki M, Rzewuska N, Gross-Kępińska K. Immunophenotypic profiles and inflammatory markers in Premature Ovarian Insufficiency. J Reprod Immunol 2024; 164:104253. [PMID: 38776714 DOI: 10.1016/j.jri.2024.104253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/01/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Premature Ovarian Insufficiency (POI), also known as Premature Ovarian Failure (POF), is a heterogeneous disorder characterized by the cessation of ovarian function before age 40. Clinical symptoms include menstrual disorders: amenorrhea/oligomenorrhea or symptoms of estrogen deficiency. This review aims to provide the most important summary of the immunophenotypic profile of premature ovarian failure syndrome, along with a review of the latest reports on the usefulness of inflammatory markers. The inflammatory microenvironment in POI applies to many levels. Concomitants of autoimmune ovarian inflammation and impaired cellular immune response may be a picture of impaired regulation in autoimmune ovarian disease. The serum concentration of pro-inflammatory cytokines, like IL-6, IL-8, IL-17, tumor necrosis factor α (TNF-α), and interferon-gamma (IFN-γ), tend to increase, whereas levels of the anti-inflammatory cytokine, IL-10, tend to decrease. In our review, we focus on whether the measured immunological parameters could help in the diagnosis and prognosis of the syndrome. Among the inflammatory markers, neutrophil-to-lymphocyte ratio (NLR) is noteworthy, as it is decreased in patients with POI. It is important to stress that besides case series, we need properly powered studies with randomization to answer which treatment is effective, and how to deal with concurrent autoimmunity. In this review, we emphasize the importance of the premature ovarian failure syndrome immunoprofile for a proper understanding of the complexity of this syndrome, potential diagnostic points, and therapeutic targets.
Collapse
Affiliation(s)
- Michał Kunicki
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw 00-315, Poland; INVICTA Fertility and Reproductive Center, Warsaw 00-019, Poland
| | - Natalia Rzewuska
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw 00-315, Poland.
| | | |
Collapse
|
15
|
Li Q, Zhang Z, Shi W, Li Z, Xiao Y, Zhang J, Huang X. Drug-free in vitro activation combined with ADSCs-derived exosomes restores ovarian function of rats with premature ovarian insufficiency. J Ovarian Res 2024; 17:158. [PMID: 39085868 PMCID: PMC11290131 DOI: 10.1186/s13048-024-01475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Drug-free in vitro activation (IVA) is a new protocol to activate residual dormant follicles for fertility restoration in patients with premature ovarian insufficiency (POI). However, several deficiencies have reduced its clinical efficacy rate. Our previous studies have confirmed that the combination of adipose-derived stem cells (ADSCs) and drug-free IVA can improve the effectiveness of drug-free IVA and restore ovarian function of rats with POI. Increasing evidence has demonstrated that mesenchymal stem cell-derived exosomes have similar therapeutic effects as their source cells. Here, we performed a preclinical study to evaluate the therapeutic effects of ADSCs-derived exosomes (ADSCs-Exos) combined with drug-free IVA in the POI rats and the mechanism in restoring ovarian function. RESULTS In vivo, the effects of ADSCs-Exos were comparable to those of ADSCs, and the ADSCs-Exos combined with drug-free IVA was better than ADSCs-Exos alone therapy in promoting follicular development. Moreover, transplantation of ADSCs/ADSCs-Exos lead to up-regulation of BCL-2 expression and down-regulation of the expression of Bax and Cleaved Caspase-3, thus reducing the apoptosis of chemotherapy-induced follicle cells, and further promoting the development of the follicles and rescuing ovarian function in POI-damaged ovary. In vitro, ovarian fragmentation could activate follicular growth and development, and in combination with ADSCs-Exos could prevent the loss of follicles, promote follicular proliferation and inhibit apoptosis. CONCLUSIONS ADSCs-Exos combined drug-free IVA had remarkable therapeutic effects in restoring ovarian function of POI rats, and markedly promoted follicular development and inhibited apoptosis of ovarian cells in vitro. Our study confirmed that the combination therapy might be a promising and effective treatment for POI.
Collapse
Affiliation(s)
- Qian Li
- Department of Gynecology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China.
| | - Zhiqiang Zhang
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China
| | - Wenxin Shi
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China
| | - Zhongkang Li
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China
| | - Yanlai Xiao
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China
| | - Jingkun Zhang
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China.
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, Hebei Key Laboratory of Regenerative Medicine of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei, 050000, P.R. China.
| |
Collapse
|
16
|
Xu LM, Yu XX, Zhang N, Chen YS. Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse. World J Stem Cells 2024; 16:708-727. [PMID: 38948096 PMCID: PMC11212552 DOI: 10.4252/wjsc.v16.i6.708] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity, and vaginal structure is an essential factor. In POP, the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions. The intricate etiology of POP and the prohibition of transvaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development. Human umbilical cord mesenchymal stromal cells (hucMSCs) present limitations, but their exosomes (hucMSC-Exo) are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling. AIM To investigate the effects of hucMSC-Exo on the functions of primary vaginal fibroblasts and to elucidate the underlying mechanism involved. METHODS Human vaginal wall collagen content was assessed by Masson's trichrome and Sirius blue staining. Gene expression differences in fibroblasts from patients with and without POP were assessed via RNA sequencing (RNA-seq). The effects of hucMSC-Exo on fibroblasts were determined via functional experiments in vitro. RNA-seq data from fibroblasts exposed to hucMSC-Exo and microRNA (miRNA) sequencing data from hucMSC-Exo were jointly analyzed to identify effective molecules. RESULTS In POP, the vaginal wall exhibited abnormal collagen distribution and reduced fibroblast 1 quality and quantity. Treatment with 4 or 6 μg/mL hucMSC-Exo suppressed inflammation in POP group fibroblasts, stimulated primary fibroblast growth, and elevated collagen I (Col1) production in vitro. High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11 (MMP11) expression. CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro. Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression. HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
Collapse
Affiliation(s)
- Lei-Mei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China
| | - Xin-Xin Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yi-Song Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China.
| |
Collapse
|
17
|
Xu LM, Yu XX, Zhang N, Chen YS. Exosomes from umbilical cord mesenchymal stromal cells promote the collagen production of fibroblasts from pelvic organ prolapse. World J Stem Cells 2024; 16:707-726. [DOI: 10.4252/wjsc.v16.i6.707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/23/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Pelvic organ prolapse (POP) involves pelvic organ herniation into the vagina due to pelvic floor tissue laxity, and vaginal structure is an essential factor. In POP, the vaginal walls exhibit abnormal collagen distribution and decreased fibroblast levels and functions. The intricate etiology of POP and the prohibition of transvaginal meshes in pelvic reconstruction surgery present challenges in targeted therapy development. Human umbilical cord mesenchymal stromal cells (hucMSCs) present limitations, but their exosomes (hucMSC-Exo) are promising therapeutic tools for promoting fibroblast proliferation and extracellular matrix remodeling.
AIM To investigate the effects of hucMSC-Exo on the functions of primary vaginal fibroblasts and to elucidate the underlying mechanism involved.
METHODS Human vaginal wall collagen content was assessed by Masson’s trichrome and Sirius blue staining. Gene expression differences in fibroblasts from patients with and without POP were assessed via RNA sequencing (RNA-seq). The effects of hucMSC-Exo on fibroblasts were determined via functional experiments in vitro. RNA-seq data from fibroblasts exposed to hucMSC-Exo and microRNA (miRNA) sequencing data from hucMSC-Exo were jointly analyzed to identify effective molecules.
RESULTS In POP, the vaginal wall exhibited abnormal collagen distribution and reduced fibroblast 1 quality and quantity. Treatment with 4 or 6 μg/mL hucMSC-Exo suppressed inflammation in POP group fibroblasts, stimulated primary fibroblast growth, and elevated collagen I (Col1) production in vitro. High-throughput RNA-seq of fibroblasts treated with hucMSC-Exo and miRNA sequencing of hucMSC-Exo revealed that abundant exosomal miRNAs downregulated matrix metalloproteinase 11 (MMP11) expression.
CONCLUSION HucMSC-Exo normalized the growth and function of primary fibroblasts from patients with POP by promoting cell growth and Col1 expression in vitro. Abundant miRNAs in hucMSC-Exo targeted and downregulated MMP11 expression. HucMSC-Exo-based therapy may be ideal for safely and effectively treating POP.
Collapse
Affiliation(s)
- Lei-Mei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
- Department of Gynecology, Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases, Shanghai 200011, China
| | - Xin-Xin Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| | - Yi-Song Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
| |
Collapse
|
18
|
Li YX, Wei SQ, Li S, Zheng PS. Strategies and Challenges of Mesenchymal Stem Cells-Derived Extracellular Vesicles in Infertility. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:385-403. [PMID: 38009217 DOI: 10.1089/ten.teb.2023.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Having genetically related offspring remains an unattainable dream for couples with reproductive failure. Mesenchymal stem cells (MSCs) are multipotent stromal cells derived from various human tissues and organs. As critical paracrine effectors of MSCs, extracellular vesicles (EVs) can carry and deliver bioactive content, thereby participating in intercellular communication and determining cell fate. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have shown promising therapeutic effects, including repairing injured endometria, restoration of ovarian functions, and improving sperm quantity, morphology, and motility, owing to their regenerative potential, abundant sources, high proliferation rates, low immunogenicity, and lack of ethical issues. However, limited knowledge on purification and isolation of MSC-EVs, therapeutic effects, and unpredictable safety have caused challenges in overcoming female and male infertility. To overcome them, future studies should focus on modification/engineering of MSC-EVs with therapeutic biomolecules and combining attractive biomaterials and MSC-EVs. This review highlights the latest studies on MSC-EVs therapies in infertility and the major challenges that must be overcome before clinical translation.
Collapse
Affiliation(s)
- Yuan-Xing Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Si-Qi Wei
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shan Li
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Peng-Sheng Zheng
- Department of Reproductive Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
19
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
20
|
Zhou Y, Huang J, Zeng L, Yang Q, Bai F, Mai Q, Deng K. Human mesenchymal stem cells derived exosomes improve ovarian function in chemotherapy-induced premature ovarian insufficiency mice by inhibiting ferroptosis through Nrf2/GPX4 pathway. J Ovarian Res 2024; 17:80. [PMID: 38622725 PMCID: PMC11017636 DOI: 10.1186/s13048-024-01403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/30/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Chemotherapy exposure has become a main cause of premature ovarian insufficiency (POI). This study aimed to evaluate the role and molecular mechanism of human umbilical cord mesenchymal stem cell-derived exosomes (hUMSC-Exos) in ovarian function protection after chemotherapy. METHODS hUMSC-Exos were applied to cyclophosphamide-induced premature ovarian insufficiency mice and human ovarian granulosa tumor cells (KGN) to determine their effects on follicular development and granulosa cell apoptosis. Evaluation was done for iron ion and reactive oxygen species (ROS) production, lipid peroxidation levels, and changes in iron death-related molecules (nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Glutathione Peroxidase enzyme 4 (GPX4), and Solute carrier family 7 member 11 cystine glutamate transporter (SLC7A11; xCT)). Furthermore, rescue experiments using an Nrf2 inhibitor were performed to assess the therapeutic effects of hUMSC-Exos on granulosa cells. RESULTS hUMSC-Exos promoted ovarian hormone levels and primary follicle development in POI mice and reduced granulosa cell apoptosis. After hUMSC-Exos treatment, the ROS production, free iron ions and lipid peroxidation levels of granulosa cells decreased, and the iron death marker proteins Nrf2, xCT and GPX4 also decreased. Furthermore, the Nrf2 inhibitor ML385 significantly attenuated the effects of hUMSC-Exos on granulosa cells. CONCLUSION hUMSC-Exos inhibit ferroptosis and protect against CTX-induced ovarian damage and granulosa cell apoptosis through the Nrf2/GPX4 signaling pathway, revealing a novel mechanism of hUMSC-Exos in POI therapy.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Jinfa Huang
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Lingling Zeng
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Qian Yang
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Fangjuan Bai
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Qiqing Mai
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China
| | - Kaixian Deng
- Department of Gynecology, Shunde Hospital, Southern Medical University, Foshan, Guangdong, 528308, China.
| |
Collapse
|
21
|
Wang X, Ma L, Jiang S, Wen J, Yan Z, Tian L, Deng S, Huang B, Stambler I, Caruso C, Min KJ, Su H, Jin K, Mao J, Wu X, Han Q, Zhao RC. Expert Consensus on Prevention and Treatment of Aging-Related Gonadal Dysfunction. Aging Dis 2024; 16:971-979. [PMID: 38739936 PMCID: PMC11964422 DOI: 10.14336/ad.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Aging-related hypogonadism involves complex mechanisms in humans, predominantly relating to the decline of multiple hormones and senile gonads. Late-onset hypogonadism (LOH) and erectile dysfunction (ED) are the main manifestations in men, while premature ovarian insufficiency (POI) and menopause are the main forms in women. Anti-aging measures include lifestyle modification and resistance training, hormonal supplementation, stem cell therapy, metformin, and rapamycin. In this expert consensus, the mechanisms, efficacy, and side effects of stem cell therapy on aging gonadal function are reviewed. Furthermore, various methods of stem cell therapy, administered intravenously, intracavernously, and intra-ovarially, are exemplified in detail. More clinical trials on aging-related gonadal dysfunction are required to solidify the foundation of this topic.
Collapse
Affiliation(s)
- Xi Wang
- Peking Union Medical College Hospital, Beijing, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Li Ma
- Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Wulumuqi, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Sheng Jiang
- The First Affiliated Hospital of Xinjiang Medical University, Wulumuqi, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Junping Wen
- Fujian Provincial Hospital, Fuzhou, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Zhaoli Yan
- Affiliated Hospital of Inner Mongolia Medical University, Huhehaote 010000, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Long Tian
- Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Shan Deng
- Peking Union Medical College Hospital, Beijing, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Boxian Huang
- The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215000, China.
| | - Ilia Stambler
- Department of Science, Technology and Society, Bar-Ilan University, Ramat Gan, Israel.
- International Society on Aging and Disease, Bryan, TX, USA.
| | - Calogero Caruso
- International Society on Aging and Disease, Bryan, TX, USA.
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - Kyung-Jin Min
- International Society on Aging and Disease, Bryan, TX, USA.
- Department of Biological Sciences, Inha University, Incheon, Republic of Korea.
| | - Huanxing Su
- International Society on Aging and Disease, Bryan, TX, USA.
- Institute of Chinese Medical Science, University of Macau, Taipa, Macau, China.
| | - Kunlin Jin
- International Society on Aging and Disease, Bryan, TX, USA.
- University of North Texas Health Science Center, Bryan, TX, USA.
| | - Jiangfeng Mao
- Peking Union Medical College Hospital, Beijing, China.
- Growth and Development and Gonadal Diseases Committee of Chines Aging Well Association, China.
| | - Xueyan Wu
- Peking Union Medical College Hospital, Beijing, China.
| | - Qin Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.
- International Society on Aging and Disease, Bryan, TX, USA.
- School of Life Sciences, Shanghai University, shanghai, China.
| |
Collapse
|
22
|
Wang Y, He Z, Luo B, Wong H, Wu L, Zhou H. Human Mesenchymal Stem Cell-Derived Exosomes Promote the Proliferation and Melanogenesis of Primary Melanocytes by Attenuating the H 2O 2-Related Cytotoxicity in vitro. Clin Cosmet Investig Dermatol 2024; 17:683-695. [PMID: 38524392 PMCID: PMC10959324 DOI: 10.2147/ccid.s446676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/13/2024] [Indexed: 03/26/2024]
Abstract
Background Mesenchymal stem cell-derived exosomes (MSC-Exo) have therapeutic potential. However, the impact of MSC-Exo on the survival and melanogenesis of human primary melanocytes following H2O2-induced damage has not been clarified. We therefore investigated the effects of MSC-Exo on the H2O2-affected survival of human primary melanocytes and their proliferation, apoptosis, senescence, and melanogenesis in vitro. Methods MSC-Exo were prepared from human MSCs by sequential centrifugations and characterized by Transmission Electron Microscopy, Western blot and Nanoparticle Tracking Analysis. Human primary melanocytes were isolated and treated with different concentrations of MSC-Exo, followed by exposing to H2O2. Furthermore, the impact of pretreatment with MSC-Exo on the proliferation, apoptosis, senescence and melanogenesis of melanocytes were tested by CCK-8, flow cytometry, Western blot, L-Dopa staining, tyrosinase activity and RT-qPCR. Results Pretreatment with lower doses of MSC-Exo protected human primary melanocytes from the H2O2-triggered apoptosis, while pretreatment with higher doses of MSC-Exo enhanced the H2O2-induced melanocyte apoptosis. Compared with the untreated control, pretreatment with a lower dose (1 µg/mL) of MSC-Exo enhanced the proliferation of melanocytes, abrogated the H2O2-increased p53, p21, IL-1β, IL-6 and IL-8 expression and partially rescued the H2O2-decreased L-dopa staining reaction, tyrosinase activity, MITF and TRP1 expression in melanocytes. Conclusion Our findings indicate that treatment with a low dose of MSC-Exo promotes the proliferation and melanogenesis of human primary melanocytes by ameliorating the H2O2-induced apoptosis and senescence of melanocytes. MSC-Exo may be a promising therapeutic strategy of vitiligo.
Collapse
Affiliation(s)
- Yexiao Wang
- Department of Dermatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bingqin Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hioteng Wong
- Department of Dermatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Liangcai Wu
- Department of Dermatology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hui Zhou
- Department of Dermatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
23
|
Kim HK, Kim TJ. Current Status and Future Prospects of Stem Cell Therapy for Infertile Patients with Premature Ovarian Insufficiency. Biomolecules 2024; 14:242. [PMID: 38397479 PMCID: PMC10887045 DOI: 10.3390/biom14020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Premature ovarian insufficiency (POI), also known as premature menopause or premature ovarian failure, signifies the partial or complete loss of ovarian endocrine function and fertility before 40 years of age. This condition affects approximately 1% of women of childbearing age. Although 5-10% of patients may conceive naturally, conventional infertility treatments, including assisted reproductive technology, often prove ineffective for the majority. For infertile patients with POI, oocyte donation or adoption exist, although a prevalent desire persists among them to have biological children. Stem cells, which are characterized by their undifferentiated nature, self-renewal capability, and potential to differentiate into various cell types, have emerged as promising avenues for treating POI. Stem cell therapy can potentially reverse the diminished ovarian endocrine function and restore fertility. Beyond direct POI therapy, stem cells show promise in supplementary applications such as ovarian tissue cryopreservation and tissue engineering. However, technological and ethical challenges hinder the widespread clinical application of stem cells. This review examines the current landscape of stem cell therapy for POI, underscoring the importance of comprehensive assessments that acknowledge the diversity of cell types and functions. Additionally, this review scrutinizes the limitations and prospects associated with the clinical implementation of stem cell treatments for POI.
Collapse
Affiliation(s)
- Hye Kyeong Kim
- Department of Obstetrics & Gynecology, Infertility Center, CHA University Ilsan Medical Center, Goyang 10414, Republic of Korea;
| | - Tae Jin Kim
- Department of Urology, CHA University Ilsan Medical Center, CHA University School of Medicine, Goyang 10414, Republic of Korea
| |
Collapse
|
24
|
Shi H, Yang Z, Cui J, Tao H, Ma R, Zhao Y. Mesenchymal stem cell-derived exosomes: a promising alternative in the therapy of preeclampsia. Stem Cell Res Ther 2024; 15:30. [PMID: 38317195 PMCID: PMC10845755 DOI: 10.1186/s13287-024-03652-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Preeclampsia (PE) is a common morbid complication during pregnancy, affecting 2%-8% of pregnancies globally and posing serous risks to the health of both mother and fetus. Currently, the only effective treatment for PE is timely termination of pregnancy, which comes with increased perinatal risks. However, there is no effective way to delay pathological progress and improve maternal and fetal outcomes. In light of this, it is of great significance to seek effective therapeutic strategies for PE. Exosomes which are nanoparticles carrying bioactive substances such as proteins, lipids, and nucleic acids, have emerged as a novel vehicle for intercellular communication. Mesenchymal stem cell-derived exosomes (MSC-Exos) participate in various important physiological processes, including immune regulation, cell proliferation and migration, and angiogenesis, and have shown promising potential in tissue repair and disease treatment. Recently, MSC-Exos therapy has gained popularity in the treatment of ischaemic diseases, immune dysfunction, inflammatory diseases, and other fields due to their minimal immunogenicity, characteristics similar to donor cells, ease of storage, and low risk of tumor formation. This review elaborates on the potential therapeutic mechanism of MSC-Exos in treating preeclampsia, considering the main pathogenic factors of the condition, including placental vascular dysplasia, immunological disorders, and oxidative stress, based on the biological function of MSC-Exos. Additionally, we discuss in depth the advantages and challenges of MSC-Exos as a novel acellular therapeutic agent in preeclampsia treatment.
Collapse
Affiliation(s)
- Haoran Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shen Zhen, 518000, China.
| |
Collapse
|
25
|
Izadpanah M, Yalameha B, Sani MZ, Cheragh PK, Mahdipour M, Rezabakhsh A, Rahbarghazi R. Exosomes as Theranostic Agents in Reproduction System. Adv Biol (Weinh) 2024; 8:e2300258. [PMID: 37955866 DOI: 10.1002/adbi.202300258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Exosomes (Exos), belonging to extracellular vesicles, are cell-derived nano-sized vesicles with the potential to carry different kinds of biological molecules. Many studies have proved the impacts of exosomal cargo on several biological processes in female and male reproductive systems. It is also hypothesized that changes in exosomal cargo are integral to the promotion of certain pathological conditions, thus Exos can be used as valid biomarkers for the diagnosis of infertility and other abnormal conditions. Here, efforts are made to collect some recent data related to the physiological significance of Exos in the reproductive system, and their potential therapeutic effects. It is anticipated that the current review article will lay the groundwork for elucidating the source and mechanisms by which Exos control the reproductive system additionally supplying fresh methods and concepts for the detection and treatment of disorders associated with fertility for future studies.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Banafsheh Yalameha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Hu HQ, Xin XY, Zhu YT, Fan RW, Zhang HL, Ye Y, Li D. Application of mesenchymal stem cell therapy for premature ovarian insufficiency: Recent advances from mechanisms to therapeutics. World J Stem Cells 2024; 16:1-6. [PMID: 38292439 PMCID: PMC10824040 DOI: 10.4252/wjsc.v16.i1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/09/2023] [Accepted: 12/26/2023] [Indexed: 01/22/2024] Open
Abstract
The incidence of premature ovarian insufficiency (POI) is increasing worldwide, particularly among younger women, posing a significant challenge to fertility. In addition to menopausal symptoms, POI leads to several complications that profoundly affect female reproductive function and overall health. Unfortunately, current clinical treatment strategies for this condition are limited and often yield unsatisfactory outcomes. These approaches typically involve hormone replacement therapy combined with psychological support. Recently, mesenchymal stem cell (MSC) therapies for POI have garnered considerable attention in global research. MSCs can restore ovarian reproductive and endocrine functions through diverse mechanisms, including controlling differentiation, promoting angiogenesis, regulating ovarian fibrosis, inhibiting apoptosis, enhancing autocrine and paracrine effects, suppressing inflammation, modulating the immune system, and genetic regulation. This editorial offers a succinct summary of the application of MSC therapy in the context of POI, providing evidence for groundbreaking medical approaches that have potential to enhance reproductive health and overall well-being for women.
Collapse
Affiliation(s)
- Hang-Qi Hu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Xi-Yan Xin
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yu-Tian Zhu
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Rui-Wen Fan
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Hao-Lin Zhang
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Yang Ye
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China.
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
27
|
Sadeghi S, Mosaffa N, Huang B, Ramezani Tehrani F. Protective role of stem cells in POI: Current status and mechanism of action, a review article. Heliyon 2024; 10:e23271. [PMID: 38169739 PMCID: PMC10758796 DOI: 10.1016/j.heliyon.2023.e23271] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Premature ovarian insufficiency (POI) has far-reaching consequences on women's life quality. Due to the lack of full recognition of the etiology and complexity of this disease, there is no appropriate treatment for infected patients. Recently, stem cell therapy has attracted the attention of regenerative medicine scholars and offered promising outcomes for POI patients. Several kinds of stem cells, such as embryonic stem cells (ESCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) have been used for the treatment of ovarian diseases. However, their potential protective mechanisms are still unknown. Undoubtedly, a better understanding of the therapeutic molecular and cellular mechanisms of stem cells will address uncover strategies to increase their clinical application for multiple disorders such as POI. This paper describes a detailed account of the potential properties of different types of stem cells and provides a comprehensive review of their protective mechanisms, particularly MSC, in POI disorder. In addition, ongoing challenges and several strategies to improve the efficacy of MSC in clinical use are addressed. Therefore, this review will provide proof-of-concept for further clinical application of stem cells in POI.
Collapse
Affiliation(s)
- Somaye Sadeghi
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nariman Mosaffa
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Boxian Huang
- State Key Laboratory of Reproductive Medicine, Suzhou Affiliated Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- The Foundation for Research & Education Excellence, AL, USA
| |
Collapse
|
28
|
Cui J, Wang Y. Premature ovarian insufficiency: a review on the role of tobacco smoke, its clinical harm, and treatment. J Ovarian Res 2024; 17:8. [PMID: 38191456 PMCID: PMC10775475 DOI: 10.1186/s13048-023-01330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/17/2023] [Indexed: 01/10/2024] Open
Abstract
Premature ovarian insufficiency (POI) is a condition in which the quantity of follicles and the quality of oocytes gradually decrease. This results in an estrogen secretion disorder and abnormal follicle development, which can lead to related diseases, early onset of menopause, sexual dysfunction, and an increased risk of cardiovascular issues, osteoporosis, and depression, among others. This disease significantly impacts the physical and mental health and overall quality of life of affected women. Factors such as genetic abnormalities, oophorectomy, radiotherapy for malignancy, idiopathic conditions, and an unhealthy lifestyle, including smoking, can accelerate the depletion of the follicular pool and the onset of menopause. Extensive research has been conducted on the detrimental effects of tobacco smoke on the ovaries. This article aims to review the advancements in understanding the impact of tobacco smoke on POI, both in vivo and in vitro. Furthermore, we explore the potential adverse effects of common toxicants found in tobacco smoke, such as polycyclic aromatic hydrocarbons (PAHs), heavy metals like cadmium, alkaloids like nicotine and its major metabolite cotinine, benzo[a]pyrene, and aromatic amines. In addition to discussing the toxicants, this article also reviews the complications associated with POI and the current state of research and application of treatment methods. These findings will contribute to the development of more precise treatments for POI, offering theoretical support for enhancing the long-term quality of life for women affected by this condition.
Collapse
Affiliation(s)
- Jinghan Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang, 110004, China.
| |
Collapse
|
29
|
Zhou Q, Liu Z, Liao Z, Zhang Y, Qu M, Wu F, Tian J, Zhao H, Peng Q, Zheng W, Huang M, Yang S. miRNA profiling of granulosa cell-derived exosomes reveals their role in promoting follicle development. J Cell Physiol 2024; 239:20-35. [PMID: 38149730 DOI: 10.1002/jcp.31140] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 12/28/2023]
Abstract
To explore whether granulosa cell (GC)-derived exosomes (GC-Exos) and follicular fluid-derived exosomes (FF-Exos) have functional similarities in follicle development and to establish relevant experiments to validate whether GC-Exos could serve as a potential substitute for follicular fluid-derived exosomes to improve folliculogenesis. GC-Exos were characterized. MicroRNA (miRNA) profiles of exosomes from human GCs and follicular fluid were analyzed in depth. The signature was associated with folliculogenesis, such as phosphatidylinositol 3 kinases-protein kinase B signal pathway, mammalian target of rapamycin signal pathway, mitogen-activated protein kinase signal pathway, Wnt signal pathway, and cyclic adenosine monophosphate signal pathway. A total of five prominent miRNAs were found to regulate the above five signaling pathways. These miRNAs include miRNA-486-5p, miRNA-10b-5p, miRNA-100-5p, miRNA-99a-5p, and miRNA-21-5p. The exosomes from GCs and follicular fluid were investigated to explore the effect on folliculogenesis by injecting exosomes into older mice. The proportion of follicles at each stage is counted to help us understand folliculogenesis. Exosomes derived from GCs were isolated successfully. miRNA profiles demonstrated a remarkable overlap between the miRNA profiles of FF-Exos and GC-Exos. The shared miRNA signature exhibited a positive influence on follicle development and activation. Furthermore, exosomes derived from GCs and follicular fluid promoted folliculogenesis in older female mice. Exosomes derived from GCs had similar miRNA profiles and follicle-promoting functions as follicular fluid exosomes. Consequently, GC-Exos are promising for replacing FF-Exos and developing new commercial reagents to improve female fertility.
Collapse
Affiliation(s)
- Qilin Zhou
- Department of Health Inspection and Quarantine, School of Public Health, Guangdong Medical University, Dongguan, China
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhen Liu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Zhengdong Liao
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yangzhuohan Zhang
- School of Clinical Medicine, Hubei University of Science and Technology, Xianning, China
| | - Mengyuan Qu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fanggui Wu
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jingyan Tian
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Huan Zhao
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qianwen Peng
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Wenchao Zheng
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mingyuan Huang
- Department of Health Inspection and Quarantine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Sheng Yang
- Department of Reproductive Medicine, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
30
|
Rather HA, Almousa S, Craft S, Deep G. Therapeutic efficacy and promise of stem cell-derived extracellular vesicles in Alzheimer's disease and other aging-related disorders. Ageing Res Rev 2023; 92:102088. [PMID: 37827304 PMCID: PMC10842260 DOI: 10.1016/j.arr.2023.102088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/01/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The term extracellular vesicles (EVs) refers to a variety of heterogeneous nanovesicles secreted by almost all cell types, primarily for intercellular communication and maintaining cellular homeostasis. The role of EVs has been widely reported in the genesis and progression of multiple pathological conditions, and these vesicles are suggested to serve as 'liquid biopsies'. In addition to their use as biomarkers, EVs secreted by specific cell types, especially with stem cell properties, have shown promise as cell-free nanotherapeutics. Stem cell-derived EVs (SC-EVs) have been increasingly used as an attractive alternative to stem cell therapies and have been reported to promote regeneration of aging-associated tissue loss and function. SC-EVs treatment ameliorates brain and peripheral aging, reproductive dysfunctions and inhibits cellular senescence, thereby reversing several aging-related disorders and dysfunctions. The anti-aging therapeutic potential of SC-EVs depends on multiple factors, including the type of stem cells, the age of the source stem cells, and their physiological state. In this review, we briefly describe studies related to the promising effects of SC-EVs against various aging-related pathologies, and then we focus in-depth on the therapeutic benefits of SC-EVs against Alzheimer's disease, one of the most devastating neurodegenerative diseases in elderly individuals. Numerous studies in transgenic mouse models have reported the usefulness of SC-EVs in targeting the pathological hallmarks of Alzheimer's disease, including amyloid plaques, neurofibrillary tangles, and neuroinflammation, leading to improved neuronal protection, synaptic plasticity, and cognitive measures. Cell culture studies have further identified the underlying molecular mechanisms through which SC-EVs reduce amyloid beta (Aβ) levels or shift microglia phenotype from pro-inflammatory to anti-inflammatory state. Interestingly, multiple routes of administration, including nasal delivery, have confirmed that SC-EVs could cross the blood-brain barrier. Due to this, SC-EVs have also been tested to deliver specific therapeutic cargo molecule/s (e.g., neprilysin) to the brain. Despite these promises, several challenges related to quality control, scalability, and biodistribution remain, hindering the realization of the vast clinical promise of SC-EVs.
Collapse
Affiliation(s)
- Hilal Ahmad Rather
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Sameh Almousa
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Atirum Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
31
|
Zheng X, Zhao D, Liu Y, Jin Y, Liu T, Li H, Liu D. Regeneration and anti-inflammatory effects of stem cells and their extracellular vesicles in gynecological diseases. Biomed Pharmacother 2023; 168:115739. [PMID: 37862976 DOI: 10.1016/j.biopha.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
There are many gynecological diseases, among which breast cancer (BC), cervical cancer (CC), endometriosis (EMs), and polycystic ovary syndrome (PCOS) are common and difficult to cure. Stem cells (SCs) are a focus of regenerative medicine. They are commonly used to treat organ damage and difficult diseases because of their potential for self-renewal and multidirectional differentiation. SCs are also commonly used for difficult-to-treat gynecological diseases because of their strong directional differentiation ability with unlimited possibilities, their tendency to adhere to the diseased tissue site, and their use as carriers for drug delivery. SCs can produce exosomes in a paracrine manner. Exosomes can be produced in large quantities and have the advantage of easy storage. Their safety and efficacy are superior to those of SCs, which have considerable potential in gynecological treatment, such as inhibiting endometrial senescence, promoting vascular reconstruction, and improving anti-inflammatory and immune functions. In this paper, we review the mechanisms of the regenerative and anti-inflammatory capacity of SCs and exosomes in incurable gynecological diseases and the current progress in their application in genetic engineering to provide a foundation for further research.
Collapse
Affiliation(s)
- Xu Zheng
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dan Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Yang Liu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Ye Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianjia Liu
- Changchun University of Chinese Medicine, Changchun 130117, China; Baicheng Medical College, Baicheng 137000, China.
| | - Huijing Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
32
|
Elahi N, Ai J, Makoolati Z. A Review on Treatment of Premature Ovarian Insufficiency: Characteristics, Limitations, and Challenges of Stem Cell versus ExosomeTherapy. Vet Med Int 2023; 2023:5760011. [PMID: 38023426 PMCID: PMC10673665 DOI: 10.1155/2023/5760011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a complex disorder that can result in varying degrees of infertility. Recently, mesenchymal stem cell (MSC) therapy and its derivatives, such as exosomes, have been introduced as novel strategies for the treatment of POI. This review discusses the features, limitations, and challenges of MSC and exosome therapy in the treatment of POI and provides readers with new insights for comparing and selecting chemical agents, optimizing doses, and other factors involved in study design and treatment strategies. MSC therapy has been shown to improve ovarian function in some animals with POI, but it can also have side effects such as high cost, time-consuming processes, limited lifespan and cell sources, loss of original characteristics during in vitro proliferation, dependence on specific culture environments, potential immune reactions, unknown therapeutic mechanisms, etc. However, exosome therapy is a newer therapy that has not been studied as extensively as MSC therapy, but that it has shown some promise in animal studies. The evidence for the effectiveness of MSC and exosome therapy is still limited, and more research is needed to determine whether these therapies are effective and safe for women with POI. This study presents a new perspective for researchers to advance their research in the fields of cell-based and cell-free therapies.
Collapse
Affiliation(s)
- Narges Elahi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zohreh Makoolati
- Department of Anatomical Sciences, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
33
|
Zhou R, Liu D. The function of exosomes in ovarian granulosa cells. Cell Tissue Res 2023; 394:257-267. [PMID: 37603064 DOI: 10.1007/s00441-023-03820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Granulosa cells (GCs), as the basic components of ovarian tissue, play an indispensable role in maintaining normal ovarian functions such as hormone synthesis and ovulation. The abnormality of GCs often leads to ovarian endocrine disorders, which exert a negative effect on life quality and life expectancy. However, the pathogenesis and treatment of diseases are still poorly understood. Exosomes contain regulatory molecules and can transmit biological information in cell interaction. The role of exosomes in GCs has been studied extensively. This review summarizes the regulatory function of exosomes in GCs, as well as their participation in etiopathogenesis and their promising application in treatment when it comes to ovarian endocrine diseases, which can help us better understand ovarian diseases from the perspective of GCs.
Collapse
Affiliation(s)
- Ruotong Zhou
- Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Zhongshan Str.222, Dalian, 116011, Liaoning, China
| | - Dan Liu
- Department of Endocrinology, First Affiliated Hospital of Dalian Medical University, Zhongshan Str.222, Dalian, 116011, Liaoning, China.
| |
Collapse
|
34
|
Cacciottola L, Vitale F, Donnez J, Dolmans MM. Use of mesenchymal stem cells to enhance or restore fertility potential: a systematic review of available experimental strategies. Hum Reprod Open 2023; 2023:hoad040. [PMID: 37954935 PMCID: PMC10637864 DOI: 10.1093/hropen/hoad040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION To what extent does regenerative medicine with stem cell therapy help to address infertility issues for future clinical application? SUMMARY ANSWER Regenerative medicine using different stem cell sources is yielding promising results in terms of protecting the ovarian reserve from damage and senescence, and improving fertility potential in various preclinical settings. WHAT IS KNOWN ALREADY Regenerative medicine using stem cell therapy is emerging as a potential strategy to address a number of issues in the field of human reproduction. Indeed, different types of adult and fetal mesenchymal stem cells (MSCs) have been tested with promising results, owing to their ability to differentiate into different tissue lineages, move toward specific injured sites (homing), and generate a secretome with wound-healing, proangiogenic, and antioxidant capacities. STUDY DESIGN SIZE DURATION Guided by the checklist for preferred reporting items for systematic reviews and meta-analyses, we retrieved relevant studies from PubMed, Medline, and Embase databases until June 2023 using the following keywords: 'mesenchymal stem cells' AND 'ovarian follicles' OR 'ovarian tissue culture' OR 'ovarian follicle culture' OR 'cumulus oocyte complex'. Only peer-reviewed published articles written in English were included. PARTICIPANTS/MATERIALS SETTING METHODS The primary outcome for the experimental strategies was evaluation of the ovarian reserve, with a focus on follicle survival, number, and growth. Secondary outcomes involved analyses of other parameters associated with the follicle pool, such as hormones and growth factors, ovarian tissue viability markers including oxidative stress levels, oocyte growth and maturation rates, and of course pregnancy outcomes. MAIN RESULTS AND THE ROLE OF CHANCE Preclinical studies exploring MSCs from different animal origins and tissue sources in specific conditions were selected (n = 112), including: in vitro culture of granulosa cells, ovarian tissue and isolated ovarian follicles; ovarian tissue transplantation; and systemic or intraovarian injection after gonadotoxic or age-related follicle pool decline. Protecting the ovarian reserve from aging and gonadotoxic damage has been widely tested in vitro and in vivo using murine models and is now yielding initial data in the first ever case series of patients with premature ovarian insufficiency. Use of MSCs as feeder cells in ovarian tissue culture was found to improve follicle outcomes and oocyte competence, bringing us one step closer to future clinical application. MSCs also have proved effective at boosting revascularization in the transplantation site when grafting ovarian tissue in experimental animal models. LIMITATIONS REASONS FOR CAUTION While preclinical results look promising in terms of protecting the ovarian reserve in different experimental models (especially those in vitro using various mammal experimental models and in vivo using murine models), there is still a lot of work to do before this approach can be considered safe and successfully implemented in a clinical setting. WIDER IMPLICATIONS OF THE FINDINGS All gathered data on the one hand show that regenerative medicine techniques are quickly gaining ground among innovative techniques being developed for future clinical application in the field of reproductive medicine. After proving MSC effectiveness in preclinical settings, there is still a lot of work to do before MSCs can be safely and effectively used in different clinical applications. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS-PDR T.0077.14, FNRS-CDR J.0063.20, and grant 5/4/150/5 awarded to Marie-Madeleine Dolmans), Fonds Spéciaux de Recherche, and the Fondation St Luc. None of the authors have any competing interest to disclose. REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- L Cacciottola
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - F Vitale
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - J Donnez
- Society for Research into Infertility, Brussels, Belgium
- Université Catholique de Louvain, Brussels, Belgium
| | - M M Dolmans
- Gynecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Department of Gynecology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
35
|
Zhou Y, Li Q, You S, Jiang H, Jiang L, He F, Hu L. Efficacy of Mesenchymal Stem Cell-Derived Extracellular Vesicles in the Animal Model of Female Reproductive Diseases: A Meta-Analysis. Stem Cell Rev Rep 2023; 19:2299-2310. [PMID: 37365433 DOI: 10.1007/s12015-023-10576-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Female reproductive disorders, such as premature ovarian insufficiency (POI), intrauterine adhesion (IUA) or thin endometrium, and polycystic ovary syndrome (PCOS), are the main factors affecting fertility. Mesenchymal stem cells derived-extracellular vesicles (MSC-EVs) have gained traction as a new potential treatment and were widely studied in these diseases. However, their impact is still not fully clear. METHODS A systematic search of PubMed, Web of Science, EMBASE, the Chinese National Knowledge of Infrastructure, and WanFang online databases was performed up to September 27th, 2022, and the studies of MSC-EVs-based therapy on the animal models of female reproductive diseases were included. The primary outcomes were anti-Müllerian hormone (AMH) in POI and endometrial thickness in IUA, respectively. RESULTS 28 studies (POI, N = 15; IUA, N = 13) were included. For POI, MSC-EVs improved AMH at 2 weeks (SMD 3.40, 95% CI 2.02 to 4.77) and 4 weeks (SMD 5.39, 95% CI 3.43 to 7.36) compared with placebo, and no difference was found when compared with MSCs in AMH (SMD -2.03, 95% CI -4.25 to 0.18). For IUA, MSC-EVs treatment could increase the endometrial thickness at 2 weeks (WMD 132.36, 95% CI 118.99 to 145.74), but no improvement was found at 4 weeks (WMD 166.18, 95% CI -21.44 to 353.79). The combination of MSC-EVs with hyaluronic acid or collagen had a better effect on the endometrial thickness (WMD 105.31, 95% CI 85.49 to 125.13) and glands (WMD 8.74, 95% CI 1.34 to 16.15) than MSC-EVs alone. The medium dose of EVs may allow for great benefits in both POI and IUA. CONCLUSIONS MSC-EVs treatment could improve the functional and structural outcomes in female reproductive disorders. The combination of MSC-EVs with HA or collagen may enhance the effect. These findings can accelerate the translation of MSC-EVs treatment to human clinical trials.
Collapse
Affiliation(s)
- Yuanyang Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China
- Department of Obstetrics and Gynaecology, Jinjiang Maternity Hospital, No. 22 Huangshan Road, Deyang, Sichuan Province, China
| | - Qu Li
- Department of Obstetrics and Gynaecology, Jinjiang Maternity Hospital, No. 22 Huangshan Road, Deyang, Sichuan Province, China
| | - Shuang You
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China
| | - Huanhuan Jiang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China
| | - Linying Jiang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China
| | - Fan He
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China.
- Joint International Research Lab for Reproduction and Development, Ministry of Education of the People's Republic of China, Chongqing, China.
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China.
| | - Lina Hu
- The Center for Reproductive Medicine, Obstetrics and Gynecology Department, The Second Affiliated Hospital of Chongqing Medical University, No. 74 Linjiang Road, Chongqing, 400010, China.
- Joint International Research Lab for Reproduction and Development, Ministry of Education of the People's Republic of China, Chongqing, China.
- Reproduction and Stem Cell Therapy Research Center of Chongqing, Chongqing, China.
| |
Collapse
|
36
|
Zhang M, Xing J, Zhao S, Chen H, Yin X, Zhu X. Engineered extracellular vesicles in female reproductive disorders. Biomed Pharmacother 2023; 166:115284. [PMID: 37572637 DOI: 10.1016/j.biopha.2023.115284] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023] Open
Abstract
Biologically active and nanoscale extracellular vesicles (EVs) participate in a variety of cellular physiological and pathological processes in a cell-free manner. Unlike cells, EVs not only do not cause acute immune rejection, but are much smaller and have a low risk of tumorigenicity or embolization. Because of their unique advantages, EVs show promise in applications in the diagnosis and treatment of reproductive disorders. As research broadens, engineering strategies for EVs have been developed, and engineering strategies for EVs have substantially improved their application potential while circumventing the defects of natural EVs, driving EVs toward clinical applications. In this paper, we will review the engineering strategies of EVs, as well as their regulatory effects and mechanisms on reproductive disorders (including premature ovarian insufficiency (POI), polycystic ovarian syndrome (PCOS), recurrent spontaneous abortion (RSA), intrauterine adhesion (IUA), and endometriosis (EMS)) and their application prospects. This work provides new ideas for the treatment of female reproductive disorders by engineering EVs.
Collapse
Affiliation(s)
- Mengxue Zhang
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Jie Xing
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Shijie Zhao
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Hui Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xinming Yin
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China; Institute of Reproductive Sciences, Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu 212001, PR China.
| |
Collapse
|
37
|
Song A, Zhang S, Zhao X, Wu S, Qi X, Gao S, Qi J, Li P, Tan J. Exosomes derived from menstrual blood stromal cells ameliorated premature ovarian insufficiency and granulosa cell apoptosis by regulating SMAD3/AKT/MDM2/P53 pathway via delivery of thrombospondin-1. Biomed Pharmacother 2023; 166:115319. [PMID: 37573658 DOI: 10.1016/j.biopha.2023.115319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023] Open
Abstract
Premature ovarian insufficiency (POI) is clinically irreversible and seriously damages female fertility. We previously demonstrated that menstrual blood stromal cells (MenSCs)-derived exosomes (EXOs) effectively improved ovarian functions in the POI rat model. In this study, we investigated whether TSP1 is the key component in EXOs to ameliorate ovarian functions and further explored the molecular mechanism of EXOs in improving granulosa cell (GCs) activities. Our results demonstrated that knockdown TSP1 significantly debilitated the therapeutic effect of EXOs on estrous cyclicity, ovarian morphology, follicle numbers and pregnancy outcomes in 4-vinylcyclohexene diepoxide (VCD) induced POI rat model. In addition, EXOs treatment significantly promoted the activities and inhibited the apoptosis of VCD induced granulosa cells in vitro. Moreover, EXOs stimulation markedly activated the phosphorylation of SMAD3(Ser425) and AKT(Ser473), up-regulated the expressions of BCL2 and MDM2 as well as down-regulated the expressions of CASPASE3, CASPASE8, P53 and BAX. All these effects were supressed by SIS3, a inhibitor of TGF1/SMAD3. Our study revealed the key role of TSP1 in EXOs in improving POI pathology, restoring ovarian functions and GCs activities, andprovided a promising basis for EXOs in the treatment of ovarian dysfunction.
Collapse
Affiliation(s)
- Aixin Song
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Siwen Zhang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China
| | - Xinyang Zhao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Shanshan Wu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Xiaohan Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Shan Gao
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Jiarui Qi
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Pingping Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China
| | - Jichun Tan
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive Dysfunction Disease and Fertility Remodeling of Liaoning Province, No. 39 Huaxiang Road, Tiexi District, Shenyang 110022, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| |
Collapse
|
38
|
Moustaki M, Kontogeorgi A, Tsangkalova G, Tzoupis H, Makrigiannakis A, Vryonidou A, Kalantaridou SN. Biological therapies for premature ovarian insufficiency: what is the evidence? FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1194575. [PMID: 37744287 PMCID: PMC10512839 DOI: 10.3389/frph.2023.1194575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Premature Ovarian Insufficiency (POI) is a multi-factorial disorder that affects women of reproductive age. The condition is characterized by the loss of ovarian function before the age of 40 years and several factors have been identified to be implicated in its pathogenesis. Remarkably though, at least 50% of women have remaining follicles in their ovaries after the development of ovarian insufficiency. Population data show that approximately up to 3.7% of women worldwide suffer from POI and subsequent infertility. Currently, the treatment of POI-related infertility involves oocyte donation. However, many women with POI desire to conceive with their own ova. Therefore, experimental biological therapies, such as Platelet-Rich Plasma (PRP), Exosomes (exos) therapy, In vitro Activation (IVA), Stem Cell therapy, MicroRNAs and Mitochondrial Targeting Therapies are experimental treatment strategies that focus on activating oogenesis and folliculogenesis, by upregulating natural biochemical pathways (neo-folliculogenesis) and improving ovarian microenvironment. This mini-review aims at identifying the main advantages of these approaches and exploring whether they can underpin existing assisted reproductive technologies.
Collapse
Affiliation(s)
- Melpomeni Moustaki
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | | | | | | | - Antonis Makrigiannakis
- Department of Obstetrics and Gynecology, University of Crete Medical School, Heraklion, Greece
| | - Andromachi Vryonidou
- Department of Endocrinology and Diabetes Center, Hellenic Red Cross Hospital, Athens, Greece
| | - Sophia N. Kalantaridou
- Serum IVF Fertility Center, Athens, Greece
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
39
|
Nazdikbin Yamchi N, Ahmadian S, Mobarak H, Amjadi F, Beheshti R, Tamadon A, Rahbarghazi R, Mahdipour M. Amniotic fluid-derived exosomes attenuated fibrotic changes in POI rats through modulation of the TGF-β/Smads signaling pathway. J Ovarian Res 2023; 16:118. [PMID: 37370156 PMCID: PMC10294370 DOI: 10.1186/s13048-023-01214-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
In the current study, we investigated the regenerative effects of amniotic fluid exosomes (AF-Exos) in a rat model for premature ovarian insufficiency (POI). POI is a condition characterized by a decrease in ovarian function that can lead to infertility. We induced POI by administering cyclophosphamide (CTX) for 15 consecutive days, and then transplanted AF-Exos directly into both ovarian tissues. Four weeks later, we measured the serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2), and performed histopathological evaluations using H & E and Masson's trichrome staining. We also monitored the expression of genes related to the TGF-β signaling pathway using real-time PCR and examined the fertility rate of POI rats after AF-Exos therapy. Histological analysis showed an increase in atretic follicles and a decrease in healthy follicle count after POI induction. Four weeks post-AF-Exos intervention, the healthy follicle count increased (p < 0.01) while the atretic follicle count decreased (p < 0.001). In parallel, the deposition of collagen fibers also decreased following AF-Exos transplantation. The concentrations of FSH and LH hormones in sera remained unchanged after injection of AF-Exos, while E2 levels increased (p < 0.05). The expression of Smad-4 (p < 0.01) and Smad-6 (p < 0.05) was upregulated in POI rats that received AF-Exos, while Smad-2, TGF-β1, TNF-α, and IL-10 remained statistically unchanged. Our records showed a notable increase in litter number after AF-Exos compared to the non-treated POI rats. These results suggest that AF-Exos transplantation has the potential to restore ovarian function through the TGF-β/Smads signaling pathway in POI rats.
Collapse
Affiliation(s)
| | - Shahin Ahmadian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Halimeh Mobarak
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Amjadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rahim Beheshti
- Faculty of Veterinary Medicine, Shabestar Islamic Azad University, Shabestar, Iran
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Iran
- Department for Scientific Work, Marat Ospanov Medical University, West, Aktobe, Kazakhstan
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
40
|
Park HS, Chugh RM, Seok J, Cetin E, Mohammed H, Siblini H, Liakath Ali F, Ghasroldasht MM, Alkelani H, Elsharoud A, Ulin M, Esfandyari S, Al-Hendy A. Comparison of the therapeutic effects between stem cells and exosomes in primary ovarian insufficiency: as promising as cells but different persistency and dosage. Stem Cell Res Ther 2023; 14:165. [PMID: 37340468 DOI: 10.1186/s13287-023-03397-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Primary ovarian insufficiency (POI) refers to the loss of ovarian function under the age of 40 and results in amenorrhea and infertility. Our previous studies have shown that transplantation of mesenchymal stem cells (MSCs) and MSC-derived exosomes in chemotherapy-induced POI mouse ovaries can reverse the POI and eventually achieve pregnancy. Based on our recent studies, MSC-derived exosomes have almost equal therapeutic potentials as transplanted MSCs. However, it is still unclear whether exosomes can completely replace MSCs in POI treatment. For the reliable application of cell-free treatment for POI patients using exosomes, there is a need to understand whether there is any outcome and effectiveness difference between MSC and MSC-derived exosome treatment. METHODS Comparing the therapeutic effect of intravenous injection using MSCs and equal amounts of exosomes in a POI mouse model will reveal the difference between the two therapeutic resources. In this study, we induced POI in C57/BL6 mice by chemotherapy (CXT) using a standard protocol. We then injected four different doses of MSCs or equal amounts of commercialized MSC-derived exosomes by retro-orbital injection post-CXT. RESULT After MSC/exosome treatment, tissue and serum samples were harvested to analyze molecular changes after treatment, while other mice in parallel experiments underwent breeding experiments to compare the restoration of fertility. Both the MSC- and exosome-treated groups had a restored estrous cycle and serum hormone levels compared to untreated POI mice. The pregnancy rate in the MSC-treated group was 60-100% after treatment, while the pregnancy rate in the exosome-treated group was 30-50% after treatment. Interestingly, in terms of long-term effects, MSC-treated mice still showed a 60-80% pregnancy rate in the second round of breeding, while the exosome-treated group became infertile again in the second round of breeding. CONCLUSIONS Although there were some differences in the efficacy between MSC treatment and exosome treatment, both treatments were able to achieve pregnancy in the POI mouse model. In conclusion, we report that MSC-derived exosomes are a promising therapeutic option to restore ovarian function in POI conditions similar to treatment with MSCs.
Collapse
Affiliation(s)
- Hang-Soo Park
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jin Seok
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Esra Cetin
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Hanaa Mohammed
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
- Human Anatomy and Embryology Department, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Hiba Siblini
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Farzana Liakath Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | | | - Hiba Alkelani
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Amro Elsharoud
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mara Ulin
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA.
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
41
|
Dai F, Wang R, Deng Z, Yang D, Wang L, Wu M, Hu W, Cheng Y. Comparison of the different animal modeling and therapy methods of premature ovarian failure in animal model. Stem Cell Res Ther 2023; 14:135. [PMID: 37202808 DOI: 10.1186/s13287-023-03333-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 05/20/2023] Open
Abstract
Incidence of premature ovarian failure (POF) is higher with the increase of the pace of life. The etiology of POF is very complex, which is closely related to genes, immune diseases, drugs, surgery, and psychological factors. Ideal animal models and evaluation indexes are essential for drug development and mechanism research. In our review, we firstly summarize the modeling methods of different POF animal models and compare their advantages and disadvantages. Recently, stem cells are widely studied for tumor treatment and tissue repair with low immunogenicity, high homing ability, high ability to divide and self-renew. Hence, we secondly reviewed recently published data on transplantation of stem cells in the POF animal model and analyzed the possible mechanism of their function. With the further insights of immunological and gene therapy, the combination of stem cells with other therapies should be actively explored to promote the treatment of POF in the future. Our article may provide guidance and insight for POF animal model selection and new drug development.
Collapse
Affiliation(s)
- Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Linlin Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Mali Wu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Wei Hu
- Department of Obstetrics and Gynecology Ultrasound, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
42
|
Ai G, Meng M, Guo J, Li C, Zhu J, Liu L, Liu B, Yang W, Shao X, Cheng Z, Wang L. Adipose-derived stem cells promote the repair of chemotherapy-induced premature ovarian failure by inhibiting granulosa cells apoptosis and senescence. Stem Cell Res Ther 2023; 14:75. [PMID: 37038203 PMCID: PMC10088140 DOI: 10.1186/s13287-023-03297-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 03/23/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Chemotherapeutic drugs, particularly alkylating cytotoxics such as cyclophosphamide (CTX), play an important role to induce premature ovarian failure (POF). Hormone replacement therapy (HRT) is a widely used treatment to improve hormone secretion. However, the long-term HRT increases the risk of breast cancer and cardiovascular disease are attracting concerns. Therefore, there is an urgent need to develop a safe and effective treatment for POF. METHOD Adipose-derived stem cells (ADSCs) were isolated and identified from human adipose tissue. For POF modeling, CTX were intraperitoneal injected into CTX-acute group, CTX-chronic group, CTX-acute + ADSCs group and CTX-chronic + ADSCs group rats; For transplantation, ADSCs were transplanted into POF rats through tail-vein. The control group rats were injected with PBS. The effects of POF modeling and transplantation were determined by estrous cycle analysis, histopathological analysis, immunohistochemical staining and apoptosis-related marker. To evaluate the effects of ADSC on granulosa cells in vitro, CTX-induced senescent KGN cells were co-cultured with ADSCs, and senescent-related marker expression was investigated by immunofluorescent staining. RESULTS In vivo studies revealed that ADSCs transplantation reduced the apoptosis of ovarian granulosa cells and secretion of follicle-stimulating hormone. The number of total follicles, primordial follicles, primary follicles, and mature follicles and secretion of anti-Müllerian hormone and estradiol (E2) were also increased by ADSCs. The estrous cycle was also improved by ADSC transplantation. Histopathological analysis showed that CTX-damaged ovarian microenvironment was improved by ADSCs. Furthermore, TUNEL staining indicated that apoptosis of granulosa cells was decreased by ADSCs. In vitro assay also demonstrated that ADSC markedly attenuated CTX-induced senescence and apoptosis of granulosa cell. Mechanistically, both in vivo and in vitro experiments proved that ADSC transplantation suppressed activation of the PI3K/Akt/mTOR axis. CONCLUSION Our experiment demonstrated that a single injection of high-dose CTX was a less damaging chemotherapeutic strategy than continuous injection of low-dose CTX, and tail-vein injection of ADSCs was a potential approach to promote the restoration of CTX-induced POF.
Collapse
Affiliation(s)
- Guihai Ai
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Meng Meng
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Jing Guo
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Caixia Li
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jihui Zhu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Li Liu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Biting Liu
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wenhan Yang
- Department of Gynecology and Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaowen Shao
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongping Cheng
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Tongji University School of Medicine, Shanghai, 200092, China.
| | - Lian Wang
- Department of Gynecology and Obstetrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Gynecologic Minimally Invasive Surgery Research Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
43
|
Nguyen THN, Pham PV, Vu NB. Exosomes from adipose-derived stem cells promote angiogenesis and reduce necrotic grade in hindlimb ischemia mouse models. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:429-437. [PMID: 37009008 PMCID: PMC10008393 DOI: 10.22038/ijbms.2023.67936.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 04/04/2023]
Abstract
Objectives Acute hindlimb ischemia is a peripheral arterial disease that severely affects the patient's health. Injection of stem cells-derived exosomes that promote angiogenesis is a promising therapeutic strategy to increase perfusion and repair ischemic tissues. This study aimed to evaluate the efficacy of adipose stem cell-derived exosomes injection (ADSC-Exos) in treating acute mouse hindlimb ischemia. Materials and Methods ADSC-Exos were collected via ultracentrifugation. Exosome-specific markers were analyzed via flow cytometry. The morphology of exosomes was detected by TEM. A dose of 100 ug exosomes/100 ul PBS was locally injected into acute mice ischemic hindlimb. The treatment efficacy was evaluated based on the oxygen saturation level, limb function, new blood vessel formation, muscle structure recovery, and limb necrosis grade. Results ADSC-exosomes expressed high positivity for markers CD9 (76.0%), CD63 (91.2%), and CD81 (99.6%), and have a cup shape. After being injected into the muscle, in the treatment group, many small and short blood vessels formed around the first ligation and grew down toward the second ligation. The SpO2 level, reperfusion, and recovery of the limb function are more positively improved in the treatment group. On day 28, the muscle's histological structure in the treatment group is similar to normal tissue. Approximately 33.33% of the mice had grade I and II lesions and there were no grade III and IV observed in the treatment group. Meanwhile, in the placebo group, 60% had grade I to IV lesions. Conclusion ADSC-Exos showed the ability to stimulate angiogenesis and significantly reduce the rate of limb necrosis.
Collapse
Affiliation(s)
- Trinh Hoang-Nhat Nguyen
- Stem Cell Institute, University of Science Ho Chi Minh City, Viet Nam
- Viet Nam National University, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, University of Science Ho Chi Minh City, Viet Nam
- Viet Nam National University, Ho Chi Minh City, Viet Nam
- Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Viet Nam
| | - Ngoc Bich Vu
- Stem Cell Institute, University of Science Ho Chi Minh City, Viet Nam
- Viet Nam National University, Ho Chi Minh City, Viet Nam
- Corresponding author: Ngoc Bich Vu. Stem Cell Institute, University of Science Ho Chi Minh City, Viet Nam; Viet Nam National University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
44
|
Chen LY, Kao TW, Chen CC, Niaz N, Lee HL, Chen YH, Kuo CC, Shen YA. Frontier Review of the Molecular Mechanisms and Current Approaches of Stem Cell-Derived Exosomes. Cells 2023; 12:cells12071018. [PMID: 37048091 PMCID: PMC10093591 DOI: 10.3390/cells12071018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are effective therapeutic vehicles that may transport their substances across cells. They are shown to possess the capacity to affect cell proliferation, migration, anti-apoptosis, anti-scarring, and angiogenesis, via the action of transporting molecular components. Possessing immense potential in regenerative medicine, exosomes, especially stem cell-derived exosomes, have the advantages of low immunogenicity, minimal invasiveness, and broad clinical applicability. Exosome biodistribution and pharmacokinetics may be altered, in response to recent advancements in technology, for the purpose of treating particular illnesses. Yet, prior to clinical application, it is crucial to ascertain the ideal dose and any potential negative consequences of an exosome. This review focuses on the therapeutic potential of stem cell-derived exosomes and further illustrates the molecular mechanisms that underpin their potential in musculoskeletal regeneration, wound healing, female infertility, cardiac recovery, immunomodulation, neurological disease, and metabolic regulation. In addition, we provide a summary of the currently effective techniques for isolating exosomes, and describe the innovations in biomaterials that improve the efficacy of exosome-based treatments. Overall, this paper provides an updated overview of the biological factors found in stem cell-derived exosomes, as well as potential targets for future cell-free therapeutic applications.
Collapse
|
45
|
Regenerative potential of different extracellular vesicle subpopulations derived from clonal mesenchymal stem cells in a mouse model of chemotherapy-induced premature ovarian failure. Life Sci 2023; 321:121536. [PMID: 36868400 DOI: 10.1016/j.lfs.2023.121536] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/16/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023]
Abstract
AIMS Some studies have shown that mesenchymal stem cells (MSCs) and their derived extracellular vesicles (MSC-EVs) can restore ovarian function in premature ovarian failure (POF), however, concerns about their efficacy are attributed to the heterogeneity of the cell populations and EVs. Here, we assessed the therapeutic potential of a homogeneous population of clonal MSCs (cMSCs) and their EVs subpopulations in a mouse model of POF. MAIN METHODS Granulosa cells were treated with cyclophosphamide (Cy) in the absence or presence of cMSCs, or cMSCs-derived EV subpopulations (EV20K and EV110K, isolated by high-speed centrifugation and differential ultracentrifugation, respectively). In addition, POF mice were treated with cMSCs, EV20K and/or EV110K. KEY FINDINGS cMSC and both EV types protected granulosa cells from Cy-induced damage. Calcein-EVs were detected in the ovaries. Moreover, cMSC and both EV subpopulations significantly increased body weight, ovary weight, and the number of follicles, restored FSH, E2, and AMH levels, increased the granulosa cell numbers and restored the fertility of POF mice. cMSC, EV20K, and EV110K alleviated inflammatory-related genes expression (Tnf-α and IL8), and improved angiogenesis via upregulation expression of Vegf and Igf1 at the mRNA level and VEGF and αSMA at the protein level. They also inhibited apoptosis through the PI3K/AKT signaling pathway. SIGNIFICANCE The administration of cMSCs and two cMSC-EVs subpopulations improved ovarian function and restored fertility in a POF model. EV20K is more cost-effective and feasible in terms of isolation, particularly in good manufacturing practice (GMP) facilities for treatment of POF patients in comparison with conventional EVs (EV110K).
Collapse
|
46
|
Han S, Li H, Lu R, Feng J, Tang K, Li S, Lin J. Effect and mechanism of pearl on ovarian function of rats with premature ovarian failure induced by tripterygium glycosides. J Tradit Complement Med 2023. [DOI: 10.1016/j.jtcme.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
|
47
|
Cen S, Qian X, Wu C, Xu X, Yang X. Efficacy and Clinical Significance of the Zuogui Pill on Premature Ovarian Failure via the GDF-9/Smad2 Pathway. Nutr Cancer 2023; 75:488-497. [PMID: 36194038 DOI: 10.1080/01635581.2022.2123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Our study aims to investigate the efficacy and clinical significance of the Zuogui pill (ZGP) on premature ovarian failure (POF) via the GDF-9/Smad2 pathway. Changes in clinical symptoms in the control group (treated with Femoston alone) and the treatment group (treated with ZGP combined with Femoston) were assessed before and after treatment. Sex hormone levels, serum inflammatory cytokine levels, and ultrasound parameters were measured before and after treatment. POF rat models were established using cyclophosphamide and the POF rats were treated with Femoston, or ZGP combined with Femoston. GDF-9 and Smad2 expression levels were determined by RT-qPCR. The follicle-stimulating hormone (FSH), luteinizing hormone (LH), interleukin (IL)-6, and IL-21 levels, and the pulsatility index (PI) and resistance index (RI) values were decreased, while the estradiol (E2) and anti-Mullerian hormone (AMH) levels, antral follicle count (AFC), ovarian volume (OV), mean ovarian diameter (MOD), and peak systolic velocity (PSV) values were increased in the treatment group compared to the control group. After treatment with ZGP combined with Femoston, GDF-9 and Smad2 expression in the ovarian tissues of POF rats increased. ZGP has a therapeutic effect on POF via modulation of the GDF-9/Smad2 pathway.
Collapse
Affiliation(s)
- Su Cen
- Department of Gynecology, Hangzhou Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaojun Qian
- Department of Gynecology, Hangzhou Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Chunfang Wu
- Department of Traditional Chinese Medicine, Maternal and Child Health Care Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Xinya Xu
- Gynaecologic Department of Traditional Chinese Medicine, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiaohui Yang
- Department of Gynecology, Hangzhou Xiaoshan District Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
Geng Z, Guo H, Li Y, Liu Y, Zhao Y. Stem cell-derived extracellular vesicles: A novel and potential remedy for primary ovarian insufficiency. Front Cell Dev Biol 2023; 11:1090997. [PMID: 36875770 PMCID: PMC9977284 DOI: 10.3389/fcell.2023.1090997] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Primary ovarian insufficiency (POI) is an essential cause of young female fertility loss. At present, there are many treatments for primary ovarian insufficiency, but due to the complexity of the pathogenesis of primary ovarian insufficiency, the efficacy still could not be satisfactory. Stem cell transplantation is a feasible intervention protocol for primary ovarian insufficiency. However, its wide application in the clinic is limited by some defects such as tumorigenic and controversial ethical issues. Stem cell-derived extracellular vesicles (EVs) represent an important mode of intercellular communication attracting increasing interest. It is well documented that stem cell-derived extracellular vesicles for primary ovarian insufficiency with exciting therapeutic effects. Studies have found that stem cell-derived extracellular vesicles could improve ovarian reserve, increase the growth of follicles, reduce follicle atresia, and restore hormone levels of FSH and E2. Its mechanisms include inhibiting ovarian granulosa cells (GCs) apoptosis, reactive oxygen species, and inflammatory response and promoting granulosa cells proliferation and angiogenesis. Thus, stem cell-derived extracellular vesicles are a promising and potential method for primary ovarian insufficiency patients. However, stem cell-derived extracellular vesicles are still a long way from clinical translation. This review will provide an overview of the role and the mechanisms of stem cell-derived extracellular vesicles in primary ovarian insufficiency, and further elaborate on the current challenges. It may suggest new directions for future research.
Collapse
Affiliation(s)
- Zixiang Geng
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hailing Guo
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- Department of Dermatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Yongfang Zhao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
49
|
Dwivedi M, Ghosh D, Saha A, Hasan S, Jindal D, Yadav H, Yadava A, Dwivedi M. Biochemistry of exosomes and their theranostic potential in human diseases. Life Sci 2023; 315:121369. [PMID: 36639052 DOI: 10.1016/j.lfs.2023.121369] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Exosomes are classified as special extracellular vesicles in the eukaryotic system having diameters ranging from 30 to 120 nm. These vesicles carry various endogenous molecules including DNA, mRNA, microRNA, circular RNA, and proteins, crucial for numerous metabolic reactions and can be proposed as therapeutic or diagnostic targets for several disorders. The donor exosomes release their content to recipient cells and further establish the significant intercellular communication showing biological effects by triggering environmental alterations. Exosomes derived from mesenchymal and dendritic cells have demonstrated their therapeutic potential against organ injury. Yet, various intricacies are involved in exosomal transport and its inclusion in cancer and other disease pathogenesis needs to be explored. The exosomes represent profound potential as diagnostic biomarkers and therapeutic carriers in various pathophysiological conditions such as neurodegenerative diseases, chronic cancers, infectious diseases, female reproductive diseases and cardiovascular diseases. In the current study, we demonstrate the advancements in the implication of exosomes as one of the irrefutable prognostic biological targets in human health and diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| | - Diya Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Anwesha Saha
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Divya Jindal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Medha Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| |
Collapse
|
50
|
Mohamed Rasheed ZB, Nordin F, Wan Kamarul Zaman WS, Tan YF, Abd Aziz NH. Autologous Human Mesenchymal Stem Cell-Based Therapy in Infertility: New Strategies and Future Perspectives. BIOLOGY 2023; 12:108. [PMID: 36671799 PMCID: PMC9855776 DOI: 10.3390/biology12010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/12/2023]
Abstract
Infertility could be associated with a few factors including problems with physical and mental health, hormonal imbalances, lifestyles, and genetic factors. Given that there is a concern about the rise of infertility globally, increased focus has been given to its treatment for the last several decades. Traditional assisted reproductive technology (ART) has been the prime option for many years in solving various cases of infertility; however, it contains significant risks and does not solve the fundamental problem of infertility such as genetic disorders. Attention toward the utilization of MSCs has been widely regarded as a promising option in the development of stem-cell-based infertility treatments. This narrative review briefly presents the challenges in the current ART treatment of infertility and the various potential applications of autologous MSCs in the treatment of these reproductive diseases.
Collapse
Affiliation(s)
- Zahirrah Begam Mohamed Rasheed
- UKM Medical Molecular Biology Institute (UMBI), Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Fazlina Nordin
- Centre for Tissue Engineering and Regenerative Medicine (CTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | | | - Yuen-Fen Tan
- PPUKM-MAKNA Cancer Center, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, WPKL, Kuala Lumpur 56000, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Bandar Sungai Long, Kajang 43000, Malaysia
| | - Nor Haslinda Abd Aziz
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Research Laboratory of UKM Specialist Children’s Hospital, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|