1
|
Wang P, Zhang G, Liu Q, Jiang L, Niu X, Fang M, Gao W, He Y, Li Y, Shu J, Zhang S. Immunogenicity assessment of a swine fever-swine circovirus type 2 duplex vaccine candidate created using the Zera nanoparticle delivery method. Vet Immunol Immunopathol 2025; 284:110929. [PMID: 40250144 DOI: 10.1016/j.vetimm.2025.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/14/2025] [Accepted: 03/30/2025] [Indexed: 04/20/2025]
Abstract
Classical swine fever virus (CSFV) and porcine circovirus (PCV) are the primary pathogens of swine fever and pig circovirus infections, respectively. Co-infections with these diseases result in severe economic losses for the swine sector. To prevent and control the disease, immunization is the primary technique for reducing co-infections and economic losses. In this work, we created a new nanoparticle vaccine using a Zera nanoparticle delivery system that expressed swine fever virus E0 and E2 proteins as well as porcine circovirus Cap proteins. We then inoculated BALB/c mice to test the vaccine's immunogenicity. The findings revealed that this nanoparticle vaccine could stimulate the mouse organism to produce high levels of humoral and cellular immunity, making it a promising candidate for the development of subunit vaccines against swine fever and swine circulatory-associated diseases. This study also provides ideas for other disease vaccines.
Collapse
Affiliation(s)
- Pu Wang
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Gang Zhang
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Qiang Liu
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Lingling Jiang
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - XiaoXia Niu
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Min Fang
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Weifeng Gao
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University
| | - Yong Li
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University.
| | - Sinong Zhang
- School of Life Sciences, Key Laboratory of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.
| |
Collapse
|
2
|
Lee YH, Jung BK, Kim SY, Kim D, Jang MK, Choe S, An BH, Kim JJ, Cho YS, An DJ. Protective Efficacy of a Chimeric Pestivirus KD26_E2LOM Vaccine Against Classical Swine Fever Virus Infection of Pigs. Viruses 2025; 17:529. [PMID: 40284972 PMCID: PMC12030930 DOI: 10.3390/v17040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
A chimeric pestivirus KD26_E2LOM strain can induce antibodies that can be partially distinguished from antibodies from classical swine fever virus (CSFV) infection. The chimeric pestivirus vaccine strain was created using bovine viral diarrhea virus as the backbone; however, the entire BVDV E2 gene region was replaced with the E2 gene, which encodes the major target for neutralizing antibodies against CSFV. Pigs were vaccinated once or twice with the chimeric pestivirus KD26_E2LOM strain, and protective efficacy was evaluated after subsequent challenge with virulent CSFV. Pigs inoculated with the chimeric pestivirus KD26_E2LOM strain did not have a high temperature or leukopenia, and CSFV neutralizing antibodies (>64-fold) were observed from 28 days postvaccination (dpv). In addition, the level of anti-CSFV E2 antibody positivity was >0.8 (s/p value) from 30 dpv, and there were no antibody-positive individuals among the sentinel pigs. In control pigs, CSF antigen was detected in blood, nasal, and fecal samples at 5, 7, 10, 14, and 21 days postchallenge (dpc) and in several organs; however, no CSFV was detected in the organs of pigs vaccinated with the chimeric pestivirus KD26_E2LOM strain, and no virus shedding or CSF antigen was detected on any dpc. Thus, the chimeric pestivirus KD26_E2LOM strain protects pigs against horizontal transmission of virulent CSFV; however, this strain may have only partial potential for the differential detection of CSFV Erns antibodies.
Collapse
Affiliation(s)
- Young-Hyeon Lee
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongbuk-do, Republic of Korea; (Y.-H.L.); (B.-K.J.); (S.-Y.K.); (D.K.); (M.-K.J.); (S.C.); (J.-J.K.); (Y.S.C.)
| | - Bo-Kyoung Jung
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongbuk-do, Republic of Korea; (Y.-H.L.); (B.-K.J.); (S.-Y.K.); (D.K.); (M.-K.J.); (S.C.); (J.-J.K.); (Y.S.C.)
| | - Song-Yi Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongbuk-do, Republic of Korea; (Y.-H.L.); (B.-K.J.); (S.-Y.K.); (D.K.); (M.-K.J.); (S.C.); (J.-J.K.); (Y.S.C.)
| | - Dohyun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongbuk-do, Republic of Korea; (Y.-H.L.); (B.-K.J.); (S.-Y.K.); (D.K.); (M.-K.J.); (S.C.); (J.-J.K.); (Y.S.C.)
| | - Min-Kyung Jang
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongbuk-do, Republic of Korea; (Y.-H.L.); (B.-K.J.); (S.-Y.K.); (D.K.); (M.-K.J.); (S.C.); (J.-J.K.); (Y.S.C.)
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongbuk-do, Republic of Korea; (Y.-H.L.); (B.-K.J.); (S.-Y.K.); (D.K.); (M.-K.J.); (S.C.); (J.-J.K.); (Y.S.C.)
| | - Byung-Hyun An
- Department of Virology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea;
| | - Jae-Jo Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongbuk-do, Republic of Korea; (Y.-H.L.); (B.-K.J.); (S.-Y.K.); (D.K.); (M.-K.J.); (S.C.); (J.-J.K.); (Y.S.C.)
| | - Yun Sang Cho
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongbuk-do, Republic of Korea; (Y.-H.L.); (B.-K.J.); (S.-Y.K.); (D.K.); (M.-K.J.); (S.C.); (J.-J.K.); (Y.S.C.)
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Gyeongbuk-do, Republic of Korea; (Y.-H.L.); (B.-K.J.); (S.-Y.K.); (D.K.); (M.-K.J.); (S.C.); (J.-J.K.); (Y.S.C.)
| |
Collapse
|
3
|
Yamashita M, Iwamoto S, Ochiai M, Sudo K, Nagasaka T, Saito A, Kozasa T, Omatsu T, Mizutani T, Yamamoto K. Efficacy of GPE - strain live attenuated vaccine and CP7_E2alf strain recombinant live vaccine (marker vaccine) against Japanese epidemic classical swine fever virus isolated in 2019 and DIVA discrimination ability of the marker vaccine. Res Vet Sci 2025; 182:105484. [PMID: 39622177 DOI: 10.1016/j.rvsc.2024.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Classical swine fever (CSF) re-emerged in Japan in 2018, with the epidemic virus identified as genotype 2.1, which is moderately virulent and more difficult to detect and control than the highly virulent strain. Domestic pigs were administered with GPE- strain live attenuated vaccine (GPE- vaccine) for outbreak management. CP7_E2alf strain recombinant live vaccine (marker vaccine), approved for differentiation of infected from vaccinated animals (DIVA), was considered optional for obtaining CSF-free country certification issued by the World Organization for Animal Health. This study aimed to assess the efficacy of both vaccines in pigs through experimental challenge tests and evaluate the DIVA ability of the marker vaccine using two enzyme-linked immunosorbent assay (ELISA) antibody detection kits. Results showed that both GPE- and marker vaccines were effective against the Japanese epidemic strain; however, the ability of the ELISA antibody detection kits to discriminate the marker vaccine was limited. Therefore, to achieve CSF-free certification using vaccines with DIVA functionality, alternative detection methods and enhancement of the sensitivity and specificity of ELISA kits are needed.
Collapse
Affiliation(s)
- Maiko Yamashita
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan; Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology (Cooperative Division of Veterinary Sciences), 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Shoko Iwamoto
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan.
| | - Mariko Ochiai
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan.
| | - Kasumi Sudo
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan; Livestock Industry Bureau, Ministry of Agriculture, Forestry and Fisheries, 1-2-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8950, Japan.
| | - Takao Nagasaka
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan.
| | - Akito Saito
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan; Exotic Diseases Research Station, National Institute of Animal Health, NARO, 6-20-1, Josuihoncho, Kodaira, Tokyo 187-0022, Japan.
| | - Takashi Kozasa
- Food Safety and Consumer Affairs Bureau, Ministry of Agriculture, Forestry and Fisheries, 1-2-1, Kasumigaseki, Chiyoda-ku, Tokyo 100-8950, Japan.
| | - Tsutomu Omatsu
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology (Cooperative Division of Veterinary Sciences), 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology (Cooperative Division of Veterinary Sciences), 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Kinya Yamamoto
- National Veterinary Assay Laboratory, Ministry of Agriculture, Forestry and Fisheries, 1-15-1 Tokura, Kokubunji, Tokyo 185-8511, Japan.
| |
Collapse
|
4
|
Tong C, Mundt A, Meindl-Boehmer A, Haist V, Gallei A, Chen N. Safety and DIVA Capability of Novel Live Attenuated Classical Swine Fever Marker Vaccine Candidates in Pregnant Sows. Viruses 2024; 16:1043. [PMID: 39066207 PMCID: PMC11281586 DOI: 10.3390/v16071043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 07/28/2024] Open
Abstract
Classical Swine Fever (CSF), a highly contagious viral disease affecting pigs and wild boar, results in significant economic losses in the swine industry. In endemic regions, prophylactic vaccination and stamping-out strategies are used to control CSF outbreaks. However, sporadic outbreaks and persistent infections continue to be reported. Although the conventional attenuated CSF vaccines protect pigs against the disease, they do not allow for the differentiation of infected from vaccinated animals (DIVA), limiting their use as an eradication tool. In this study, three targeted attenuation strategies were employed to generate vaccine candidates based on the current prevalent CSFV group 2 strains GD18 and QZ07: a single deletion of H79 in Erns (QZ07-sdErnsH-KARD), double deletion of H79 and C171 in Erns (GD18-ddErnsHC-KARD and QZ07-ddErnsHC-KARD), and deletion of H79 in Erns combined with a 5-168 amino acids deletion of Npro (GD18-ddNpro-ErnsH-KARD). Additionally, a negative serological marker with four substitutions in a highly conserved epitope in E2 recognized by the monoclonal antibody 6B8 was introduced in each candidate for DIVA purposes. The safety of these four resulting vaccine candidates was evaluated in pregnant sows. Two candidates, GD18-ddErnsHC-KARD and QZ07-sdErnsH-KARD were found to be safe for pregnant sows and unlikely to cause vertical transmission. Both candidates also demonstrated potential to be used as DIVA vaccines, as was shown using a proprietary blocking ELISA based on the 6B8 monoclonal antibody. These results, together with our previous work, constitute a proof-of-concept for the rational design of CSF antigenically marked modified live virus vaccine candidates.
Collapse
MESH Headings
- Animals
- Classical Swine Fever/prevention & control
- Classical Swine Fever/virology
- Classical Swine Fever/immunology
- Swine
- Female
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/adverse effects
- Classical Swine Fever Virus/immunology
- Classical Swine Fever Virus/genetics
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Viral Vaccines/administration & dosage
- Viral Vaccines/adverse effects
- Pregnancy
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Vaccines, Marker/immunology
- Vaccines, Marker/administration & dosage
- Vaccines, Marker/genetics
- Vaccination/veterinary
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
Collapse
Affiliation(s)
- Chao Tong
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| | - Alice Mundt
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Alexandra Meindl-Boehmer
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Verena Haist
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Andreas Gallei
- Boehringer Ingelheim Vetmedica GmbH, Binger Str. 173, 55216 Ingelheim am Rhein, Germany; (A.M.); (A.M.-B.); (V.H.); (A.G.)
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co., Ltd., No. 299, Xiangtai Road, Taizhou 225300, China;
| |
Collapse
|
5
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
6
|
Panyasing Y, Gimenez-Lirola L, Thanawongnuwech R, Prakobsuk P, Kawilaphan Y, Kittawornrat A, Cheng TY, Zimmerman J. Performance of a Differentiation of Infected from Vaccinated Animals (DIVA) Classical Swine Fever Virus (CSFV) Serum and Oral Fluid Erns Antibody AlphaLISA Assay. Animals (Basel) 2023; 13:3802. [PMID: 38136839 PMCID: PMC10740410 DOI: 10.3390/ani13243802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Classical swine fever virus (CSFV) is an OIE-listed disease that requires effective surveillance tools for its detection and control. The aim of this study was to develop and evaluate the diagnostic performance of a novel CSFV Erns IgG AlphaLISA for both serum and oral fluid specimens that would likewise be compatible with the use of CSFV E2 DIVA vaccines. Test performance was evaluated using a panel of well-characterized serum (n = 760) and individual (n = 528) or pen-based (n = 30) oral fluid samples from four groups of animals: (1) negative controls (n = 60 pigs); (2) inoculated with ALD strain wild-type CSFV (n = 30 pigs); (3) vaccinated with LOM strain live CSFV vaccine (n = 30 pigs); and (4) vaccinated with live CSFV marker vaccine on commercial farms (n = 120 pigs). At a cutoff of S/P ≥ 0.7, the aggregate estimated diagnostic sensitivities and specificities of the assay were, respectively, 97.4% (95% CI 95.9%, 98.3%) and 100% for serum and 95.4% (95% CI 92.9%, 97.0%) and 100% for oral fluid. The Erns IgG antibody AlphaLISA combined DIVA capability with solid diagnostic performance, rapid turnaround, ease of use, and compatibility with both serum and oral fluid specimens.
Collapse
Affiliation(s)
- Yaowalak Panyasing
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Animal Virome and Diagnostic Development Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luis Gimenez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (L.G.-L.); (J.Z.)
| | - Roongroje Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Phakawan Prakobsuk
- CPF (Thailand) Public Company Limited, Bangkok 10120, Thailand; (P.P.); (Y.K.); (A.K.)
| | - Yanee Kawilaphan
- CPF (Thailand) Public Company Limited, Bangkok 10120, Thailand; (P.P.); (Y.K.); (A.K.)
| | - Apisit Kittawornrat
- CPF (Thailand) Public Company Limited, Bangkok 10120, Thailand; (P.P.); (Y.K.); (A.K.)
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Jeffrey Zimmerman
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (L.G.-L.); (J.Z.)
| |
Collapse
|
7
|
Huynh LT, Isoda N, Hew LY, Ogino S, Mimura Y, Kobayashi M, Kim T, Nishi T, Fukai K, Hiono T, Sakoda Y. Generation and Efficacy of Two Chimeric Viruses Derived from GPE - Vaccine Strain as Classical Swine Fever Vaccine Candidates. Viruses 2023; 15:1587. [PMID: 37515273 PMCID: PMC10384557 DOI: 10.3390/v15071587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
A previous study proved that vGPE- mainly maintains the properties of classical swine fever (CSF) virus, which is comparable to the GPE- vaccine seed and is a potentially valuable backbone for developing a CSF marker vaccine. Chimeric viruses were constructed based on an infectious cDNA clone derived from the live attenuated GPE- vaccine strain as novel CSF vaccine candidates that potentially meet the concept of differentiating infected from vaccinated animals (DIVA) by substituting the glycoprotein Erns of the GPE- vaccine strain with the corresponding region of non-CSF pestiviruses, either pronghorn antelope pestivirus (PAPeV) or Phocoena pestivirus (PhoPeV). High viral growth and genetic stability after serial passages of the chimeric viruses, namely vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns, were confirmed in vitro. In vivo investigation revealed that two chimeric viruses had comparable immunogenicity and safety profiles to the vGPE- vaccine strain. Vaccination at a dose of 104.0 TCID50 with either vGPE-/PAPeV Erns or vGPE-/PhoPeV Erns conferred complete protection for pigs against the CSF virus challenge in the early stage of immunization. In conclusion, the characteristics of vGPE-/PAPeV Erns and vGPE-/PhoPeV Erns affirmed their properties, as the vGPE- vaccine strain, positioning them as ideal candidates for future development of a CSF marker vaccine.
Collapse
Affiliation(s)
- Loc Tan Huynh
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- Faculty of Veterinary Medicine, College of Agriculture, Can Tho University, Can Tho 900000, Vietnam
| | - Norikazu Isoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Lim Yik Hew
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Saho Ogino
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Yume Mimura
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Maya Kobayashi
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Taksoo Kim
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
| | - Tatsuya Nishi
- Kodaira Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira 187-0022, Tokyo, Japan
| | - Katsuhiko Fukai
- Kodaira Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kodaira 187-0022, Tokyo, Japan
| | - Takahiro Hiono
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- One Health Research Center, Hokkaido University, Sapporo 060-0818, Hokkaido, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Hokkaido, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| |
Collapse
|
8
|
Yi W, Wang H, Qin H, Wang Q, Guo R, Wen G, Pan Z. Construction and efficacy of a new live chimeric C-strain vaccine with DIVA characteristics against classical swine fever. Vaccine 2023; 41:2003-2012. [PMID: 36803898 DOI: 10.1016/j.vaccine.2023.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
To develop the new classical swine fever (CSF) vaccine candidate with differentiating infected vaccinated animals (DIVA) characteristics, a chimeric CSF virus (CSFV) was constructed based on an infectious cDNA clone of the CSF vaccine C-strain. The 5'- and 3'-untranslated regions (UTRs) and partial E2 region (residues 690-860) of the C-strain were substituted with the corresponding regions of bovine viral diarrhoea virus (BVDV) to construct the chimeric cDNA clone pC/bUTRs-tE2. The chimeric virus rC/bUTRs-tE2 was generated by several passages of pC/bUTRs-tE2-transfected PK15 cells. Stable growth and genetic properties of rC/bUTRs-tE2 were obtained after 30 serial passages. Compared to parental rC/bUTRs-tE2 (1st passage), two residue mutations (M834K and M979K) located in E2 in rC/bUTRs-tE2 P30 were observed. Compared to the C-strain, rC/bUTRs-tE2 exhibited unchanged cell tropism and decreased plaque-forming ability. Substituting the C-strain UTRs with the BVDV UTRs resulted in significantly increased viral replication in PK15 cells. Compared to CSFV Erns-positive and BVDV tE2-negative antibody responses induced by the CSF vaccine C-strain, immunization of rabbits and piglets with rC/bUTRs-tE2 resulted in serological profiles of CSFV Erns- and BVDV tE2-positive antibodies, which are used to serologically discriminate pigs that are clinically infected and vaccinated. Vaccination of piglets with rC/bUTRs-tE2 conferred complete protection against lethal CSFV challenge. Our results suggest that rC/bUTRs-tE2 is a promising new CSF marker vaccine candidate.
Collapse
Affiliation(s)
- Weicheng Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huan Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; Laboratory, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430015, China
| | - Qin Wang
- World Organisation for Animal Health Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Guoyuan Wen
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture and Rural Affairs), Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
9
|
Yuan M, Yang X, Zhang X, Zhao X, Abid M, Qiu HJ, Li Y. Different Types of Vaccines against Pestiviral Infections: "Barriers" for " Pestis". Viruses 2022; 15:2. [PMID: 36680043 PMCID: PMC9860862 DOI: 10.3390/v15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The genus Pestivirus of the family Flaviviridae mainly comprises classical swine fever virus (CSFV), bovine viral diarrhea virus 1 (BVDV-1), BVDV-2, border disease virus (BDV), and multiple new pestivirus species such as atypical porcine pestivirus (APPV), giraffe pestivirus, and antelope pestivirus. Pestiviruses cause infectious diseases, resulting in tremendous economic losses to animal husbandry. Different types of pestivirus vaccines have been developed to control and prevent these important animal diseases. In recent years, pestiviruses have shown great potential as viral vectors for developing multivalent vaccines. This review analyzes the advantages and disadvantages of various pestivirus vaccines, including live attenuated pestivirus strains, genetically engineered marker pestiviruses, and pestivirus-based multivalent vaccines. This review provides new insights into the development of novel vaccines against emerging pestiviruses, such as APPV and ovine pestivirus.
Collapse
Affiliation(s)
- Mengqi Yuan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaoke Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xiaotian Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Muhammad Abid
- Viral Oncogenesis Group, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongfeng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
10
|
Tong C, Liu H, Wang J, Sun Y, Chen N. Safety, efficacy, and DIVA feasibility on a novel live attenuated classical swine fever marker vaccine candidate. Vaccine 2022; 40:7219-7229. [PMID: 36328881 DOI: 10.1016/j.vaccine.2022.10.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/24/2022] [Accepted: 10/14/2022] [Indexed: 11/05/2022]
Abstract
Classical swine fever virus (CSFV) is the etiological agent of classical swine fever, a highly contagious disease that causes significant economic losses to the swine industry. Systemic prophylactic immunization with the live attenuated vaccine, the C-strain vaccine, is one of the effective measures for CSF control. However, one of the limitations of the C-strain vaccine is that the field strains-infected animals cannot be differentiated from the C-strain vaccinated herds by serological tests (DIVA). This constraint hampers the practical usage of the C-strain vaccine to eradicate the CSF in China. In the current study, a novel CSF modified live marker vaccine candidate was constructed based on the attenuation of the prevalent 2.1 genotype strain by the deletion of two virulence associated functional residues in the CSFV Erns, H79, and C171. Meanwhile, four residues S14, G22, E24, and E25 were identified specifically for the 6B8 mAb binding to the CSFV E2 as the novel conformational epitope. Then four substitutions of S14K, G22A, E24R, and G25D were further incorporated in the double deletion construct as a negative serological marker. Finally, the double-deletion marker MLV candidate GD18-ddErnHC-KARD was rescued, and its safety and efficacy profiles were evaluated in piglets. The safety study results indicated that the candidate did not induce fever, clinical signs, or pathological lesions with a high dose of 105.0 TCID50, and in addition, no virus shedding was detected until 21 days post-inoculation. Meanwhile, the efficacy study results demonstrated that at a low dose of 103.0 TCID50, it conferred complete clinical protection and no virus shedding was detected after the challenge with a highly virulent Shimen strain. Importantly, the infected animals were differentiated using the accompanied DIVA ELISA. These results constitute a proof-of-concept for rationally designing a CSF antigenically marked modified live vaccine candidate.
Collapse
Affiliation(s)
- Chao Tong
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Huanhuan Liu
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Jiaying Wang
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Yanyong Sun
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| | - Ning Chen
- Boehringer Ingelheim Vetmedica (China) Co. Ltd., Taizhou 225300, People's Republic of China.
| |
Collapse
|
11
|
Measuring impact of vaccination among wildlife: The case of bait vaccine campaigns for classical swine fever epidemic among wild boar in Japan. PLoS Comput Biol 2022; 18:e1010510. [PMID: 36201410 PMCID: PMC9536577 DOI: 10.1371/journal.pcbi.1010510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022] Open
Abstract
Understanding the impact of vaccination in a host population is essential to control infectious diseases. However, the impact of bait vaccination against wildlife diseases is difficult to evaluate. The vaccination history of host animals is generally not observable in wildlife, and it is difficult to distinguish immunity by vaccination from that caused by disease infection. For these reasons, the impact of bait vaccination against classical swine fever (CSF) in wild boar inhabiting Japan has not been evaluated accurately. In this study, we aimed to estimate the impact of the bait vaccination campaign by modelling the dynamics of CSF and the vaccination process among a Japanese wild boar population. The model was designed to estimate the impact of bait vaccination despite lack of data regarding the demography and movement of wild boar. Using our model, we solved the theoretical relationship between the impact of vaccination, the time-series change in the proportion of infected wild boar, and that of immunised wild boar. Using this derived relationship, the increase in antibody prevalence against CSF because of vaccine campaigns in 2019 was estimated to be 12.1 percentage points (95% confidence interval: 7.8–16.5). Referring to previous reports on the basic reproduction number (R0) of CSF in wild boar living outside Japan, the amount of vaccine distribution required for CSF elimination by reducing the effective reproduction number under unity was also estimated. An approximate 1.6 (when R0 = 1.5, target vaccination coverage is 33.3% of total population) to 2.9 (when R0 = 2.5, target vaccination coverage is 60.0% of total population) times larger amount of vaccine distribution would be required than the total amount of vaccine distribution in four vaccination campaigns in 2019. Vaccination of wildlife is important to control infectious diseases in animals. However, the impact of common vaccination of wildlife, bait vaccination, is difficult to evaluate owing to difficulty in obtaining the vaccination history at the individual level. Mathematical modelling can estimate the impact of vaccination; however, the demography and movement of hosts are required to describe disease dynamics. In this study, we aimed to estimate the impact of bait vaccination by modelling the dynamics of classical swine fever (CSF) and the vaccination among Japanese wild boar. The model was designed to estimate the impact of bait vaccination despite lack of data regarding the demography and movement of wild boar. Using our model, the increase in antibody prevalence because of vaccination in 2019 was estimated to be 12 percentage points. Furthermore, we estimated the amount of vaccine distribution required for CSF elimination by reducing the effective reproduction number under unity. Referring to previous reports on the basic reproduction number of CSF in wild boar living outside Japan, it was estimated that an approximate 1.6 to 2.9 times larger amount of vaccine distribution would be required than the total amount of vaccine distribution in four vaccination campaigns in 2019.
Collapse
|
12
|
Wang L, Mi S, Madera R, Li Y, Gong W, Tu C, Shi J. A Novel Competitive ELISA for Specifically Measuring and Differentiating Immune Responses to Classical Swine Fever C-Strain Vaccine in Pigs. Viruses 2022; 14:1544. [PMID: 35891524 PMCID: PMC9315997 DOI: 10.3390/v14071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever can be controlled effectively by vaccination with C-strain vaccine. In this study, we developed a novel competitive enzyme-linked immunosorbent assay (cELISA) based on a C-strain Erns specific monoclonal antibody (mAb 1504), aiming to serologically measure immune responses to C-strain vaccine in pigs, and finally to make the C-strain become a DIVA-compatible vaccine. The cELISA system was established based on the strategy that mAb 1504 will compete with the C-strain induced antibodies in the pig serum to bind the C-strain Erns protein. The cELISA was optimized and was further evaluated by testing different categories of pig sera. It can efficiently differentiate C-strain immunized from wild-type CSFV-infected pigs and lacks cross-reaction with other common swine viruses and viruses in genus Pestivirus such as Bovine viral diarrhea virus (BVDV). The C-strain antibody can be tested in pigs 7-14 days post vaccination with this cELISA. The sensitivity and specificity of the established cELISA were 100% (95% confidence interval: 95.60 to 100%) and 100% (95% confidence interval: 98.30 to 100%), respectively. This novel cELISA is a reliable tool for specifically measuring and differentiating immune responses to C-strain vaccine in pigs. By combining with the wild-type CSFV-specific infection tests, it can make the C-strain have DIVA capability.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Shijiang Mi
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; (S.M.); (W.G.); (C.T.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Rachel Madera
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Yuzhen Li
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| | - Wenjie Gong
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; (S.M.); (W.G.); (C.T.)
| | - Changchun Tu
- Key Laboratory of Zoonoses Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China; (S.M.); (W.G.); (C.T.)
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130012, China
| | - Jishu Shi
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (R.M.); (Y.L.)
| |
Collapse
|
13
|
Li F, Li B, Niu X, Chen W, Li Y, Wu K, Li X, Ding H, Zhao M, Chen J, Yi L. The Development of Classical Swine Fever Marker Vaccines in Recent Years. Vaccines (Basel) 2022; 10:vaccines10040603. [PMID: 35455351 PMCID: PMC9026404 DOI: 10.3390/vaccines10040603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
Classical swine fever (CSF) is a severe disease that has caused serious economic losses for the global pig industry and is widely prevalent worldwide. In recent decades, CSF has been effectively controlled through compulsory vaccination with a live CSF vaccine (C strain). It has been successfully eradicated in some countries or regions. However, the re-emergence of CSF in Japan and Romania, where it had been eradicated, has brought increased attention to the disease. Because the traditional C-strain vaccine cannot distinguish between vaccinated and infected animals (DIVA), this makes it difficult to fight CSF. The emergence of marker vaccines is considered to be an effective strategy for the decontamination of CSF. This paper summarizes the progress of the new CSF marker vaccine and provides a detailed overview of the vaccine design ideas and immunization effects. It also provides a methodology for the development of a new generation of vaccines for CSF and vaccine development for other significant epidemics.
Collapse
Affiliation(s)
- Fangfang Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bingke Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xinni Niu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Wenxian Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Keke Wu
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Xiaowen Li
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (L.Y.)
| | - Lin Yi
- College of Veterinary Medicine, South China Agricultural University, No. 483 Wushan Road, Tianhe District, Guangzhou 510642, China; (F.L.); (B.L.); (X.N.); (W.C.); (Y.L.); (K.W.); (X.L.); (H.D.); (M.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: (J.C.); (L.Y.); Tel.: +86-20-8528-8017 (J.C.); +86-20-8528-8017 (L.Y.)
| |
Collapse
|
14
|
Yi W, Zheng F, Zhu H, Wu Y, Wei J, Pan Z. Role of the conserved E2 residue G259 in classical swine fever virus production and replication. Virus Res 2022; 313:198747. [DOI: 10.1016/j.virusres.2022.198747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/31/2022]
|
15
|
Velazquez-Salinas L, Ramirez-Medina E, Rai A, Pruitt S, Vuono EA, Espinoza N, Gladue DP, Borca MV. Development Real-Time PCR Assays to Genetically Differentiate Vaccinated Pigs From Infected Pigs With the Eurasian Strain of African Swine Fever Virus. Front Vet Sci 2021; 8:768869. [PMID: 34778441 PMCID: PMC8579032 DOI: 10.3389/fvets.2021.768869] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/27/2021] [Indexed: 01/26/2023] Open
Abstract
Currently, African swine fever virus (ASFV) represents one of the most important economic threats for the global pork industry. Recently, significant advances have been made in the development of potential vaccine candidates to protect pigs against this virus. We have previously developed attenuated vaccine candidates by deleting critical viral genes associated with virulence. Here, we present the development of the accompanying genetic tests to discriminate between infected and vaccinated animals (DIVA), a necessity during an ASFV vaccination campaign. We describe here the development of three independent real-time polymerase chain reaction (qPCR) assays that detect the presence of MGF-360-12L, UK, and I177L genes, which were previously deleted from the highly virulent Georgia strain of ASFV to produce the three recombinant live attenuated vaccine candidates. When compared with the diagnostic reference qPCR that detects the p72 gene, all assays demonstrated comparable levels of sensitivity, specificity, and efficiency of amplification to detect presence/absence of the ASFV Georgia 2007/1 strain (prototype virus of the Eurasian lineage) from a panel of blood samples from naïve, vaccinated, and infected pigs. Collectively, the results of this study demonstrate the potential of these real-time PCR assays to be used as genetic DIVA tests, supporting vaccination campaigns associated with the use of ASFV-ΔMGF, ASFV-G-Δ9GL/ΔUK, and ASFV-ΔI177L or cell culture adapted ASFV-ΔI177LΔLVR live attenuated vaccines in the field.
Collapse
Affiliation(s)
- Lauro Velazquez-Salinas
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States.,Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Elizabeth Ramirez-Medina
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Ayushi Rai
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States.,Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, United States
| | - Sarah Pruitt
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Elizabeth A Vuono
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States.,Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi, MS, United States
| | - Nallely Espinoza
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Douglas P Gladue
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| | - Manuel V Borca
- Agricultural Research Service, United States Department of Agriculture, Plum Island Animal Disease Center, Greenport, NY, United States
| |
Collapse
|
16
|
Bohórquez JA, Defaus S, Rosell R, Pérez-Simó M, Alberch M, Gladue DP, Borca MV, Andreu D, Ganges L. Development of a Dendrimeric Peptide-Based Approach for the Differentiation of Animals Vaccinated with FlagT4G against Classical Swine Fever from Infected Pigs. Viruses 2021; 13:v13101980. [PMID: 34696410 PMCID: PMC8540558 DOI: 10.3390/v13101980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Classical swine fever virus (CSFV) causes a viral disease of high epidemiological and economical significance that affects domestic and wild swine. Control of the disease in endemic countries is based on live-attenuated vaccines (LAVs) that induce an early protective immune response against highly virulent CSFV strains. The main disadvantage of these currently available LAVs is the lack of serological techniques to differentiate between vaccinated and infected animals (DIVA concept). Here, we describe the development of the FlagDIVA test, a serological diagnostic tool allowing for the differentiation between animals vaccinated with the FlagT4G candidate and those infected with CSFV field strains. The FlagDIVA test is a direct ELISA based on a dendrimeric peptide construct displaying a conserved epitope of CSFV structural protein E2. Although FlagDIVA detected anti-CSFV anti-bodies in infected animals, it did not recognize the antibody response of FlagT4G-vaccinated animals. Therefore, the FlagDIVA test constitutes a valuable accessory DIVA tool in implementing vaccination with the FlagT4G candidate.
Collapse
Affiliation(s)
- José Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (R.R.); (M.P.-S.); (M.A.)
| | - Sira Defaus
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Rosa Rosell
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (R.R.); (M.P.-S.); (M.A.)
- Departament d’Acció Climàtica, Alimentació i Agenda Rural, Generalitat de Catalunya, 08007 Barcelona, Spain
| | - Marta Pérez-Simó
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (R.R.); (M.P.-S.); (M.A.)
| | - Mònica Alberch
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (R.R.); (M.P.-S.); (M.A.)
| | - Douglas P. Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (D.P.G.); (M.V.B.)
| | - Manuel V. Borca
- Plum Island Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Greenport, Greenport, NY 11944, USA; (D.P.G.); (M.V.B.)
| | - David Andreu
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (S.D.); (D.A.)
| | - Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, IRTA-CReSA, 08193 Barcelona, Spain; (J.A.B.); (R.R.); (M.P.-S.); (M.A.)
- Correspondence:
| |
Collapse
|
17
|
Clemmons EA, Alfson KJ, Dutton JW. Transboundary Animal Diseases, an Overview of 17 Diseases with Potential for Global Spread and Serious Consequences. Animals (Basel) 2021; 11:2039. [PMID: 34359167 PMCID: PMC8300273 DOI: 10.3390/ani11072039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
Animals provide food and other critical resources to most of the global population. As such, diseases of animals can cause dire consequences, especially disease with high rates of morbidity or mortality. Transboundary animal diseases (TADs) are highly contagious or transmissible, epidemic diseases, with the potential to spread rapidly across the globe and the potential to cause substantial socioeconomic and public health consequences. Transboundary animal diseases can threaten the global food supply, reduce the availability of non-food animal products, or cause the loss of human productivity or life. Further, TADs result in socioeconomic consequences from costs of control or preventative measures, and from trade restrictions. A greater understanding of the transmission, spread, and pathogenesis of these diseases is required. Further work is also needed to improve the efficacy and cost of both diagnostics and vaccines. This review aims to give a broad overview of 17 TADs, providing researchers and veterinarians with a current, succinct resource of salient details regarding these significant diseases. For each disease, we provide a synopsis of the disease and its status, species and geographic areas affected, a summary of in vitro or in vivo research models, and when available, information regarding prevention or treatment.
Collapse
Affiliation(s)
- Elizabeth A. Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| | - Kendra J. Alfson
- Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA
| | - John W. Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military Drive, San Antonio, TX 78227, USA;
| |
Collapse
|
18
|
Hemida MG. The next-generation coronavirus diagnostic techniques with particular emphasis on the SARS-CoV-2. J Med Virol 2021; 93:4219-4241. [PMID: 33751621 PMCID: PMC8207115 DOI: 10.1002/jmv.26926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/15/2022]
Abstract
The potential zoonotic coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2) are of global health concerns. Early diagnosis is the milestone in their mitigation, control, and eradication. Many diagnostic techniques are showing great success and have many advantages, such as the rapid turnover of the results, high accuracy, and high specificity and sensitivity. However, some of these techniques have several pitfalls if samples were not collected, processed, and transported in the standard ways and if these techniques were not practiced with extreme caution and precision. This may lead to false-negative/positive results. This may affect the downstream management of the affected cases. These techniques require regular fine-tuning, upgrading, and optimization. The continuous evolution of new strains and viruses belong to the coronaviruses is hampering the success of many classical techniques. There are urgent needs for next generations of coronaviruses diagnostic assays that overcome these pitfalls. This new generation of diagnostic tests should be able to do simultaneous, multiplex, and high-throughput detection of various coronavirus in one reaction. Furthermore, the development of novel assays and techniques that enable the in situ detection of the virus on the environmental samples, especially air, water, and surfaces, should be given considerable attention in the future. These approaches will have a substantial positive impact on the mitigation and eradication of coronaviruses, including the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Maged G. Hemida
- Department of Microbiology, College of Veterinary MedicineKing Faisal UniversityAl AhsaSaudi Arabia
- Department of Virology, Faculty of Veterinary MedicineKafrelsheikh UniversityKafr ElsheikhEgypt
| |
Collapse
|
19
|
Postel A, Becher P. Genetically distinct pestiviruses pave the way to improved classical swine fever marker vaccine candidates based on the chimeric pestivirus concept. Emerg Microbes Infect 2021; 9:2180-2189. [PMID: 32962557 PMCID: PMC7580611 DOI: 10.1080/22221751.2020.1826893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Classical swine fever (CSF) is one of the most important viral diseases of pigs. In many countries, the use of vaccines is restricted due to limitations of subunit vaccines with regard to efficacy and onset of protection as well as failure of live vaccines to differentiate infected from vaccinated animals (DIVA principle). Chimeric pestiviruses based on CSF virus (CSFV) and the related bovine viral diarrhea virus (BVDV) have been licensed as live marker vaccines in Europe and Asia, but cross-reactive antibodies can cause problems in DIVA application due to close antigenic relationship. To develop marker vaccine candidates with improved DIVA properties, three chimeric viruses were generated by replacing Erns of CSFV Alfort-Tübingen with homologue proteins of only distantly related pestiviruses. The chimeric viruses “Ra”, “Pro”, and “RaPro” contained Erns sequences of Norway rat and Pronghorn pestiviruses or a combination of both, respectively. In porcine cells, the “Pro” chimera replicated to high titers, while replication of the “Ra” chimera was limited. The “RaPro” chimera showed an intermediate phenotype. All vaccine candidates were attenuated in a vaccination/ challenge trial in pigs, but to different extents. Inoculation induced moderate to high levels of neutralizing antibodies that protected against infection with a genetically heterologous, highly virulent CSFV. Importantly, serum samples of vaccinated animals did not show any cross-reactivity in a CSFV Erns antibody ELISA. In conclusion, the Erns antigen from distantly related pestiviruses can provide a robust serological negative marker for a new generation of improved CSFV marker vaccines based on the chimeric pestivirus concept.
Collapse
Affiliation(s)
- Alexander Postel
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| | - Paul Becher
- Institute of Virology, Department of Infectious Diseases, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
20
|
Jelsma T, Post J, van den Born E, Segers R, Kortekaas J. Assessing the Protective Dose of a Candidate DIVA Vaccine against Classical Swine Fever. Vaccines (Basel) 2021; 9:vaccines9050483. [PMID: 34068610 PMCID: PMC8151196 DOI: 10.3390/vaccines9050483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Classical swine fever is a highly contagious and deadly disease in swine. The disease can be controlled effectively by vaccination with an attenuated virus known as the “Chinese” (C)-strain. A single vaccination with the C-strain provides complete protection against highly virulent isolates within days after vaccination, making it one of the most efficacious veterinary vaccines ever developed. A disadvantage of the C-strain is that vaccinated animals cannot be serologically differentiated from animals that are infected with wild-type Classical swine fever virus. Previously, a C-strain-based vaccine with a stable deletion in the E2 structural glycoprotein was developed, which allows for differentiation between infected and vaccinated animals (DIVA). The resulting vaccine, which we named C-DIVA, is compatible with a commercial E2 ELISA, modified to render it suitable as a DIVA test. In the present work, three groups of eight piglets were vaccinated with escalating doses of the C-DIVA vaccine and challenged two weeks after vaccination. One group of four unvaccinated piglets served as controls. Piglets were monitored for clinical signs until three weeks after challenge and blood samples were collected to monitor viremia, leukocyte and thrombocyte levels, and antibody responses. The presence of challenge virus RNA in oropharyngeal swabs was investigated to first gain insight into the potential of C-DIVA to prevent shedding. The results demonstrate that a single vaccination with 70 infectious virus particles of C-DIVA protects pigs from the highly virulent Brescia strain.
Collapse
Affiliation(s)
- Tinka Jelsma
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (T.J.); (J.P.)
| | - Jacob Post
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (T.J.); (J.P.)
| | | | - Ruud Segers
- MSD Animal Health, 5830 AA Boxmeer, The Netherlands; (E.v.d.B.); (R.S.)
| | - Jeroen Kortekaas
- Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (T.J.); (J.P.)
- Laboratory of Virology, Wageningen University, 6708 PB Wageningen, The Netherlands
- Correspondence: ; Tel.: +31-6-20919110
| |
Collapse
|
21
|
Aida V, Pliasas VC, Neasham PJ, North JF, McWhorter KL, Glover SR, Kyriakis CS. Novel Vaccine Technologies in Veterinary Medicine: A Herald to Human Medicine Vaccines. Front Vet Sci 2021; 8:654289. [PMID: 33937377 PMCID: PMC8083957 DOI: 10.3389/fvets.2021.654289] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/17/2021] [Indexed: 01/10/2023] Open
Abstract
The success of inactivated and live-attenuated vaccines has enhanced livestock productivity, promoted food security, and attenuated the morbidity and mortality of several human, animal, and zoonotic diseases. However, these traditional vaccine technologies are not without fault. The efficacy of inactivated vaccines can be suboptimal with particular pathogens and safety concerns arise with live-attenuated vaccines. Additionally, the rate of emerging infectious diseases continues to increase and with that the need to quickly deploy new vaccines. Unfortunately, first generation vaccines are not conducive to such urgencies. Within the last three decades, veterinary medicine has spearheaded the advancement in novel vaccine development to circumvent several of the flaws associated with classical vaccines. These third generation vaccines, including DNA, RNA and recombinant viral-vector vaccines, induce both humoral and cellular immune response, are economically manufactured, safe to use, and can be utilized to differentiate infected from vaccinated animals. The present article offers a review of commercially available novel vaccine technologies currently utilized in companion animal, food animal, and wildlife disease control.
Collapse
Affiliation(s)
- Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Kirklin L. McWhorter
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Sheniqua R. Glover
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-University of Georgia (UGA) Center of Excellence for Influenza Research and Surveillance (CEIRS), Auburn, AL, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
22
|
Choe S, Kim KS, Shin J, Song S, Park GN, Cha RM, Choi SH, Jung BI, Lee KW, Hyun BH, Park BK, An DJ. Comparative Analysis of the Productivity and Immunogenicity of an Attenuated Classical Swine Fever Vaccine (LOM) and an Attenuated Live Marker Classical Swine Fever Vaccine (Flc-LOM-BE rns) from Laboratory to Pig Farm. Vaccines (Basel) 2021; 9:vaccines9040381. [PMID: 33924647 PMCID: PMC8070377 DOI: 10.3390/vaccines9040381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022] Open
Abstract
Herein, we compared the productivity of pigs inoculated with one of two classical swine fever (CSF) vaccines (low virulent of Miyagi (LOM) or Flc-LOM-BErns) plus the swine erysipelothrix rhusiopathiae (SE) vaccine. The feed intake and weight increase of the pigs inoculated with Flc-LOM-BErns + SE were normal. However, the feed intake of the pigs inoculated with LOM + SE dropped sharply from four days post-vaccination (dpv). In addition, the slaughter date was an average of eight days later than that of the pigs inoculated with Flc-LOM-BErns + SE. All pigs inoculated with the Flc-LOM-BErns + SE vaccine were completely differentiated at 14 days against CSF Erns antibody and at approximately 45 days against the bovine viral diarrhea virus (BVDV) Erns antibody; the titers were maintained until slaughter. Leucopenia occurred temporarily in the LOM + SE group, but not in the Flc-LOM-BErns + SE group. Expression of tumor necrosis factor (TNF)-α and IFN-γ was significantly (p < 0.05) higher in the LOM + SE group than in the mock (no vaccine) group. When conducting the same experiment on a breeding farm, the results were similar to those of the laboratory experiments. In conclusion, the biggest advantage of replacing the CSF LOM vaccine with the Flc-LOM-BErns vaccine is improved productivity.
Collapse
Affiliation(s)
- SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (K.-S.K.); (J.S.); (S.S.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (K.-S.K.); (J.S.); (S.S.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (K.-S.K.); (J.S.); (S.S.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Sok Song
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (K.-S.K.); (J.S.); (S.S.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (K.-S.K.); (J.S.); (S.S.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Ra Mi Cha
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (K.-S.K.); (J.S.); (S.S.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Sung-Hyun Choi
- Korea Pork Producers Association, Seocho-gu, Seoul 06643, Korea; (S.-H.C.); (B.-I.J.)
| | - Byung-Il Jung
- Korea Pork Producers Association, Seocho-gu, Seoul 06643, Korea; (S.-H.C.); (B.-I.J.)
| | - Kyung-Won Lee
- Pig Integrated Control Center (PICC), Cheonan City 31008, Korea;
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (K.-S.K.); (J.S.); (S.S.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
| | - Bong-Kyun Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (K.-S.K.); (J.S.); (S.S.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
- College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (K.-S.K.); (J.S.); (S.S.); (G.-N.P.); (R.M.C.); (B.-H.H.); (B.-K.P.)
- Correspondence: ; Tel.: +82-54-912-0795
| |
Collapse
|
23
|
Research Progress and Challenges in Vaccine Development against Classical Swine Fever Virus. Viruses 2021; 13:v13030445. [PMID: 33801868 PMCID: PMC7998128 DOI: 10.3390/v13030445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023] Open
Abstract
Classical swine fever (CSF), caused by CSF virus (CSFV), is one of the most devastating viral epizootic diseases of swine in many countries. To control the disease, highly efficacious and safe live attenuated vaccines have been used for decades. However, the main drawback of these conventional vaccines is the lack of differentiability of infected from vaccinated animals (DIVA concept). Advances in biotechnology and our detailed knowledge of multiple basic science disciplines have facilitated the development of effective and safer DIVA vaccines to control CSF. To date, two types of DIVA vaccines have been developed commercially, including the subunit vaccines based on CSFV envelope glycoprotein E2 and chimeric pestivirus vaccines based on infectious cDNA clones of CSFV or bovine viral diarrhea virus (BVDV). Although inoculation of these vaccines successfully induces solid immunity against CSFV, none of them could ideally meet all demands regarding to safety, efficacy, DIVA potential, and marketability. Due to the limitations of the available choices, researchers are still striving towards the development of more advanced DIVA vaccines against CSF. This review summarizes the present status of candidate CSFV vaccines that have been developed. The strategies and approaches revealed here may also be helpful for the development of new-generation vaccines against other diseases.
Collapse
|
24
|
Coronado L, Perera CL, Rios L, Frías MT, Pérez LJ. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines (Basel) 2021; 9:154. [PMID: 33671909 PMCID: PMC7918945 DOI: 10.3390/vaccines9020154] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
Classical swine fever (CSF) is, without any doubt, one of the most devasting viral infectious diseases affecting the members of Suidae family, which causes a severe impact on the global economy. The reemergence of CSF virus (CSFV) in several countries in America, Asia, and sporadic outbreaks in Europe, sheds light about the serious concern that a potential global reemergence of this disease represents. The negative aspects related with the application of mass stamping out policies, including elevated costs and ethical issues, point out vaccination as the main control measure against future outbreaks. Hence, it is imperative for the scientific community to continue with the active investigations for more effective vaccines against CSFV. The current review pursues to gather all the available information about the vaccines in use or under developing stages against CSFV. From the perspective concerning the evolutionary viral process, this review also discusses the current problematic in CSF-endemic countries.
Collapse
Affiliation(s)
- Liani Coronado
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Carmen L. Perera
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Liliam Rios
- Reiman Cancer Research Laboratory, Faculty of Medicine, University of New Brunswick, Saint John, NB E2L 4L5, Canada;
| | - María T. Frías
- National Centre for Animal and Plant Health (CENSA), OIE Collaborating Centre for Disaster Risk Reduction in Animal Health, San José de las Lajas 32700, Cuba; (L.C.); (C.L.P.); (M.T.F.)
| | - Lester J. Pérez
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Illinois at Urbana–Champaign, Champaign, IL 61802, USA
| |
Collapse
|
25
|
Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021; 7:1. [PMID: 33397477 PMCID: PMC7780603 DOI: 10.1186/s40813-020-00179-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Deliberate infection of humans with smallpox, also known as variolation, was a common practice in Asia and dates back to the fifteenth century. The world's first human vaccination was administered in 1796 by Edward Jenner, a British physician. One of the first pig vaccines, which targeted the bacterium Erysipelothrix rhusiopathiae, was introduced in 1883 in France by Louis Pasteur. Since then vaccination has become an essential part of pig production, and viral vaccines in particular are essential tools for pig producers and veterinarians to manage pig herd health. Traditionally, viral vaccines for pigs are either based on attenuated-live virus strains or inactivated viral antigens. With the advent of genomic sequencing and molecular engineering, novel vaccine strategies and tools, including subunit and nucleic acid vaccines, became available and are being increasingly used in pigs. This review aims to summarize recent trends and technologies available for the production and use of vaccines targeting pig viruses.
Collapse
|
26
|
Ganges L, Crooke HR, Bohórquez JA, Postel A, Sakoda Y, Becher P, Ruggli N. Classical swine fever virus: the past, present and future. Virus Res 2020; 289:198151. [PMID: 32898613 DOI: 10.1016/j.virusres.2020.198151] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
Classical swine fever (CSF) is among the most relevant viral epizootic diseases of swine. Due to its severe economic impact, CSF is notifiable to the world organisation for animal health. Strict control policies, including systematic stamping out of infected herds with and without vaccination, have permitted regional virus eradication. Nevertheless, CSF virus (CSFV) persists in certain areas of the world and has re-emerged regularly. This review summarizes the basic established knowledge in the field and provides a comprehensive and updated overview of the recent advances in fundamental CSFV research, diagnostics and vaccine development. It covers the latest discoveries on the genetic diversity of pestiviruses, with implications for taxonomy, the progress in understanding disease pathogenesis, immunity against acute and persistent infections, and the recent findings in virus-host interactions and virulence determinants. We also review the progress and pitfalls in the improvement of diagnostic tools and the challenges in the development of modern and efficacious marker vaccines compatible with serological tests for disease surveillance. Finally, we highlight the gaps that require research efforts in the future.
Collapse
Affiliation(s)
- Llilianne Ganges
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain.
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, APHA-Weybridge, Woodham Lane, New Haw, Addlestone, KT15 3NB, UK
| | - Jose Alejandro Bohórquez
- OIE Reference Laboratory for Classical Swine Fever, Institute of Agrifood Research and Technology, Centre de Recerca en Sanitat Animal (CReSA), 08193 Barcelona, Spain
| | - Alexander Postel
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Paul Becher
- EU & OIE Reference Laboratory for Classical Swine Fever, Institute of Virology, University of Veterinary Medicine, Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Nicolas Ruggli
- The Institute of Virology and Immunology IVI, Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Tran HTT, Truong DA, Ly VD, Vu HT, Hoang TV, Nguyen CT, Chu NT, Nguyen VT, Nguyen DT, Miyazawa K, Kokuho T, Dang HV. The potential efficacy of the E2-subunit vaccine to protect pigs against different genotypes of classical swine fever virus circulating in Vietnam. Clin Exp Vaccine Res 2020; 9:26-39. [PMID: 32095438 PMCID: PMC7024730 DOI: 10.7774/cevr.2020.9.1.26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 11/15/2022] Open
Abstract
Purpose To date, many kinds of classical swine fever (CSF) vaccines have been developed to protect against this disease. However, the efficacy of these vaccines to protect the pig against field CSF strains needs to be considered, based on circulating strains of classical swine fever virus (CSFV). Materials and Methods Recombinant E2-CSFV protein produced by baculovirus/insect cell system was analyzed by western blots and immunoperoxidase monolayer assay. The effect of CSFV-E2 subunit vaccines was evaluated in experimental pigs with three genotypes of CSFV challenge. Anti-E2 specific and neutralizing antibodies in experimental pigs were analyzed by blocking enzyme-linked immunosorbent assay and neutralization peroxidize-linked assay. Results The data showed that CSFV VN91-E2 subunit vaccine provided clinical protection in pigs against three different genotypes of CSFV without noticeable clinical signs, symptoms, and mortality. In addition, no CSFV was isolated from the spleen of the vaccinated pigs. However, the unvaccinated pigs exhibited high clinical scores and the successful virus isolation from spleen. These results showed that the E2-specific and neutralizing antibodies induced by VN91-E2 antigen appeared at day 24 after first boost and a significant increase was observed at day 28 (p<0.01). This response reached a peak at day 35 and continued until day 63 when compared to controls. Importantly, VN91-E2 induced E2-specific and neutralizing antibodies protected experimental pigs against high virulence of CSFVs circulating in Vietnam, including genotype 1.1, 2.1, and 2.2. Conclusion These findings also suggested that CSFV VN91-E2 subunit vaccine could be a promising vaccine candidate for the control and prevention of CSFV in Vietnam.
Collapse
Affiliation(s)
- Ha Thi Thanh Tran
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Duc Anh Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Viet Duc Ly
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Hao Thi Vu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Tuan Van Hoang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Chinh Thi Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Nhu Thi Chu
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Vinh The Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Duyen Thuy Nguyen
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| | - Kohtaro Miyazawa
- National Institute of Animal Health, The National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Takehiro Kokuho
- National Institute of Animal Health, The National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Hoang Vu Dang
- Department of Biochemistry and Immunology, National Institute of Veterinary Research (NIVR), Hanoi, Vietnam
| |
Collapse
|
28
|
Gong W, Li J, Wang Z, Sun J, Mi S, Xu J, Cao J, Hou Y, Wang D, Huo X, Sun Y, Wang P, Yuan K, Gao Y, Zhou X, He S, Tu C. Commercial E2 subunit vaccine provides full protection to pigs against lethal challenge with 4 strains of classical swine fever virus genotype 2. Vet Microbiol 2019; 237:108403. [PMID: 31585656 DOI: 10.1016/j.vetmic.2019.108403] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Classical swine fever (CSF) still threatens the swine industry in China, with genotype 2 isolates of CSFV dominating the epizootics. In 2018 the first E2 subunit marker vaccine against CSFV (Tian Wen Jing, TWJ-E2®), containing a baculovirus-expressed E2 glycoprotein of a genotype 1.1 vaccine strain, was officially licensed in China and commercialized. To evaluate the cross-protective efficacy of TWJ-E2 against different virulent genotype 2 Chinese field isolates (2.1b, 2.1c, 2.1 h, and 2.2), 4-week-old pigs were immunized with the TWJ-E2 vaccine according to the manufacturer's instructions and then challenged with genotype 2 strains. A group vaccinated with the conventional C-strain vaccine was included for comparison. TWJ-E2 vaccinated pigs developed higher levels of E2 and neutralizing antibodies than those receiving the commercial C-strain vaccine. All TWJ-E2 and C-strain vaccinated pigs survived challenge without development of fever, clinical signs or pathological lesions. In contrast, all unvaccinated control pigs displayed severe CSF disease with 40-100% mortalities by 24 days post challenge. None of the TWJ-E2 and C-strain vaccinated pigs developed viremia, viral shedding from tonsils, Erns protein in the sera, or viral RNA loads in different tissues after challenge, all of which were detected in the challenged unvaccinated controls. We conclude that vaccination of young pigs with TWJ-E2 provides complete immune protection against genotypically heterologous CSFVs and prevents viral shedding after challenge, with an efficacy at least comparable to that elicited by the conventional C-strain vaccine.
Collapse
Affiliation(s)
- Wenjie Gong
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Junhui Li
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Zunbao Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Jiumeng Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Shijiang Mi
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Jialun Xu
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China
| | - Jian Cao
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yuzhen Hou
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Danyang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Xinliang Huo
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yanjun Sun
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Pengjiang Wang
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Ke Yuan
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Yangyi Gao
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Xubin Zhou
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China
| | - Sun He
- Tecon Biology Joint Stock Company Limited, Urumqi 830013, PR China.
| | - Changchun Tu
- Key Laboratory of Zoonoses Research, Ministry of Education, Zoonoses Institute, College of Veterinary Medicine, Jilin University, Changchun 130062, PR China; Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
29
|
Zhou B. Classical Swine Fever in China-An Update Minireview. Front Vet Sci 2019; 6:187. [PMID: 31249837 PMCID: PMC6584753 DOI: 10.3389/fvets.2019.00187] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/28/2019] [Indexed: 11/17/2022] Open
Abstract
Classical swine fever (CSF) remains one of the most economically important viral diseases of domestic pigs and wild boar worldwide. The causative agent is CSF virus, it is highly contagious, with high morbidity and mortality rates; as such, it is an OIE-listed disease. Owing to a nationwide policy of vaccinations of pigs, CSF is well-controlled in China, with large-scale outbreaks rarely seen. Sporadic outbreaks are however still reported every year. In order to cope with future crises and to eradicate CSF, China should strengthen and support biosecurity measures such as the timely reporting of suspected disease, technologies for reliable diagnoses, culling infected herds, and tracing possible contacts, as well as continued vaccination and support of research into drug and genetic therapies. This mini-review summarizes the epidemiology of and control strategies for CSF in China.
Collapse
Affiliation(s)
- Bin Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Lim SI, Choe S, Kim KS, Jeoung HY, Cha RM, Park GS, Shin J, Park GN, Cho IS, Song JY, Hyun BH, Park BK, An DJ. Assessment of the efficacy of an attenuated live marker classical swine fever vaccine (Flc-LOM-BE rns) in pregnant sows. Vaccine 2019; 37:3598-3604. [PMID: 31151802 DOI: 10.1016/j.vaccine.2019.04.076] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
Here, we constructed an attenuated live marker classical swine fever (CSF) vaccine (Flc-LOM-BErns) to eradicate CSF. This was done by taking infectious clone Flc-LOM, which is based on an attenuated live CSF vaccine virus (LOM strain), and removing the full-length classical swine fever virus (CSFV) Erns sequences and the 3' end (52 base pairs) of the CSFV capsid. These regions were substituted with the full-length bovine viral diarrhoea virus (BVDV) Erns gene sequence and the 3' end (52 base pairs) of the BVDV capsid gene. Sows were vaccinated with the Flc-LOM-BErns vaccine 3 weeks before insemination and then challenged with virulent CSFV at the early, mid- or late stages of pregnancy. We then examined transplacental transmission to the foetuses. Piglets born to sows vaccinated with Flc-LOM-BErns did not show vertical infection, regardless of challenge time. In addition, CSFV challenge did not affect the delivery date, weight or length of the foetus. Pregnant sows inoculated with the Flc-LOM-BErns vaccine were anti-CSF Erns antibody-negative and anti-BVDV Erns antibody-positive. Challenge of pregnant sows with virulent CSFV resulted in anti-CSF Erns antibody positivity. These results strongly indicate that differential diagnosis can be conducted between the Flc-LOM-BErns vaccinated animal and virulent CSFV affected animal by detecting antibody against BVDV Erns or CSF Erns gene. Therefore, the Flc-LOM-BErns vaccine may fulfil the function of differential diagnosis which required for DIVA vaccine.
Collapse
Affiliation(s)
- Seong-In Lim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - Hye-Young Jeoung
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - Ra Mi Cha
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - Gil-Soon Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - In-Soo Cho
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - Jae-Young Song
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea
| | - Bong-Kyun Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea; College of Veterinary Medicine, Seoul University, Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do, 39660, South Korea.
| |
Collapse
|
31
|
Henke J, Carlson J, Zani L, Leidenberger S, Schwaiger T, Schlottau K, Teifke JP, Schröder C, Beer M, Blome S. Protection against transplacental transmission of moderately virulent classical swine fever virus using live marker vaccine "CP7_E2alf". Vaccine 2018; 36:4181-4187. [PMID: 29895502 DOI: 10.1016/j.vaccine.2018.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/04/2018] [Accepted: 06/05/2018] [Indexed: 11/19/2022]
Abstract
Classical swine fever (CSF) remains as one of the most important infectious diseases of swine. While prophylactic vaccination is usually prohibited in free countries with industrialized pig production, emergency vaccination is still foreseen. In this context, marker vaccines are preferred as they can reduce the impact on trade. The live-attenuated Suvaxyn® CSF Marker vaccine by Zoetis (based on pestivirus chimera "CP7_E2alf"), was recently licensed by the European Medicines Agency. Its efficacy for the individual animal had been shown in prior studies, but questions remained regarding protection against transplacental transmission. To answer this question, a trial with eight pregnant sows and their offspring was performed as prescribed by the OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Six of the sows were intramuscularly vaccinated on day 44 of gestation, while the other two remained as unvaccinated controls. All sows were challenged with the moderately virulent CSFV strain "Roesrath" and euthanized shortly before the calculated farrowing date. Sows and piglets were grossly examined and necropsied. Organs (spleen, tonsil, lymph node, and kidney), EDTA-blood and serum were collected from all animals. All samples were tested for antibodies against CSFV glycoproteins E2 and Erns as well as CSFV (virus, antigen and genome). It could be demonstrated that the vaccine complies with all requirements, i.e. no virus was found in the blood of vaccinated sows and their fetuses, and no antibodies were found in the serum of the fetuses from the vaccinated sows. All controls were valid. Thus, it was demonstrated that a single dose vaccination in the sows efficiently protected the offspring against transplacental infection with a moderately virulent CSFV strain.
Collapse
Affiliation(s)
- Julia Henke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Jolene Carlson
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany; Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Laura Zani
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Simone Leidenberger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Theresa Schwaiger
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany; Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Jens P Teifke
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Charlotte Schröder
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany
| | - Sandra Blome
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald - Insel Riems, Germany.
| |
Collapse
|