1
|
Yue S, Gong L, Tan Y, Zhang X, Liao F. IsoalloLCA-intervened regulatory T cell exosomes alleviate inflammatory bowel disease by inhibiting NF-κB-associated inflammation in intestinal epithelial cells. Int Immunopharmacol 2025; 154:114501. [PMID: 40174336 DOI: 10.1016/j.intimp.2025.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/11/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025]
Abstract
Regulatory T cells (Tregs) are the principal immune cells that exert anti-inflammatory effects within the organism. Their exosomes exhibit therapeutic efficacy across a broad spectrum of diseases owing to their high stability, low immunogenicity, and substantial penetration capacity. Recent research have indicated that isoallolithocholic acid (isoalloLCA), a metabolite associated with bile acid metabolism, may enhance Treg activity by upregulating forkhead box protein3 (Foxp3) expression. Hence, metabolite-based strategies for reinforcing Tregs may offer novel intervention options for treating related diseases. In this study, tumor necrosis factor (TNF)-α and dextran sulfate sodium (DSS) were employed to establish cellular and animal models of inflammatory bowel disease (IBD), further evaluating the therapeutic efficacy of isoalloLCA-intervened regulatory T cell exosomes (isoalloLCA-Exo) within this model. Our findings demonstrated that isoalloLCA-Exo effectively inhibit colitis progression in a murine model, as indicated by reduced inflammation, decreased apoptosis of intestinal epithelial cells, and improved intestinal barrier function. Furthermore, in vitro analyses elucidated the molecular mechanisms underlying the anti-inflammatory effects of isoalloLCA-Exo, revealing that the intervention effectively reversed TNF-α-induced inflammation and apoptosis in intestinal epithelial cells by modulating the NF-κB pathway. In conclusion, isoalloLCA-Exo can decelerate inflammatory bowel disease progression and suppress inflammatory response in intestinal epithelial cells by inhibiting NF-κB pathway. Notably, isoalloLCA-Exo exhibit superior efficacy to the traditional drug mesalazine and conventional treg exosome(NC-Exo). These findings have significant implications for optimizing Treg-derived exosome-based therapies for inflammation-related diseases.
Collapse
Affiliation(s)
- Simei Yue
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingjiao Gong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yulin Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaodan Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fei Liao
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong 518000, China; Central Laboratory of Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
2
|
Zubair M, Abouelnazar FA, Iqbal MA, Pan J, Zheng X, Chen T, Shen W, Yin J, Yan Y, Liu P, Mao F, Chu Y. Mesenchymal stem cell-derived exosomes as a plausible immunomodulatory therapeutic tool for inflammatory diseases. Front Cell Dev Biol 2025; 13:1563427. [PMID: 40129569 PMCID: PMC11931156 DOI: 10.3389/fcell.2025.1563427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), especially, exosomes are considered to have diverse therapeutic effects for various significant diseases. MSC-derived exosomes (MSCex) offer substantial advantages over MSCs due to their long-term preservation, stability, absence of nuclei and fewer adverse effects such as infusion toxicity, thereby paving the way towards regenerative medicine and cell-free therapeutics. These exosomes harbor several cellular contents such as DNA, RNA, lipids, metabolites, and proteins, facilitating drug delivery and intercellular communication. MSCex have the ability to immunomodulate and trigger the anti-inflammatory process hence, playing a key role in alleviating inflammation and enhancing tissue regeneration. In this review, we addressed the anti-inflammatory effects of MSCex and the underlying immunomodulatory pathways. Moreover, we discussed the recent updates on MSCex in treating specific inflammatory diseases, including arthritis, inflammatory bowel disease, inflammatory eye diseases, and respiratory diseases such as asthma and acute respiratory distress syndrome (ARDS), as well as neurodegenerative and cardiac diseases. Finally, we highlighted the challenges in using MSCex as the successful therapeutic tool and discussed future perspectives.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Fatma A. Abouelnazar
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Faculty of Applied Health Sciences Technology, Pharos University, Alexandria, Egypt
| | | | - Jingyun Pan
- Department of Traditional Chinese Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Xuwen Zheng
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Tao Chen
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Wenming Shen
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Jinnan Yin
- Department of Emergency, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
| | - Pengjun Liu
- Department of Gastroenterology, Wujin Hospital Affiliated With Jiangsu University, Changzhou, China
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Chu
- Wujin Clinical College, Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Tang S, Feng W, Li Z, Liu X, Yang T, Wei F, Ding G. Extracellular Vesicles Derived from Lipopolysaccharide-Pretreated Periodontal Ligament Stem Cells Ameliorate Inflammatory Responses in Experimental Colitis via the PI3K/AKT Signaling Pathway. Int J Nanomedicine 2024; 19:11997-12013. [PMID: 39583323 PMCID: PMC11583767 DOI: 10.2147/ijn.s494321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024] Open
Abstract
Introduction Inflammatory bowel disease is a complex chronic inflammatory condition characterized by dysbiosis of the gut microbiota and dysregulation of immune system. In recent years, extracellular vesicles (EVs) derived from mesenchymal stem cells have garnered significant attention for their beneficial potentials in immune modulation and tissue repair. This study aims to evaluate the therapeutic effects and underlying mechanisms of EVs derived from lipopolysaccharide (LPS)-pretreated periodontal ligament stem cells (PDLSCs) in mice with colitis. Methods A mouse model of colitis was established using 3.0% dextran sulfate sodium (DSS). Following the induction of colitis, mice were treated via tail vein injection with either conventional PDLSC-derived EVs (P-EVs) or LPS-pretreated PDLSC-derived EVs (LPS pre-EVs). The EVs were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis. The therapeutic effects and mechanisms were evaluated through a combination of small animal live imaging, disease activity index (DAI) scoring, histopathological staining, qRT-PCR, 16S rRNA gene sequencing, and mass spectrometry analysis. Results The LPS pre-EVs exhibited typical EVs characteristics in terms of morphology, particle size distribution, and marker protein expression. Compared to P-EVs, LPS pre-EVs significantly ameliorated weight loss, DAI scores, colon length, and perianal symptoms in DSS-induced murine colitis. Additionally, LPS pre-EVs up-regulated the expression of Arginase-1, a typical M2 macrophage marker, and tight junction proteins, including ZO-1, Occludin, and Claudin-1, enhanced gut microbial diversity, and significantly regulated intestinal protein expression and activation of the PI3K/AKT signaling pathway. Conclusion LPS pre-EVs exhibit significant anti-inflammatory and tissue repair effects in a mouse model of colitis. The underlying mechanisms may involve the regulation of macrophage polarization, maintenance of intestinal barrier function, modulation of the gut microbiota, and activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Shuai Tang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Wenyu Feng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Zekun Li
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Xinjuan Liu
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
| | - Tong Yang
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
- Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan, Shandong, 250012, People’s Republic of China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, 261053, People’s Republic of China
| |
Collapse
|
4
|
He X, Zhang Y. Changes in gut flora in patients with epilepsy: a systematic review and meta-analysis. Front Microbiol 2024; 15:1480022. [PMID: 39611090 PMCID: PMC11602489 DOI: 10.3389/fmicb.2024.1480022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024] Open
Abstract
Background Epilepsy is a prevalent chronic neurological disorder that is strongly associated with a wide range of psychological, cognitive and social problems. It affects a significant proportion of the global population and has a number of complex etiologies. A growing body of research indicates that there is a strong association between epilepsy and the gut microbiota. Indeed, a substantial body of research has investigated the potential role of epilepsy in relation to the gut microbiota, examining alterations in the abundance, diversity, and relative abundance of the gut microbiota in patients with epilepsy. Methods This study was conducted in accordance with the PRISMA guidelines and included multiple studies that met specific criteria. A keyword search was conducted in the following databases: PubMed, Embase, and Web of Science. The data extraction and quality assessment were conducted by two independent researchers. A systematic review and meta-analysis of the relationship between patients with epilepsy and gut flora was conducted using the R 4.3.4 software. Results The results of the analyses indicated that the intestinal flora of patients with epilepsy did not differ significantly in alpha diversity compared to healthy controls. However, the relative abundance of specific flora, such as Verrucomicrobia and Ackermannia was significantly increased in patients, whereas Lactobacillus was significantly decreased. Conclusion The relationship between epilepsy and gut flora is reciprocal. The present meta-analysis demonstrated that there were no statistically significant alterations in the overall characteristics of the intestinal flora of the patients. However, significant changes were observed in the relative abundance of certain phyla and genera. Consequently, it is hypothesized that epilepsy can cause changes in the relative abundance of specific flora in patients. Furthermore, in conjunction with previous studies, it is believed that changes in intestinal flora can also have an effect on seizures. For example, Lactobacillus may be a beneficial genus that potentially reduces seizures. Conversely, the effect of Akkermansia is two-sided.
Collapse
Affiliation(s)
- Xingyan He
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Yuxin Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Song Y, Shi M, Wang Y. Deciphering the role of host-gut microbiota crosstalk via diverse sources of extracellular vesicles in colorectal cancer. Mol Med 2024; 30:200. [PMID: 39501131 PMCID: PMC11536884 DOI: 10.1186/s10020-024-00976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/26/2024] [Indexed: 11/09/2024] Open
Abstract
Colorectal cancer is the most common type of cancer in the digestive system and poses a major threat to human health. The gut microbiota has been found to be a key factor influencing the development of colorectal cancer. Extracellular vesicles are important mediators of intercellular communication. Not only do they regulate life activities within the same individual, but they have also been found in recent years to be important mediators of communication between different species, such as the gut microbiota and the host. Their preventive, diagnostic, and therapeutic value in colorectal cancer is being explored. The aim of this review is to provide insights into the complex interactions between host and gut microbiota, particularly those mediated through extracellular vesicles, and how these interactions affect colorectal cancer development. In addition, the potential of extracellular vesicles from various body fluids as biomarkers was evaluated. Finally, we discuss the potential, challenges, and future research directions of extracellular vesicles in their application to colorectal cancer. Overall, extracellular vesicles have great potential for application in medical processes related to colorectal cancer, but their isolation and characterization techniques, intercellular communication mechanisms, and the effectiveness of their clinical application require further research and exploration.
Collapse
Affiliation(s)
- Yun Song
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China
| | - Min Shi
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China.
| | - Yugang Wang
- Department of Gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, PR China.
| |
Collapse
|
6
|
Chen T, Zhang B, He G, Shen C, Wang N, Zong J, Chen X, Chen L, Li C, Zhou X. Exosomes-mediated retinoic acid disruption: A link between gut microbiota depletion and impaired spermatogenesis. Toxicology 2024; 508:153907. [PMID: 39121937 DOI: 10.1016/j.tox.2024.153907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Gut microbiota symbiosis faces enormous challenge with increasing exposure to drugs such as environmental poisons and antibiotics. The gut microbiota is an important component of the host microbiota and has been proven to be involved in regulating spermatogenesis, but the molecular mechanism is still unclear. A male mouse model with gut microbiota depletion/dysbiosis was constructed by adding combined antibiotics to free drinking water, and reproductive parameters such as epididymal sperm count, testicular weight and paraffin sections were measured. Testicular transcriptomic and serum metabolomic analyses were performed to reveal the molecular mechanism of reproductive dysfunction induced by gut microbiota dysbiosis in male mice.This study confirms that antibiotic induced depletion of gut microbiota reduces sperm count in the epididymis and reduces germ cells in the seminiferous tubules in male mice. Further study showed that exosomes isolated from microbiota-depleted mice led to abnormally high levels of retinoic acid and decrease in the number of germ cells in the seminiferous tubules and sperm in the epididymis. Finally, abnormally high levels of retinoic acid was confirmed to disrupted meiotic processes, resulting in spermatogenesis disorders. This study proposed the concept of the gut microbiota-exosome-retinoic acid-testicular axis and demonstrated that depletion of the gut microbiota caused changes in the function of exosomes, which led to abnormal retinoic acid metabolism in the testis, thereby impairing meiosis and spermatogenesis processes.
Collapse
Affiliation(s)
- Tong Chen
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Boqi Zhang
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Guitian He
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Caomeihui Shen
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Nan Wang
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Jinxin Zong
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Xue Chen
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, No. 5333 Xi'an Road, Lvyuan District, Changchun, Jilin 130062, China.
| |
Collapse
|
7
|
Mincheva G, Felipo V, Moreno-Manzano V, Benítez-Páez A, Llansola M. Extracellular vesicles from mesenchymal stem cells alter gut microbiota and improve neuroinflammation and motor impairment in rats with mild liver damage. Neurotherapeutics 2024; 21:e00445. [PMID: 39242290 PMCID: PMC11585882 DOI: 10.1016/j.neurot.2024.e00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Gut microbiota perturbation and motor dysfunction have been reported in steatosis patients. Rats with mild liver damage (MLD) show motor dysfunction mediated by neuroinflammation and altered GABAergic neurotransmission in the cerebellum. The extracellular vesicles (EV) from mesenchymal stem cells (MSC) have emerged as a promising therapeutic proxy whose molecular basis relies partly upon TGFβ action. This study aimed to assess if MSC-EVs improve motor dysfunction in rats with mild liver damage and analyze underlying mechanisms, including the role of TGFβ, cerebellar neuroinflammation and gut microbiota. MLD in rats was induced by carbon tetrachloride administration and EVs from normal (C-EVs) or TGFβ-siRNA treated MSCs (T-EV) were injected. Motor coordination, locomotor gait, neuroinflammation and TNF-α-activated pathways modulating GABAergic neurotransmission in the cerebellum, microbiota composition in feces and microbial-derived metabolites in plasma were analyzed. C-EVs reduced glial and TNFα-P2X4-BDNF-TrkB pathway activation restoring GABAergic neurotransmission in the cerebellum and improving motor coordination and all the altered gait parameters. T-EVs also improved motor coordination and some gait parameters, but the mechanisms involved differed from those of C-EVs. MLD rats showed increased content of some Bacteroides species in feces, correlating with decreased kynurenine aside from motor alterations. These alterations were all normalized by C-EVs, whereas T-EVs only restored kynurenine levels. Our results support the value of MSC-EVs on improving motor dysfunction in MLD and unveil a possible mechanism by which altered microbiota may contribute to neuroinflammation and motor impairment. Some of the underlying mechanisms are TGFβ-dependent.
Collapse
Affiliation(s)
- Gergana Mincheva
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Alfonso Benítez-Páez
- Host-Microbe Interactions in Metabolic Health Laboratory, Centro de Investigación Principe Felipe, Valencia, Spain; Microbiome, Nutrition and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC). Paterna-Valencia, Spain..
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Principe Felipe, Valencia, Spain.
| |
Collapse
|
8
|
Xu J, Wang N, Yang L, Zhong J, Chen M. Intestinal flora and bile acid interactions impact the progression of diabetic kidney disease. Front Endocrinol (Lausanne) 2024; 15:1441415. [PMID: 39371929 PMCID: PMC11449830 DOI: 10.3389/fendo.2024.1441415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
In recent years, with the rapid development of omics technologies, researchers have shown that interactions between the intestinal flora and bile acids are closely related to the progression of diabetic kidney disease (DKD). By regulating bile acid metabolism and receptor expression, the intestinal flora affects host metabolism, impacts the immune system, and exacerbates kidney injury in DKD patients. To explore interactions among the gut flora, bile acids and DKD, as well as the related mechanisms, in depth, in this paper, we review the existing literature on correlations among the gut flora, bile acids and DKD. This review also summarizes the efficacy of bile acids and their receptors as well as traditional Chinese medicines in the treatment of DKD and highlights the unique advantages of bile acid receptors in DKD treatment. This paper is expected to reveal a new and important potential strategy for the clinical treatment of DKD.
Collapse
Affiliation(s)
| | | | | | | | - Ming Chen
- Department of Nephrology, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Li YJ, Yu ZY, Zhang D, Zhang FR, Zhang DM, Chen M. Extracellular vesicles for the treatment of ulcerative colitis: A systematic review and meta-analysis of animal studies. Heliyon 2024; 10:e36890. [PMID: 39281542 PMCID: PMC11400994 DOI: 10.1016/j.heliyon.2024.e36890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Background Extracellular vesicles (EVs) are being considered as a potential therapeutic option for ulcerative colitis (UC), and numerous preclinical studies have been conducted on the use of EVs for UC. Methods A systematic review was conducted to compare the therapeutic effects of mammalian EVs and placebo on UC in animal models, along with a meta-analysis comparing naïve (unmodified) EVs and placebo. The search was performed in four databases (PubMed, Web of Science, Scopus, and EMBASE) up to September 13th, 2023. The primary outcomes included disease activity index (DAI), colonic mucosal damage index (CMDI), and adverse effects (PROSPERO ID: CRD42023458039). Results A total of 69 studies were included based on pre-determined criteria, involving 1271 animals. Of these studies, 51 measured DAI scores, with 98 % reporting that EVs could reduce DAI scores. Additionally, 5 studies reported CMDI and all showed that EVs could significantly reduce CMDI. However, only 3 studies assessed adverse effects and none reported any significant adverse effects. The meta-analysis of these studies (40 studies involving 1065 animals) revealed that naïve EVs could significantly decrease the DAI score (SMD = -3.00; 95 % CI: -3.52 to -2.48) and CMDI (SMD = -2.10; 95 % CI: -2.85 to -1.35). Conclusion The results indicate that mammalian EVs have demonstrated therapeutic benefits in animal models of UC; however, the safety profile of EVs remains inadequate which highlights the need for further research on safety outcomes.
Collapse
Affiliation(s)
- Yu-Jing Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Ze-Yu Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Di Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Fu-Rong Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Dong-Mei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, No.5 Haiyuncang Road, Dongcheng District, Beijing, 101121, China
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, NO.11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
10
|
He K, Zang J, Ren T, Feng S, Liu M, Zhang X, Sun W, Chu J, Xu D, Liu F. Therapeutic Potential and Mechanisms of Mesenchymal Stem Cell and Mesenchymal Stem Cell-Derived Extracellular Vesicles in Atopic Dermatitis. J Inflamm Res 2024; 17:5783-5800. [PMID: 39224661 PMCID: PMC11368146 DOI: 10.2147/jir.s479444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic and inflammatory skin disease with intense itchiness that is highly prevalent worldwide.The pathogenesis of AD is complex and closely related to genetic factors, immunopathogenic factors, environmental factors, and skin infections. Mesenchymal stem cells (MSCs) are non-hematopoietic progenitor cells derived from the mesenchymal stroma. They have anti-inflammatory, anti-apoptotic, and regenerative properties. Numerous studies demonstrate that MSCs can play a therapeutic role in AD by regulating various immune cells, maintaining immune homeostasis, and promoting the repair of damaged tissues. The key mediators for their biological functions are extracellular vesicles (MSC-Evs) and soluble cytokines derived from MSCs. The safety and efficacy of MSCs have been demonstrated in clinical Phase I / IIa trials for AD. This paper provides a comprehensive review of the pathogenesis of AD and the currently published studies on the function of MSCs and MSC-Evs in AD, primarily including the pathogenesis and the immunomodulatory impacts of MSCs and MSC-Evs, along with advancements in clinical studies. It provides insights for comprehending AD pathogenesis and investigating treatments based on MSCs.
Collapse
Affiliation(s)
- Kang He
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Jie Zang
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Tingting Ren
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Shaojie Feng
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Mohan Liu
- Department of Clinical Medicine of Shandong Second Medical University, Weifang, People’s Republic of China
| | - Xude Zhang
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Wenchang Sun
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Jinjin Chu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Donghua Xu
- Central Laboratory, Weifang People’s Hospital, Shandong Second Medical University/Weifang People’s Hospital, Weifang, People’s Republic of China
| | - Fengxia Liu
- Department of Allergy, Weifang People’s Hospital, Shandong Second Medical University, Weifang, People’s Republic of China
| |
Collapse
|
11
|
Cheng Z, Yang L, Chu H. The role of gut microbiota, exosomes, and their interaction in the pathogenesis of ALD. J Adv Res 2024:S2090-1232(24)00268-6. [PMID: 38969094 DOI: 10.1016/j.jare.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND The liver disorders caused by alcohol abuse are termed alcoholic-related liver disease (ALD), including alcoholic steatosis, alcoholic steatohepatitis, alcoholic hepatitis, and alcoholic cirrhosis, posing a significant threat to human health. Currently, ALD pathogenesis has not been completely clarified, which is likely to be related to the direct damage caused by alcohol and its metabolic products, oxidative stress, gut dysbiosis, and exosomes. AIMS The existing studies suggest that both the gut microbiota and exosomes contribute to the development of ALD. Moreover, there exists an interaction between the gut microbiota and exosomes. We discuss whether this interaction plays a role in the pathogenesis of ALD and whether it can be a potential therapeutic target for ALD treatment. KEY SCIENTIFIC CONCEPTS OF REVIEW Chronic alcohol intake alters the diversity and composition of gut microbiota, which greatly contributes to ALD's progression. Some approaches targeting the gut microbiota, including probiotics, fecal microbiota transplantation, and phage therapy, have been confirmed to effectively ameliorate ALD in many animal experiments and/or several clinical trials. In ALD, the levels of exosomes and the expression profile of microRNA have also changed, which affects the pathogenesis of ALD. Moreover, there is an interplay between exosomes and the gut microbiota, which also putatively acts as a pathogenic factor of ALD.
Collapse
Affiliation(s)
- Zilu Cheng
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
12
|
Zhang H, Wang X, Zhao L, Zhang K, Cui J, Xu G. Biochanin a ameliorates DSS-induced ulcerative colitis by improving colonic barrier function and protects against the development of spontaneous colitis in the Muc2 deficient mice. Chem Biol Interact 2024; 395:111014. [PMID: 38648921 DOI: 10.1016/j.cbi.2024.111014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/25/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
There is an increasing appreciation that colonic barrier function is closely related to the development and progression of colitis. The mucus layer is a crucial component of the colonic barrier, responsible for preventing harmful bacteria from invading the intestinal epithelium and causing inflammation. Furthermore, a defective mucus barrier is also a significant characteristic of ulcerative colitis (UC). Biochanin A (BCA), an isoflavonoid, has garnered increasing interest due to its significant biological activities. However, the impact of BCA on UC has not been reported yet. In this study, we used a dextran sodium sulfate (DSS)-induced ulcerative colitis model and the Muc2 deficient (Muc2-/-) mice spontaneous colitis model to explore the mechanisms of BCA in the treatment of UC. Here, we verified that DSS-induced UC was observably attenuated and spontaneous colitis in Muc2-/- mice was relieved by BCA. Treatment with BCA improved colitis-related symptoms and reduced intestinal permeability by upregulating the levels of goblet cells and tight junction (TJ) proteins. In addition, we confirmed that BCA promotes autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway, thereby alleviating DSS-induced UC. In addition, the administration of BCA was able to reduce apoptosis and promote proliferation by suppressing Cleaved Caspase-3 (Cleaved Cas-3) expression, and increasing PCNA and Ki67 levels. Further research revealed that BCA treatment ameliorated spontaneous colitis and alleviated epithelial damage in Muc2-/- mice by restoring the intestinal barrier and promoting autophagy. Our results demonstrated that BCA alleviated UC by enhancing intestinal barrier function and promoting autophagy. These findings indicate that BCA may be a novel treatment alternative for UC.
Collapse
Affiliation(s)
- Haina Zhang
- Department of Rehabilitation, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Xueqi Wang
- Department of Cell Biology and Biophysics, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130000, PR China
| | - Linxian Zhao
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China
| | - Jiaming Cui
- Changchun University of Chinese Medicine, Jilin University, Changchun, 130000, PR China
| | - Guangmeng Xu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, 130000, PR China.
| |
Collapse
|
13
|
Wei S, Li M, Wang Q, Zhao Y, Du F, Chen Y, Deng S, Shen J, Wu K, Yang J, Sun Y, Gu L, Li X, Li W, Chen M, Ling X, Yu L, Xiao Z, Dong L, Wu X. Mesenchymal Stromal Cells: New Generation Treatment of Inflammatory Bowel Disease. J Inflamm Res 2024; 17:3307-3334. [PMID: 38800593 PMCID: PMC11128225 DOI: 10.2147/jir.s458103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract, which has a high recurrence rate and is incurable due to a lack of effective treatment. Mesenchymal stromal cells (MSCs) are a class of pluripotent stem cells that have recently received a lot of attention due to their strong self-renewal ability and immunomodulatory effects, and a large number of experimental and clinical models have confirmed the positive therapeutic effect of MSCs on IBD. In preclinical studies, MSC treatment for IBD relies on MSCs paracrine effects, cell-to-cell contact, and its mediated mitochondrial transfer for immune regulation. It also plays a therapeutic role in restoring the intestinal mucosal barrier through the homing effect, regulation of the intestinal microbiome, and repair of intestinal epithelial cells. In the latest clinical trials, the safety and efficacy of MSCs in the treatment of IBD have been confirmed by transfusion of autologous or allogeneic bone marrow, umbilical cord, and adipose MSCs, as well as their derived extracellular vesicles. However, regarding the stable and effective clinical use of MSCs, several concerns emerge, including the cell sources, clinical management (dose, route and frequency of administration, and pretreatment of MSCs) and adverse reactions. This article comprehensively summarizes the effects and mechanisms of MSCs in the treatment of IBD and its advantages over conventional drugs, as well as the latest clinical trial progress of MSCs in the treatment of IBD. The current challenges and future directions are also discussed. This review would add knowledge into the understanding of IBD treatment by applying MSCs.
Collapse
Affiliation(s)
- Shulin Wei
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Mingxing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Qin Wang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yueshui Zhao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Fukuan Du
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yu Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Shuai Deng
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jing Shen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Ke Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Jiayue Yang
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Yuhong Sun
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Li Gu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiaobing Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Wanping Li
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Meijuan Chen
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xiao Ling
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lei Yu
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Zhangang Xiao
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| | - Lishu Dong
- Department of Obstetrics, Luzhou Maternal & Child Health Hospital (Luzhou Second People’s Hospital), Luzhou, Sichuan, 646100, People’s Republic of China
| | - Xu Wu
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646100, People’s Republic of China
- South Sichuan Institute of Translational Medicine, Luzhou, Sichuan, 646100, People’s Republic of China
| |
Collapse
|
14
|
Qiao Y, Tang X, Liu Z, Ocansey DKW, Zhou M, Shang A, Mao F. Therapeutic Prospects of Mesenchymal Stem Cell and Their Derived Exosomes in the Regulation of the Gut Microbiota in Inflammatory Bowel Disease. Pharmaceuticals (Basel) 2024; 17:607. [PMID: 38794176 PMCID: PMC11124012 DOI: 10.3390/ph17050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have shown great potential in the treatment of several inflammatory diseases due to their immunomodulatory ability, which is mediated by exosomes secreted by MSCs (MSC-Exs). The incidence of inflammatory bowel disease (IBD) is increasing globally, but there is currently no long-term effective treatment. As an emerging therapy, MSC-Exs have proven to be effective in alleviating IBD experimentally, and the specific mechanism continues to be explored. The gut microbiota plays an important role in the occurrence and development of IBD, and MSCs and MSC-Exs can effectively regulate gut microbiota in animal models of IBD, but the mechanism involved and whether the outcome can relieve the characteristic dysbiosis necessary to alleviate IBD still needs to be studied. This review provides current evidence on the effective modulation of the gut microbiota by MSC-Exs, offering a basis for further research on the pathogenic mechanism of IBD and MSC-Ex treatments through the improvement of gut microbiota.
Collapse
Affiliation(s)
- Yaru Qiao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Xiaohua Tang
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang 212300, China;
| | - Ziyue Liu
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast CC0959347, Ghana
| | - Mengjiao Zhou
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
| | - Anquan Shang
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.Q.); (Z.L.); (D.K.W.O.); (M.Z.)
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang 222006, China;
| |
Collapse
|
15
|
Zhou Z, Li Y, Wu S, Liu T, Jiang J. Host-microbiota interactions in collagen-induced arthritis rats treated with human umbilical cord mesenchymal stem cell exosome and ginsenoside Rh2. Biomed Pharmacother 2024; 174:116515. [PMID: 38569276 DOI: 10.1016/j.biopha.2024.116515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Mesenchymal stem cell exosome (MSCs-exo) is a class of products secreted by mesenchymal stem cells (MSCs) that contain various biologically active substances. MSCs-exo is a promising alternative to MSCs due to their lower immunogenicity and lack of ethical constraints. Ginsenoside Rh2 (Rh2) is a hydrolyzed component of the primary active substance of ginsenosides. Rh2 has a variety of pharmacological functions, including anti-inflammatory, anti-tumor, and antioxidant. Studies have demonstrated that gut microbiota and metabolites are critical in developing rheumatoid arthritis (RA). In this study, we constructed a collagen-induced arthritis (CIA) model in rats. We used MSCs-exo combined with Rh2 to treat CIA rats. To observe the effect of MSCs-exo combined with Rh2 on joint inflammation, rat feces were collected for 16 rRNA amplicon sequencing and untargeted metabolomics analysis. The results showed that the arthritis index score and joint swelling of CIA rats treated with MSCs-exo in combination with Rh2 were significantly lower than those of the model and MSCs-exo alone groups. MSCs-exo and Rh2 significantly ameliorated the disturbed gut microbiota in CIA rats. The regulation of Candidatus_Saccharibacteria and Clostridium_XlVb regulation may be the most critical. Rh2 enhanced the therapeutic effect of MSCs-exo compared with the MSCs-exo -alone group. Furthermore, significant changes in gut metabolites were observed in the CIA rat group, and these differentially altered metabolites may act as messengers for host-microbiota interactions. These differential metabolites were enriched into relevant critical metabolic pathways, revealing possible pathways for host-microbiota interactions.
Collapse
Affiliation(s)
- Zhongsheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuhui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China; Yibin Jilin University Research Institute, Jilin University, Yibin, Sichuan, China.
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Wang S, Luo J, Wang H, Chen T, Sun J, Xi Q, Zhang Y. Extracellular Vesicles: A Crucial Player in the Intestinal Microenvironment and Beyond. Int J Mol Sci 2024; 25:3478. [PMID: 38542448 PMCID: PMC10970531 DOI: 10.3390/ijms25063478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 11/11/2024] Open
Abstract
The intestinal ecological environment plays a crucial role in nutrient absorption and overall well-being. In recent years, research has focused on the effects of extracellular vesicles (EVs) in both physiological and pathological conditions of the intestine. The intestine does not only consume EVs from exogenous foods, but also those from other endogenous tissues and cells, and even from the gut microbiota. The alteration of conditions in the intestine and the intestinal microbiota subsequently gives rise to changes in other organs and systems, including the central nervous system (CNS), namely the microbiome-gut-brain axis, which also exhibits a significant involvement of EVs. This review first gives an overview of the generation and isolation techniques of EVs, and then mainly focuses on elucidating the functions of EVs derived from various origins on the intestine and the intestinal microenvironment, as well as the impacts of an altered intestinal microenvironment on other physiological systems. Lastly, we discuss the role of microbial and cellular EVs in the microbiome-gut-brain axis. This review enhances the understanding of the specific roles of EVs in the gut microenvironment and the central nervous system, thereby promoting more effective treatment strategies for certain associated diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yongliang Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (S.W.); (J.L.); (H.W.); (T.C.); (J.S.); (Q.X.)
| |
Collapse
|
17
|
Goryunov K, Ivanov M, Kulikov A, Shevtsova Y, Burov A, Podurovskaya Y, Zubkov V, Degtyarev D, Sukhikh G, Silachev D. A Review of the Use of Extracellular Vesicles in the Treatment of Neonatal Diseases: Current State and Problems with Translation to the Clinic. Int J Mol Sci 2024; 25:2879. [PMID: 38474125 PMCID: PMC10932115 DOI: 10.3390/ijms25052879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Neonatal disorders, particularly those resulting from prematurity, pose a major challenge in health care and have a significant impact on infant mortality and long-term child health. The limitations of current therapeutic strategies emphasize the need for innovative treatments. New cell-free technologies utilizing extracellular vesicles (EVs) offer a compelling opportunity for neonatal therapy by harnessing the inherent regenerative capabilities of EVs. These nanoscale particles, secreted by a variety of organisms including animals, bacteria, fungi and plants, contain a repertoire of bioactive molecules with therapeutic potential. This review aims to provide a comprehensive assessment of the therapeutic effects of EVs and mechanistic insights into EVs from stem cells, biological fluids and non-animal sources, with a focus on common neonatal conditions such as hypoxic-ischemic encephalopathy, respiratory distress syndrome, bronchopulmonary dysplasia and necrotizing enterocolitis. This review summarizes evidence for the therapeutic potential of EVs, analyzes evidence of their mechanisms of action and discusses the challenges associated with the implementation of EV-based therapies in neonatal clinical practice.
Collapse
Affiliation(s)
- Kirill Goryunov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Mikhail Ivanov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulikov
- Medical Institute, Patrice Lumumba Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia;
| | - Yulia Shevtsova
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Artem Burov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Yulia Podurovskaya
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Victor Zubkov
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Dmitry Degtyarev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Gennady Sukhikh
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
| | - Denis Silachev
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Moscow 117198, Russia; (K.G.); (M.I.); (Y.S.); (A.B.); (Y.P.); (V.Z.); (D.D.); (G.S.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
18
|
Tang D, Liu M, Gao S, Sun H, Peng Y, Li Y, Wang Y, Wang X, Chen H. Thermally engineered MSC-derived extracellular vesicles ameliorate colitis in mice by restoring the imbalanced Th17/Treg cell ratio. Int Immunopharmacol 2023; 125:111077. [PMID: 38149575 DOI: 10.1016/j.intimp.2023.111077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023]
Abstract
Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) have garnered extensive interest for their immunomodulatory properties in immune-mediated inflammatory diseases. However, the development of EVs as clinical drugs often faces challenges such as low production yield and suboptimal therapeutic efficacy. In this study, we discovered that thermally engineering was able to enhance the yield of MSC-EVs. Moreover, the PD-L1 expression of EVs released from the thermal engineering MSCs was found to be upregulated significantly, and these EVs ameliorated the symptoms and pathological damages in murine dextran sulfate sodium (DSS)-induced colitis model. The therapeutic effect on DSS-induced colitis was mediated through the regulation of the Th17/Treg cell balance, demonstrating the immunomodulatory properties of the thermally engineering MSC-EVs. Overall, our findings suggest that thermal engineering can be utilized as a promising strategy for enhancing EV production and may provide a potential therapeutic approach for clinical treatment of colitis.
Collapse
Affiliation(s)
- Deqian Tang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Manqing Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Shenghan Gao
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; School of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Haipeng Sun
- Department of Prosthodontics and Implantology, Shenzhen University Affiliated Shenzhen Stomatology Hospital, Shenzhen 518000, Guangdong Province, China
| | - Yingying Peng
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yi Li
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Yan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China
| | - Xiaoxiao Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China; Department of Prosthodontics and Implantology, Shenzhen University Affiliated Shenzhen Stomatology Hospital, Shenzhen 518000, Guangdong Province, China; Department of Stomatology, Shenzhen Qianhai Taikang Hospital, No.3099, Menghai Avenue, Nanshan District, Shenzhen 518000, China.
| | - Huan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou 510055, China.
| |
Collapse
|
19
|
Liu C, Liu X, Li H, Kang Z. Advances in the regulation of adipogenesis and lipid metabolism by exosomal ncRNAs and their role in related metabolic diseases. Front Cell Dev Biol 2023; 11:1173904. [PMID: 37791070 PMCID: PMC10543472 DOI: 10.3389/fcell.2023.1173904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 08/15/2023] [Indexed: 10/05/2023] Open
Abstract
Exosomes are membrane-bound extracellular vesicles released following the fusion of multivesicular bodies (MVBs) with the cell membrane. Exosomes transport diverse molecules, including proteins, lipids, DNA and RNA, and regulate distant intercellular communication. Noncoding RNA (ncRNAs) carried by exosomes regulate cell-cell communication in tissues, including adipose tissue. This review summarizes the action mechanisms of ncRNAs carried by exosomes on adipocyte differentiation and modulation of adipogenesis by exosomal ncRNAs. This study aims to provide valuable insights for developing novel therapeutics.
Collapse
Affiliation(s)
- Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xilin Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hong Li
- Department of Nursing, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhichen Kang
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Chen L, Ou Q, Kou X. Extracellular vesicles and their indispensable roles in pathogenesis and treatment of inflammatory bowel disease: A comprehensive review. Life Sci 2023; 327:121830. [PMID: 37286163 DOI: 10.1016/j.lfs.2023.121830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
Inflammatory bowel disease (IBD) is a global disease with rising incidence worldwide, and its debilitating symptoms and dissatisfactory therapies have brought heavy burdens for patients. Extracellular vesicles (EVs), a heterogeneous population of lipid bilayer membranes containing abundant bioactive molecules, have been indicated to play important roles in the pathogenesis and treatment of many diseases. However, to our knowledge, comprehensive reviews summarizing the various roles of diverse source-derived EVs in the pathogenesis and treatment of IBD are still lacking. This review, not only summarizes the EV characteristics, but also focuses on the multiple roles of diverse EVs in IBD pathogenesis and their treatment potential. In addition, hoping to push forward the research frontiers, we point out several challenges that the researchers are faced, about EVs in current IBD research and future therapeutic applications. We also put forward our prospects on future exploration regarding EVs in IBD treatment, including developing IBD vaccines and paying more attention on apoptotic vesicles. This review is aimed to enrich the knowledge on the indispensable roles of EVs in IBD pathogenesis and treatment, providing ideas and reference for future therapeutic strategy for IBD treatment.
Collapse
Affiliation(s)
- Linling Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Qianmin Ou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, 510055 Guangzhou, China; Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510055, China.
| |
Collapse
|