1
|
Krach F, Boerstler T, Neubert S, Krumm L, Regensburger M, Winkler J, Winner B. RNA splicing modulator for Huntington's disease treatment induces peripheral neuropathy. iScience 2025; 28:112380. [PMID: 40343270 PMCID: PMC12059699 DOI: 10.1016/j.isci.2025.112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/05/2025] [Accepted: 04/03/2025] [Indexed: 05/11/2025] Open
Abstract
RNA splicing modulators, a new class of small molecules with the potential to modify the protein expression levels, have quickly been translated into clinical trials. These compounds hold promise for treating neurodegenerative disorders, including branaplam for lowering huntingtin levels in Huntington's disease. However, the VIBRANT-HD trial was terminated due to the emergence of peripheral neuropathy. Here, we describe the complex mechanism whereby branaplam activates p53, induces nucleolar stress in human induced pluripotent stem cell (iPSC)-derived motor neurons (iPSC-MN), and thereby enhanced expression of the neurotoxic p53-target gene BBC3. On the cellular level, branaplam disrupts neurite integrity, reflected by elevated neurofilament light chain levels. These findings illustrate the complex pharmacology of RNA splicing modulators with a small therapeutic window between lowering huntingtin levels and the clinically relevant off-target effect of neuropathy. Comprehensive toxicological screening in human stem cell models can complement pre-clinical testing before advancing RNA-targeting drugs to clinical trials.
Collapse
Affiliation(s)
- Florian Krach
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Tom Boerstler
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Stephanie Neubert
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Laura Krumm
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Schwabachanlage 6, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
- Center for Rare Disorders (ZSEER), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Kussmaulallee 4, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
2
|
Yang G, Lv X, Wu W, Wang G, Yang M, Feng Y, Yan C, Liu M, Lin P. Novel POMT2 variants associated with limb-girdle muscular dystrophy R14: genetic, histological and functional studies. Orphanet J Rare Dis 2025; 20:99. [PMID: 40102912 PMCID: PMC11921505 DOI: 10.1186/s13023-025-03578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The POMT2 gene, which encodes protein O-mannosyltransferase 2, is essential for α-dystroglycan glycosylation. Variants in POMT2 cause various disorders, including the relatively rare presentation of limb-girdle muscular dystrophy R14 (LGMDR14). METHODS This study retrospectively analyzed the clinical, pathological, and genetic data of three LGMDR14 patients. And we investigated the pathogenic mechanisms of POMT2 variants through aberrant mRNA processing analysis and molecular dynamics simulations to assess their impact on protein structure and function. RESULTS We recruited three LGMDR14 patients from unrelated Chinese families, all presenting with adult-onset proximal muscle weakness. All of these patients showed a myopathic pattern on electromyography and decreased α-dystroglycan expression on muscle biopsy. One patient had severe cardiomyopathy and mild cognitive impairment. Genetic sequencing revealed compound heterozygous variants in the POMT2 gene in all three patients: c.1006 + 1G > A and c.295 C > T in patient 1, c.1261 C > T and c.700_701insCT in patient 2, and c.812 C > T and c.170G > A in patient 3. Variants c.700_701insCT, c.812 C > T, and c.170G > A are novel. Splicing and cDNA analysis revealed that the c.1006 + 1G > A variant could cause retention of the first 26 bp of intron 8 by inducing recognition of new donor splice sites. Pyrosequencing revealed that both frameshift variant c.700_701insCT and splicing variant c.1006 + 1G > A triggered a nonsense-mediated mRNA decay. Molecular dynamics indicated that c.1006 + 1G > A, c.700_701insCT, and c.170G > A variants could lead to truncated proteins, altering stability and function. CONCLUSIONS Our study summarizes the clinical, pathological and genetic characteristics of three adult-onset LGMDR14 patients, expanding the genetic spectrum of POMT2 variants. Moreover, the finding reinforces the impact of POMT2 splicing defects on mRNA regulation, and molecular dynamics simulations predict the structural consequences of POMT2 variants, providing additional evidence for their functional effects.
Collapse
Affiliation(s)
- Guiguan Yang
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaoqing Lv
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjing Wu
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Guangyu Wang
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Mengqi Yang
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Yifei Feng
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Chuanzhu Yan
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Meirong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu , China.
| | - Pengfei Lin
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Sharaf-Eldin W. Malformations of Core M3 on α-Dystroglycan Are the Leading Cause of Dystroglycanopathies. J Mol Neurosci 2025; 75:28. [PMID: 39998573 PMCID: PMC11861012 DOI: 10.1007/s12031-025-02320-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Dystroglycanopathies (DGPs) are a group of autosomal recessive neuromuscular diseases with significant clinical and genetic heterogeneity. They originate due to defects in the O-mannosyl glycosylation of α-dystroglycan (α-DG), a prominent linker between the intracellular cytoskeleton and the extracellular matrix (ECM). Fundamentally, such interactions are crucial for the integrity of muscle fibers and neuromuscular synapses, where their defects are mainly associated with muscle and brain dysfunction. To date, biallelic variants in 18 genes have been associated with DGPs, where the underlying cause is still undefined in a significant proportion of patients. Glycosylation of α-DG generates three core motifs where the core M3 is responsible for interaction with the basement membrane. Consistently, all gene defects that corrupt core M3 maturation have been identified as causes of DGPs. POMGNT1 which stimulates the generation of core M1 is also associated with DGPs, as it plays a central role in core M3 processing. Other genes involved in the glycosylation of α-DG seem unrelated to DPGs. The current review illustrates the O-mannosylation pathway of α-DG highlighting the functional properties of related genes and their contribution to the progression of DPGs. Different classes of DPGs are also elaborated characterizing the clinical features of each distinct type and phenotypes associated with each single gene. Finally, current therapeutic approaches with favorable outcomes are addressed. Potential achievements of preclinical and clinical studies would introduce effective curative therapies for this group of disorders in the near future.
Collapse
Affiliation(s)
- Wessam Sharaf-Eldin
- Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt.
| |
Collapse
|
4
|
Liu S, Su T, Xia X, Zhou ZH. Native DGC structure rationalizes muscular dystrophy-causing mutations. Nature 2025; 637:1261-1271. [PMID: 39663457 PMCID: PMC11936492 DOI: 10.1038/s41586-024-08324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder marked by progressive muscle wasting leading to premature mortality1,2. Discovery of the DMD gene encoding dystrophin both revealed the cause of DMD and helped identify a family of at least ten dystrophin-associated proteins at the muscle cell membrane, collectively forming the dystrophin-glycoprotein complex (DGC)3-9. The DGC links the extracellular matrix to the cytoskeleton, but, despite its importance, its molecular architecture has remained elusive. Here we determined the native cryo-electron microscopy structure of rabbit DGC and conducted biochemical analyses to reveal its intricate molecular configuration. An unexpected β-helix comprising β-, γ- and δ-sarcoglycan forms an extracellular platform that interacts with α-dystroglycan, β-dystroglycan and α-sarcoglycan, allowing α-dystroglycan to contact the extracellular matrix. In the membrane, sarcospan anchors β-dystroglycan to the β-, γ- and δ-sarcoglycan trimer, while in the cytoplasm, β-dystroglycan's juxtamembrane fragment binds dystrophin's ZZ domain. Through these interactions, the DGC links laminin 2 to intracellular actin. Additionally, dystrophin's WW domain, along with its EF-hand 1 domain, interacts with α-dystrobrevin. A disease-causing mutation mapping to the WW domain weakens this interaction, as confirmed by deletion of the WW domain in biochemical assays. Our findings rationalize more than 110 mutations affecting single residues associated with various muscular dystrophy subtypes and contribute to ongoing therapeutic developments, including protein restoration, upregulation of compensatory genes and gene replacement.
Collapse
Affiliation(s)
- Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiantian Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xian Xia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O'Connor CL, Brindley MA, Campbell KP, Lek M. Saturation mutagenesis-reinforced functional assays for disease-related genes. Cell 2024; 187:6707-6724.e22. [PMID: 39326416 PMCID: PMC11568926 DOI: 10.1016/j.cell.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/29/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods are obstacles for achieving genome-wide resolution of variants in disease-related genes. Our framework, saturation mutagenesis-reinforced functional assays (SMuRF), offers simple and cost-effective saturation mutagenesis paired with streamlined functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single-nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Overall, our approach enables variant-to-function insights for disease genes in a cost-effective manner that can be broadly implemented by standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Keryn G Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Rajasingham T, Rodriguez HM, Betz A, Sproule DM, Sinha U. Validation of a novel western blot assay to monitor patterns and levels of alpha dystroglycan in skeletal muscle of patients with limb girdle muscular dystrophies. J Muscle Res Cell Motil 2024; 45:123-138. [PMID: 38635147 PMCID: PMC11316722 DOI: 10.1007/s10974-024-09670-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
The cell membrane protein, dystroglycan, plays a crucial role in connecting the cytoskeleton of a variety of mammalian cells to the extracellular matrix. The α-subunit of dystroglycan (αDG) is characterized by a high level of glycosylation, including a unique O-mannosyl matriglycan. This specific glycosylation is essential for binding of αDG to extracellular matrix ligands effectively. A subset of muscular dystrophies, called dystroglycanopathies, are associated with aberrant, dysfunctional glycosylation of αDG. This defect prevents myocytes from attaching to the basal membrane, leading to contraction-induced injury. Here, we describe a novel Western blot (WB) assay for determining levels of αDG glycosylation in skeletal muscle tissue. The assay described involves extracting proteins from fine needle tibialis anterior (TA) biopsies and separation using SDS-PAGE followed by WB. Glycosylated and core αDG are then detected in a multiplexed format using fluorescent antibodies. A practical application of this assay is demonstrated with samples from normal donors and patients diagnosed with LGMD2I/R9. Quantitative analysis of the WB, which employed the use of a normal TA derived calibration curve, revealed significantly reduced levels of αDG in patient biopsies relative to unaffected TA. Importantly, the assay was able to distinguish between the L276I homozygous patients and a more severe form of clinical disease observed with other FKRP variants. Data demonstrating the accuracy and reliability of the assay are also presented, which further supports the potential utility of this novel assay to monitor changes in ⍺DG of TA muscle biopsies in the evaluation of potential therapeutics.
Collapse
Affiliation(s)
- Thulashitha Rajasingham
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA.
| | - Hector M Rodriguez
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Andreas Betz
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Douglas M Sproule
- Department of Clinical Development, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| | - Uma Sinha
- Department of Preclinical/Clinical Pharmacology, ML Bio Solutions, a BridgeBio company, Palo Alto, USA
| |
Collapse
|
7
|
Bekele BM, Gazzerro E, Schoenrath F, Falk V, Rost S, Hoerning S, Jelting Y, Zaum AK, Spuler S, Knierim J. Undetected Neuromuscular Disease in Patients after Heart Transplantation. Int J Mol Sci 2024; 25:7819. [PMID: 39063061 PMCID: PMC11277526 DOI: 10.3390/ijms25147819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Heart transplantation (HTX) improves the overall survival and functional status of end-stage heart failure patients with cardiomyopathies (CMPs). The majority of CMPs have genetic causes, and the overlap between CMPs and inherited myopathies is well documented. However, the long-term outcome in skeletal muscle function and possibility of an undiagnosed underlying genetic cause of both a cardiac and skeletal pathology remain unknown. (2) Thirty-nine patients were assessed using open and standardized interviews on muscle function, a quality-of-life (EuroQol EQ-5D-3L) questionnaire, and a physical examination (Medical Research Council Muscle scale). Whole-exome sequencing was completed in three stages for those with skeletal muscle weakness. (3) Seven patients (17.9%) reported new-onset muscle weakness and motor limitations. Objective muscle weakness in the upper and lower extremities was seen in four patients. In three of them, exome sequencing revealed pathogenic/likely pathogenic variants in the genes encoding nexilin, myosin heavy chain, titin, and SPG7. (4) Our findings support a positive long-term outcome of skeletal muscle function in HTX patients. However, 10% of patients showed clinical signs of myopathy due to a possible genetic cause. The integration of genetic testing and standardized neurological assessment of motor function during the peri-HTX period should be considered.
Collapse
Affiliation(s)
- Biniam Melese Bekele
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elisabetta Gazzerro
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
| | - Felix Schoenrath
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 13125 Berlin, Germany
| | - Volkmar Falk
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Deutsches Herzzentrum der Charité—Medical Heart Center of Charité and German Heart Institute Berlin, Department of Cardiothoracic and Vascular Surgery, Augustenburger Platz 1, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Berlin, 13125 Berlin, Germany
- Translational Cardiovascular Technologies, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Simone Rost
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Selina Hoerning
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Yvonne Jelting
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Ann-Kathrin Zaum
- Institute for Human Genetics, University of Würzburg, 97074 Würzburg, Germany
| | - Simone Spuler
- Muscle Research Unit, ECRC Experimental and Clinical Research Center, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; (B.M.B.); (E.G.)
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Knierim
- Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany (J.K.)
- Sana Paulinenkrankenhaus, Department of Internal Medicine and Cardiology, Dickensweg 25-39, 14055 Berlin, Germany
| |
Collapse
|
8
|
Ma K, Huang S, Ng KK, Lake NJ, Joseph S, Xu J, Lek A, Ge L, Woodman KG, Koczwara KE, Cohen J, Ho V, O’Connor CL, Brindley MA, Campbell KP, Lek M. Deep Mutational Scanning in Disease-related Genes with Saturation Mutagenesis-Reinforced Functional Assays (SMuRF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.12.548370. [PMID: 37873263 PMCID: PMC10592615 DOI: 10.1101/2023.07.12.548370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Interpretation of disease-causing genetic variants remains a challenge in human genetics. Current costs and complexity of deep mutational scanning methods hamper crowd-sourcing approaches toward genome-wide resolution of variants in disease-related genes. Our framework, Saturation Mutagenesis-Reinforced Functional assays (SMuRF), addresses these issues by offering simple and cost-effective saturation mutagenesis, as well as streamlining functional assays to enhance the interpretation of unresolved variants. Applying SMuRF to neuromuscular disease genes FKRP and LARGE1, we generated functional scores for all possible coding single nucleotide variants, which aid in resolving clinically reported variants of uncertain significance. SMuRF also demonstrates utility in predicting disease severity, resolving critical structural regions, and providing training datasets for the development of computational predictors. Our approach opens new directions for enabling variant-to-function insights for disease genes in a manner that is broadly useful for crowd-sourcing implementation across standard research laboratories.
Collapse
Affiliation(s)
- Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Shushu Huang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Kenneth K. Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Equal second authors
| | - Nicole J. Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Joseph
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Jenny Xu
- Yale University, New Haven, CT, USA
| | - Angela Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Muscular Dystrophy Association, Chicago, IL, USA
| | - Lin Ge
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, National Center for Children’s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Keryn G. Woodman
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Vincent Ho
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Melinda A. Brindley
- Department of Infectious Diseases, Department of Population Health, University of Georgia, Athens, GA, USA
- Senior Authors
| | - Kevin P. Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics and Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
- Senior Authors
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Senior Authors
- Lead Contact
| |
Collapse
|
9
|
Ghorbani Ranjbary A, Mehrzad J, Rahbar N, Dehghani H. Impacts of some clinicopathodemography and colorectal tissues key cell cycle and mucin stabilizing molecules on the metastasis trend in colorectal cancer patients. Mol Biol Rep 2023; 50:8589-8601. [PMID: 37644368 DOI: 10.1007/s11033-023-08766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND We aimed to evaluate the various clinicopathodemographical, epidemiological, and molecular contributors to cumulatively worldwide metastatic colorectal cancer (CRC) in CRC patients from a highly populated area in northeastern Iran to pinpoint metastasis risk. METHODS A retrospective clinical material-based cohort including a total of 6260 registered CRC patients, of whom 3829 underwent surgery, from regional university hospitals, during 2006-2016, were analyzed for the clinicopathodemographical aspects of age, sex, stage of CRC, history of smoking, type 2 diabetes (T2D), hypertension, body mass index (BMI), familial/occupational status, post-surgery survival period and mRNA/protein expression of mucin stabilizer (B3GALNT2), mucin I (MUC1), key cell cycle molecules (i.e., P53 and Ki67), and MMR-related genes. Factors were set to estimate the risk of metastatic CRC and mortality. RESULTS Predominant adenocarcinomatous CRCs were found in colon. Post-surgery survival period of metastatic CRC patients was remarkably longer in patients aged > 50 compared to those aged < 50 years, and worse in females than males. B3GALNT2high, MUChigh, P53low, and Ki67high mRNA/protein expression in the metastatic stage III CRC along with T2D and hypertension were associated with increased metastasis/mortality, with more worsening in males, older, BMI > 25, urban residing, and employed individuals, indicative of non-genetic attributable factors. CONCLUSION B3GALNT2, MUC1, and "Ki67" can be used as promising biomarkers for prognosis and early diagnosis of increasingly/predominantly non-genetic/environmental originated metastatic CRCs.
Collapse
Affiliation(s)
- Ali Ghorbani Ranjbary
- Department of Pathobiology, Section Biotechnology, Faculty of Veterinary Medicine, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Jalil Mehrzad
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Nasrollah Rahbar
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hesam Dehghani
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
- Stem Cells and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
11
|
Dai T, Li J, Liang RB, Yu H, Lu X, Wang G. Identification and Experimental Validation of the Prognostic Significance and Immunological Correlation of Glycosylation-Related Signature and ST6GALNAC4 in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2023; 10:531-551. [PMID: 37034303 PMCID: PMC10081533 DOI: 10.2147/jhc.s400472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
PURPOSE Glycosylation has been demonstrated to be involved in tumorigenesis, progression, and immunoregulation, and to present specific profiles in different tumors. In this study, we aimed to explore the specific glycosylation-related gene (GRG) signature and its potential immunological roles and prognostic implications in hepatocellular carcinoma (HCC). PATIENTS AND METHODS The GRG expression profile was defined using the transcriptome data from The Cancer Genome Atlas and Gene Expression Omnibus. Univariate and the least absolute shrinkage and selection operator Cox analyses were performed to develop a GRG-based risk score model. A nomogram was subsequently established and validated. Its correlation with cancer immune microenvironment and drug susceptibility was further analyzed. The role and immunological correlation of ST6GALNAC4 were further experimentally validated at the tissue and cellular levels in HCC. RESULTS A total of 87 GRGs were identified to be significantly dysregulated in HCC, and a novel risk score model was constructed using eight critical GRGs, which demonstrated superior prognostic discrimination and predictive power in both training and validation groups. High risk scores in HCC patients were associated with lower OS. The model was also identified as an independent risk factor for HCC, and a novel nomogram was subsequently constructed and validated. Notably, significant correlations were found in risk scores with immune cells infiltration, tumor immunophenotyping, immune checkpoint genes' expression, and sensitivities to multiple drugs. Furthermore, we validated in local HCC samples that ST6GALNAC4 was significantly upregulated and its knockdown significantly inhibited the tumor proliferation, migration and invasion ability and affected the expression of immune checkpoints on hepatoma cells. CONCLUSION We identified a novel GRG-based model which showed significant prognostic and immunological correlations in HCC, and the oncogenic role of ST6GALNAC4 has been validated and may serve as a potential drug target.
Collapse
Affiliation(s)
- Tianxing Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People’s Republic of China
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People’s Republic of China
| | - Jing Li
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, People’s Republic of China
| | - Run-Bin Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People’s Republic of China
| | - Haoyuan Yu
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People’s Republic of China
| | - Xu Lu
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People’s Republic of China
| | - Guoying Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, People’s Republic of China
- Department of Hepatic Surgery and Liver Transplant Program, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, People’s Republic of China
| |
Collapse
|
12
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
13
|
Zhao X, Gao C, Li L, Jiang L, Wei Y, Che F, Liu Q. Clinical exome sequencing identifies novel compound heterozygous mutations of the POMT2 gene in patients with limb-girdle muscular dystrophy. Int J Dev Neurosci 2023; 83:23-30. [PMID: 36217604 DOI: 10.1002/jdn.10233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE Mutations in protein O-mannosyltransferase 2 (POMT2) (MIM#607439) have been identified in severe congenital muscular dystrophy such as Walker-Warburg syndrome (WWS) and milder limb-girdle muscular dystrophy type 2N (LGMD2N). The aim of this study is to investigate the genetic causes in patients with LGMD2N. METHODS Three patients diagnosed with mild limb-girdle muscular dystrophy were recruited. The genetically pathogenic variant was identified by clinical exome sequencing, and healthy controls were verified by Sanger sequencing. RESULTS Novel compound heterozygous mutations c.800A > G and c.1074_1075delinsAT of POMT2 were revealed in one affected individual by clinical exome sequencing. There was no report of these two variants and predicted to be highly damaging to the function of the POMT2. CONCLUSION The novel variants extend the spectrum of POMT2 mutations, which promotes the prognostic value of testing for POMT2 mutations in patients with LGMD2N.
Collapse
Affiliation(s)
- Xiangyu Zhao
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Chunhai Gao
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Lin Li
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Liangqian Jiang
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Yuda Wei
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, China
| | - Fengyuan Che
- Department of Central Laboratory, Linyi People's Hospital, Shandong University, Linyi, China.,Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Du S, Zhu C, Ren X, Chen X, Cui X, Guan S. Regulation of secretory pathway kinase or kinase-like proteins in human cancers. Front Immunol 2023; 14:942849. [PMID: 36825005 PMCID: PMC9941534 DOI: 10.3389/fimmu.2023.942849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Secretory pathway kinase or kinase-like proteins (SPKKPs) are effective in the lumen of the endoplasmic reticulum (ER), Golgi apparatus (GA), and extracellular space. These proteins are involved in secretory signaling pathways and are distinctive from typical protein kinases. Various reports have shown that SPKKPs regulate the tumorigenesis and progression of human cancer via the phosphorylation of various substrates, which is essential in physiological and pathological processes. Emerging evidence has revealed that the expression of SPKKPs in human cancers is regulated by multiple factors. This review summarizes the current understanding of the contribution of SPKKPs in tumorigenesis and the progression of immunity. With the epidemic trend of immunotherapy, targeting SPKKPs may be a novel approach to anticancer therapy. This study briefly discusses the recent advances regarding SPKKPs.
Collapse
Affiliation(s)
- Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Structural basis for matriglycan synthesis by the LARGE1 dual glycosyltransferase. PLoS One 2022; 17:e0278713. [PMID: 36512577 PMCID: PMC9746966 DOI: 10.1371/journal.pone.0278713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
LARGE1 is a bifunctional glycosyltransferase responsible for generating a long linear polysaccharide termed matriglycan that links the cytoskeleton and the extracellular matrix and is required for proper muscle function. This matriglycan polymer is made with an alternating pattern of xylose and glucuronic acid monomers. Mutations in the LARGE1 gene have been shown to cause life-threatening dystroglycanopathies through the inhibition of matriglycan synthesis. Despite its major role in muscle maintenance, the structure of the LARGE1 enzyme and how it assembles in the Golgi are unknown. Here we present the structure of LARGE1, obtained by a combination of X-ray crystallography and single-particle cryo-EM. We found that LARGE1 homo-dimerizes in a configuration that is dictated by its coiled-coil stem domain. The structure shows that this enzyme has two canonical GT-A folds within each of its catalytic domains. In the context of its dimeric structure, the two types of catalytic domains are brought into close proximity from opposing monomers to allow efficient shuttling of the substrates between the two domains. Together, with putative retention of matriglycan by electrostatic interactions, this dimeric organization offers a possible mechanism for the ability of LARGE1 to synthesize long matriglycan chains. The structural information further reveals the mechanisms in which disease-causing mutations disrupt the activity of LARGE1. Collectively, these data shed light on how matriglycan is synthesized alongside the functional significance of glycosyltransferase oligomerization.
Collapse
|
16
|
Nagy S, Lau T, Alavi S, Karimiani EG, Vallian J, Ng BG, Noroozi Asl S, Akhondian J, Bahreini A, Yaghini O, Uapinyoying P, Bonnemann C, Freeze HH, Dissanayake VHW, Sirisena ND, Schmidts M, Houlden H, Moreno‐De‐Luca A, Maroofian R. A recurrent homozygous missense DPM3 variant leads to muscle and brain disease. Clin Genet 2022; 102:530-536. [PMID: 35932216 PMCID: PMC9633384 DOI: 10.1111/cge.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/02/2022] [Indexed: 01/05/2023]
Abstract
Biallelic pathogenic variants in the genes encoding the dolichol-phosphate mannose synthase subunits (DPM) which produce mannosyl donors for glycosylphosphatidylinositols, N-glycan and protein O- and C-mannosylation, are rare causes of congenital disorders of glycosylation. Pathogenic variants in DPM1 and DPM2 are associated with muscle-eye-brain (MEB) disease, whereas DPM3 variants have mostly been reported in patients with isolated muscle disease-dystroglycanopathy. Thus far, only one affected individual with compound heterozygous DPM3 variants presenting with myopathy, mild intellectual disability, seizures, and nonspecific white matter abnormalities (WMA) around the lateral ventricles has been described. Here we present five affected individuals from four unrelated families with global developmental delay/intellectual disability ranging from mild to severe, microcephaly, seizures, WMA, muscle weakness and variable cardiomyopathy. Exome sequencing of the probands revealed an ultra-rare homozygous pathogenic missense DPM3 variant NM_018973.4:c.221A>G, p.(Tyr74Cys) which segregated with the phenotype in all families. Haplotype analysis indicated that the variant arose independently in three families. Functional analysis did not reveal any alteration in the N-glycosylation pathway caused by the variant; however, this does not exclude its pathogenicity in the function of the DPM complex and related cellular pathways. This report provides supporting evidence that, besides DPM1 and DPM2, defects in DPM3 can also lead to a muscle and brain phenotype.
Collapse
Affiliation(s)
- Sara Nagy
- MRC Centre for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK,Department of NeurologyUniversity Hospital Basel, University of BaselBaselSwitzerland
| | - Tracy Lau
- MRC Centre for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Shahryar Alavi
- Division of Genetics, Department of Cellular and Molecular Biology and Microbiology, Faculty of Science and TechnologyUniversity of IsfahanIsfahanIran
| | | | - Jalal Vallian
- Division of Genetics, Department of Cellular and Molecular Biology and Microbiology, Faculty of Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Bobby G. Ng
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Samaneh Noroozi Asl
- Pediatrics Endocrinology DepartmentMashhad University of Medical SciencesMashhadIran
| | - Javad Akhondian
- Pediatric Neurology DepartmentGhaem hospital, Mashhad University of Medical SciencesMashhadIran
| | - Amir Bahreini
- Karyogen Medical Genetics LaboratoryAlzahra UniversityIsfahanIran
| | - Omid Yaghini
- Child Growth and Development Research CenterResearch Institute for Primordial Prevention of Non‐Communicable Disease, Isfahan University of Medical SciencesIsfahanIran
| | - Prech Uapinyoying
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Carsten Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood SectionNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Hudson H. Freeze
- Human Genetics ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaCaliforniaUSA
| | - Vajira H. W. Dissanayake
- Department of Anatomy, Genetics & Biomedical Informatics, Faculty of MedicineUniversity of ColomboColomboSri Lanka
| | - Nirmala D. Sirisena
- Department of Anatomy, Genetics & Biomedical Informatics, Faculty of MedicineUniversity of ColomboColomboSri Lanka
| | - Miriam Schmidts
- Department of Pediatrics and Adolescent MedicineUniversity Hospital Freiburg, Freiburg University Faculty of MedicineGermany
| | - Henry Houlden
- MRC Centre for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| | - Andres Moreno‐De‐Luca
- Autism & Developmental Medicine Institute, Genomic Medicine Institute, Department of RadiologyDiagnostic Medicine InstituteDanvillePennsylvaniaUSA
| | - Reza Maroofian
- MRC Centre for Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUK
| |
Collapse
|
17
|
Li M, Fu H, Li J, Meng D, Zhang Q, Fei D. Compound variants of FKTN, POMGNT1, and LAMB1 gene identified by prenatal whole-exome sequencing in three fetuses with congenital hydrocephalus. J Obstet Gynaecol Res 2022; 48:2624-2629. [PMID: 35843586 PMCID: PMC9796612 DOI: 10.1111/jog.15358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/06/2022] [Accepted: 06/26/2022] [Indexed: 01/14/2023]
Abstract
Congenital hydrocephalus (CH) is a severe birth defect, and genetics components is an important etiology. Whole-exome sequencing (WES) has been proven to be a feasible approach for prenatal diagnosis of CH. In this study, we carried out WES on three fetuses with cerebral ventriculomegaly. After bioinformation analysis and data filtering, three compound variants, c.919C>T(p.Arg307Ter)/c.1100del(p.Phe369fs) in FKTN, c.1449_1450insACAACG/c.1490G>C(p.Arg497Pro) in POMGNT1, and c.2690+1G>A/c.1447C>T(p.Arg483Cys) in LAMB1 were detected in the three fetuses. All the six variants were classified as likely pathogenic or pathogenic in accordance with the American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. This study provides support for the potential of WES for the accurate prenatal diagnosis of fetal hydrocephalus and further demonstrated the genetic heterogeneity in patients with CH. The novel variants (c.1449_1450insACAACG and c.1490G>C in POMGNT1, c.2690+1G>A in LAMB1) expanded the gene mutational spectrum of CH and contributes to genetics counseling and pregnancy management.
Collapse
Affiliation(s)
- Meng Li
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
- Department of Clinical GeneticsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Huayu Fu
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
- Department of Clinical GeneticsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Jiao Li
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
- Department of Clinical GeneticsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Dahua Meng
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
- Department of Clinical GeneticsMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Qiang Zhang
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| | - Dongmei Fei
- Guangxi Center for Birth Defects Research and PreventionMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
- Department of Genetic and Metabolic Central LaboratoryMaternal and Child Health Hospital of Guangxi Zhuang Autonomous RegionNanningGuangxiP.R. China
| |
Collapse
|
18
|
Ganassi M, Muntoni F, Zammit PS. Defining and identifying satellite cell-opathies within muscular dystrophies and myopathies. Exp Cell Res 2022; 411:112906. [PMID: 34740639 PMCID: PMC8784828 DOI: 10.1016/j.yexcr.2021.112906] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022]
Abstract
Muscular dystrophies and congenital myopathies arise from specific genetic mutations causing skeletal muscle weakness that reduces quality of life. Muscle health relies on resident muscle stem cells called satellite cells, which enable life-course muscle growth, maintenance, repair and regeneration. Such tuned plasticity gradually diminishes in muscle diseases, suggesting compromised satellite cell function. A central issue however, is whether the pathogenic mutation perturbs satellite cell function directly and/or indirectly via an increasingly hostile microenvironment as disease progresses. Here, we explore the effects on satellite cell function of pathogenic mutations in genes (myopathogenes) that associate with muscle disorders, to evaluate clinical and muscle pathological hallmarks that define dysfunctional satellite cells. We deploy transcriptomic analysis and comparison between muscular dystrophies and myopathies to determine the contribution of satellite cell dysfunction using literature, expression dynamics of myopathogenes and their response to the satellite cell regulator PAX7. Our multimodal approach extends current pathological classifications to define Satellite Cell-opathies: muscle disorders in which satellite cell dysfunction contributes to pathology. Primary Satellite Cell-opathies are conditions where mutations in a myopathogene directly affect satellite cell function, such as in Progressive Congenital Myopathy with Scoliosis (MYOSCO) and Carey-Fineman-Ziter Syndrome (CFZS). Primary satellite cell-opathies are generally characterised as being congenital with general hypotonia, and specific involvement of respiratory, trunk and facial muscles, although serum CK levels are usually within the normal range. Secondary Satellite Cell-opathies have mutations in myopathogenes that affect both satellite cells and muscle fibres. Such classification aids diagnosis and predicting probable disease course, as well as informing on treatment and therapeutic development.
Collapse
Affiliation(s)
- Massimo Ganassi
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom; NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London, WC1N 1EH, United Kingdom
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
19
|
Gan S, Yang H, Xiao T, Pan Z, Wu L. POMT1 and POMT2 gene mutations result in 2 cases of alpha-dystroglycanopathy. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:915-919. [PMID: 34565739 PMCID: PMC10929972 DOI: 10.11817/j.issn.1672-7347.2021.200067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Indexed: 11/03/2022]
Abstract
Alpha-dystroglycanopathy (α-DGP) is a group of congenital muscular dystrophy and limb band muscular dystrophy caused by abnormal glycosylation of α-dystroglycan (α-DG). At present, there are few studies on the clinical manifestations, genetic characteristics, and diagnostic methods for α-DGP in China. Two cases of α-DGP caused by POMT1 and POMT2 gene mutations in the protein O-mannosyltransferases (PMTs) family were admitted to the Department of Pediatrics, Xiangya Hospital, Central South University. The 2 patients showed exercise retardation, with or without mental retardation. Serum level of creatine kinase (CK) was increased significantly. Electromyography showed myogenic impairment. Muscle biopsy was consistent with myopathy. Genetic test showed that both patients had compound heterozygous mutations, and the parents of the 2 patients were heterozygous with one of the mutations. There were c.824+1G>A, splicing and c.1777G>A, p.A593T in POMT1 gene, and c.604T>G, p.F202V and c.868C>T, p.P290S in POMT2 gene. The online database was used to predict the mutation sites and suggested the pathogenicity. Finally, one patient was diagnosed as congenital muscular dystrophy with mental retardation (CMD-MR) and the other was dystrophytype 2N (LGMD2N). PMTs family has similar sequences. Gene mutations can lead to different degrees of muscular dystrophy with the increase of serum level of CK. α-DG is easy to be misdiagnosed. Genetic examination is beneficial to early diagnosis, prognosis, and genetic counseling.
Collapse
Affiliation(s)
- Siyi Gan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Haiyan Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zou Pan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
20
|
Chen XY, Song DY, Jiang L, Tan DD, Liu YD, Liu JY, Chang XZ, Xing GG, Toda T, Xiong H. Phenotype and Genotype Study of Chinese POMT2-Related α-Dystroglycanopathy. Front Genet 2021; 12:692479. [PMID: 34413876 PMCID: PMC8370027 DOI: 10.3389/fgene.2021.692479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/09/2021] [Indexed: 11/25/2022] Open
Abstract
Objective Alpha-dystroglycanopathy (α-DGP) is a subtype of muscular dystrophy caused by defects in the posttranslational glycosylation of α-dystroglycan (α-DG). Our study aimed to summarize the clinical and genetic features of POMT2-related α-DGP in a cohort of patients in China. Methods Pedigrees, clinical data, and laboratory tests of patients diagnosed with POMT2-related α-DGP were analyzed retrospectively. The pathogenicity of variants in POMT2 were predicted by bioinformatics software. The variants with uncertain significance were verified by further analysis. Results The 11 patients, comprising eight males and three females, were from nine non-consanguineous families. They exhibited different degrees of muscle weakness, ambulation, and intellectual impairment. Among them, three had a muscle-eye-brain disease (MEB)-like phenotype, five presented congenital muscular dystrophy with intellectual disability (CMD-ID), and three presented limb-girdle muscular dystrophy (LGMD). Overall, nine novel variants of POMT2, including two non-sense, one frameshift and six missense variants, were identified. The pathogenicity of two missense variants, c.1891G > C and c.874G > C, was uncertain based on bioinformatics software prediction. In vitro minigene analysis showed that c.1891G > C affects the splicing of POMT2. Immunofluorescence staining with the IIH6C4 antibody of muscle biopsy from the patient carrying the c.874G > C variant showed an apparent lack of expression. Conclusion This study summarizes the clinical and genetic characteristics of a cohort of POMT2-related α-DGP patients in China for the first time, expanding the mutational spectrum of the disease. Further study of the pathogenicity of some missense variants based on enzyme activity detection is needed.
Collapse
Affiliation(s)
- Xiao-Yu Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dan-Yu Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dan-Dan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi-Dan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jie-Yu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xing-Zhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Guo-Gang Xing
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
21
|
Yang M, Xing RX. Homozygous deletion, c. 1114-1116del, in exon 8 of the CRPPA gene causes congenital muscular dystrophy in Chinese family: A case report. World J Clin Cases 2021; 9:5226-5231. [PMID: 34307571 PMCID: PMC8283581 DOI: 10.12998/wjcc.v9.i19.5226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Congenital muscular dystrophy (CMD) is a clinically and genetically heterogeneous group of inherited muscle disorders. Mutations in the CRPPA gene (encoding CDPLribitol pyrophosphorylase A) are recognized as causative factors of dystroglycanopathies, a subtype of CMD with defects in glycosylation.
CASE SUMMARY The present study examined a Chinese family, whose proband presented mainly with muscle weakness in both lower limbs but without brain and eye symptoms. In this family, a homozygous deletion, c. 1114-1116del (p.V372del), was identified in exon 8 of CRPPA in the proband, while a heterozygous deletion was identified in the proband’s father and mother, who lacked symptoms. A mild dystroglycanopathy of CMD was diagnosed.
CONCLUSION The findings of this study expanded the clinical and mutational spectrum of patients with CMD associated with CRPPA mutations.
Collapse
Affiliation(s)
- Mi Yang
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Ru-Xin Xing
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| |
Collapse
|
22
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
23
|
Warman-Chardon J, Jasmin BJ, Kothary R, Parks RJ. Report on the 5th Ottawa International Conference on Neuromuscular Disease & Biology -October 17-19, 2019, Ottawa, Canada. J Neuromuscul Dis 2021; 8:323-334. [PMID: 33492242 DOI: 10.3233/jnd-219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Rashmi Kothary
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Robin J Parks
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| |
Collapse
|
24
|
Song D, Dai Y, Chen X, Fu X, Chang X, Wang N, Zhang C, Yan C, Zheng H, Wu L, Jiang L, Hua Y, Yang H, Wang Z, Dai T, Zhu W, Han C, Yuan Y, Kobayashi K, Toda T, Xiong H. Genetic variations and clinical spectrum of dystroglycanopathy in a large cohort of Chinese patients. Clin Genet 2021; 99:384-395. [PMID: 33200426 DOI: 10.1111/cge.13886] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/27/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022]
Abstract
Dystroglycanopathy is a group of muscular dystrophies with deficient glycosylation of alpha-dystroglycan (α-DG). We recruited patients from 36 tertiary academic hospitals in China. In total, 143 patients with genetically diagnosed dystroglycanopathy were enrolled. Of these, limb girdle muscular dystrophy was the most common initial diagnosis (83 patients) and Walker-Warburg syndrome was the least common (1 patient). In 143 patients, mutations in FKRP gene were the most prevalent (62 patients), followed by POMT2, POMT1 (16), POMGNT1, ISPD (14), FKTN, GMPPB, B3GALNT2, DPM3, and DAG1. Several frequent mutations were identified in FKRP, POMT1, POMGNT1, ISPD, and FKTN genes. Many of these were founder mutations. Patients with FKRP mutations tended to have milder phenotypes, while those with mutations in POMGNT1 genes had more severe phenotypes. Mental retardation was a clinical feature associated with mutations of POMT1 gene. Detailed clinical data of 83 patients followed up in Peking University First Hospital were further analyzed. Our clinical and genetic analysis of a large cohort of Chinese patients with dystroglycanopathy expanded the genotype variation and clinical spectrum of congenital muscular dystrophies.
Collapse
Affiliation(s)
- Danyu Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiaona Fu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Cheng Zhang
- Department of Neurology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Hong Zheng
- Department of Pediatrics, the First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Hua
- Department of Neurology, Wuxi Children's Hospital, Wuxi, China
| | - Haipo Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zhiqiang Wang
- Department of Neurology and Institute of Neurology, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tingjun Dai
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chunxi Han
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Kazuhiro Kobayashi
- Division of Neurology/Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
25
|
Zaganas I, Mastorodemos V, Spilioti M, Mathioudakis L, Latsoudis H, Michaelidou K, Kotzamani D, Notas K, Dimitrakopoulos K, Skoula I, Ioannidis S, Klothaki E, Erimaki S, Stavropoulos G, Vassilikos V, Amoiridis G, Efthimiadis G, Evangeliou A, Mitsias P. Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients. Mol Genet Metab Rep 2020; 25:100682. [PMID: 33304817 PMCID: PMC7711282 DOI: 10.1016/j.ymgmr.2020.100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inherited muscle disorders are caused by pathogenic changes in numerous genes. Herein, we aimed to investigate the etiology of muscle disease in 24 consecutive Greek patients with myopathy suspected to be genetic in origin, based on clinical presentation and laboratory and electrophysiological findings and absence of known acquired causes of myopathy. Of these, 16 patients (8 females, median 24 years-old, range 7 to 67 years-old) were diagnosed by Whole Exome Sequencing as suffering from a specific type of inherited muscle disorder. Specifically, we have identified causative variants in 6 limb-girdle muscular dystrophy genes (6 patients; ANO5, CAPN3, DYSF, ISPD, LAMA2, SGCA), 3 metabolic myopathy genes (4 patients; CPT2, ETFDH, GAA), 1 congenital myotonia gene (1 patient; CLCN1), 1 mitochondrial myopathy gene (1 patient; MT-TE) and 3 other myopathy-associated genes (4 patients; CAV3, LMNA, MYOT). In 6 additional family members affected by myopathy, we reached genetic diagnosis following identification of a causative variant in an index patient. In our patients, genetic diagnosis ended a lengthy diagnostic process and, in the case of Multiple acyl-CoA dehydrogenase deficiency and Pompe's disease, it enabled specific treatment to be initiated. These results further expand the genotypic and phenotypic spectrum of inherited myopathies.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | | | - Martha Spilioti
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Notas
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Irene Skoula
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stefanos Ioannidis
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Eirini Klothaki
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Sophia Erimaki
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Stavropoulos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Vassilikos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Amoiridis
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Efthimiadis
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Evangeliou
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Mitsias
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
- Department of Neurology, Henry Ford Hospital/Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
26
|
Imaging phenotype correlation with molecular and molecular pathway defects in malformations of cortical development. Pediatr Radiol 2020; 50:1974-1987. [PMID: 33252763 DOI: 10.1007/s00247-020-04674-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/23/2020] [Accepted: 03/31/2020] [Indexed: 10/22/2022]
Abstract
The increase in understanding of molecular biology and recent advances in genetic testing have caused rapid growth in knowledge of genetic causes of malformations of cortical development. Imaging diagnosis of malformations of cortical development can be made prenatally in a large subset of fetuses based on the presence of specific deviations from the normal pattern of development, characteristic imaging features, and associated non-central-nervous-system (CNS) abnormalities. In this review the authors discuss the role of four key cell molecules/molecular pathways in corticogenesis that are frequently implicated in complex prenatally diagnosed malformations of cortical development. The authors also list the currently described genes causing defects in these molecules/molecular pathways when mutated, and the constellation of imaging findings resultant of such defects.
Collapse
|
27
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
28
|
Paul L, Rupprich K, Della Marina A, Stein A, Elgizouli M, Kaiser FJ, Schweiger B, Köninger A, Iannaccone A, Hehr U, Kölbel H, Roos A, Schara-Schmidt U, Kuechler A. Further evidence for POMK as candidate gene for WWS with meningoencephalocele. Orphanet J Rare Dis 2020; 15:242. [PMID: 32907597 PMCID: PMC7488248 DOI: 10.1186/s13023-020-01454-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Walker-Warburg syndrome (WWS) is a rare form of alpha-dystroglycanopathy characterized by muscular dystrophy and severe malformations of the CNS and eyes. Bi-allelic pathogenic variants in POMK are the cause of a broad spectrum of alpha-dystroglycanopathies. POMK encodes protein-O-mannose kinase, which is required for proper glycosylation and function of the dystroglycan complex and is crucial for extracellular matrix composition. Results Here, we report on male monozygotic twins with severe CNS malformations (hydrocephalus, cortical malformation, hypoplastic cerebellum, and most prominently occipital meningocele), eye malformations and highly elevated creatine kinase, indicating the clinical diagnosis of a congenital muscular dystrophy (alpha-dystroglycanopathy). Both twins were found to harbor a homozygous nonsense mutation c.640C>T, p.214* in POMK, confirming the clinical diagnosis and supporting the concept that POMK mutations can be causative of WWS. Conclusion Our combined data suggest a more important role for POMK in the pathogenesis of meningoencephalocele. Only eight different pathogenic POMK variants have been published so far, detected in eight families; only five showed the severe WWS phenotype, suggesting that POMK-associated WWS is an extremely rare disease. We expand the phenotypic and mutational spectrum of POMK-associated WWS and provide evidence of the broad phenotypic variability of POMK-associated disease.
Collapse
Affiliation(s)
- Luisa Paul
- Department of Pediatric Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Katrin Rupprich
- Department of Pediatric Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Adela Della Marina
- Department of Pediatric Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Anja Stein
- Department of General Pediatrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Magdeldin Elgizouli
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Frank J Kaiser
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Bernd Schweiger
- Department of Radiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Angela Köninger
- Department of Obestetrics and Gynaecology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Antonella Iannaccone
- Department of Obestetrics and Gynaecology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ute Hehr
- Center for Human Genetics, Regensburg, Germany / Department of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Heike Kölbel
- Department of Pediatric Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Roos
- Department of Pediatric Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institute of Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
29
|
Arreguin AJ, Colognato H. Brain Dysfunction in LAMA2-Related Congenital Muscular Dystrophy: Lessons From Human Case Reports and Mouse Models. Front Mol Neurosci 2020; 13:118. [PMID: 32792907 PMCID: PMC7390928 DOI: 10.3389/fnmol.2020.00118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/26/2022] Open
Abstract
Laminin α2 gene (LAMA2)-related Congenital Muscular Dystrophy (CMD) was distinguished by a defining central nervous system (CNS) abnormality—aberrant white matter signals by MRI—when first described in the 1990s. In the past 25 years, researchers and clinicians have expanded our knowledge of brain involvement in LAMA2-related CMD, also known as Congenital Muscular Dystrophy Type 1A (MDC1A). Neurological changes in MDC1A can be structural, including lissencephaly and agyria, as well as functional, including epilepsy and intellectual disability. Mouse models of MDC1A include both spontaneous and targeted LAMA2 mutations and range from a partial loss of LAMA2 function (e.g., dy2J/dy2J), to a complete loss of LAMA2 expression (dy3K/dy3K). Diverse cellular and molecular changes have been reported in the brains of MDC1A mouse models, including blood-brain barrier dysfunction, altered neuro- and gliogenesis, changes in synaptic plasticity, and decreased myelination, providing mechanistic insight into potential neurological dysfunction in MDC1A. In this review article, we discuss selected studies that illustrate the potential scope and complexity of disturbances in brain development in MDC1A, and as well as highlight mechanistic insights that are emerging from mouse models.
Collapse
Affiliation(s)
- Andrea J Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States.,Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
30
|
Winder TL, Tan CA, Klemm S, White H, Westbrook JM, Wang JZ, Entezam A, Truty R, Nussbaum RL, McNally EM, Aradhya S. Clinical utility of multigene analysis in over 25,000 patients with neuromuscular disorders. NEUROLOGY-GENETICS 2020; 6:e412. [PMID: 32337338 PMCID: PMC7164976 DOI: 10.1212/nxg.0000000000000412] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/30/2019] [Indexed: 11/29/2022]
Abstract
Objective Molecular genetic testing for hereditary neuromuscular disorders is increasingly used to identify disease subtypes, determine prevalence, and inform management and prognosis, and although many small disease-specific studies have demonstrated the utility of genetic testing, comprehensive data sets are better positioned to assess the complexity of genetic analysis. Methods Using high depth-of-coverage next-generation sequencing (NGS) with simultaneous detection of sequence variants and copy number variants (CNVs), we tested 25,356 unrelated individuals for subsets of 266 genes. Results A definitive molecular diagnosis was obtained in 20% of this cohort, with yields ranging from 4% among individuals with congenital myasthenic syndrome to 33% among those with a muscular dystrophy. CNVs accounted for as much as 39% of all clinically significant variants, with 10% of them occurring as rare, private pathogenic variants. Multigene testing successfully addressed differential diagnoses in at least 6% of individuals with positive results. Even for classic disorders like Duchenne muscular dystrophy, at least 49% of clinically significant results were identified through gene panels intended for differential diagnoses rather than through single-gene analysis. Variants of uncertain significance (VUS) were observed in 53% of individuals. Only 0.7% of these variants were later reclassified as clinically significant, most commonly in RYR1, GDAP1, SPAST, and MFN2, providing insight into the types of evidence that support VUS resolution and informing expectations of reclassification rates. Conclusions These data provide guidance for clinicians using genetic testing to diagnose neuromuscular disorders and represent one of the largest studies demonstrating the utility of NGS-based testing for these disorders.
Collapse
Affiliation(s)
- Thomas L Winder
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Christopher A Tan
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Sarah Klemm
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Hannah White
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Jody M Westbrook
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - James Z Wang
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Ali Entezam
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Rebecca Truty
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Robert L Nussbaum
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Elizabeth M McNally
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| | - Swaroop Aradhya
- Invitae Corporation (T.L.W., C.A.T., S.K., H.W., J.M.W., J.Z.W., A.E., R.T., R.L.N., S.A.), San Francisco, CA; Volunteer Faculty (R.L.N.), University of California, San Francisco; and Center for Genetic Medicine (E.M.M.), Northwestern University, Evanston, IL
| |
Collapse
|
31
|
Bevilacqua JA, Guecaimburu Ehuletche MDR, Perna A, Dubrovsky A, Franca MC, Vargas S, Hegde M, Claeys KG, Straub V, Daba N, Faria R, Periquet M, Sparks S, Thibault N, Araujo R. The Latin American experience with a next generation sequencing genetic panel for recessive limb-girdle muscular weakness and Pompe disease. Orphanet J Rare Dis 2020; 15:11. [PMID: 31931849 PMCID: PMC6958675 DOI: 10.1186/s13023-019-1291-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023] Open
Abstract
Background Limb-girdle muscular dystrophy (LGMD) is a group of neuromuscular disorders of heterogeneous genetic etiology with more than 30 directly related genes. LGMD is characterized by progressive muscle weakness involving the shoulder and pelvic girdles. An important differential diagnosis among patients presenting with proximal muscle weakness (PMW) is late-onset Pompe disease (LOPD), a rare neuromuscular glycogen storage disorder, which often presents with early respiratory insufficiency in addition to PMW. Patients with PMW, with or without respiratory symptoms, were included in this study of Latin American patients to evaluate the profile of variants for the included genes related to LGMD recessive (R) and LOPD and the frequency of variants in each gene among this patient population. Results Over 20 institutions across Latin America (Brazil, Argentina, Peru, Ecuador, Mexico, and Chile) enrolled 2103 individuals during 2016 and 2017. Nine autosomal recessive LGMDs and Pompe disease were investigated in a 10-gene panel (ANO5, CAPN3, DYSF, FKRP, GAA, SGCA, SGCB, SGCD, SGCG, TCAP) based on reported disease frequency in Latin America. Sequencing was performed with Illumina’s NextSeq500 and variants were classified according to ACMG guidelines; pathogenic and likely pathogenic were treated as one category (P) and variants of unknown significance (VUS) are described. Genetic variants were identified in 55.8% of patients, with 16% receiving a definitive molecular diagnosis; 39.8% had VUS. Nine patients were identified with Pompe disease. Conclusions The results demonstrate the effectiveness of this targeted genetic panel and the importance of including Pompe disease in the differential diagnosis for patients presenting with PMW.
Collapse
Affiliation(s)
- Jorge A Bevilacqua
- Departamento de Neurología y Neurocirugía, Hospital Clínico, Universidad de Chile, Santiago, Chile.,Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Neurocirugía, Clínica Dávila, Santiago, Chile
| | | | - Abayuba Perna
- Institute of Neurology, Hospital de Clínicas, School of Medicine, UDELAR, Montevideo, Uruguay
| | - Alberto Dubrovsky
- Institute of Neuroscience, Favaloro Foundation, Buenos Aires, Argentina
| | - Marcondes C Franca
- Department of Neurology, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Steven Vargas
- Center of Neurology and Neurosurgery, Mexico City, Mexico
| | - Madhuri Hegde
- Global Laboratory Services, Diagnostics, PerkinElmer, Waltham, MA, USA
| | - Kristl G Claeys
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium.,Laboratory for Muscle Diseases and Neuropathies, Department of Neurosciences, KU Leuven, Campus Gasthuisberg, Leuven, Belgium
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
32
|
Xu C, Zhang M, Bian L, Li Y, Yao Y, Li D. N-glycosylated SGK196 suppresses the metastasis of basal-like breast cancer cells. Oncogenesis 2020; 9:4. [PMID: 31913260 PMCID: PMC6949223 DOI: 10.1038/s41389-019-0188-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/04/2023] Open
Abstract
SGK196 is a protein O-mannose kinase involved in an indispensable phosphorylation step during laminin-binding glycan synthesis on alpha-dystroglycan (α-DG). However, the function of SGK196 in cancer diseases remains elusive. In the current study, we demonstrated that SGK196 is primarily modified by N-glycosylation in breast cancer (BC) cells. Furthermore, gain and loss-of-function studies showed that N-glycosylated SGK196 suppresses cell migration, invasion, and metastasis in BC, particularly in the basal-like breast cancer (BLBC) type. In addition, we found that SGK196 N-glycosylation performs the regulatory function through the PI3K/AKT/GSK3β signaling pathway. Collectively, our results show that N-glycosylated SGK196 plays suppression roles in BLBC metastases, therefore providing new insights into SGK196 function in BC.
Collapse
Affiliation(s)
- Ci Xu
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyan Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
33
|
Xie Z, Xie Z, Yu M, Zheng Y, Sun C, Liu Y, Ling C, Zhu Y, Zhang W, Xiao J, Wang Z, Yuan Y. Value of muscle magnetic resonance imaging in the differential diagnosis of muscular dystrophies related to the dystrophin-glycoprotein complex. Orphanet J Rare Dis 2019; 14:250. [PMID: 31747956 PMCID: PMC6865054 DOI: 10.1186/s13023-019-1242-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/29/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Dystrophin-glycoprotein complex (DGC)-related muscular dystrophies may present similar clinical and pathological features as well as undetectable mutations thus being sometimes difficult to distinguish. We investigated the value of muscle magnetic resonance imaging (MRI) in the differential diagnosis of DGC-related muscular dystrophies and reported the largest series of Chinese patients with sarcoglycanopathies studied by muscle MRI. RESULTS Fifty-five patients with DGC-related muscular dystrophies, including 22 with confirmed sarcoglycanopathies, 11 with limb-girdle muscular dystrophy 2I (LGMD2I, FKRP-associated dystroglycanopathy), and 22 with dystrophinopathies underwent extensive clinical evaluation, muscle biopsies, genetic analysis, and muscle MRI examinations. Hierarchical clustering of patients according to the clinical characteristics showed that patients did not cluster according to the genotypes. No statistically significant differences were observed between sarcoglycanopathies and LGMD2I in terms of thigh muscle involvement. The concentric fatty infiltration pattern was observed not only in different sarcoglycanopathies (14/22) but also in LGMD2I (9/11). The trefoil with single fruit sign was observed in most patients with dystrophinopathies (21/22), and a few patients with sarcoglycanopathies (4/22) or LGMD2I (2/11). Hierarchical clustering showed that most patients with sarcoglycanopathies or LGMD2I can be distinguished from dystrophinopathies based on the concentric fatty infiltration pattern and trefoil with single fruit sign at the thigh level on muscle MRI. CONCLUSIONS Muscle MRI at the thigh level potentially allows distinction of sarcoglycanopathies or FKRP-associated dystroglycanopathy from dystrophinopathies.
Collapse
Affiliation(s)
- Zhiying Xie
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Zhihao Xie
- Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Chengdu, China
| | - Meng Yu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yiming Zheng
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Chengyue Sun
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Yilin Liu
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Chen Ling
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
34
|
Fu J, Ma M, Song J, Pang M, Yang L, Li G, Zhang J. Novel mutations in DPM3 cause dystroglycanopathy with central nervous system involvement. Clin Genet 2019; 96:590-591. [PMID: 31469168 DOI: 10.1111/cge.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Fu
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Mingming Ma
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jia Song
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Mi Pang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Liang Yang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Gang Li
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Bailey EC, Alrowaished SS, Kilroy EA, Crooks ES, Drinkert DM, Karunasiri CM, Belanger JJ, Khalil A, Kelley JB, Henry CA. NAD+ improves neuromuscular development in a zebrafish model of FKRP-associated dystroglycanopathy. Skelet Muscle 2019; 9:21. [PMID: 31391079 PMCID: PMC6685180 DOI: 10.1186/s13395-019-0206-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/17/2019] [Indexed: 01/26/2023] Open
Abstract
Background Secondary dystroglycanopathies are muscular dystrophies that result from mutations in genes that participate in Dystroglycan glycosylation. Glycosylation of Dystroglycan is essential for muscle fibers to adhere to the muscle extracellular matrix (myomatrix). Although the myomatrix is disrupted in a number of secondary dystroglycanopathies, it is unknown whether improving the myomatrix is beneficial for these conditions. We previously determined that either NAD+ supplementation or overexpression of Paxillin are sufficient to improve muscle structure and the myomatrix in a zebrafish model of primary dystroglycanopathy. Here, we investigate how these modulations affect neuromuscular phenotypes in zebrafish fukutin-related protein (fkrp) morphants modeling FKRP-associated secondary dystroglycanopathy. Results We found that NAD+ supplementation prior to muscle development improved muscle structure, myotendinous junction structure, and muscle function in fkrp morphants. However, Paxillin overexpression did not improve any of these parameters in fkrp morphants. As movement also requires neuromuscular junction formation, we examined early neuromuscular junction development in fkrp morphants. The length of neuromuscular junctions was disrupted in fkrp morphants. NAD+ supplementation prior to neuromuscular junction development improved length. We investigated NMJ formation in dystroglycan (dag1) morphants and found that although NMJ morphology is disrupted in dag1 morphants, NAD+ is not sufficient to improve NMJ morphology in dag1 morphants. Ubiquitous overexpression of Fkrp rescued the fkrp morphant phenotype but muscle-specific overexpression only improved myotendinous junction structure. Conclusions These data indicate that Fkrp plays an early and essential role in muscle, myotendinous junction, and neuromuscular junction development. These data also indicate that, at least in the zebrafish model, FKRP-associated dystroglycanopathy does not exactly phenocopy DG-deficiency. Paxillin overexpression improves muscle structure in dag1 morphants but not fkrp morphants. In contrast, NAD+ supplementation improves NMJ morphology in fkrp morphants but not dag1 morphants. Finally, these data show that muscle-specific expression of Fkrp is insufficient to rescue muscle development and homeostasis. Electronic supplementary material The online version of this article (10.1186/s13395-019-0206-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erin C Bailey
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | | | - Elisabeth A Kilroy
- Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Emma S Crooks
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA
| | - Daisy M Drinkert
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA
| | - Chaya M Karunasiri
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Present Address: Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Joseph J Belanger
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA.,Present Address: Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Andre Khalil
- Chemical and Biomedical Engineering, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Joshua B Kelley
- Molecular and Biomedical Sciences, University of Maine, Orono, ME, 04469, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA
| | - Clarissa A Henry
- School of Biology and Ecology, University of Maine, Orono, ME, 04469, USA. .,Graduate School of Biomedical Sciences and Engineering, University of Maine, 217 Hitchner Hall, Orono, ME, 04469, USA.
| |
Collapse
|
36
|
Bai L, Kovach A, You Q, Kenny A, Li H. Structure of the eukaryotic protein O-mannosyltransferase Pmt1-Pmt2 complex. Nat Struct Mol Biol 2019; 26:704-711. [PMID: 31285605 PMCID: PMC6684406 DOI: 10.1038/s41594-019-0262-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
Abstract
In eukaryotes, a nascent peptide entering the endoplasmic reticulum (ER) is scanned by two Sec61-translocon-associated large membrane machines for protein N-glycosylation and protein O-mannosylation, respectively. While the structure of the eight-protein oligosaccharyltransferase complex has been determined recently, the structures of mannosyltransferases of the PMT family, which are an integral part of ER protein homeostasis, are still unknown. Here we report cryo-EM structures of the S. cerevisiae Pmt1–Pmt2 complex bound to a donor and an acceptor peptide at 3.2-Å resolution, showing that each subunit contains 11 transmembrane helices and a lumenal β-trefoil fold termed the MIR domain. The structures reveal the substrate recognition model and confirm an inverting mannosyl-transferring reaction mechanism by the enzyme complex. Furthermore, we found that the transmembrane domains of Pmt1 and Pmt2 share a structural fold with the catalytic subunits of oligosaccharyltransferases, confirming a previously proposed evolutionary relationship between protein O-mannosylation and protein N-glycosylation.
Collapse
Affiliation(s)
- Lin Bai
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Amanda Kovach
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Qinglong You
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Alanna Kenny
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Huilin Li
- Structural Biology Program, Van Andel Research Institute, Grand Rapids, MI, USA.
| |
Collapse
|