1
|
Che Y, Shimizu Y, Murohara T. Therapeutic Potential of Adipose-Derived Regenerative Cells for Ischemic Diseases. Cells 2025; 14:343. [PMID: 40072072 PMCID: PMC11898683 DOI: 10.3390/cells14050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
Adipose-derived regenerative cells (ADRCs) are one of the most promising cell sources that possess significant therapeutic effects. They have now become a main source of cell therapy for the treatment of ischemic diseases due to their easy accessibility, expansion, and differentiation. Additionally, ADRCs can release multiple paracrine factors and extracellular vesicles that contribute to tissue regeneration by promoting angiogenesis, regulating inflammation, alleviating apoptosis, and inhibiting fibrosis. However, ADRCs still have some limitations to realize their full therapeutic potential. To address these issues, protective mechanistic studies and bioengineering studies have been carried out. This review focused on the recently studied mechanisms, such as paracrine factors, cell fusion, and mitochondrial transfer, involving the therapeutic potential of ADRCs in ischemic diseases and discussed some modification techniques of ADRCs.
Collapse
Affiliation(s)
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | |
Collapse
|
2
|
Nguyen HP, An K, Ito Y, Kharbikar BN, Sheng R, Paredes B, Murray E, Pham K, Bruck M, Zhou X, Biellak C, Ushiki A, Nobuhara M, Fong SL, Bernards DA, Lynce F, Dillon DA, Magbanua MJM, Huppert LA, Hammerlindl H, Klein JA, Valdiviez L, Fiehn O, Esserman L, Desai TA, Yee SW, Rosenbluth JM, Ahituv N. Implantation of engineered adipocytes suppresses tumor progression in cancer models. Nat Biotechnol 2025:10.1038/s41587-024-02551-2. [PMID: 39905264 DOI: 10.1038/s41587-024-02551-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/19/2024] [Indexed: 02/06/2025]
Abstract
Tumors exhibit an increased ability to obtain and metabolize nutrients. Here, we implant engineered adipocytes that outcompete tumors for nutrients and show that they can substantially reduce cancer progression, a technology termed adipose manipulation transplantation (AMT). Adipocytes engineered to use increased amounts of glucose and fatty acids by upregulating UCP1 were placed alongside cancer cells or xenografts, leading to significant cancer suppression. Transplanting modulated adipose organoids in pancreatic or breast cancer genetic mouse models suppressed their growth and decreased angiogenesis and hypoxia. Co-culturing patient-derived engineered adipocytes with tumor organoids from dissected human breast cancers significantly suppressed cancer progression and proliferation. In addition, cancer growth was impaired by inducing engineered adipose organoids to outcompete tumors using tetracycline or placing them in an integrated cell-scaffold delivery platform and implanting them next to the tumor. Finally, we show that upregulating UPP1 in adipose organoids can outcompete a uridine-dependent pancreatic ductal adenocarcinoma for uridine and suppress its growth, demonstrating the potential customization of AMT.
Collapse
Affiliation(s)
- Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Kelly An
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yusuke Ito
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Breanna Paredes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Kimberly Pham
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Michael Bruck
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Xujia Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Cassandra Biellak
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Aki Ushiki
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Mai Nobuhara
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Daniel A Bernards
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Filipa Lynce
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mark Jesus M Magbanua
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jace Anton Klein
- Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Luis Valdiviez
- University of California Davis West Coast Metabolomics Center, Davis, CA, USA
| | - Oliver Fiehn
- University of California Davis West Coast Metabolomics Center, Davis, CA, USA
| | - Laura Esserman
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- School of Engineering, Brown University, Providence, RI, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Jennifer M Rosenbluth
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Korn A, Simsek S, Fiet MD, Waas IS, Niessen HW, Krijnen PA. Application of adipose tissue-derived stem cell therapy with a clinically relevant dose does not significantly affect atherosclerotic plaque characteristics in a streptozotocin-induced hyperglycaemia mouse model. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100083. [PMID: 39803590 PMCID: PMC11708420 DOI: 10.1016/j.jmccpl.2024.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 01/16/2025]
Abstract
Aims Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs). Methods Hyperglycaemia was induced in male C57BL/6 ApoE-/- mice (n=24) via intraperitoneal streptozotocin (STZ) injection (0.05 mg/g bodyweight) for 5 consecutive days. 16 weeks after the first STZ injection, the mice received either 100,000 ASCs (n=9) or vehicle (n=14) intravenously. The effects of ASC treatment on the size and stability of aortic root atherosclerotic plaques were determined 4 weeks post-treatment via (immuno)histochemical analyses. Furthermore, plasma monocyte subsets within 3 days pre- and 3 days post-treatment, and 4 weeks post-treatment, were studied. Results ASC treatment did not significantly affect atherosclerotic plaque size or intra-plaque inflammation. Although ASC-treated mice had a higher percentage of intra-plaque fibrosis (42.5±3.3%) compared to vehicle-treated mice (37.6±6.8%, p=0.07), this did not reach significance. Additionally, although differences in the percentages of circulating pro- and anti-inflammatory monocytes were observed after ASC treatment compared to pre-treatment (p=0.005), their levels did not differ significantly at any time point compared to vehicle-treated mice. Conclusions ASC treatment with a clinically relevant dose did not significantly affect atherosclerotic plaque size or intra-plaque inflammation in a hyperglycaemia mouse model. Despite a borderline significant improvement in intraplaque fibrotic content, the potential of ASC treatment on atherosclerotic plaque stability in a diabetic environment remains to be determined.
Collapse
Affiliation(s)
- Amber Korn
- Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Suat Simsek
- Department of Internal Medicine, Northwest Clinics, Alkmaar, the Netherlands
- Department of Internal Medicine, AUMC, Location VUmc, Amsterdam, the Netherlands
| | - Mitchell D. Fiet
- Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | | | - Hans W.M. Niessen
- Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
- Department of Cardiac Surgery, AUMC, Location VUmc, Amsterdam, the Netherlands
| | - Paul A.J. Krijnen
- Department of Pathology, Amsterdam University Medical Centres (AUMC), Location VUmc, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Dahdah N, Tercero-Alcázar C, Malagón MM, Garcia-Roves PM, Guzmán-Ruiz R. Interrelation of adipose tissue macrophages and fibrosis in obesity. Biochem Pharmacol 2024; 225:116324. [PMID: 38815633 DOI: 10.1016/j.bcp.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.
Collapse
Affiliation(s)
- Norma Dahdah
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Carmen Tercero-Alcázar
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M Malagón
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
| | - Pablo Miguel Garcia-Roves
- Departament de Ciències Fisiològiques, Universitat de Barcelona, IDIBELL, L'Hospitalet de Llobregat, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Rocío Guzmán-Ruiz
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Cell Biology, Physiology and Immunology, IMIBIC, Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain.
| |
Collapse
|
5
|
Amniotic Fluid Stem Cells and Their Secretomes as tools of regenerative medicine; Influence of Donor Characteristics on Standardization. J Stem Cells Regen Med 2024; 20:1-2. [PMID: 39044809 PMCID: PMC11262848 DOI: 10.46582/jsrm.2001001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
|
6
|
Meechem MB, Jadli AS, Patel VB. Uncovering the link between diabetes and cardiovascular diseases: insights from adipose-derived stem cells. Can J Physiol Pharmacol 2024; 102:229-241. [PMID: 38198660 DOI: 10.1139/cjpp-2023-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. The escalating global occurrence of obesity and diabetes mellitus (DM) has led to a significant upsurge in individuals afflicted with CVDs. As the prevalence of CVDs continues to rise, it is becoming increasingly important to identify the underlying cellular and molecular mechanisms that contribute to their development and progression, which will help discover novel therapeutic avenues. Adipose tissue (AT) is a connective tissue that plays a crucial role in maintaining lipid and glucose homeostasis. However, when AT is exposed to diseased conditions, such as DM, this tissue will alter its phenotype to become dysfunctional. AT is now recognized as a critical contributor to CVDs, especially in patients with DM. AT is comprised of a heterogeneous cellular population, which includes adipose-derived stem cells (ADSCs). ADSCs resident in AT are believed to regulate physiological cardiac function and have potential cardioprotective roles. However, recent studies have also shown that ADSCs from various adipose tissue depots become pro-apoptotic, pro-inflammatory, less angiogenic, and lose their ability to differentiate into various cell lineages upon exposure to diabetic conditions. This review aims to summarize the current understanding of the physiological roles of ADSCs, the impact of DM on ADSC phenotypic changes, and how these alterations may contribute to the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Megan B Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Pinheiro-Machado E, Getova VE, Harmsen MC, Burgess JK, Smink AM. Towards standardization of human adipose-derived stromal cells secretomes. Stem Cell Rev Rep 2023; 19:2131-2140. [PMID: 37300663 PMCID: PMC10579120 DOI: 10.1007/s12015-023-10567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
The secretome of adipose-derived stromal cells (ASC) is a heterogeneous mixture of components with a beneficial influence on cellular microenvironments. As such, it represents a cell-free alternative in regenerative medicine therapies. Pathophysiological conditions increase the therapeutic capacity of ASC and, with this, the benefits of the secretome. Such conditions can be partially mimicked in vitro by adjusting culturing conditions. Secretomics, the unbiased analysis of a cell secretome by mass spectrometry, is a powerful tool to describe the composition of ASC secretomes. In this proteomics databases review, we compared ASC secretomic studies to retrieve persistently reported proteins resulting from the most explored types of culturing conditions used in research, i.e., exposure to normoxia, hypoxia, or cytokines. Our comparisons identified only eight common proteins within ASC normoxic secretomes, no commonalities within hypoxic ASC secretomes, and only nine within secretomes of ASC exposed to proinflammatory cytokines. Within these, and regardless of the culturing condition that stimulated secretion, a consistent presence of extracellular matrix-related pathways associated with such proteins was identified. Confounders such as donors' age, sex, body mass index, the anatomical area where ASC were harvested, secretome collection method, data description, and how the data is shared with the scientific community are discussed as factors that might explain our outcomes. We conclude that standardization is imperative as the currently available ASC secretomic studies do not facilitate solid conclusions on the therapeutic value of different ASC secretomes.
Collapse
Affiliation(s)
- Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
| | - Vasilena E Getova
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
9
|
Mahmoud M, Abdel-Rasheed M. Influence of type 2 diabetes and obesity on adipose mesenchymal stem/stromal cell immunoregulation. Cell Tissue Res 2023; 394:33-53. [PMID: 37462786 PMCID: PMC10558386 DOI: 10.1007/s00441-023-03801-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Type 2 diabetes (T2D), associated with obesity, represents a state of metabolic inflammation and oxidative stress leading to insulin resistance and progressive insulin deficiency. Adipose-derived stem cells (ASCs) are adult mesenchymal stem/stromal cells identified within the stromal vascular fraction of adipose tissue. These cells can regulate the immune system and possess anti-inflammatory properties. ASCs are a potential therapeutic modality for inflammatory diseases including T2D. Patient-derived (autologous) rather than allogeneic ASCs may be a relatively safer approach in clinical perspectives, to avoid occasional anti-donor immune responses. However, patient characteristics such as body mass index (BMI), inflammatory status, and disease duration and severity may limit the therapeutic utility of ASCs. The current review presents human ASC (hASC) immunoregulatory mechanisms with special emphasis on those related to T lymphocytes, hASC implications in T2D treatment, and the impact of T2D and obesity on hASC immunoregulatory potential. hASCs can modulate the proliferation, activation, and functions of diverse innate and adaptive immune cells via direct cell-to-cell contact and secretion of paracrine mediators and extracellular vesicles. Preclinical studies recommend the therapeutic potential of hASCs to improve inflammation and metabolic indices in a high-fat diet (HFD)-induced T2D disease model. Discordant data have been reported to unravel intact or detrimentally affected immunomodulatory functions of ASCs, isolated from patients with obesity and/or T2D patients, in vitro and in vivo. Numerous preconditioning strategies have been introduced to potentiate hASC immunomodulation; they are also discussed here as possible options to potentiate the immunoregulatory functions of hASCs isolated from patients with obesity and T2D.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
10
|
Nguyen HP, Sheng R, Murray E, Ito Y, Bruck M, Biellak C, An K, Lynce F, Dillon DA, Magbanua MJM, Huppert LA, Hammerlindl H, Esserman L, Rosenbluth JM, Ahituv N. Implantation of engineered adipocytes that outcompete tumors for resources suppresses cancer progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534564. [PMID: 37034710 PMCID: PMC10081280 DOI: 10.1101/2023.03.28.534564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Tumors acquire an increased ability to obtain and metabolize nutrients. Here, we engineered and implanted adipocytes to outcompete tumors for nutrients and show that they can substantially reduce cancer progression. Growing cells or xenografts from several cancers (breast, colon, pancreas, prostate) alongside engineered human adipocytes or adipose organoids significantly suppresses cancer progression and reduces hypoxia and angiogenesis. Transplanting modulated adipocyte organoids in pancreatic or breast cancer mouse models nearby or distal from the tumor significantly suppresses its growth. To further showcase therapeutic potential, we demonstrate that co-culturing tumor organoids derived from human breast cancers with engineered patient-derived adipocytes significantly reduces cancer growth. Combined, our results introduce a novel cancer therapeutic approach, termed adipose modulation transplantation (AMT), that can be utilized for a broad range of cancers.
Collapse
Affiliation(s)
- Hai P. Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Rory Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth Murray
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yusuke Ito
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Michael Bruck
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Cassidy Biellak
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Kelly An
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Filipa Lynce
- Dana-Farber Cancer Institute, Harvard University, Boston, MA 02215, USA
| | - Deborah A. Dillon
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 04158, USA
| | - Laura A. Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Laura Esserman
- Department of Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jennifer M. Rosenbluth
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
11
|
Fan F, Grant RA, Whitehead JP, Yewlett A, F Lee PY. An observational study evaluating the efficacy of microfragmented adipose tissue in the treatment of osteoarthritis. Regen Med 2023; 18:113-121. [PMID: 36541936 DOI: 10.2217/rme-2022-0110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: Osteoarthritis (OA) prevalence is increased in ageing and obese populations. This prospective single-arm cohort study aimed to investigate the efficacy of autologous microfragmented adipose tissue treatment of severe knee or shoulder OA. Materials & methods: Participants received an intra-articular microfragmented adipose tissue injection to the affected joint(s). Multiple patient reported outcome measures (PROMS) were recorded from 0 to 52 weeks for 63 consecutive joints. Results: Compared with baseline, there were significant improvements in all PROMS from 2 to 12 weeks and maintained at 52 weeks. Regression analysis revealed an inverse correlation with BMI and change in PROMS for knee joints. Conclusion: Our observed findings suggest this approach represents a safe, effective treatment for moderate-to-severe knee and shoulder OA, although efficacy may be reduced with increasing obesity.
Collapse
Affiliation(s)
- Frankie Fan
- Kettering General Hospital, Trauma & Orthopaedics, Rothwell Road, England, NN16 8UZ
| | - Robert A Grant
- Kettering General Hospital, Trauma & Orthopaedics, Rothwell Road, England, NN16 8UZ
| | - Jonathan P Whitehead
- University of Lincoln, School of Life & Environmental Sciences, Brayford Pool, Lincoln, England, LN6 7TS
| | - Alun Yewlett
- MSK Doctors, MSK House, London Road, Willoughby, Sleaford, England, NG34 8NY, UK
| | - Paul Y F Lee
- University of Lincoln, School of Sport & Exercise Science, Brayford Pool, Lincoln, England, LN6 7TS.,MSK Doctors, MSK House, London Road, Willoughby, Sleaford, England, NG34 8NY, UK
| |
Collapse
|
12
|
Karamali F, Behtaj S, Babaei-Abraki S, Hadady H, Atefi A, Savoj S, Soroushzadeh S, Najafian S, Nasr Esfahani MH, Klassen H. Potential therapeutic strategies for photoreceptor degeneration: the path to restore vision. J Transl Med 2022; 20:572. [PMID: 36476500 PMCID: PMC9727916 DOI: 10.1186/s12967-022-03738-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022] Open
Abstract
Photoreceptors (PRs), as the most abundant and light-sensing cells of the neuroretina, are responsible for converting light into electrical signals that can be interpreted by the brain. PR degeneration, including morphological and functional impairment of these cells, causes significant diminution of the retina's ability to detect light, with consequent loss of vision. Recent findings in ocular regenerative medicine have opened promising avenues to apply neuroprotective therapy, gene therapy, cell replacement therapy, and visual prostheses to the challenge of restoring vision. However, successful visual restoration in the clinical setting requires application of these therapeutic approaches at the appropriate stage of the retinal degeneration. In this review, firstly, we discuss the mechanisms of PR degeneration by focusing on the molecular mechanisms underlying cell death. Subsequently, innovations, recent developments, and promising treatments based on the stage of disorder progression are further explored. Then, the challenges to be addressed before implementation of these therapies in clinical practice are considered. Finally, potential solutions to overcome the current limitations of this growing research area are suggested. Overall, the majority of current treatment modalities are still at an early stage of development and require extensive additional studies, both pre-clinical and clinical, before full restoration of visual function in PR degeneration diseases can be realized.
Collapse
Affiliation(s)
- Fereshteh Karamali
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sanaz Behtaj
- grid.1022.10000 0004 0437 5432Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Queensland, Australia ,grid.1022.10000 0004 0437 5432Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222 Australia
| | - Shahnaz Babaei-Abraki
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Hanieh Hadady
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Atefeh Atefi
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Soraya Savoj
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Sareh Soroushzadeh
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Samaneh Najafian
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- grid.417689.5Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Henry Klassen
- grid.266093.80000 0001 0668 7243Gavin Herbert Eye Institute, Irvine, CA USA
| |
Collapse
|
13
|
Bispo DSC, Jesus CSH, Romek K, Marques IMC, Oliveira MB, Mano JF, Gil AM. An Intracellular Metabolic Signature as a Potential Donor-Independent Marker of the Osteogenic Differentiation of Adipose Tissue Mesenchymal Stem Cells. Cells 2022; 11:cells11233745. [PMID: 36497004 PMCID: PMC9739047 DOI: 10.3390/cells11233745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
This paper describes an untargeted NMR metabolomics study to identify potential intracellular donor-dependent and donor-independent metabolic markers of proliferation and osteogenic differentiation of human adipose mesenchymal stem cells (hAMSCs). The hAMSCs of two donors with distinct proliferating/osteogenic characteristics were fully characterized regarding their polar endometabolome during proliferation and osteogenesis. An 18-metabolites signature (including changes in alanine, aspartate, proline, tyrosine, ATP, and ADP, among others) was suggested to be potentially descriptive of cell proliferation, independently of the donor. In addition, a set of 11 metabolites was proposed to compose a possible donor-independent signature of osteogenesis, mostly involving changes in taurine, glutathione, methylguanidine, adenosine, inosine, uridine, and creatine/phosphocreatine, choline/phosphocholine and ethanolamine/phosphocholine ratios. The proposed signatures were validated for a third donor, although they require further validation in a larger donor cohort. We believe that this proof of concept paves the way to exploit metabolic markers to monitor (and potentially predict) cell proliferation and the osteogenic ability of different donors.
Collapse
|
14
|
Georgiev-Hristov T, García-Arranz M, Trébol-López J, Barba-Recreo P, García-Olmo D. Searching for the Optimal Donor for Allogenic Adipose-Derived Stem Cells: A Comprehensive Review. Pharmaceutics 2022; 14:2338. [PMID: 36365156 PMCID: PMC9696054 DOI: 10.3390/pharmaceutics14112338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2023] Open
Abstract
Adipose-derived stem cells comprise several clinically beneficial qualities that have been explored in basic research and have motivated several clinical studies with promising results. After being approved in the European Union, UK, Switzerland, Israel, and Japan, allogeneic adipose-derived stem cells (darvadstrocel) have been recently granted a regenerative medicine advanced therapy (RMAT) designation by US FDA for complex perianal fistulas in adults with Crohn's disease. This huge scientific step is likely to impact the future spread of the indications of allogeneic adipose-derived stem cell applications. The current knowledge on adipose stem cell harvest describes quantitative and qualitative differences that could be influenced by different donor conditions and donor sites. In this comprehensive review, we summarize the current knowledge on the topic and propose donor profiles that could provide the optimal initial quality of this living drug, as a starting point for further applications and studies in different pathological conditions.
Collapse
Affiliation(s)
- Tihomir Georgiev-Hristov
- Servicio de Cirugía General y del Aparato Digestivo, Hospital General Universitario de Villalba, 28400 Madrid, Spain
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
| | - Mariano García-Arranz
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jacobo Trébol-López
- Servicio de Cirugía General y del Aparato Digestivo, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Paula Barba-Recreo
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
- Servicio de Cirugía Maxilofacial, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain
| | - Damián García-Olmo
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
15
|
Gholami L, Afshar S, Arkian A, Saeidijam M, Hendi SS, Mahmoudi R, Khorsandi K, Hashemzehi H, Fekrazad R. NIR irradiation of human buccal fat pad adipose stem cells and its effect on TRP ion channels. Lasers Med Sci 2022; 37:3681-3692. [PMID: 36227520 DOI: 10.1007/s10103-022-03652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
Abstract
The effect of near infrared (NIR) laser irradiation on proliferation and osteogenic differentiation of buccal fat pad-derived stem cells and the role of transient receptor potential (TRP) channels was investigated in the current research. After stem cell isolation, a 940 nm laser with 0.1 W, 3 J/cm2 was used in pulsed and continuous mode for irradiation in 3 sessions once every 48 h. The cells were cultured in the following groups: non-osteogenic differentiation medium/primary medium (PM) and osteogenic medium (OM) groups with laser-irradiated (L +), without irradiation (L -), laser treated + Capsazepine inhibitor (L + Cap), and laser treated + Skf96365 inhibitor (L + Skf). Alizarin Red staining and RT-PCR were used to assess osteogenic differentiation and evaluate RUNX2, Osterix, and ALP gene expression levels. The pulsed setting showed the best viability results (P < 0.05) and was used for osteogenic differentiation evaluations. The results of Alizarin red staining were not statistically different between the four groups. Osterix and ALP expression increased in the (L +) group. This upregulation abrogated in the presence of Capsazepine, TRPV1 inhibitor (L + Cap); however, no significant effect was observed with Skf96365 (L + Skf).
Collapse
Affiliation(s)
- Leila Gholami
- Department of Periodontics, Dental Implants Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aliasghar Arkian
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masood Saeidijam
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyedeh Sareh Hendi
- Department of Endodontics, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Mahmoudi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran.,Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Hadi Hashemzehi
- Department of Oral and Maxillofacial Surgery, Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran. .,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
16
|
Ren G, Peng Q, Emmersen J, Zachar V, Fink T, Porsborg SR. A Comparative Analysis of the Wound Healing-Related Heterogeneity of Adipose-Derived Stem Cells Donors. Pharmaceutics 2022; 14:2126. [PMID: 36297561 PMCID: PMC9608503 DOI: 10.3390/pharmaceutics14102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Adipose-derived Stem cells (ASCs) are on the verge of being available for large clinical trials in wound healing. However, for developing advanced therapy medicinal products (ATMPs), potency assays mimicking the mode of action are required to control the product consistency of the cells. Thus, greater effort should go into the design of product assays. Therefore, we analyzed three ASC-based ATMPs from three different donors with respect to their surface markers, tri-lineage differentiation, proliferation, colony-forming unit capacity, and effect on fibroblast proliferation and migration, endothelial proliferation, migration, and angiogenesis. Furthermore, the transcriptome of all three cell products was analyzed through RNA-sequencing. Even though all products met the criteria by the International Society for Cell and Gene Therapy and the International Federation for Adipose Therapeutics and Science, we found one product to be consistently superior to others when exploring their potency in the wound healing specific assays. Our results indicate that certain regulatory genes associated with extracellular matrix and angiogenesis could be used as markers of a superior ASC donor from which to use ASCs to treat chronic wounds. Having a panel of assays capable of predicting the potency of the product would ensure the patient receives the most potent product for a specific indication, which is paramount for successful patient treatment and acceptance from the healthcare system.
Collapse
Affiliation(s)
| | | | | | | | | | - Simone R. Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220 Aalborg, Denmark
| |
Collapse
|
17
|
Ritter A, Kreis NN, Hoock SC, Solbach C, Louwen F, Yuan J. Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells, Obesity and the Tumor Microenvironment of Breast Cancer. Cancers (Basel) 2022; 14:3908. [PMID: 36010901 PMCID: PMC9405791 DOI: 10.3390/cancers14163908] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and a common cause of cancer-related death in women. It is well recognized that obesity is associated with an enhanced risk of more aggressive breast cancer as well as reduced patient survival. Adipose tissue is the major microenvironment of breast cancer. Obesity changes the composition, structure, and function of adipose tissue, which is associated with inflammation and metabolic dysfunction. Interestingly, adipose tissue is rich in ASCs/MSCs, and obesity alters the properties and functions of these cells. As a key component of the mammary stroma, ASCs play essential roles in the breast cancer microenvironment. The crosstalk between ASCs and breast cancer cells is multilateral and can occur both directly through cell-cell contact and indirectly via the secretome released by ASC/MSC, which is considered to be the main effector of their supportive, angiogenic, and immunomodulatory functions. In this narrative review, we aim to address the impact of obesity on ASCs/MSCs, summarize the current knowledge regarding the potential pathological roles of ASCs/MSCs in the development of breast cancer, discuss related molecular mechanisms, underline the possible clinical significance, and highlight related research perspectives. In particular, we underscore the roles of ASCs/MSCs in breast cancer cell progression, including proliferation and survival, angiogenesis, migration and invasion, the epithelial-mesenchymal transition, cancer stem cell development, immune evasion, therapy resistance, and the potential impact of breast cancer cells on ASCS/MSCs by educating them to become cancer-associated fibroblasts. We conclude that ASCs/MSCs, especially obese ASCs/MSCs, may be key players in the breast cancer microenvironment. Targeting these cells may provide a new path of effective breast cancer treatment.
Collapse
Affiliation(s)
- Andreas Ritter
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | | | | | | | | | - Juping Yuan
- Obstetrics and Prenatal Medicine, Gynecology and Obstetrics, University Hospital Frankfurt, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
18
|
Gebraad A, Ohlsbom R, Miettinen JJ, Emeh P, Pakarinen TK, Manninen M, Eskelinen A, Kuismanen K, Slipicevic A, Lehmann F, Nupponen NN, Heckman CA, Miettinen S. Growth Response and Differentiation of Bone Marrow-Derived Mesenchymal Stem/Stromal Cells in the Presence of Novel Multiple Myeloma Drug Melflufen. Cells 2022; 11:cells11091574. [PMID: 35563880 PMCID: PMC9103864 DOI: 10.3390/cells11091574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are self-renewing and multipotent progenitors, which constitute the main cellular compartment of the bone marrow stroma. Because MSCs have an important role in the pathogenesis of multiple myeloma, it is essential to know if novel drugs target MSCs. Melflufen is a novel anticancer peptide–drug conjugate compound for patients with relapsed refractory multiple myeloma. Here, we studied the cytotoxicity of melflufen, melphalan and doxorubicin in healthy human bone marrow-derived MSCs (BMSCs) and how these drugs affect BMSC proliferation. We established co-cultures of BMSCs with MM.1S myeloma cells to see if BMSCs increase or decrease the cytotoxicity of melflufen, melphalan, bortezomib and doxorubicin. We evaluated how the drugs affect BMSC differentiation into adipocytes and osteoblasts and the BMSC-supported formation of vascular networks. Our results showed that BMSCs were more sensitive to melflufen than to melphalan. The cytotoxicity of melflufen in myeloma cells was not affected by the co-culture with BMSCs, as was the case for melphalan, bortezomib and doxorubicin. Adipogenesis, osteogenesis and BMSC-mediated angiogenesis were all affected by melflufen. Melphalan and doxorubicin affected BMSC differentiation in similar ways. The effects on adipogenesis and osteogenesis were not solely because of effects on proliferation, seen from the differential expression of differentiation markers normalized by cell number. Overall, our results indicate that melflufen has a significant impact on BMSCs, which could possibly affect therapy outcome.
Collapse
Affiliation(s)
- Arjen Gebraad
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (R.O.); (P.E.); (S.M.)
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| | - Roope Ohlsbom
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (R.O.); (P.E.); (S.M.)
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Juho J. Miettinen
- Institute for Molecular Medicine Finland-FIMM, HiLIFE–Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00290 Helsinki, Finland; (J.J.M.); (C.A.H.)
| | - Promise Emeh
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (R.O.); (P.E.); (S.M.)
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| | - Toni-Karri Pakarinen
- Department of Musculoskeletal Diseases, Tampere University Hospital, 33520 Tampere, Finland;
| | | | - Antti Eskelinen
- Coxa Hospital for Joint Replacement, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland;
| | - Kirsi Kuismanen
- Department of Obstetrics and Gynecology, Tampere University Hospital, 33520 Tampere, Finland;
| | - Ana Slipicevic
- Oncopeptides AB, 111 37 Stockholm, Sweden; (A.S.); (F.L.); (N.N.N.)
| | - Fredrik Lehmann
- Oncopeptides AB, 111 37 Stockholm, Sweden; (A.S.); (F.L.); (N.N.N.)
| | - Nina N. Nupponen
- Oncopeptides AB, 111 37 Stockholm, Sweden; (A.S.); (F.L.); (N.N.N.)
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland-FIMM, HiLIFE–Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00290 Helsinki, Finland; (J.J.M.); (C.A.H.)
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (R.O.); (P.E.); (S.M.)
- Research, Development and Innovation Centre, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|