1
|
Zhang J, Suo M, Wang J, Liu X, Huang H, Wang K, Liu X, Sun T, Li Z, Liu J. Standardisation is the key to the sustained, rapid and healthy development of stem cell-based therapy. Clin Transl Med 2024; 14:e1646. [PMID: 38572666 PMCID: PMC10993161 DOI: 10.1002/ctm2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Stem cell-based therapy (SCT) is an important component of regenerative therapy that brings hope to many patients. After decades of development, SCT has made significant progress in the research of various diseases, and the market size has also expanded significantly. The transition of SCT from small-scale, customized experiments to routine clinical practice requires the assistance of standards. Many countries and international organizations around the world have developed corresponding SCT standards, which have effectively promoted the further development of the SCT industry. METHODS We conducted a comprehensive literature review to introduce the clinical application progress of SCT and focus on the development status of SCT standardization. RESULTS We first briefly introduced the types and characteristics of stem cells, and summarized the current clinical application and market development of SCT. Subsequently, we focused on the development status of SCT-related standards as of now from three levels: the International Organization for Standardization (ISO), important international organizations, and national organizations. Finally, we provided perspectives and conclusions on the significance and challenges of SCT standardization. CONCLUSIONS Standardization plays an important role in the sustained, rapid and healthy development of SCT.
Collapse
Affiliation(s)
- Jing Zhang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Moran Suo
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Jinzuo Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xin Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Huagui Huang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Kaizhong Wang
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Xiangyan Liu
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Tianze Sun
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
| | - Zhonghai Li
- Department of OrthopedicsFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopedic DiseasesDalianLiaoning ProvinceChina
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| | - Jing Liu
- Stem Cell Clinical Research CenterNational Joint Engineering LaboratoryFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoning ProvinceChina
- Dalian Innovation Institute of Stem Cell and Precision MedicineDalianLiaoning ProvinceChina
| |
Collapse
|
2
|
Minne M, Terrie L, Wüst R, Hasevoets S, Vanden Kerchove K, Nimako K, Lambrichts I, Thorrez L, Declercq H. Generating human skeletal myoblast spheroids for vascular myogenic tissue engineering. Biofabrication 2024; 16:025035. [PMID: 38437715 DOI: 10.1088/1758-5090/ad2fd5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Engineered myogenic microtissues derived from human skeletal myoblasts offer unique opportunities for varying skeletal muscle tissue engineering applications, such asin vitrodrug-testing and disease modelling. However, more complex models require the incorporation of vascular structures, which remains to be challenging. In this study, myogenic spheroids were generated using a high-throughput, non-adhesive micropatterned surface. Since monoculture spheroids containing human skeletal myoblasts were unable to remain their integrity, co-culture spheroids combining human skeletal myoblasts and human adipose-derived stem cells were created. When using the optimal ratio, uniform and viable spheroids with enhanced myogenic properties were achieved. Applying a pre-vascularization strategy, through addition of endothelial cells, resulted in the formation of spheroids containing capillary-like networks, lumina and collagen in the extracellular matrix, whilst retaining myogenicity. Moreover, sprouting of endothelial cells from the spheroids when encapsulated in fibrin was allowed. The possibility of spheroids, from different maturation stages, to assemble into a more large construct was proven by doublet fusion experiments. The relevance of using three-dimensional microtissues with tissue-specific microarchitecture and increased complexity, together with the high-throughput generation approach, makes the generated spheroids a suitable tool forin vitrodrug-testing and human disease modeling.
Collapse
Affiliation(s)
- Mendy Minne
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Lisanne Terrie
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Rebecca Wüst
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Steffie Hasevoets
- Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, UHasselt, Diepenbeek, Belgium
| | - Kato Vanden Kerchove
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Kakra Nimako
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Sciences, UHasselt, Diepenbeek, Belgium
| | - Lieven Thorrez
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| | - Heidi Declercq
- Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven campus KULAK, Kortrijk, Belgium
| |
Collapse
|
3
|
Kim M, Jang HJ, Baek SY, Choi KJ, Han DH, Sung JS. Regulation of base excision repair during adipogenesis and osteogenesis of bone marrow-derived mesenchymal stem cells. Sci Rep 2023; 13:16384. [PMID: 37773206 PMCID: PMC10542337 DOI: 10.1038/s41598-023-43737-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023] Open
Abstract
Bone marrow-derived human mesenchymal stem cells (hMSCs) can differentiate into various lineages, such as chondrocytes, adipocytes, osteoblasts, and neuronal lineages. It has been shown that the high-efficiency DNA-repair capacity of hMSCs is decreased during their differentiation. However, the underlying its mechanism during adipogenesis and osteogenesis is unknown. Herein, we investigated how alkyl-damage repair is modulated during adipogenic and osteogenic differentiation, especially focusing on the base excision repair (BER) pathway. Response to an alkylation agent was assessed via quantification of the double-strand break (DSB) foci and activities of BER-related enzymes during differentiation in hMSCs. Adipocytes showed high resistance against methyl methanesulfonate (MMS)-induced alkyl damage, whereas osteoblasts were more sensitive than hMSCs. During the differentiation, activities, and protein levels of uracil-DNA glycosylase were found to be regulated. In addition, ligation-related proteins, such as X-ray repair cross-complementing protein 1 (XRCC1) and DNA polymerase β, were upregulated in adipocytes, whereas their levels and recruitment declined during osteogenesis. These modulations of BER enzyme activity during differentiation influenced DNA repair efficiency and the accumulation of DSBs as repair intermediates in the nucleus. Taken together, we suggest that BER enzymatic activity is regulated in adipogenic and osteogenic differentiation and these alterations in the BER pathway led to different responses to alkyl damage from those in hMSCs.
Collapse
Affiliation(s)
- Min Kim
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Hyun-Jin Jang
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Song-Yi Baek
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Kyung-Jin Choi
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Dong-Hee Han
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University-Seoul, Biomedi Campus, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, 10326, Republic of Korea.
| |
Collapse
|
4
|
Mierzejewski B, Ciemerych MA, Streminska W, Janczyk-Ilach K, Brzoska E. miRNA-126a plays important role in myoblast and endothelial cell interaction. Sci Rep 2023; 13:15046. [PMID: 37699959 PMCID: PMC10497517 DOI: 10.1038/s41598-023-41626-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Muscle satellite cells (SCs) are stem cells and the main players in skeletal muscle reconstruction. Since satellite cells are located near or in direct contact with blood vessels their niche is formed, inter alia, by endothelial cells. The cross-talk between satellite cells and endothelial cells determines quiescence or proliferation of these cells. However, little is known about the role of miRNA in these interactions. In the present study we identified miRNA that were up-regulated in SC-derived myoblasts treated with stromal derived factor-1 (SDF-1) and/or down-regulated in cells in which the expression of CXCR4 or CXCR7, that is, SDF-1 receptors, was silenced. SDF-1 is one of the important regulators of cell migration, mobilization, skeletal muscle regeneration, and angiogenesis. We hypothesized that selected miRNAs affect SC-derived myoblast fate and interactions with endothelial cells. We showed that miR-126a-3p inhibited both, myoblast migration and fusion. Moreover, the levels of Cxcl12, encoding SDF-1 and Ackr3, encoding CXCR7, were reduced by miR-126a-3p mimic. Interestingly, the miR-126a-3p mimic significantly decreased the level of numerous factors involved in myogenesis and the miR-126a-5p mimic increased the level of Vefga. Importantly, the treatment of endothelial cells with medium conditioned by miR-126-5p mimic transfected SC-derived myoblasts promoted tubulogenesis.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warszawa, Poland.
| |
Collapse
|
5
|
Mierzejewski B, Grabowska I, Michalska Z, Zdunczyk K, Zareba F, Irhashava A, Chrzaszcz M, Patrycy M, Streminska W, Janczyk-Ilach K, Koblowska M, Iwanicka-Nowicka R, Gromadka A, Kowalski K, Ciemerych MA, Brzoska E. SDF-1 and NOTCH signaling in myogenic cell differentiation: the role of miRNA10a, 425, and 5100. Stem Cell Res Ther 2023; 14:204. [PMID: 37582765 PMCID: PMC10426160 DOI: 10.1186/s13287-023-03429-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Skeletal muscle regeneration is a complex process regulated by many cytokines and growth factors. Among the important signaling pathways regulating the myogenic cell identity are these involving SDF-1 and NOTCH. SDF-1 participates in cell mobilization and acts as an important chemoattractant. NOTCH, on the other hand, controls cell activation and myogenic determination of satellite cells. Knowledge about the interaction between SDF-1 and NOTCH signaling is limited. METHODS We analyzed two populations of myogenic cells isolated from mouse skeletal muscle, that is, myoblasts derived from satellite cells (SCs) and muscle interstitial progenitor cells (MIPCs). First, microRNA level changes in response to SDF-1 treatment were analyzed with next-generation sequencing (NGS). Second, myogenic cells, i.e., SC-derived myoblasts and MIPCs were transfected with miRNA mimics, selected on the basis of NGS results, or their inhibitors. Transcriptional changes, as well as proliferation, migration, and differentiation abilities of SC-derived myoblasts and MIPCs, were analyzed in vitro. Naive myogenic potential was assessed in vivo, using subcutaneous engrafts and analysis of cell contribution to regeneration of the skeletal muscles. RESULTS SDF-1 treatment led to down-regulation of miR10a, miR151, miR425, and miR5100 in myoblasts. Interestingly, miR10a, miR425, and miR5100 regulated the expression of factors involved in the NOTCH signaling pathway, including Dll1, Jag2, and NICD. Furthermore, miR10a, miR425, and miR5100 down-regulated the expression of factors involved in cell migration: Acta1, MMP12, and FAK, myogenic differentiation: Pax7, Myf5, Myod, Mef2c, Myog, Musk, and Myh3. However, these changes did not significantly affect myogenic cell migration or fusion either in vitro or in vivo, except when miR425 was overexpressed, or miR5100 inhibitor was used. These two molecules increased the fusion of MIPCs and myoblasts, respectively. Furthermore, miR425-transfected MIPC transplantation into injured skeletal muscle resulted in more efficient regeneration, compared to control cell transplantation. However, skeletal muscles that were injected with miR10a transfected myoblasts regenerated less efficiently. CONCLUSIONS SDF-1 down-regulates miR10a, miR425, and miR5100, what could affect NOTCH signaling, differentiation of myogenic cells, and their participation in skeletal muscle regeneration.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Zuzanna Michalska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Kamila Zdunczyk
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Franciszek Zareba
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aliksandra Irhashava
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Chrzaszcz
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Magdalena Patrycy
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Agnieszka Gromadka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
6
|
Zygmunt K, Otwinowska-Mindur A, Piórkowska K, Witarski W. Influence of Media Composition on the Level of Bovine Satellite Cell Proliferation. Animals (Basel) 2023; 13:1855. [PMID: 37889780 PMCID: PMC10251972 DOI: 10.3390/ani13111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 10/29/2023] Open
Abstract
It is predicted that already in 2040, 35% of requirements for meat will be provided by in vitro production. Recreating the course of myogenesis in vitro, and thus resembling a structure of muscle tissue, is the basis for research focusing on obtaining cultured meat and requires providing relevant factors supporting the proliferation of satellite cells-being precursors of skeletal muscles. The present work aimed to develop the composition of the medium that would most effectively stimulate the proliferation of bovine satellite cells (BSCs). The modeling and optimization methods included the measurements of the synergistic, co-stimulatory effect of three medium components: the amount of glucose, the type of serum (bovine or horse), and the amount of mitogenic factor-bFGF. Additionally, the qPCR analyses determined the expression of genes involved in myogenesis, such as Pax7 and Myogenic Regulatory Factors, depending on the level of the tested factor. The results showed significant positive effects of serum type (bovine serum) and mitogenic factor (addition of 10 ng/mL bFGF) on the proliferation rate. In turn, qPCR analysis displayed no significant differences in the relative expression level of Pax7 genes and MRF factors for both factors. However, a statistically higher Pax7 and Myf5 gene expression level was revealed when a low glucose medium was used (p < 0.05). In conclusion, the components of the medium, such as bovine serum and the addition of a mitogenic factor at the level of 10 ng/mL, ensure a higher proliferation rate of BSCs and lower glucose content ensured the expression of crucial genes in the self-renewal of the satellite cell population.
Collapse
Affiliation(s)
- Karolina Zygmunt
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Agnieszka Otwinowska-Mindur
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland;
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Wojciech Witarski
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| |
Collapse
|
7
|
Ribieras AJ, Ortiz YY, Li Y, Le NT, Huerta CT, Voza FA, Shao H, Vazquez-Padron RI, Liu ZJ, Velazquez OC. E-Selectin/AAV Gene Therapy Promotes Myogenesis and Skeletal Muscle Recovery in a Mouse Hindlimb Ischemia Model. Cardiovasc Ther 2023; 2023:6679390. [PMID: 37251271 PMCID: PMC10219778 DOI: 10.1155/2023/6679390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023] Open
Abstract
The response to ischemia in peripheral artery disease (PAD) depends on compensatory neovascularization and coordination of tissue regeneration. Identifying novel mechanisms regulating these processes is critical to the development of nonsurgical treatments for PAD. E-selectin is an adhesion molecule that mediates cell recruitment during neovascularization. Therapeutic priming of ischemic limb tissues with intramuscular E-selectin gene therapy promotes angiogenesis and reduces tissue loss in a murine hindlimb gangrene model. In this study, we evaluated the effects of E-selectin gene therapy on skeletal muscle recovery, specifically focusing on exercise performance and myofiber regeneration. C57BL/6J mice were treated with intramuscular E-selectin/adeno-associated virus serotype 2/2 gene therapy (E-sel/AAV) or LacZ/AAV2/2 (LacZ/AAV) as control and then subjected to femoral artery coagulation. Recovery of hindlimb perfusion was assessed by laser Doppler perfusion imaging and muscle function by treadmill exhaustion and grip strength testing. After three postoperative weeks, hindlimb muscle was harvested for immunofluorescence analysis. At all postoperative time points, mice treated with E-sel/AAV had improved hindlimb perfusion and exercise capacity. E-sel/AAV gene therapy also increased the coexpression of MyoD and Ki-67 in skeletal muscle progenitors and the proportion of Myh7+ myofibers. Altogether, our findings demonstrate that in addition to improving reperfusion, intramuscular E-sel/AAV gene therapy enhances the regeneration of ischemic skeletal muscle with a corresponding benefit on exercise performance. These results suggest a potential role for E-sel/AAV gene therapy as a nonsurgical adjunct in patients with life-limiting PAD.
Collapse
Affiliation(s)
- Antoine J. Ribieras
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yulexi Y. Ortiz
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yan Li
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Nga T. Le
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carlos T. Huerta
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Francesca A. Voza
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Hongwei Shao
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roberto I. Vazquez-Padron
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhao-Jun Liu
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Omaida C. Velazquez
- Division of Vascular Surgery, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
8
|
Zhang RN, Bao X, Liu Y, Wang Y, Li XY, Tan G, Mbadhi MN, Xu W, Yang Q, Yao LY, Chen L, Zhao XY, Hu CQ, Zhang JX, Zheng HT, Wu Y, Li S, Chen SJ, Chen SY, Lv J, Shi LL, Tang JM. The spatiotemporal matching pattern of Ezrin/Periaxin involved in myoblast differentiation and fusion and Charcot-Marie-Tooth disease-associated muscle atrophy. J Transl Med 2023; 21:173. [PMID: 36870952 PMCID: PMC9985213 DOI: 10.1186/s12967-023-04016-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Clinically, Charcot-Marie-Tooth disease (CMT)-associated muscle atrophy still lacks effective treatment. Deletion and mutation of L-periaxin can be involved in CMT type 4F (CMT4F) by destroying the myelin sheath form, which may be related to the inhibitory role of Ezrin in the self-association of L-periaxin. However, it is still unknown whether L-periaxin and Ezrin are independently or interactively involved in the process of muscle atrophy by affecting the function of muscle satellite cells. METHOD A gastrocnemius muscle atrophy model was prepared to mimic CMT4F and its associated muscle atrophy by mechanical clamping of the peroneal nerve. Differentiating C2C12 myoblast cells were treated with adenovirus-mediated overexpression or knockdown of Ezrin. Then, overexpression of L-periaxin and NFATc1/c2 or knockdown of L-periaxin and NFATc3/c4 mediated by adenovirus vectors were used to confirm their role in Ezrin-mediated myoblast differentiation, myotube formation and gastrocnemius muscle repair in a peroneal nerve injury model. RNA-seq, real-time PCR, immunofluorescence staining and Western blot were used in the above observation. RESULTS For the first time, instantaneous L-periaxin expression was highest on the 6th day, while Ezrin expression peaked on the 4th day during myoblast differentiation/fusion in vitro. In vivo transduction of adenovirus vectors carrying Ezrin, but not Periaxin, into the gastrocnemius muscle in a peroneal nerve injury model increased the numbers of muscle myosin heavy chain (MyHC) I and II type myofibers, reducing muscle atrophy and fibrosis. Local muscle injection of overexpressed Ezrin combined with incubation of knockdown L-periaxin within the injured peroneal nerve or injection of knockdown L-periaxin into peroneal nerve-injured gastrocnemius muscle not only increased the number of muscle fibers but also recovered their size to a relatively normal level in vivo. Overexpression of Ezrin promoted myoblast differentiation/fusion, inducing increased MyHC-I+ and MyHC-II + muscle fiber specialization, and the specific effects could be enhanced by the addition of adenovirus vectors for knockdown of L-periaxin by shRNA. Overexpression of L-periaxin did not alter the inhibitory effects on myoblast differentiation and fusion mediated by knockdown of Ezrin by shRNA in vitro but decreased myotube length and size. Mechanistically, overexpressing Ezrin did not alter protein kinase A gamma catalytic subunit (PKA-γ cat), protein kinase A I alpha regulatory subunit (PKA reg Iα) or PKA reg Iβ levels but increased PKA-α cat and PKA reg II α levels, leading to a decreased ratio of PKA reg I/II. The PKA inhibitor H-89 remarkably abolished the effects of overexpressing-Ezrin on increased myoblast differentiation/fusion. In contrast, knockdown of Ezrin by shRNA significantly delayed myoblast differentiation/fusion accompanied by an increased PKA reg I/II ratio, and the inhibitory effects could be eliminated by the PKA reg activator N6-Bz-cAMP. Meanwhile, overexpressing Ezrin enhanced type I muscle fiber specialization, accompanied by an increase in NFATc2/c3 levels and a decrease in NFATc1 levels. Furthermore, overexpressing NFATc2 or knocking down NFATc3 reversed the inhibitory effects of Ezrin knockdown on myoblast differentiation/fusion. CONCLUSIONS The spatiotemporal pattern of Ezrin/Periaxin expression was involved in the control of myoblast differentiation/fusion, myotube length and size, and myofiber specialization, which was related to the activated PKA-NFAT-MEF2C signaling pathway, providing a novel L-Periaxin/Ezrin joint strategy for the treatment of muscle atrophy induced by nerve injury, especially in CMT4F.
Collapse
Affiliation(s)
- Ruo-Nan Zhang
- Faculty of Basic Medical Sciences, Postgraduate Union Training Basement of Jin Zhou Medical University, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Emergency Comprehensive Department, Shiyan Maternal and Child Health Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xin Bao
- Faculty of Basic Medical Sciences, Postgraduate Union Training Basement of Jin Zhou Medical University, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Yun Liu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Xing-Yuan Li
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Faculty of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563006, Guizhou, People's Republic of China
| | - Ge Tan
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Magdaleena Naemi Mbadhi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Wei Xu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Qian Yang
- Institute of Anesthesiology, Department of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Lu-Yuan Yao
- Institute of Anesthesiology, Department of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Long Chen
- Experimental Medical Center, Dongfeng Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiao-Ying Zhao
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Chang-Qing Hu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Jing-Xuan Zhang
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Hong-Tao Zheng
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yan Wu
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shan Li
- Department of Biochemistry, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shao-Juan Chen
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shi-You Chen
- Department of Surgery, University of Missouri, Columbia, USA
| | - Jing Lv
- Institute of Anesthesiology, Department of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Liu-Liu Shi
- Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| | - Jun-Ming Tang
- Faculty of Basic Medical Sciences, Postgraduate Union Training Basement of Jin Zhou Medical University, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Institute of Anesthesiology, Department of Anesthesiology, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China. .,Department of Physiology, Hubei Key Laboratory of Embryonic Stem Cell Research,Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
| |
Collapse
|
9
|
Inoue A, Piao L, Yue X, Huang Z, Hu L, Wu H, Meng X, Xu W, Yu C, Sasaki T, Itakura K, Umegaki H, Kuzuya M, Cheng XW. Young bone marrow transplantation prevents aging-related muscle atrophy in a senescence-accelerated mouse prone 10 model. J Cachexia Sarcopenia Muscle 2022; 13:3078-3090. [PMID: 36058630 PMCID: PMC9745469 DOI: 10.1002/jcsm.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Young bone marrow transplantation (YBMT) has been shown to stimulate vascular regeneration in pathological conditions, including ageing. Here, we investigated the benefits and mechanisms of the preventive effects of YBMT on loss of muscle mass and function in a senescence-associated mouse prone 10 (SAMP10) model, with a special focus on the role of growth differentiation factor 11 (GDF-11). METHODS Nine-week-old male SAMP10 mice were randomly assigned to a non-YBMT group (n = 6) and a YBMT group (n = 7) that received the bone marrow of 8-week-old C57BL/6 mice. RESULTS Compared to the non-YBMT mice, the YBMT mice showed the following significant increases (all P < 0.05 in 6-7 mice): endurance capacity (>61.3%); grip strength (>37.9%), percentage of slow myosin heavy chain fibres (>14.9-15.9%). The YBMT also increased the amounts of proteins or mRNAs for insulin receptor substrate 1, p-Akt, p-extracellular signal-regulated protein kinase1/2, p-mammalian target of rapamycin, Bcl-2, peroxisom proliferator-activated receptor-γ coactivator (PGC-1α), plus cytochrome c oxidase IV and the numbers of proliferating cells (n = 5-7, P < 0.05) and CD34+/integrin-α7+ muscle stem cells (n = 5-6, P < 0.05). The YMBT significantly decreased the levels of gp91phox, caspase-9 proteins and apoptotic cells (n = 5-7, P < 0.05) in both muscles; these beneficial changes were diminished by the blocking of GDF-11 (n = 5-6, P < 0.05). An administration of mouse recombinant GDF-11 improved the YBMT-mediated muscle benefits (n = 5-6, P < 0.05). Cell therapy with young bone marrow from green fluorescent protein (GFP) transgenic mice exhibited GFP+ myofibres in aged muscle tissues. CONCLUSIONS These findings suggest that YBMT can prevent muscle wasting and dysfunction by mitigating apoptosis and proliferation via a modulation of GDF-11 signalling and mitochondrial dysfunction in SAMP10 mice.
Collapse
Affiliation(s)
- Aiko Inoue
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Limei Piao
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Xueling Yue
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Zhe Huang
- Department of Human Cord Applied Cell Therapy, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Lina Hu
- Department of Public Health, Guilin Medical College, Guilin, Guangxi, PR China
| | - Hongxian Wu
- Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Xiangkun Meng
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Wenhu Xu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Chenglin Yu
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| | - Takeshi Sasaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, Shizuokaken, Japan
| | - Kohji Itakura
- Division for Medical Research Engineering, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Hiroyuki Umegaki
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Masafumi Kuzuya
- Institute of Innovation for Future Society, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan.,Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichiken, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, PR China
| |
Collapse
|
10
|
The miR151 and miR5100 Transfected Bone Marrow Stromal Cells Increase Myoblast Fusion in IGFBP2 Dependent Manner. Stem Cell Rev Rep 2022; 18:2164-2178. [PMID: 35190967 PMCID: PMC9391248 DOI: 10.1007/s12015-022-10350-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
Background Bone marrow stromal cells (BMSCs) form a perivascular cell population in the bone marrow. These cells do not present naïve myogenic potential. However, their myogenic identity could be induced experimentally in vitro or in vivo. In vivo, after transplantation into injured muscle, BMSCs rarely fused with myofibers. However, BMSC participation in myofiber reconstruction increased if they were modified by NICD or PAX3 overexpression. Nevertheless, BMSCs paracrine function could play a positive role in skeletal muscle regeneration. Previously, we showed that SDF-1 treatment and coculture with myofibers increased BMSC ability to reconstruct myofibers. We also noticed that SDF-1 treatment changed selected miRNAs expression, including miR151 and miR5100. Methods Mouse BMSCs were transfected with miR151 and miR5100 mimics and their proliferation, myogenic differentiation, and fusion with myoblasts were analyzed. Results We showed that miR151 and miR5100 played an important role in the regulation of BMSC proliferation and migration. Moreover, the presence of miR151 and miR5100 transfected BMSCs in co-cultures with human myoblasts increased their fusion. This effect was achieved in an IGFBP2 dependent manner. Conclusions Mouse BMSCs did not present naïve myogenic potential but secreted proteins could impact myogenic cell differentiation. miR151 and miR5100 transfection changed BMSC migration and IGFBP2 and MMP12 expression in BMSCs. miR151 and miR5100 transfected BMSCs increased myoblast fusion in vitro. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s12015-022-10350-y.
Collapse
|
11
|
Proliferin-1 Ameliorates Cardiotoxin-Related Skeletal Muscle Repair in Mice. Stem Cells Int 2021; 2021:9202990. [PMID: 34950212 PMCID: PMC8692050 DOI: 10.1155/2021/9202990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 12/29/2022] Open
Abstract
Background We recently demonstrated that proliferin-1 (PLF-1) functions as an apoptotic cell-derived growth factor and plays an important role in vascular pathobiology. We therefore investigated its role in muscle regeneration in response to cardiotoxin injury. Methods and Results To determine the effects of PLF-1 on muscle regeneration, we used a CTX-induced skeletal muscle injury model in 9-week-old male mice that were administered with the recombinant PLF-1 (rPLF-1) or neutralizing PLF-1 antibody. The injured muscles exhibited increased levels of PLF-1 gene expression in a time-dependent manner. On day 14 after injury, rPLF-1 supplementation ameliorated CTX-induced alterations in muscle fiber size, interstitial fibrosis, muscle regeneration capacity, and muscle performance. On day 3 postinjury, rPLF-1 increased the levels of proteins or genes for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, p-p38MAPK, interleukin-10, Pax7, MyoD, and Cyclin B1, and it increased the numbers of CD34+/integrin-α7+ muscle stem cells and proliferating cells in the muscles and/or bone marrow of CTX mice. An enzyme-linked immunosorbent assay revealed that rPLF-1 suppressed the levels of plasma tumor necrosis factor-α and interleukin-1β in CTX mice. PLF-1 blocking accelerated CTX-related muscle damage and dysfunction. In C2C12 myoblasts, rPLF-1 increased the levels of proteins for p-Akt, p-mTOR, p-GSK3α/β, p-Erk1/2, and p-p38MAPK as well as cellular functions; and these effects were diminished by the depletion of PLF-1 or silencing of its mannose-6-phosphate receptor. Conclusions These findings demonstrated that PLF-1 can improve skeletal muscle repair in response to injury, possibly via the modulation of inflammation and proliferation and regeneration, suggesting a novel therapeutic strategy for the management of skeletal muscle diseases.
Collapse
|
12
|
MacDonald A, Gross A, Jones B, Dhar M. Muscle Regeneration of the Tongue: A review of current clinical and regenerative research strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1022-1034. [PMID: 34693743 DOI: 10.1089/ten.teb.2021.0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Various abnormalities of the tongue, including cancers, commonly require surgical removal to sequester growth and metastasis. However, even minor resections can affect functional outcomes such as speech and swallowing, thereby reducing quality of life. Surgical resections alone create volumetric muscle loss whereby muscle tissue cannot self-regenerate within the tongue. In these cases, the tongue is reconstructed typically in the form of autologous skin flaps. However, flap reconstruction has many limitations and unfortunately is the primary option for oral and reconstructive surgeons to treat tongue defects. The alternative, but yet undeveloped strategy for tongue reconstruction is regenerative medicine, which widely focuses on building new organs with stem cells. Regenerative medicine has successfully treated many tissues, but research has inadequately addressed the tongue as a vital organ in need of tissue engineering. In this review, we address the current standard for tongue reconstruction, the cellular mechanisms of muscle cell development, and the stem cell studies that have attempted muscle engineering within the tongue. Until now, no review has focused on engineering the tongue with regenerative medicine, which could guide innovative strategies for tongue reconstruction.
Collapse
Affiliation(s)
- Amber MacDonald
- The University of Tennessee Knoxville College of Veterinary Medicine, 70737, Large Animal Clinical Sciences, 2407 River Drive, Knoxville, Tennessee, United States, 37996-4539;
| | - Andrew Gross
- The University of Tennessee Medical Center, 21823, Knoxville, Tennessee, United States;
| | - Brady Jones
- The University of Tennessee Medical Center, 21823, Knoxville, Tennessee, United States;
| | - Madhu Dhar
- University of Tennessee Knoxville College of Veterinary Medicine, 70737, Large Animal Clinical Sciences, College of Veterinary Medicine, 2407 River Drive, Knoxville, Tennessee, United States, 37996.,University of Tennessee;
| |
Collapse
|
13
|
The Role of MSCs and Cell Fusion in Tissue Regeneration. Int J Mol Sci 2021; 22:ijms222010980. [PMID: 34681639 PMCID: PMC8535885 DOI: 10.3390/ijms222010980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine is concerned with the investigation of therapeutic agents that can be used to promote the process of regeneration after injury or in different diseases. Mesenchymal stem/stromal cells (MSCs) and their secretome—including extracellular vesicles (EVs) are of great interest, due to their role in tissue regeneration, immunomodulatory capacity and low immunogenicity. So far, clinical studies are not very conclusive as they show conflicting efficacies regarding the use of MSCs. An additional process possibly involved in regeneration might be cell fusion. This process occurs in both a physiological and a pathophysiological context and can be affected by immune response due to inflammation. In this review the role of MSCs and cell fusion in tissue regeneration is discussed.
Collapse
|
14
|
Archacka K, Grabowska I, Mierzejewski B, Graffstein J, Górzyńska A, Krawczyk M, Różycka AM, Kalaszczyńska I, Muras G, Stremińska W, Jańczyk-Ilach K, Walczak P, Janowski M, Ciemerych MA, Brzoska E. Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Res Ther 2021; 12:448. [PMID: 34372911 PMCID: PMC8351116 DOI: 10.1186/s13287-021-02530-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Background The skeletal muscle reconstruction occurs thanks to unipotent stem cells, i.e., satellite cells. The satellite cells remain quiescent and localized between myofiber sarcolemma and basal lamina. They are activated in response to muscle injury, proliferate, differentiate into myoblasts, and recreate myofibers. The stem and progenitor cells support skeletal muscle regeneration, which could be disturbed by extensive damage, sarcopenia, cachexia, or genetic diseases like dystrophy. Many lines of evidence showed that the level of oxygen regulates the course of cell proliferation and differentiation. Methods In the present study, we analyzed hypoxia impact on human and pig bone marrow-derived mesenchymal stromal cell (MSC) and mouse myoblast proliferation, differentiation, and fusion. Moreover, the influence of the transplantation of human bone marrow-derived MSCs cultured under hypoxic conditions on skeletal muscle regeneration was studied. Results We showed that bone marrow-derived MSCs increased VEGF expression and improved myogenesis under hypoxic conditions in vitro. Transplantation of hypoxia preconditioned bone marrow-derived MSCs into injured muscles resulted in the improved cell engraftment and formation of new vessels. Conclusions We suggested that SDF-1 and VEGF secreted by hypoxia preconditioned bone marrow-derived MSCs played an essential role in cell engraftment and angiogenesis. Importantly, hypoxia preconditioned bone marrow-derived MSCs more efficiently engrafted injured muscles; however, they did not undergo myogenic differentiation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02530-3.
Collapse
Affiliation(s)
- Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Joanna Graffstein
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Alicja Górzyńska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Krawczyk
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Anna M Różycka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Ilona Kalaszczyńska
- Department of Histology and Embryology, Medical University of Warsaw, 02-004, Warsaw, Poland.,Laboratory for Cell Research and Application, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Gabriela Muras
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Piotr Walczak
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Warszawska 30 St, 10-082, Olsztyn, Poland.,Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, the Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mirosław Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, 21201, USA.,NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
15
|
Moussa MH, Hamam GG, Abd Elaziz AE, Rahoma MA, Abd El Samad AA, El-Waseef DAA, Hegazy MA. Comparative Study on Bone Marrow-Versus Adipose-Derived Stem Cells on Regeneration and Re-Innervation of Skeletal Muscle Injury in Wistar Rats. Tissue Eng Regen Med 2020; 17:887-900. [PMID: 33030680 DOI: 10.1007/s13770-020-00288-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Skeletal muscle injuries are frequent clinical challenges due to associated fibrosis and disability. Regenerative medicine is an emerging promising strategy for such cases. The aim of this study was to compare between the effects of bone marrow-mesenchymal stem cells (BM-MSCs) versus adipose tissue stromal cells (ADSCs) on regeneration and re-innervation of skeletal muscle laceration injury in Wistar rats at different time intervals. METHODS Six young male rats were used as a source of allogenic MSCs. Eighty-four adult female rats were divided into: Group I (control), Group II (Untreated Laceration): right gluteal muscle was lacerated and left for spontaneous healing, Group III (BM-MSCs): right gluteal muscle was lacerated with concomitant local intramuscular injection of 1 × 106 BM-MSCs in the lacerated muscle, Group IV (ADSCs): right gluteal muscle was lacerated with concomitant local intramuscular injection of 1 × 106 ADSCs in lacerated muscle. Rats were sacrificed after one, two and eight weeks. Muscles were processed to prepare sections stained with H&E, Mallory's trichrome and immune-histochemical staining (neurofilament light chain). RESULTS A significant increase in collagen fibers and failure of re-innervation were noticed in untreated laceration group. BM-MSCs-treated groups showed regeneration of muscle fibers but with increased collagen fibers. Meanwhile, ADSCs showed better regenerative effects evidenced by significant increase in the number of myotubes and significant decrease in collagen deposition. Re-innervation was noticed in MSCs-injected muscles after 8 weeks of laceration. CONCLUSION Both BM-MSCs and ADSCs improved regeneration of skeletal muscle laceration injury at short- and long-term durations. However, fibrosis was less in ADSCs-treated rats. Effective re-innervation of injured muscles occurred only at the long-term duration.
Collapse
Affiliation(s)
- Manal H Moussa
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| | - Ghada G Hamam
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt.
| | - Asmaa E Abd Elaziz
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| | - Marwa A Rahoma
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| | - Abeer A Abd El Samad
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| | - Dalia A A El-Waseef
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| | - Mohamed A Hegazy
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt
| |
Collapse
|
16
|
Beggs I. Biological Basis of Treatments of Acute Muscle Injuries: A Short Review. Semin Musculoskelet Radiol 2020; 24:256-261. [PMID: 32987424 DOI: 10.1055/s-0040-1708087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Muscle strains occur frequently in recreational and professional sports. This article considers various treatment options in a biological context and reviews evidence of their efficacy. Treatments reviewed include the PRICE principle (P: rotection, R: est, I: ce, C: ompression, E: levation), early mobilization, physical therapy, hematoma aspiration, platelet-rich plasma injections, use of nonsteroidal anti-inflammatory drugs, corticosteroids, and local anesthetics, cellular therapies, and surgery.
Collapse
Affiliation(s)
- Ian Beggs
- Analytic Imaging, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Brzoska E, Kalkowski L, Kowalski K, Michalski P, Kowalczyk P, Mierzejewski B, Walczak P, Ciemerych MA, Janowski M. Muscular Contribution to Adolescent Idiopathic Scoliosis from the Perspective of Stem Cell-Based Regenerative Medicine. Stem Cells Dev 2020; 28:1059-1077. [PMID: 31170887 DOI: 10.1089/scd.2019.0073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adolescent idiopathic scoliosis (AIS) is a relatively frequent disease within a range 0.5%-5.0% of population, with higher frequency in females. While a resultant spinal deformity is usually medically benign condition, it produces far going psychosocial consequences, which warrant attention. The etiology of AIS is unknown and current therapeutic approaches are symptomatic only, and frequently inconvenient or invasive. Muscular contribution to AIS is widely recognized, although it did not translate to clinical routine as yet. Muscle asymmetry has been documented by pathological examinations as well as systemic muscle disorders frequently leading to scoliosis. It has been also reported numerous genetic, metabolic and radiological alterations in patients with AIS, which are linked to muscular and neuromuscular aspects. Therefore, muscles might be considered an attractive and still insufficiently exploited therapeutic target for AIS. Stem cell-based regenerative medicine is rapidly gaining momentum based on the tremendous progress in understanding of developmental biology. It comes also with a toolbox of various stem cells such as satellite cells or mesenchymal stem cells, which could be transplanted; also, the knowledge acquired in research on regenerative medicine can be applied to manipulation of endogenous stem cells to obtain desired therapeutic goals. Importantly, paravertebral muscles are located relatively superficially; therefore, they can be an easy target for minimally invasive approaches to treatment of AIS. It comes in pair with a fast progress in image guidance, which allows for precise delivery of therapeutic agents, including stem cells to various organs such as brain, muscles, and others. Summing up, it seems that there is a link between AIS, muscles, and stem cells, which might be worth of further investigations with a long-term goal of setting foundations for eventual bench-to-bedside translation.
Collapse
Affiliation(s)
- Edyta Brzoska
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Kalkowski
- 2Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Kamil Kowalski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Pawel Michalski
- 3Spine Surgery Department, Institute of Mother and Child, Warsaw, Poland
| | - Pawel Kowalczyk
- 4Department of Neurosurgery, Children's Memorial Health Institute, Warsaw, Poland
| | - Bartosz Mierzejewski
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Walczak
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Ciemerych
- 1Department of Cytology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Miroslaw Janowski
- 5Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
18
|
Kasprzycka P, Archacka K, Kowalski K, Mierzejewski B, Zimowska M, Grabowska I, Piotrowski M, Rafałko M, Ryżko A, Irhashava A, Senderowski K, Gołąbek M, Stremińska W, Jańczyk-Ilach K, Koblowska M, Iwanicka-Nowicka R, Fogtman A, Janowski M, Walczak P, Ciemerych MA, Brzoska E. The factors present in regenerating muscles impact bone marrow-derived mesenchymal stromal/stem cell fusion with myoblasts. Stem Cell Res Ther 2019; 10:343. [PMID: 31753006 PMCID: PMC6873517 DOI: 10.1186/s13287-019-1444-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/23/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Satellite cells, a population of unipotent stem cells attached to muscle fibers, determine the excellent regenerative capability of injured skeletal muscles. Myogenic potential is also exhibited by other cell populations, which exist in the skeletal muscles or come from other niches. Mesenchymal stromal/stem cells inhabiting the bone marrow do not spontaneously differentiate into muscle cells, but there is some evidence that they are capable to follow the myogenic program and/or fuse with myoblasts. METHODS In the present study we analyzed whether IGF-1, IL-4, IL-6, and SDF-1 could impact human and porcine bone marrow-derived mesenchymal stromal/stem cells (hBM-MSCs and pBM-MSCs) and induce expression of myogenic regulatory factors, skeletal muscle-specific structural, and adhesion proteins. Moreover, we investigated whether these factors could induce both types of BM-MSCs to fuse with myoblasts. IGF-1, IL-4, IL-6, and SDF-1 were selected on the basis of their role in embryonic myogenesis as well as skeletal muscle regeneration. RESULTS We found that hBM-MSCs and pBM-MSCs cultured in vitro in the presence of IGF-1, IL-4, IL-6, or SDF-1 did not upregulate myogenic regulatory factors. Consequently, we confirmed the lack of their naïve myogenic potential. However, we noticed that IL-4 and IL-6 impacted proliferation and IL-4, IL-6, and SDF-1 improved migration of hBM-MSCs. IL-4 treatment resulted in the significant increase in the level of mRNA encoding CD9, NCAM, VCAM, and m-cadherin, i.e., proteins engaged in cell fusion during myotube formation. Additionally, the CD9 expression level was also driven by IGF-1 treatment. Furthermore, the pre-treatment of hBM-MSCs either with IGF-1, IL-4, or SDF-1 and treatment of pBM-MSCs either with IGF-1 or IL-4 increased the efficacy of hybrid myotube formation between these cells and C2C12 myoblasts. CONCLUSIONS To conclude, our study revealed that treatment with IGF-1, IL-4, IL-6, or SDF-1 affects BM-MSC interaction with myoblasts; however, it does not directly promote myogenic differentiation of these cells.
Collapse
Affiliation(s)
- Paulina Kasprzycka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Małgorzata Zimowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Mariusz Piotrowski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Milena Rafałko
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Agata Ryżko
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Aliksandra Irhashava
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Kamil Senderowski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Magdalena Gołąbek
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Władysława Stremińska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Katarzyna Jańczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawinskiego 5a St, 02-106 Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, Pawinskiego 5a St, 02-106 Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a St, 02-106 Warsaw, Poland
| | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a St, 02-106 Warsaw, Poland
| | - Mirosław Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 St, 02-106 Warsaw, Poland
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
- Department of Neurosurgery, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-719 Olsztyn, Poland
- Institute for Cell Engineering, Cellular Imaging Section, The Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Maria A. Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland
| |
Collapse
|
19
|
Gilbert W, Bragg R, Elmansi AM, McGee-Lawrence ME, Isales CM, Hamrick MW, Hill WD, Fulzele S. Stromal cell-derived factor-1 (CXCL12) and its role in bone and muscle biology. Cytokine 2019; 123:154783. [PMID: 31336263 PMCID: PMC6948927 DOI: 10.1016/j.cyto.2019.154783] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/08/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Musculoskeletal disorders are the leading cause of disability worldwide; two of the most prevalent of which are osteoporosis and sarcopenia. Each affect millions in the aging population across the world and the associated morbidity and mortality contributes to billions of dollars in annual healthcare cost. Thus, it is important to better understand the underlying pathologic mechanisms of the disease process. Regulatory chemokine, CXCL12, and its receptor, CXCR4, are recognized to be essential in the recruitment, localization, maintenance, development and differentiation of progenitor stem cells of the musculoskeletal system. CXCL12 signaling results in the development and functional ability of osteoblasts, osteoclasts, satellite cells and myoblasts critical to maintaining musculoskeletal homeostasis. Interestingly, one suggested pathologic mechanism of osteoporosis and sarcopenia is a decline in the regenerative capacity of musculoskeletal progenitor stem cells. Thus, because CXCL12 is critical to progenitor function, a disruption in the CXCL12 signaling axis might play a distinct role in these pathological processes. Therefore, in this article, we perform a review of CXCL12, its physiologic and pathologic function in bone and muscle, and potential targets for therapeutic development.
Collapse
Affiliation(s)
- William Gilbert
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Robert Bragg
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States
| | - Ahmed M Elmansi
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States
| | - Meghan E McGee-Lawrence
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - Carlos M Isales
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Department of Medicine, Augusta University, Augusta, GA 30912, United States
| | - Mark W Hamrick
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States
| | - William D Hill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, United States; Ralph H Johnson Veterans Affairs Medical Center, Charleston, SC 29403, United States
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA 30912, United States; Cell Biology and Anatomy, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|