1
|
Zhang Y, Pan C, Wang S, Zhou Y, Chen J, Yu X, Peng R, Zhang N, Yang H. Distinctive function of Tetraspanins: Implication in viral infections. Virulence 2025; 16:2474188. [PMID: 40053412 PMCID: PMC11901453 DOI: 10.1080/21505594.2025.2474188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Harboring four transmembrane domains in their structural hallmark, Tetraspanins (Tspans) are a family of glycoproteins with pivotal functions in a variety of biological and cellular processes. Through interacting laterally with each other or specific membrane proteins, Tspans organize tetraspanin-enriched microdomains (TEMs), modulating cellular signaling, adhesion, fusion, and proliferation. An abundance of evidence has identified the multiple functions in the progression of cancer as well as the underlying molecular mechanisms. Recently, plenty of studies have focused on the utilities of Tspans by pathogens for infection, especially the infection of viruses. The expression of Tspans correlates with the phase of viral infection, the type of virus, and targeted therapies. In particular, perturbations of Tspans in host cells can affect viral attachment, intracellular trafficking, translation, virus assembly, and release. In this review, we summarize and provide a historical overview of the discovery and characterization of various kinds of virus infection and highlight their diversity and complexity, along with the virus life cycle. Furthermore, we examined the current understanding of how various Tspans are involved in the regulatory mechanisms underlying viral infection. This review aims to offer a comprehensive understanding of the targeting of Tspans for therapeutic intervention in infections caused by diverse pathogens.
Collapse
Affiliation(s)
- Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chengwei Pan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiawei Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaoyu Yu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Ruining Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Zheng S, Zhang Y, Cai R, Cai B, Luo S, He S, Peng T, Wang W, Cui H, Li H, Lu X. The untold story of CD82: Exploring its non-canonical roles in cancer. Pathol Res Pract 2025; 270:155979. [PMID: 40252385 DOI: 10.1016/j.prp.2025.155979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
CD82, traditionally recognized as a metastasis suppressor within the tetraspanin family, has emerged as a key player in diverse cancer-related processes beyond its canonical functions. This review highlights recent research on the non-canonical roles of CD82 in cancer progression, with a particular focus on its regulation of immune cell interactions, its impact on tumor microenvironment modulation, and its potential as both a therapeutic target and a biomarker. By examining the novel functions of CD82 in immune modulation and its influence on key signaling pathways, we propose that CD82 offers promising avenues for therapeutic interventions in cancer. This paper provides a comprehensive synthesis of the current understanding of CD82's expanded roles, underscoring its potential in improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Yao Zhang
- Beijing Beanstalk International Bilingual School, Beijing 100016, PR China
| | - Ren Cai
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Bangwu Cai
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Shujuan Luo
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Shuo He
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Tianyuan Peng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Wei Wang
- Department of Digestive Internal Medicine, the Affiliated Tumor Hospital of Xinjiang Medical University, PR China
| | - Hong Cui
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Huifang Li
- Department of Breast Surgery, the First Affiliated Hospital of Xinjiang Medical University, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China.
| |
Collapse
|
3
|
O'Bryan SM, Lavin KM, Graham ZA, Drummer DJ, Tuggle SC, Van Keuren-Jensen K, Reiman R, Alsop E, Kadakia MP, Craig MP, Zhang J, Bamman MM. Muscle-derived microRNAs correlated with thigh lean mass gains during progressive resistance training in older adults. J Appl Physiol (1985) 2024; 137:262-273. [PMID: 38932684 PMCID: PMC11424181 DOI: 10.1152/japplphysiol.00680.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Resistance training (RT) remains the most effective treatment for age-related declines in muscle mass. However, many older adults experience attenuated muscle hypertrophy in response to RT when compared with younger adults. This may be attributed to underlying molecular processes that are dysregulated by aging and exacerbated by improperly prescribed RT weekly volume, intensity, and/or frequency doses. MicroRNAs (miRNAs) are key epigenetic regulators that impact signaling pathways and protein expression within cells, are dynamic and responsive to exercise stimuli, and are often dysregulated in diseases. In this study, we used untargeted miRNA-seq to examine miRNA in skeletal muscle and serum-derived exosomes of older adults (n = 18, 11 M/7 F, 66 ± 1 yr) who underwent three times per wk RT for 30 wk [e.g., high intensity three times/wk (HHH, n = 9) or alternating high-low-high (HLH) intensity (n = 9)], after a standardized 4-wk washin. Within each tissue, miRNAs were clustered into modules based on pairwise correlation using weighted gene correlation network analysis (WGCNA). Modules were tested for association with the magnitude of RT-induced thigh lean mass (TLM) change [as measured by dual-energy X-ray absorptiometry (DXA)]. Although no modules were unique to training dose, we identified miRNA modules in skeletal muscle associated with TLM gains irrespective of exercise dose. Using miRNA-target interactions, we analyzed key miRNAs in significant modules for their potential regulatory involvement in biological pathways. Findings point toward potential miRNAs that may be informative biomarkers and could also be evaluated as potential therapeutic targets as an adjuvant to RT to maximize skeletal muscle mass accrual in older adults.NEW & NOTEWORTHY In this work, we identified a set of microRNAs correlated with thigh lean mass gains in a group of older adults. To our knowledge, this is the first time these microRNAs have been identified as novel predictive biomarkers correlating with lean mass gains in aging adults. As biomarkers, these may help interventionalists identify older individuals that are positively responding to an exercise intervention.
Collapse
Affiliation(s)
- Samia M O'Bryan
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kaleen M Lavin
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Zachary A Graham
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | - Devin J Drummer
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - S Craig Tuggle
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| | | | - Rebecca Reiman
- Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Eric Alsop
- Translational Genomics Research Institute, Phoenix, Arizona, United States
| | - Madhavi P Kadakia
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States
| | - Michael P Craig
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States
| | - Jin Zhang
- Boonshoft School of Medicine, Wright State University, Dayton, Ohio, United States
| | - Marcas M Bamman
- UAB Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
- Healthspan, Resilience, and Performance Research, Florida Institute for Human and Machine Cognition, Pensacola, Florida, United States
| |
Collapse
|
4
|
Li J, Lin Y, Li D, He M, Kui H, Bai J, Chen Z, Gou Y, Zhang J, Wang T, Tang Q, Kong F, Jin L, Li M. Building Haplotype-Resolved 3D Genome Maps of Chicken Skeletal Muscle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305706. [PMID: 38582509 PMCID: PMC11200017 DOI: 10.1002/advs.202305706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Haplotype-resolved 3D chromatin architecture related to allelic differences in avian skeletal muscle development has not been addressed so far, although chicken husbandry for meat consumption has been prevalent feature of cultures on every continent for more than thousands of years. Here, high-resolution Hi-C diploid maps (1.2-kb maximum resolution) are generated for skeletal muscle tissues in chicken across three developmental stages (embryonic day 15 to day 30 post-hatching). The sequence features governing spatial arrangement of chromosomes and characterize homolog pairing in the nucleus, are identified. Multi-scale characterization of chromatin reorganization between stages from myogenesis in the fetus to myofiber hypertrophy after hatching show concordant changes in transcriptional regulation by relevant signaling pathways. Further interrogation of parent-of-origin-specific chromatin conformation supported that genomic imprinting is absent in birds. This study also reveals promoter-enhancer interaction (PEI) differences between broiler and layer haplotypes in skeletal muscle development-related genes are related to genetic variation between breeds, however, only a minority of breed-specific variations likely contribute to phenotypic divergence in skeletal muscle potentially via allelic PEI rewiring. Beyond defining the haplotype-specific 3D chromatin architecture in chicken, this study provides a rich resource for investigating allelic regulatory divergence among chicken breeds.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yu Lin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Diyan Li
- School of PharmacyChengdu UniversityChengdu610106China
| | - Mengnan He
- Wildlife Conservation Research DepartmentChengdu Research Base of Giant Panda BreedingChengdu610057China
| | - Hua Kui
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Ziyu Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Tao Wang
- School of PharmacyChengdu UniversityChengdu610106China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Fanli Kong
- College of Life ScienceSichuan Agricultural UniversityYa'an625014China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
5
|
Liu T, Zhu Q, Kai Y, Bingham T, Wang S, Cha HJ, Mehta S, Schlaeger TM, Yuan GC, Orkin SH. Matrin3 mediates differentiation through stabilizing chromatin loop-domain interactions and YY1 mediated enhancer-promoter interactions. Nat Commun 2024; 15:1274. [PMID: 38341433 PMCID: PMC10858947 DOI: 10.1038/s41467-024-45386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Although emerging evidence indicates that alterations in proteins within nuclear compartments elicit changes in chromosomal architecture and differentiation, the underlying mechanisms are not well understood. Here we investigate the direct role of the abundant nuclear complex protein Matrin3 (Matr3) in chromatin architecture and development in the context of myogenesis. Using an acute targeted protein degradation platform (dTAG-Matr3), we reveal the dynamics of development-related chromatin reorganization. High-throughput chromosome conformation capture (Hi-C) experiments revealed substantial chromatin loop rearrangements soon after Matr3 depletion. Notably, YY1 binding was detected, accompanied by the emergence of novel YY1-mediated enhancer-promoter loops, which occurred concurrently with changes in histone modifications and chromatin-level binding patterns. Changes in chromatin occupancy by Matr3 also correlated with these alterations. Overall, our results suggest that Matr3 mediates differentiation through stabilizing chromatin accessibility and chromatin loop-domain interactions, and highlight a conserved and direct role for Matr3 in maintenance of chromosomal architecture.
Collapse
Affiliation(s)
- Tianxin Liu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Qian Zhu
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, 1 Moursund St, Houston, TX, 77030, USA
| | - Yan Kai
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Trevor Bingham
- Stem Cell Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Stacy Wang
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, 1 Moursund St, Houston, TX, 77030, USA
| | - Hye Ji Cha
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Science & Engineering, Dankook University, Cheonan, 31116, South Korea
| | - Stuti Mehta
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Shao S, Bu Z, Xiang J, Liu J, Tan R, Sun H, Hu Y, Wang Y. The role of Tetraspanins in digestive system tumor development: update and emerging evidence. Front Cell Dev Biol 2024; 12:1343894. [PMID: 38389703 PMCID: PMC10882080 DOI: 10.3389/fcell.2024.1343894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Digestive system malignancies, including cancers of the esophagus, pancreas, stomach, liver, and colorectum, are the leading causes of cancer-related deaths worldwide due to their high morbidity and poor prognosis. The lack of effective early diagnosis methods is a significant factor contributing to the poor prognosis for these malignancies. Tetraspanins (Tspans) are a superfamily of 4-transmembrane proteins (TM4SF), classified as low-molecular-weight glycoproteins, with 33 Tspan family members identified in humans to date. They interact with other membrane proteins or TM4SF members to form a functional platform on the cytoplasmic membrane called Tspan-enriched microdomain and serve multiple functions including cell adhesion, migration, propagation and signal transduction. In this review, we summarize the various roles of Tspans in the progression of digestive system tumors and the underlying molecular mechanisms in recent years. Generally, the expression of CD9, CD151, Tspan1, Tspan5, Tspan8, Tspan12, Tspan15, and Tspan31 are upregulated, facilitating the migration and invasion of digestive system cancer cells. Conversely, Tspan7, CD82, CD63, Tspan7, and Tspan9 are downregulated, suppressing digestive system tumor cell metastasis. Furthermore, the connection between Tspans and the metastasis of malignant bone tumors is reviewed. We also summarize the potential role of Tspans as novel immunotherapy targets and as an approach to overcome drug resistance. Finally, we discuss the potential clinical value and therapeutic targets of Tspans in the treatments of digestive system malignancies and provide some guidance for future research.
Collapse
Affiliation(s)
- Shijie Shao
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Bu
- Department of General Surgery, Xinyi People's Hospital, Xinyi, China
| | - Jinghua Xiang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jiachen Liu
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Rui Tan
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Han Sun
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuanwen Hu
- Department of Gastroenterology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, China
| | - Yimin Wang
- Articular Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
7
|
Fontelonga T, Hall AJ, Brown JL, Jung YL, Alexander MS, Dominov JA, Mouly V, Vieira N, Zatz M, Vainzof M, Gussoni E. Tetraspanin CD82 Associates with Trafficking Vesicle in Muscle Cells and Binds to Dysferlin and Myoferlin. Adv Biol (Weinh) 2023; 7:e2300157. [PMID: 37434585 PMCID: PMC10784410 DOI: 10.1002/adbi.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Tetraspanins organize protein complexes at the cell membrane and are responsible for assembling diverse binding partners in changing cellular states. Tetraspanin CD82 is a useful cell surface marker for prospective isolation of human myogenic progenitors and its expression is decreased in Duchenne muscular dystrophy (DMD) cell lines. The function of CD82 in skeletal muscle remains elusive, partly because the binding partners of this tetraspanin in muscle cells have not been identified. CD82-associated proteins are sought to be identified in human myotubes via mass spectrometry proteomics, which identifies dysferlin and myoferlin as CD82-binding partners. In human dysferlinopathy (Limb girdle muscular dystrophy R2, LGMDR2) myogenic cell lines, expression of CD82 protein is near absent in two of four patient samples. In the cell lines where CD82 protein levels are unaffected, increased expression of the ≈72 kDa mini-dysferlin product is identified using an antibody recognizing the dysferlin C-terminus. These data demonstrate that CD82 binds dysferlin/myoferlin in differentiating muscle cells and its expression can be affected by loss of dysferlin in human myogenic cells.
Collapse
Affiliation(s)
| | - Arielle J. Hall
- Division of Genetics and Genomics, Boston Children’s Hospital, MA, USA
| | - Jaedon L. Brown
- Division of Genetics and Genomics, Boston Children’s Hospital, MA, USA
| | - Youngsook L. Jung
- Division of Genetics and Genomics, Boston Children’s Hospital, MA, USA
| | - Matthew S. Alexander
- Department of Pediatrics, Division of Neurology at Children’s of Alabama, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Janice A. Dominov
- Department of Neurology, University of Massachusetts Worcester, MA, USA
| | | | | | - Mayana Zatz
- Human Genome and Stem Cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, BR
| | - Mariz Vainzof
- Human Genome and Stem Cells Research Center, Biosciences Institute, University of São Paulo, São Paulo, BR
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children’s Hospital, MA, USA
- The Stem Cell Program, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
8
|
Chae CW, Choi G, Kim YJ, Cho M, Kwon YW, Kim HS. The maintenance mechanism of hematopoietic stem cell dormancy: role for a subset of macrophages. BMB Rep 2023; 56:482-487. [PMID: 37574807 PMCID: PMC10547972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/15/2023] Open
Abstract
Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we describe the role of KAI1, which is mainly expressed on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs), in nichemediated LT-HSC maintenance. KAI1 activates TGF-β1/Smad3 signal in LT-HSCs, leading to the induction of CDK inhibitors and inhibition of the cell cycle. The KAI1-binding partner DARC is expressed on macrophages and stabilizes KAI1 on LT-HSCs, promoting their quiescence. Conversely, when DARC+ BM macrophages were absent, the level of surface KAI1 on LT-HSCs decreases, leading to cell-cycle entry, proliferation, and differentiation. Thus, KAI1 acts as a functional surface marker of LTHSCs that regulates dormancy through interaction with DARCexpressing macrophages in the BM stem cell niche. Recently, we showed very special and rare macrophages expressing α-SMA+ COX2+ & DARC+ induce not only dormancy of LTHSC through interaction of KAI1-DARC but also protect HSCs by down-regulating ROS through COX2 signaling. In the near future, the strategy to combine KAI1-positive LT-HSCs and α-SMA/Cox2/DARC triple-positive macrophages will improve the efficacy of stem cell transplantation after the ablative chemo-therapy for hematological disorders including leukemia. [BMB Reports 2023; 56(9): 482-487].
Collapse
Affiliation(s)
- Cheong-Whan Chae
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| | - Gun Choi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - You Ji Kim
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Mingug Cho
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| | - Yoo-Wook Kwon
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
- Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyo-Soo Kim
- Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Korea
| |
Collapse
|
9
|
Krawetz RJ, Larijani L, Corpuz JM, Ninkovic N, Das N, Olsen A, Mohtadi N, Rezansoff A, Dufour A. Mesenchymal progenitor cells from non-inflamed versus inflamed synovium post-ACL injury present with distinct phenotypes and cartilage regeneration capacity. Stem Cell Res Ther 2023; 14:168. [PMID: 37357305 DOI: 10.1186/s13287-023-03396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic debilitating disease impacting a significant percentage of the global population. While there are numerous surgical and non-invasive interventions that can postpone joint replacement, there are no current treatments which can reverse the joint damage occurring during the pathogenesis of the disease. While many groups are investigating the use of stem cell therapies in the treatment of OA, we still don't have a clear understanding of the role of these cells in the body, including heterogeneity of tissue resident adult mesenchymal progenitor cells (MPCs). METHODS In the current study, we examined MPCs from the synovium and individuals with or without a traumatic knee joint injury and explored the chondrogenic differentiation capacity of these MPCs in vitro and in vivo. RESULTS We found that there is heterogeneity of MPCs with the adult synovium and distinct sub-populations of MPCs and the abundancy of these sub-populations change with joint injury. Furthermore, only some of these sub-populations have the ability to effect cartilage repair in vivo. Using an unbiased proteomics approach, we were able to identify cell surface markers that identify this pro-chondrogenic MPC population in normal and injured joints, specifically CD82LowCD59+ synovial MPCs have robust cartilage regenerative properties in vivo. CONCLUSIONS The results of this study clearly show that cells within the adult human joint can impact cartilage repair and that these sub-populations exist within joints that have undergone a traumatic joint injury. Therefore, these populations can be exploited for the treatment of cartilage injuries and OA in future clinical trials.
Collapse
Affiliation(s)
- Roman J Krawetz
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
- Department Cell Biology and Anatomy, University of Calgary, Calgary, AB, Canada.
- Department of Surgery, University of Calgary, Calgary, AB, Canada.
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada.
| | - Leila Larijani
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Jessica May Corpuz
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Nicoletta Ninkovic
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Nabangshu Das
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Alexandra Olsen
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Nicholas Mohtadi
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Alexander Rezansoff
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Surgery, University of Calgary, Calgary, AB, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- McCaig Institute for Bone and Joint Health, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Wright A, Hall A, Daly T, Fontelonga T, Potter S, Schafer C, Lindsley A, Hung C, Bodamer O, Gussoni E. Lysine methyltransferase 2D regulates muscle fiber size and muscle cell differentiation. FASEB J 2021; 35:e21955. [PMID: 34613626 PMCID: PMC8500524 DOI: 10.1096/fj.202100823r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Kabuki syndrome (KS) is a rare genetic disorder caused primarily by mutations in the histone modifier genes KMT2D and KDM6A. The genes have broad temporal and spatial expression in many organs, resulting in complex phenotypes observed in KS patients. Hypotonia is one of the clinical presentations associated with KS, yet detailed examination of skeletal muscle samples from KS patients has not been reported. We studied the consequences of loss of KMT2D function in both mouse and human muscles. In mice, heterozygous loss of Kmt2d resulted in reduced neuromuscular junction (NMJ) perimeter, decreased muscle cell differentiation in vitro and impaired myofiber regeneration in vivo. Muscle samples from KS patients of different ages showed presence of increased fibrotic tissue interspersed between myofiber fascicles, which was not seen in mouse muscles. Importantly, when Kmt2d‐deficient muscle stem cells were transplanted in vivo in a physiologic non‐Kabuki environment, their differentiation potential is restored to levels undistinguishable from control cells. Thus, the epigenetic changes due to loss of function of KMT2D appear reversible through a change in milieu, opening a potential therapeutic avenue.
Collapse
Affiliation(s)
- Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tara Daly
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sarah Potter
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Caitlin Schafer
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA
| | - Andrew Lindsley
- Division of Allergy and Immunology, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.,Amgen, Thousand Oaks, California, USA
| | - Christina Hung
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Olaf Bodamer
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,Division of Genetics and Genomics, Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,The Roya Kabuki Program, Boston Children's Hospital, Boston, Massachusetts, USA.,The Stem Cell Program, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Yu D, Cai Z, Li D, Zhang Y, He M, Yang Y, Liu D, Xie W, Li Y, Xiao W. Myogenic Differentiation of Stem Cells for Skeletal Muscle Regeneration. Stem Cells Int 2021; 2021:8884283. [PMID: 33628275 PMCID: PMC7884123 DOI: 10.1155/2021/8884283] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022] Open
Abstract
Stem cells have become a hot research topic in the field of regenerative medicine due to their self-renewal and differentiation capabilities. Skeletal muscle tissue is one of the most important tissues in the human body, and it is difficult to recover when severely damaged. However, conventional treatment methods can cause great pain to patients. Stem cell-based tissue engineering can repair skeletal muscle to the greatest extent with little damage. Therefore, the application of stem cells to skeletal muscle regeneration is very promising. In this review, we discuss scaffolds and stem cells for skeletal muscle regeneration and put forward our ideas for future development.
Collapse
Affiliation(s)
- Dengjie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Zijun Cai
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yuntao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Di Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, China
| |
Collapse
|
12
|
Warman-Chardon J, Jasmin BJ, Kothary R, Parks RJ. Report on the 5th Ottawa International Conference on Neuromuscular Disease & Biology -October 17-19, 2019, Ottawa, Canada. J Neuromuscul Dis 2021; 8:323-334. [PMID: 33492242 DOI: 10.3233/jnd-219001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Jodi Warman-Chardon
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Canada.,Neuroscience Program, Ottawa Hospital Research Institute, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Bernard J Jasmin
- Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada
| | - Rashmi Kothary
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| | - Robin J Parks
- Department of Medicine, The Ottawa Hospital and University of Ottawa, Canada.,Centre for Neuromuscular Disease, University of Ottawa, Canada.,Regenerative Medicine Program, Ottawa Hospital Research Institute, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Canada
| |
Collapse
|