1
|
Agrawal G, Borody TJ, Aitken JM. Mapping Crohn's Disease Pathogenesis with Mycobacterium paratuberculosis: A Hijacking by a Stealth Pathogen. Dig Dis Sci 2024; 69:2289-2303. [PMID: 38896362 DOI: 10.1007/s10620-024-08508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) has been implicated in the development of Crohn's disease (CD) for over a century. Similarities have been noted between the (histo)pathological presentation of MAP in ruminants, termed Johne's disease (JD), and appearances in humans with CD. Analyses of disease presentation and pathology suggest a multi-step process occurs that consists of MAP infection, dysbiosis of the gut microbiome, and dietary influences. Each step has a role in the disease development and requires a better understanding to implementing combination therapies, such as antibiotics, vaccination, faecal microbiota transplants (FMT) and dietary plans. To optimise responses, each must be tailored directly to the activity of MAP, otherwise therapies are open to interpretation without microbiological evidence that the organism is present and has been influenced. Microscopy and histopathology enables studies of the mycobacterium in situ and how the associated disease processes manifest in the patient e.g., granulomas, fissuring, etc. The challenge for researchers has been to prove the relationship between MAP and CD with available laboratory tests and methodologies, such as polymerase chain reaction (PCR), MAP-associated DNA sequences and bacteriological culture investigations. These have, so far, been inconclusive in revealing the relationship of MAP in patients with CD. Improved and accurate methods of detection will add to evidence for an infectious aetiology of CD. Specifically, if the bacterial pathogen can be isolated, identified and cultivated, then causal relationships to disease can be confirmed, especially if it is present in human gut tissue. This review discusses how MAP may cause the inflammation seen in CD by relating its known pathogenesis in cattle, and from examples of other mycobacterial infections in humans, and how this would impact upon the difficulties with diagnostic tests for the organism.
Collapse
Affiliation(s)
- Gaurav Agrawal
- Division of Diabetes & Nutritional Sciences, King's College London, Franklin-Wilkins Building, London, SE1 9NH, UK.
- , Sydney, Australia.
| | | | | |
Collapse
|
2
|
Haghkhah M, Hemati Z, Derakhshandeh A, Namazi F, Chaubey KK, Singh SV. Immuno-reactivity evaluation of Mce-truncated subunit candidate vaccine against Mycobacterium avium subspecies paratuberculosis challenge in the goat models. BMC Vet Res 2023; 19:157. [PMID: 37710242 PMCID: PMC10500891 DOI: 10.1186/s12917-023-03715-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Detection of an appropriate antigen with high immunogenicity can be a big step in the production of an effective vaccine for control of Johne's disease (JD). The aim of this study was to evaluate the efficacy of Mce-truncated protein as a subunit vaccine candidate for the control of JD in experimentally challenged goats. MATERIALS AND METHODS Six healthy goat kids were immunized with Mce-truncated protein, and two goats were kept as controls. All kids were twice challenged orally with live Mycobacterium avium subspecies paratuberculosis(MAP) strain and half the goats from both the categories were sacrificed at 7 and 10 months after start of challenge study. Culture of MAP was performed from all the necropsied tissues to determine the true JD infection status. RESULTS Mce-truncated protein only reacted with pooled vaccinated goat sera in western-blot. A significant increase in humoral immune response against Mce protein was also observed in vaccinated goats. Compared to the control group, vaccinated goats gained higher body weights and none of them shed MAP or showed histopatological lesions or colonization of MAP in their necropsy tissues. CONCLUSIONS The new Mce protein based vaccine provided significant immunity in goats as they could meet the challenge with live MAP bacilli. Although the vaccine used in this study showed the high potential as a new effective vaccine for the control of JD, further validation study is still required to successfully implement the vaccine for JD control program.
Collapse
Affiliation(s)
- Masoud Haghkhah
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Zahra Hemati
- Department of Pathobiology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran.
| | - Fatemeh Namazi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, 71345-1731, Iran
| | - Kundan Kumar Chaubey
- Division of Research and Innovation, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Shoor Vir Singh
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Ajhai, Mathura, Uttar Pradesh, India
| |
Collapse
|
3
|
O'Connell LM, Coffey A, O'Mahony JM. Alternatives to antibiotics in veterinary medicine: considerations for the management of Johne's disease. Anim Health Res Rev 2023; 24:12-27. [PMID: 37475561 DOI: 10.1017/s146625232300004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance has become a major health concern globally, with current predictions expecting deaths related to resistant infections to surpass those of cancer by 2050. Major efforts are being undertaken to develop derivative and novel alternatives to current antibiotic therapies in human medicine. What appears to be lacking however, are similar efforts into researching the application of those alternatives, such as (bacterio)phage therapy, in veterinary contexts. Agriculture is still undoubtedly the most prominent consumer of antibiotics, with up to 70% of annual antibiotic usage attributed to this sector, despite policies to reduce their use in food animals. This not only increases the risk of resistant infections spreading from farm to community but also the risk that animals may acquire species-specific infections that subvert treatment. While these diseases may not directly affect human welfare, they greatly affect the profit margin of industries reliant on livestock due to the cost of treatments and (more frequently) the losses associated with animal death. This means actively combatting animal infection not only benefits animal welfare but also global economies. In particular, targeting recurring or chronic conditions associated with certain livestock has the potential to greatly reduce financial losses. This can be achieved by developing novel diagnostics to quickly identify ill animals alongside the design of novel therapies. To explore this concept further, this review employs Johne's disease, a chronic gastroenteritis condition that affects ruminants, as a case study to exemplify the benefits of rapid diagnostics and effective treatment of chronic disease, with particular regard to the diagnostic and therapeutic potential of phage.
Collapse
Affiliation(s)
- Laura M O'Connell
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Jim M O'Mahony
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| |
Collapse
|
4
|
Mallikarjunappa S, Brito LF, Pant SD, Schenkel FS, Meade KG, Karrow NA. Johne's Disease in Dairy Cattle: An Immunogenetic Perspective. Front Vet Sci 2021; 8:718987. [PMID: 34513975 PMCID: PMC8426623 DOI: 10.3389/fvets.2021.718987] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a severe production-limiting disease with significant economic and welfare implications for the global cattle industry. Caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP), JD manifests as chronic enteritis in infected cattle. In addition to the economic losses and animal welfare issues associated with JD, MAP has attracted public health concerns with potential association with Crohn's disease, a human inflammatory bowel disease. The lack of effective treatment options, such as a vaccine, has hampered JD control resulting in its increasing global prevalence. The disease was first reported in 1895, but in recognition of its growing economic impact, extensive recent research facilitated by a revolution in technological approaches has led to significantly enhanced understanding of the immunological, genetic, and pathogen factors influencing disease pathogenesis. This knowledge has been derived from a variety of diverse models to elucidate host-pathogen interactions including in vivo and in vitro experimental infection models, studies measuring immune parameters in naturally-infected animals, and by studies conducted at the population level to enable the estimation of genetic parameters, and the identification of genetic markers and quantitative trait loci (QTL) putatively associated with susceptibility or resistance to JD. The main objectives of this review are to summarize these recent developments from an immunogenetics perspective and attempt to extract the principal and common findings emerging from this wealth of recent information. Based on these analyses, and in light of emerging technologies such as gene-editing, we conclude by discussing potential future avenues for effectively mitigating JD in cattle.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sameer D Pant
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Flavio S Schenkel
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| | - Kieran G Meade
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
5
|
Facciuolo A, Lee AH, Trimble MJ, Rawlyk N, Townsend HGG, Bains M, Arsic N, Mutharia LM, Potter A, Gerdts V, Napper S, Hancock REW, Griebel PJ. A Bovine Enteric Mycobacterium Infection Model to Analyze Parenteral Vaccine-Induced Mucosal Immunity and Accelerate Vaccine Discovery. Front Immunol 2020; 11:586659. [PMID: 33329565 PMCID: PMC7719698 DOI: 10.3389/fimmu.2020.586659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
Mycobacterial diseases of cattle are responsible for considerable production losses worldwide. In addition to their importance in animals, these infections offer a nuanced approach to understanding persistent mycobacterial infection in native host species. Mycobacteriumavium ssp. paratuberculosis (MAP) is an enteric pathogen that establishes a persistent, asymptomatic infection in the small intestine. Difficulty in reproducing infection in surrogate animal models and limited understanding of mucosal immune responses that control enteric infection in the natural host have been major barriers to MAP vaccine development. We previously developed a reproducible challenge model to establish a consistent MAP infection using surgically isolated intestinal segments prepared in neonatal calves. In the current study, we evaluated whether intestinal segments could be used to screen parenteral vaccines that alter mucosal immune responses to MAP infection. Using Silirum® – a commercial MAP bacterin – we demonstrate that intestinal segments provide a platform for assessing vaccine efficacy within a relatively rapid period of 28 days post-infection. Significant differences between vaccinates and non-vaccinates could be detected using quantitative metrics including bacterial burden in intestinal tissue, MAP shedding into the intestinal lumen, and vaccine-induced mucosal immune responses. Comparing vaccine-induced responses in mucosal leukocytes isolated from the site of enteric infection versus blood leukocytes revealed substantial inconsistences between these immune compartments. Moreover, parenteral vaccination with Silirum did not induce equal levels of protection throughout the small intestine. Significant control of MAP infection was observed in the continuous but not the discrete Peyer’s patches. Analysis of these regional mucosal immune responses revealed novel correlates of immune protection associated with reduced infection that included an increased frequency of CD335+ innate lymphoid cells, and increased expression of IL21 and IL27. Thus, intestinal segments provide a novel model to accelerate vaccine screening and discovery by testing vaccines directly in the natural host and provides a unique opportunity to interrogate mucosal immune responses to mycobacterial infections.
Collapse
Affiliation(s)
- Antonio Facciuolo
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Amy H Lee
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Michael J Trimble
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Neil Rawlyk
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Hugh G G Townsend
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Manjeet Bains
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Natasa Arsic
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Lucy M Mutharia
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Volker Gerdts
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Philip J Griebel
- Vaccine and Infectious Disease Organization-International Vaccine Centre (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK, Canada.,School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Assessment of Acute-Phase Protein Response Associated with the Different Pathological Forms of Bovine Paratuberculosis. Animals (Basel) 2020; 10:ani10101925. [PMID: 33092108 PMCID: PMC7589328 DOI: 10.3390/ani10101925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Paratuberculosis (PTB) is a chronic debilitating disease caused by Mycobacterium avium subspecies paratuberculosis (Map) that affects ruminants worldwide. Many aspects related to the pathogenesis of this disease are still unknown, including the inflammatory acute-phase response developed during the course of the infection. To clarify this, serum levels of haptoglobin and serum amyloid A, two positive acute-phase proteins, were evaluated in a total of 190 cows, among which 59 were healthy control animals and 131 cows were diagnosed post-mortem with different types of lesion associated with Map-infection. The results reflect a significant increase of these proteins’ levels in the infected animals and, more specifically, in those animals with types of lesion characterized by a low bacterial load and with predominance of a cell-mediated immune response. This suggests that these molecules would play a certain role in the pathogenesis of the PTB and a possible utility as biomarkers of different stages of the disease. Abstract In this study, the concentrations of two acute-phase proteins (APPs), haptoglobin (Hp) and serum amyloid A (SAA), were quantitatively assessed in serum samples from cattle naturally infected with paratuberculosis (PTB). APP profiles were compared across 190 animals classified according to the different pathological forms associated with infection: uninfected (n = 59), with focal lesions (n = 73), multifocal lesions (n = 19), and diffuse paucibacillary (n = 11) and diffuse multibacillary lesions (n = 28). Our results showed a significant increase in both APPs in infected animals compared to the control group, with differences depending on the type of lesion. Hp and SAA levels were increased significantly in all infected animals, except in cows with diffuse multibacillary lesions that showed similar values to non-infected animals. The expression pattern of both APPs was similar and negatively correlated with the antibody levels against PTB. These results indicate that the release of Hp and SAA is related to the presence of PTB lesions associated with a high cell-mediated immune response and a lower bacterial load, suggesting that the pro-inflammatory cytokines that are associated with these forms are the main stimulus for their synthesis. These molecules could show some potential to be used as putative biomarkers of PTB infection, particularly for the identification of subclinical animals showing pathological forms related to latency or resistance to the development of advanced lesions.
Collapse
|
7
|
Facciuolo A, Lee AH, Gonzalez Cano P, Townsend HGG, Falsafi R, Gerdts V, Potter A, Napper S, Hancock REW, Mutharia LM, Griebel PJ. Regional Dichotomy in Enteric Mucosal Immune Responses to a Persistent Mycobacterium avium ssp. paratuberculosis Infection. Front Immunol 2020; 11:1020. [PMID: 32547548 PMCID: PMC7272674 DOI: 10.3389/fimmu.2020.01020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic enteric Mycobacterium avium ssp. paratuberculosis (MAP) infections are endemic in ruminants globally resulting in significant production losses. The mucosal immune responses occurring at the site of infection, specifically in Peyer's patches (PP), are not well-understood. The ruminant small intestine possesses two functionally distinct PPs. Discrete PPs function as mucosal immune induction sites and a single continuous PP, in the terminal small intestine, functions as a primary lymphoid tissue for B cell repertoire diversification. We investigated whether MAP infection of discrete vs. continuous PPs resulted in the induction of significantly different pathogen-specific immune responses and persistence of MAP infection. Surgically isolated intestinal segments in neonatal calves were used to target MAP infection to individual PPs. At 12 months post-infection, MAP persisted in continuous PP (n = 4), but was significantly reduced (p = 0.046) in discrete PP (n = 5). RNA-seq analysis revealed control of MAP infection in discrete PP was associated with extensive transcriptomic changes (1,707 differentially expressed genes) but MAP persistent in continuous PP elicited few host responses (4 differentially expressed genes). Cytokine gene expression in tissue and MAP-specific recall responses by mucosal immune cells isolated from PP, lamina propria and mesenteric lymph node revealed interleukin (IL)22 and IL27 as unique correlates of protection associated with decreased MAP infection in discrete PP. This study provides the first description of mucosal immune responses occurring in bovine discrete jejunal PPs and reveals that a significant reduction in MAP infection is associated with specific cytokine responses. Conversely, MAP infection persists in the continuous ileal PP with minimal perturbation of host immune responses. These data reveal a marked dichotomy in host-MAP interactions within the two functionally distinct PPs of the small intestine and identifies mucosal immune responses associated with the control of a mycobacterial infection in the natural host.
Collapse
Affiliation(s)
- Antonio Facciuolo
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Amy H. Lee
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | | | - Hugh G. G. Townsend
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Reza Falsafi
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Volker Gerdts
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Potter
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Scott Napper
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - R. E. W. Hancock
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Lucy M. Mutharia
- Department of Molecular & Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Philip J. Griebel
- Vaccine & Infectious Disease Organization—International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
8
|
Criado M, Benavides J, Vallejo R, Arteche N, Gutiérrez D, Ferreras MC, Pérez V, Espinosa J. Local assessment of WC1 + γδ T lymphocyte subset in the different types of lesions associated with bovine paratuberculosis. Comp Immunol Microbiol Infect Dis 2020; 69:101422. [PMID: 31982851 DOI: 10.1016/j.cimid.2020.101422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The local expression of WC1+ γδ T lymphocytes subset has been evaluated by immunohistochemical methods at the different types of lesions present in cows naturally infected with Mycobacterium avium subsp. paratuberculosis (Map) and in non-infected control animals. Infected cattle were either in the latent/subclinical (focal lesions) or clinical (diffuse paucibacillary and multibacillary forms) stage of paratuberculosis. To assess the cell distribution, a differential cell count was carried out at the lamina propria, gut-associated lymphoid tissue and submucosa. A significant increase in the number of WC1+ γδ T cells was observed in all the infected animals, regardless of the type of lesion. Cows with focal lesions showed higher number of labeled cells than those with diffuse forms, where no differences were found between the two types. This increase in the number of positively immunolabelled lymphocytes in infected animals was seen in the lamina propria, with higher values in those with focal lesions. While in the lymphoid tissue no differences in the numbers were observed, in animals with focal lesions, WC1+ γδ T cells tended to be located at the periphery of the granulomas. These findings suggest a proinflammatory action of WC1+ γδ T lymphocytes in bovine paratuberculosis, which might play an important role in the containment of the Map-infection in the focal granulomas located in the lymphoid tissue, helping to prevent the progression toward diffuse forms responsible for the clinical signs.
Collapse
Affiliation(s)
- Miguel Criado
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Julio Benavides
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Raquel Vallejo
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Noive Arteche
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Daniel Gutiérrez
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - M Carmen Ferreras
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - Valentín Pérez
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain
| | - José Espinosa
- Dpto. Sanidad Animal, Instituto De Ganadería De Montaña (CSIC-Universidad De León), Facultad De Veterinaria, Campus De Vegazana s/n, 24071, León, Spain.
| |
Collapse
|
9
|
Abstract
Paratuberculosis and bovine tuberculosis are two mycobacterial diseases of ruminants which have a considerable impact on livestock health, welfare, and production. These are chronic "iceberg" diseases which take years to manifest and in which many subclinical cases remain undetected. Suggested biomarkers to detect infected or diseased animals are numerous and include cytokines, peptides, and expression of specific genes; however, these do not provide a strong correlation to disease. Despite these advances, disease detection still relies heavily on dated methods such as detection of pathogen shedding, skin tests, or serology. Here we review the evidence for suitable biomarkers and their mechanisms of action, with a focus on identifying animals that are resilient to disease. A better understanding of these factors will help establish new strategies to control the spread of these diseases.
Collapse
|
10
|
Stinson KJ, Duffield TF, Kelton DF, Baquero MM, Plattner BL. A preliminary study investigating effects of oral monensin sodium in an enteric Mycobacterium avium ssp. paratuberculosis infection model of calves. J Dairy Sci 2019; 102:9097-9106. [PMID: 31400899 DOI: 10.3168/jds.2018-15980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of Johne's disease, an enteric infection of ruminants that causes significant economic burden for dairy and beef producers. Efforts to control MAP in endemic herds typically focus on herd management practices such as limiting exposure or early culling of infected animals and, occasionally, vaccination. The ionophore monensin sodium may have protective effects against MAP both in vivo and in vitro; however, this has not been thoroughly evaluated experimentally. Using a direct intestinal MAP challenge model, we have observed similarities regarding persistence of MAP in tissues and apparent resilience to infection compared with experimental oral infection or natural disease. Here we sought to investigate the effects of oral monensin supplementation in experimentally MAP-infected calves. We examined the persistence of MAP in the intestinal tissues, MAP-induced intestinal inflammation, fecal MAP shedding, and seroconversion using a commercial serologic assay. Monensin-supplemented MAP-infected calves demonstrated evidence for resilience to MAP infection earlier in this study compared with monensin-free MAP-infected calves. However, statistical modeling did not identify a significant effect of monensin on outcomes of infection, and more work is required to understand how monensin affects early tissue colonization of MAP in calves.
Collapse
Affiliation(s)
- K J Stinson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - T F Duffield
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - D F Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - M M Baquero
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - B L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
11
|
Ludwig L, Egan R, Baquero M, Mansz A, Plattner BL. WC1 + and WC1 neg γδ T lymphocytes in intestinal mucosa of healthy and Mycobacterium avium subspecies paratuberculosis-infected calves. Vet Immunol Immunopathol 2019; 216:109919. [PMID: 31446207 DOI: 10.1016/j.vetimm.2019.109919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023]
Abstract
Mucosal surfaces such as the gastrointestinal tract, and skin are the front line of host defence and immunity against many pathogens. Gamma delta (γδ) T lymphocytes preferentially localize to the mucosal surfaces in several species including cattle, and are thought to play crucial roles in immunosurveillance and host defence, particularly against mycobacteria. Many γδ T cells are present in young calves, which is the period when calves are thought to be initially exposed to Mycobacterium avium subspecies paratuberculosis (Map). The role of mucosal γδ T cells in cattle, especially during host-pathogen interactions during early pre-clinical phases of infectious disease remains unclear. The purposes of this study were to investigate and characterize WC1+ and WC1neg γδ T cell subsets in various segments of the gastrointestinal (GI) tract of young calves, and then to examine γδ T cell subsets in the distal small intestine of calves after experimental intestinal Map infection by direct Peyer's patch inoculation. We show that in healthy calves, the relative proportion of γδ T cells is constant throughout the GI mucosa, though the ileum has significantly more γδ T cells. In the distal intestine, γδ T cells are mainly WC1neg and primarily located within the lamina propria of the jejunum and ileum. In Map-infected intestine, there are higher numbers of γδ T cells in the lamina propria and a greater proportion of WC1+ cells within the epithelial layer compared to control calves. While WC1neg γδ T cells preferentially localize to the distal small intestine of healthy calves, WC1+ γδ T cells are increased in the intestinal mucosa during Map infection, which is suggestive of effector cell function. Further, spectral microscopy and flow cytometry in tandem will lead to improved understanding of the functions of these cells during health and disease.
Collapse
Affiliation(s)
- Latasha Ludwig
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Rebecca Egan
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Monica Baquero
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Amanda Mansz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Brandon L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|