1
|
Liu TT, Xie MF, Yang QQ, Li RT, Zhang ZJ. Sophormodines A-C, three alkaloids with antiviral activities against the HBV from the seeds of the Tibetan medicine plant Sophora moorcroftiana. PHYTOCHEMISTRY 2025; 236:114514. [PMID: 40274172 DOI: 10.1016/j.phytochem.2025.114514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Three previously undescribed alkaloids sophormodines A-C (1-3), along with three known analogues (4-6), were isolated and fully elucidated from the seeds of the Tibetan medicine plant Sophora moorcroftiana. Compounds 1 and 2 possess unprecedented 6/5/6/6 and 5/6/6/6 ring systems, respectively, while 3 is a C15N2-alkaloid featuring a unique 5/6/6/6-tetracyclic carbon skeleton with an unusual pyrrole-2-carboxaldehyde unit. These previously undescribed structures were elucidated by means of spectroscopic data analysis (including NMR and MS), and the absolute configurations were determined using single-crystal X-ray diffraction and ECD data. Moreover, a biosynthetic pathway for the formation of 1-3 is also proposed. In addition, the isolated alkaloids were evaluated for their antiviral activity against hepatitis B virus (HBV). Overall, this study provides insights into the potential therapeutic uses of the compounds found in the seeds of S. moorcroftiana, particularly in the treatment of HBV infections.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Meng-Fan Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Qing-Qing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Rong-Tao Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China
| | - Zhi-Jun Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, PR China.
| |
Collapse
|
2
|
Guo M, Guo D, Liao L, Zhang X, Wang Z, Zhou Q, Chen P, Li R, Han B, Bao G, Zhang B. Ethanolic extract from Sophora moorcroftiana inhibit cell proliferation and alter the mechanical properties of human cervical cancer. BMC Complement Med Ther 2024; 24:212. [PMID: 38831394 PMCID: PMC11149180 DOI: 10.1186/s12906-024-04502-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Cervical cancer is one of the most common gynecological malignancies. Previous studies have shown that the ethanol extract of Sophora moorcroftiana seeds (EESMS) possesses an antiproliferative effect on several tumors in vitro. Therefore, in this study, we assessed the impact of EESMS on human cervical carcinoma (HeLa) cell proliferation. METHODS The proliferation and apoptotic effects of HeLa cells treated with EESMS were evaluated using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide assay, dual acridine orange/ethidium bromide double staining, flow cytometry, and western blotting. Single-cell level atomic force microscopy (AFM) was conducted to detect the mechanical properties of HeLa cells, and proteomics and bioinformatics methods were used to elucidate the molecular mechanisms of EESMS. RESULTS EESMS treatment inhibited HeLa cell proliferation by blocking the G0/G1 phase, increasing the expression of Caspase-3 and affecting its mechanical properties, and the EESMS indicated no significant inhibitory effect on mouse fibroblasts L929 cell line. In total, 218 differentially expressed proteins were identified using two-dimensional electrophoresis, and eight differentially expressed proteins were successfully identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. The differentially expressed proteins were involved in various cellular and biological processes. CONCLUSION This study provides a perspective on how cells change through biomechanics and a further theoretical foundation for the future application of Sophora moorcroftiana as a novel low-toxicity chemotherapy medication for treating human cervical cancer.
Collapse
Affiliation(s)
- Manli Guo
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Northwest new village No.1, Lanzhou, 730030, PR China
| | - Dingcheng Guo
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Lingzi Liao
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Xiao Zhang
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Zhilong Wang
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Qiaozhen Zhou
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Ping Chen
- Chengdu Stomatological Hospital, NO. 17, South Section of Chunxi Road, Jinjiang District, Chengdu, 610020, PR China
| | - Ruiping Li
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China
- Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Donggang West Road 199, Lanzhou, 730000, PR China
| | - Bing Han
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Northwest new village No.1, Lanzhou, 730030, PR China
| | - Guangjie Bao
- Key Lab of Oral Diseases of Gansu Province, Northwest Minzu University, Northwest new village No.1, Lanzhou, 730030, PR China.
| | - Baoping Zhang
- School (Hospital) of Stomatology, Lanzhou University, Donggang West Road 199, Lanzhou, 730000, PR China.
- Gansu Province Key Lab of Maxillofacial Reconstruction and Intelligent Manufacturing, Donggang West Road 199, Lanzhou, 730000, PR China.
| |
Collapse
|
3
|
Wei S, Xiao J, Ju F, Liu J, Hu Z. A review on the pharmacology, pharmacokinetics and toxicity of sophocarpine. Front Pharmacol 2024; 15:1353234. [PMID: 38746009 PMCID: PMC11092382 DOI: 10.3389/fphar.2024.1353234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Sophocarpine is a natural compound that belongs to the quinolizidine alkaloid family, and has a long history of use and widespread distribution in traditional Chinese herbal medicines such as Sophora alopecuroides L., Sophora flavescens Ait., and Sophora subprostrata. This article aims to summarize the pharmacology, pharmacokinetics, and toxicity of sophocarpine, evaluate its potential pharmacological effects in various diseases, and propose the necessity for further research and evaluation to promote its clinical application. A large number of studies have shown that it has anti-inflammatory, analgesic, antiviral, antiparasitic, anticancer, endocrine regulatory, and organ-protective effects as it modulates various signaling pathways, such as the NF-κB, MAPK, PI3K/AKT, and AMPK pathways. The distribution of sophocarpine in the body conforms to a two-compartment model, and sophocarpine can be detected in various tissues with a relatively short half-life. Although the pharmacological effects of sophocarpine have been confirmed, toxicity and safety assessments and reports on molecular mechanisms of its pharmacological actions have been limited. Given its significant pharmacological effects and potential clinical value, further research and evaluation are needed to promote the clinical application of sophocarpine.
Collapse
Affiliation(s)
- Shichao Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junshen Xiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Ju
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Dong R, Guo Q, Li H, Li J, Zuo W, Long C. Estimation of morphological variation in seed traits of Sophora moorcroftiana using digital image analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1185393. [PMID: 37313255 PMCID: PMC10258342 DOI: 10.3389/fpls.2023.1185393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/02/2023] [Indexed: 06/15/2023]
Abstract
Sophora moorcroftiana is a leguminous plant endemic to the Qinghai-Tibet Plateau. It has excellent abiotic stress tolerance and is considered an ideal species for local ecological restoration. However, the lack of genetic diversity in the seed traits of S. moorcroftiana hinders its conservation and utilization on the plateau. Therefore, in this study, genotypic variation and phenotypic correlations were estimated for nine seed traits among 15 accessions of S. moorcroftiana over two years, 2014 and 2019, respectively from 15 sample points. All traits evaluated showed significant (P< 0.05) genotypic variation. In 2014, accession mean repeatability was high for seed perimeter, length, width, and thickness, and 100-seed weight. In 2019, mean repeatability for seed perimeter and thickness, and 100-seed weight were high. The estimates of mean repeatability for seed traits across the two years ranged from 0.382 for seed length to 0.781 for seed thickness. Pattern analysis showed that 100-seed weight was significantly positively correlated with traits such as seed perimeter, length, width, and thickness, and identified populations with breeding pool potential. In the biplot, principal components 1 and 2 explained 55.22% and 26.72% of the total variation in seed traits, respectively. These accessions could produce breeding populations for recurrent selection to develop S. moorcroftiana varieties suitable for restoring the fragile ecological environment of the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Rui Dong
- Department of Grassland Science, College of Animal Science, Guizhou University, Guiyang, China
| | - Qiqiang Guo
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, China
| | - Huie Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jiangrong Li
- Key Lab Forest Ecology Tibet Plateau, Ministry Education, Tibet Agriculture & Animal Husbandry University, Nyingchi, China
| | - Weiwei Zuo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Cha Long
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Antiparasitic Effects of Asteraceae Species Extracts on Echinococcus granulosus s.s. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6371849. [PMID: 36193140 PMCID: PMC9526667 DOI: 10.1155/2022/6371849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
Cystic echinococcosis is a zoonotic disease caused by the parasite Echinococcus granulosus sensu lato (s.l.), which is worldwide distributed and causes long-lasting infections in animals and humans. The existing treatment is limited to the use of benzimidazoles, mainly albendazole (ABZ). However, it has unwanted side effects and its efficacy is about 50%. The Asteraceae family includes plants that have therapeutic applications (medicinal species) and has an important role in new drug development. The species belonging to a different genus of this family show a wide range of anti-inflammatory, antimicrobial, antioxidant, hepatoprotective, and antiparasitic activities, among others. The aim of the present study was to evaluate the in vitro efficacy of extracts of four Asteraceae species against protoscoleces of E. granulosus sensu stricto (s.s.). On the other hand, the Stevia aristata extract was assessed on the murine cyst of E. granulosus (s.s.) and the efficacy of S. aristata extract was investigated in a murine model of CE. Stevia satureiifolia, S. aristata, Grindelia pulchella, and G. chiloensis extracts at 100 μg/mL caused a decrease in protoscoleces viability; however, S. aristata extract produced the greatest in vitro protoscolicidal effect. After 20 days of treatment with the highest concentration (100 μg/mL) of S. aristata extract, protoscoleces viability decreased to 0%. The tegumental changes observed by scanning electron microscopy were consistent with the reduction in vitality. The collapse of the germinal layer was registered in 60 ± 5.8% and 83.3 ± 12.0% of cysts treated during 4 days with 50 and 100 μg/ml, respectively. The half maximal effective concentration (EC50) value of the S. aristata extract against E. granulosus (s.s.) cysts was 47.86 μg/mL (96 h). The dosage of infected animals with the 50 mg kg−1 dose of S. aristata extract resulted in a significant reduction in cyst weight in comparison with the control group. In conclusion, S. aristata extract was demonstrated to exert a marked effect, both in vitro and in the murine model.
Collapse
|
6
|
Intratumoral IL-28B Gene Delivery Elicits Antitumor Effects by Remodeling of the Tumor Microenvironment in H22-Bearing Mice. J Immunol Res 2022; 2022:1345971. [PMID: 35935577 PMCID: PMC9352479 DOI: 10.1155/2022/1345971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/26/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
IL-28B, belonging to type III interferons (IFN-λs), exhibits a potent antitumor activity with reduced regulated T cells (Tregs) population, yet the effect of IL-28B on the tumor microenvironment (TME) and if IL-28B can downregulate Tregs directly in vitro are still unknown. In this study, we investigated the effects of IL-28B on Tregs in the spleen and TME in H22 tumor-bearing mice and verified the downregulation of IL-28B on Tregs in vitro. We found that rAd-mIL-28B significantly inhibited tumor growth and reduced the frequency of splenic CD4+Foxp3+ T cells. The levels of CXCL13, ICAM-1, MCP-5, and IL-7 in the serum, and the levels of IL-15 and sFasL in the tumor tissue decreased significantly after rAd-mIL-28B treatment relative to rAd-EGFP. Furthermore, the percentage of CD8+ cells in the TME was significantly increased in the rAd-mIL-28B group compared with the untreated group. In vitro, splenocytes were stimulated with anti-CD3/CD28 and IL-2 in the presence of TGF-β with or without IL-28B for three days and followed by flow cytometric, RT-PCR, and IL-10 production analysis. The results showed that IL-28B significantly reduced the proportion of induced Foxp3+ cells. It demonstrated that IL-28B may be used as a promising immunotherapy strategy against cancer.
Collapse
|
7
|
Albani CM, Borgo J, Fabbri J, Pensel P, Fasciani L, Elso O, Papademetrio D, Grasso D, Paladini A, Beer MF, Farias NE, Elissondo N, Gambino G, Zoppi J, Sülsen V, Elissondo MC. Anthelmintic activity of Stevia multiaristata extract against Echinococcus granulosus sensu stricto. Parasitology 2022; 149:519-528. [PMID: 35331352 PMCID: PMC11010565 DOI: 10.1017/s0031182021002109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Cystic echinococcosis is a zoonotic disease caused by the larval stage of the parasite Echinococcus granulosus sensu lato. The available anti-parasitic treatment is mostly limited to a continuous administration of albendazole. However, due to its numerous side-effects and efficacy of around 50%, there is a need to find new drugs to improve the treatment for this disease. In the current study, the in vitro and in vivo efficacy of a Stevia multiaristata extract against E. granulosus sensu stricto (s.s.) was demonstrated. Stevia multiaristata extract (100 and 50 μg mL−1) caused a quick viability decrease on protoscoleces which was consistent with the observed tegumental alterations. Loss of turgidity was detected in 95 ± 3.4% of cysts incubated with S. multiaristata extract during 2 days (100 μg mL−1) and the collapse of the germinal layer was observed in 60 ± 9.3% of cysts treated with 100 μg mL−1 of the S. multiaristata extract during 4 days. The half maximal effective concentration value was 69.6 μg mL−1 and the selectivity index for E. granulosus s.s. cysts was 1.9. In this clinical efficacy study, the treatment of infected mice with the S. multiaristata extract (50 mg kg−1) caused a significant decrease in the weight of the cysts compared with the control group. These results coincided with the tissue damage observed in the cysts at the ultrastructural level. In conclusion, we observed high protoscolicidal and cysticidal effects, and significant reduction in the weight of the cysts in experimentally infected mice following treatment with the S. multiaristata extract.
Collapse
Affiliation(s)
- C. M. Albani
- Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| | - J. Borgo
- CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J. Fabbri
- Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| | - P. Pensel
- Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| | - L. Fasciani
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| | - O. Elso
- CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - D. Papademetrio
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Inmunología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - D. Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Fisiopatología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A. Paladini
- Facultad de Ciencias Veterinarias (UNLP), Cátedra de Parasitología Comparada, Buenos Aires, Argentina
| | - M. F. Beer
- CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - N. E. Farias
- Laboratorio de Invertebrados, Instituto de Investigaciones Marinas y Costeras (IIMYC) (UNMDP-CONICET), Mar del Plata, Argentina
| | - N. Elissondo
- Laboratorio de Análisis Clínicos, Santisteban, 7000Tandil, Buenos Aires, Argentina
| | - G. Gambino
- Laboratorio de Análisis Clínicos, Santisteban, 7000Tandil, Buenos Aires, Argentina
| | - J. Zoppi
- Hospital Privado de Comunidad, Mar del Plata, Buenos Aires, Argentina
| | - V. Sülsen
- CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacognosia, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M. C. Elissondo
- Facultad de Ciencias Exactas y Naturales – UNMdP, Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP); Centro Científico Tecnológico Mar del Plata – CONICET; Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
8
|
Liu C, Fan H, Guan L, Ma L, Ge RL. Evaluation of Allicin Against Alveolar Echinococcosis In Vitro and in a Mouse Model. Acta Parasitol 2022; 67:79-93. [PMID: 34143400 PMCID: PMC8938363 DOI: 10.1007/s11686-021-00434-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023]
Abstract
Purpose At present, the chemotherapy for alveolar echinococcosis (AE) is mainly based on albendazole (ABZ). However, more than 20% of patients fail chemotherapy. Therefore, new and more effective treatments are urgently needed. Allicin has been reported to have antibacterial and antiparasitic effects. The objectives of the present study were to investigate the in vivo and in vitro efficacy of allicin against Echinococcus multilocularis (E. multilocularis). Methods The effects of allicin on protoscolex survival and structural changes were evaluated in vitro. The 4-week-old BALB/c male mice used for in vivo modelling underwent inoculation of E. multilocularis protoscoleces by intraperitoneal injection, followed by intragastric administration of allicin for 6 weeks. Then, the effects of allicin on lymphocyte subsets, metacestode growth and host tissue matrix metalloproteinase 2 (MMP2)/MMP9 expression around metacestodes in mice were evaluated. The toxicity of allicin was further evaluated in vivo and in vitro. Results Att 40 μg/mL, allicin showed a killing effect on protoscoleces in vitro and treatment resulted in the destruction of protoscolex structure. Molecular docking showed that allicin could form hydrogen bonds with E. multilocularis cysteine enzymes. After 6 weeks of in vivo allicin treatment, the spleen index of mice was increased and the weight of metacestodes was reduced. Allicin increased the proportion of CD4+ T cells and decreased the proportion of CD8+ T cells in the peripheral blood and spleen. Pathological analysis of the metacestodes showed structural disruption of the germinal and laminated layers after allicin treatment. In addition, allicin inhibited the expression of MMP2 and MMP9 in metacestode-surrounding host tissues. At 160 μg/mL, allicin had no significant toxicity to normal hepatocytes but could inhibit hepatoma cell proliferation. At 30 mg/kg, allicin had no significant hepatorenal toxicity in vivo. Conclusion These results suggest that allicin exerts anti-E. multilocularis effects in vitro and in vivo and can enhance immune function in mice, with the potential to be developed as a lead compound against echinococcosis.
Collapse
Affiliation(s)
- Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China
- Hepatobiliary and Pancreatic Surgery Department, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Haining Fan
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China
- Hepatobiliary and Pancreatic Surgery Department, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Lu Guan
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China
- Hepatobiliary and Pancreatic Surgery Department, Qinghai University Affiliated Hospital, Xining, 810001, China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China.
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China.
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001, China.
- Key Laboratory for Echinococcosis, Qinghai University Affiliated Hospital, Xining, 810001, China.
| |
Collapse
|
9
|
Zhang F, Zhang H, Qian W, Xi Y, Chang L, Wu X, Li M. Matrine exerts antitumor activity in cervical cancer by protective autophagy via the Akt/mTOR pathway in vitro and in vivo. Oncol Lett 2022; 23:110. [PMID: 35242238 PMCID: PMC8848215 DOI: 10.3892/ol.2022.13230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
Matrine is a quinazoline alkaloid extracted from Sophora flavescens. The aim of the present study was to determine whether matrine can induce autophagy in the human HeLa and SiHa cervical cancer cell lines in vitro and in vivo. Cell viability assay was used to assess the suppressive effect of matrine and cisplatin on the proliferation of HeLa and SiHa cells. A total of 28 4-week-old female BALB/c nude mice were used for the in vivo study. Autophagy and protein expression were observed via transmission electron microscopy, monodansylcadaverine and immunohistochemical staining and western blotting. The inhibitory effect of matrine on the proliferation of cervical cancer cells was time- and dose-dependent. The combination of matrine and cisplatin synergistically inhibited the proliferation of cervical cancer cells in vitro and in vivo. Transmission electron microscopy showed that after the addition of matrine, numerous autophagosomes and autophagolysosomes were observable in HeLa and SiHa cells, as demonstrated by monodansylcadaverine staining. Western blotting and immunohistochemical staining showed that as the concentration of matrine increased, the expression of the autophagy marker LC3A/B-II also increased significantly in vitro and in vivo. These findings suggested that matrine inhibited the proliferation of cervical cancer cells and induced autophagy by inhibiting the Akt/mTOR signaling pathway. Thus, matrine may represented a potential candidate in combination therapy for cervical cancer as an inducer of autophagy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wenjun Qian
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yuyan Xi
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lihua Chang
- Department of Preventive Health and Community Services, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Mu Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
10
|
Wang S, Ma Y, Wang W, Dai Y, Sun H, Li J, Wang S, Li F. Status and prospect of novel treatment options toward alveolar and cystic echinococcosis. Acta Trop 2022; 226:106252. [PMID: 34808118 DOI: 10.1016/j.actatropica.2021.106252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are the two most important global parasitic infectious diseases caused by species of Echinococcus granulosus and E. multilocularis, respectively. Although numerous trials have been performed in search of novel therapeutic options to curb the neglected zoonosis, no other nonsurgical options are currently available to replace the licensed anti echinococcal drugs albendazole (ABZ) and mebendazole (MBZ). A safer and more effective treatment plan for echinococcosis is therefore urgently needed to compensate for this therapeutic shortfall. Here, we present a review of the literature for state-of-the-art valuable anti-parasitic compounds and novel strategies that have proved effective against CE and AE, which includes details about the pharmaceutical type, practical approach, experimental plan, model application and protoscolecidal effects in vivo and in vitro. The content includes the current application of traditional clinical chemicals, the preparation of new compounds with various drug loadings, repurposing findings, combined programs, the prospects for Chinese herbal medicines, non-drug administrations and the exploration of target inhibitors based on open-source information for parasitic genes. Next the conventional experimental projects and pharmacodynamic evaluation methods are systematically summarized and evaluated. The demands to optimize the construction of the echinococcosis model and improve the dynamic monitoring method in vivo are also discussed given the shortcomings of in vivo models and monitoring methods.
Collapse
Affiliation(s)
- Sibo Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yibo Ma
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Weishan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yi Dai
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Haohao Sun
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Jing Li
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shan Wang
- Laboratory of Translational Medicine, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China.
| | - Feng Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
11
|
Synergism therapeutic and immunoregulatory effects of Albendazole + rAd-mIL-28B against Echinococcosis in experiment-infected mice with protoscoleces. PLoS Negl Trop Dis 2021; 15:e0009927. [PMID: 34818327 PMCID: PMC8612551 DOI: 10.1371/journal.pntd.0009927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022] Open
Abstract
The metacestode stage of Echinococcus granulosus can cause cystic echinococcosis (CE), which still widely occurs around the world. Since the early 1970s, benzimidazoles have been shown to inhibit the growth of cysts and used to treat CE. However, benzimidazoles are still ineffective in 20%-40% of cases. In order to explore the new agents against CE, we have investigated the therapeutic effect of the recombinant adenoviral vector expressing mouse IL-28B (rAd-mIL-28B) on protoscoleces-infected mice. In our study, we successfully established the model mice which infected with protoscoleces intraperitoneally. At 18 weeks post-infection, the mice received rAd-mIL-28B (1×107 PFU) weekly by intramuscular injection for 6 weeks. Compared with the untreated control (13.1 ± 2.2 g), there was a significant reduction in cysts wet weight in rAd-mIL-28B group (8.3 ± 3.5 g) (P < 0.05), especially in Albendazole (ABZ) + rAd-mIL-28B group (5.8 ± 1.4 g) (P < 0.01). We also observed the severe damage of the germinal layer and the laminated layer of cysts after treatment. rAd-mIL-28B group showed a prominent increase in the level of Th1 type cytokines (such as IFN-γ, IL-2 and TNF-α). Meanwhile, the frequency of Foxp3+ T cells was decreased in the rAd-mIL-28B group (4.83 ± 0.81%) and ABZ + rAd-mIL-28B group (4.60 ± 0.51%), comparing with the untreated group (8.13 ± 2.60%) (P < 0.05). In addition, compared with the untreated control (122.14 ± 81.09 pg/ml), the level of IFN-γ significantly increased in peritoneal fluid in the rAd-mIL-28B group (628.87 ± 467.16 pg/ml) (P < 0.05) and ABZ + rAd-mIL-28B group (999.76 ± 587.60 pg/ml) (P < 0.001). Taken together, it suggested that ABZ + IL-28B may be a potential therapeutic agent against CE. Echinococcosis is a chronic zoonotic parasitic disease, which is caused by the larval stage of Echinococcus granulosus (E. granulosus) and Echinococcus multiocularis (E. multiocularis). This disease is still widely prevalent in the world and seriously endangers human health and life, causing heavy burdens and economic losses to agriculture and animal husbandry. China is also one of the high incidence areas of the disease. At present, the preferred treatment is surgical excision of the parasitic mass, but patients with multiple cysts appear in multiple organs have to receive drug therapy. The approved chemotherapeutic drugs in clinic, such as albendazole (ABZ) and mebendazole, often do not work expectedly with a high rate of recurrence. Therefore, it is urgent to develop the new anti-echinococcal drug. IL-28B is an important member of type-III IFNs, which is equipped with the capacity of anti-viral activity and anti-tumor. In our previous study, we found that IL-28B could inhibit the proliferation of cervical cancer cells via down-regulating Treg cells in mice. This study mainly studied the therapeutic effect of rAd-mIL-28B on E. granulosus-infected mice, and the results showed that rAd-mIL-28B could relieve the parasitic burden and inhibit Treg cells meanwhile improve the Th1 and Th17 immune responses. It may contribute to another choice for the anti-echinococcal treatment.
Collapse
|
12
|
Abd-Alla HI, Souguir D, Radwan MO. Genus Sophora: a comprehensive review on secondary chemical metabolites and their biological aspects from past achievements to future perspectives. Arch Pharm Res 2021; 44:903-986. [PMID: 34907492 PMCID: PMC8671057 DOI: 10.1007/s12272-021-01354-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/29/2021] [Indexed: 12/13/2022]
Abstract
Sophora is deemed as one of the most remarkable genera of Fabaceae, and the third largest family of flowering plants. The genus Sophora comprises approximately 52 species, 19 varieties, and 7 forms that are widely distributed in Asia and mildly in Africa. Sophora species are recognized to be substantial sources of broad spectrum biopertinent secondary metabolites namely flavonoids, isoflavonoids, chalcones, chromones, pterocarpans, coumarins, benzofuran derivatives, sterols, saponins (mainly triterpene glycosides), oligostilbenes, and mainly alkaloids. Meanwhile, extracts and isolated compounds from Sophora have been identified to possess several health-promising effects including anti-inflammatory, anti-arthritic, antiplatelets, antipyretic, anticancer, antiviral, antimicrobial, antioxidant, anti-osteoporosis, anti-ulcerative colitis, antidiabetic, anti-obesity, antidiarrheal, and insecticidal activities. Herein, the present review aims to provide comprehensive details about the phytochemicals and biological effects of Sophora species. The review spotlighted on the promising phytonutrients extracted from Sophora and their plethora of bioactivities. The review also clarifies the remaining gaps and thus qualifies and supplies a platform for further investigations of these compounds.
Collapse
Affiliation(s)
- Howaida I Abd-Alla
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
| | - Dalila Souguir
- Institut National de Recherches en Génie Rural, Eaux et Forêts (INRGREF), Université de Carthage, 10 Rue Hédi Karray, Manzeh IV, 2080, Ariana, Tunisia
| | - Mohamed O Radwan
- Chemistry of Natural Compounds Department, National Research Centre, El-Bohouth Street, Giza-Dokki, 12622, Egypt.
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
13
|
Liu C, Fan H, Ma J, Ma L, Ge RL. In vitro and in vivo efficacy of thiacloprid against Echinococcus multilocularis. Parasit Vectors 2021; 14:450. [PMID: 34488852 PMCID: PMC8419995 DOI: 10.1186/s13071-021-04952-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) is a chronic zoonosis caused by the larval form of Echinococcus multilocularis (E. multilocularis). Current chemotherapy against AE has relied on albendazole and mebendazole, which only exhibit parasitostatic and not parasiticidal efficacy. Therefore, novel compounds for the treatment of this disease are needed. METHODS Phosphoglucose isomerase (PGI) assays were used for compound screening of seven neonicotinoids. The anti-parasitic effects of thiacloprid were then evaluated on E. multilocularis metacestode vesicles, germinal cells and protoscoleces in vitro. Human foreskin fibroblasts (HFF) and Reuber rat hepatoma (RH) cells were used to assess cytotoxicity. Glucose consumption in E. multilocularis protoscoleces and germinal cells was assessed by measuring uptake of 2-deoxyglucose (2-DG). Molecular docking was used to evaluate the potential binding sites of thiacloprid to acetylcholine receptors. In vivo efficacy of thiacloprid was evaluated in mice by secondary infection with E. multilocularis. In addition, ELISA and flow cytometry were used to evaluate the effects of cytokines and T lymphocyte subsets after thiacloprid treatment. Furthermore, collagen deposition and degradation in the host lesion microenvironment were evaluated. RESULTS We found that thiacloprid is the most promising compound, with an IC50 of 4.54 ± 1.10 μM and 2.89 ± 0.34 μM, respectively, against in vitro-cultured E. multilocularis metacestodes and germinal cells. Thiacloprid was less toxic for HFF and RH mammalian cell lines than for metacestodes. In addition, thiacloprid inhibited the acetylcholinesterase activity in protoscoleces, metacestodes and germinal cells. Thiacloprid inhibited glucose consumption by protoscoleces and germinal cells. Subsequently, transmission electron microscopy revealed that treatment with thiacloprid damaged the germinal layer. In vivo, metacestode weight was significantly reduced following oral administration of thiacloprid at 15 and 30 mg/kg. The level of CD4+ T lymphocytes in metacestodes and spleen increased after thiacloprid treatment. Anti-echinococcosis-related cytokines (IL-2, IL-4, IL-10) were significantly increased. Furthermore, thiacloprid inhibited the expression of matrix metalloproteinases (MMPs 1, 3, 9, 13) and promoted collagen deposition in the host lesion microenvironment. CONCLUSIONS The results demonstrated that thiacloprid had parasiticidal activity against E. multilocularis in vitro and in vivo, and could be used as a novel lead compound for the treatment of AE.
Collapse
Affiliation(s)
- Chuanchuan Liu
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 Qinghai China
- Qinghai University Affiliated Hospital, Xining, 810001 Qinghai China
- Qinghai Key Laboratory for Echinococcosis, Xining, 810001 Qinghai China
| | - Haining Fan
- Qinghai University Affiliated Hospital, Xining, 810001 Qinghai China
- Qinghai Key Laboratory for Echinococcosis, Xining, 810001 Qinghai China
| | - Jie Ma
- Qinghai University Affiliated Hospital, Xining, 810001 Qinghai China
| | - Lan Ma
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 Qinghai China
- Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, 810001 Qinghai China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, 810001 Qinghai China
| | - Ri-li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, 810001 Qinghai China
- Qinghai Key Laboratory for Echinococcosis, Xining, 810001 Qinghai China
- Qinghai Key Laboratory of Science and Technology for High Altitude Medicine, Xining, 810001 Qinghai China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Xining, 810001 Qinghai China
| |
Collapse
|
14
|
Yuan R, Dongzhi Z, Guo W, Zhen P, Liu Z, Huang S, Li B, Yu J. Hepatoprotective effect of Sophora moorcroftiana (Benth.) Benth.Ex baker seeds in vivo and in vitro. Drug Chem Toxicol 2021; 45:2535-2544. [PMID: 34380357 DOI: 10.1080/01480545.2021.1962692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The leguminosae of Sophora moorcroftiana (Benth.) Benth.ex Baker is a drought-resistant endemic Sophora shrub species from the Qinghai-Tibet Plateau, and its seeds have hepatoprotective effects. To study the effect of S. moorcroftiana seeds on liver injury and the molecular mechanism underlying the beneficial effects, liquid chromatography-mass spectrometry was used to detect the main active components in the ethanol extract of S. moorcroftiana seeds (SM). Male mice were divided into six groups (n = 8): normal control (NC), CCl4, SM (50, 100, 200 mg/kg), and dimethyl diphenyl bicarboxylate (150 mg/kg) groups. Mice were treated as indicated (once/day, orally) for 14 days, and CCl4 (2 mL/kg) was administered intraperitoneally. The serum and liver of mice were used for biochemical assays. To explore the underlying mechanism, HepG2 cells were treated with SM, stimulated with tert-butyl hydroperoxide (t-BHP, 50 μM), and analyzed by Western blotting. The major active compounds of SM were alkaloids including 22 compounds. Serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) decreased in the SM (200 mg/kg) group. SM can activate the expression of pregnane X receptor (PXR) and downstream molecules cytochrome P4503A11 enzyme (CYP3A11), UDP glucuronosyltransferase 1 family polypeptide A 1 (UGT1A1), and inhibit the multidrug resistance protein 2 (MRP2). In addition, SM improved cell viability in t-BHP-induced HepG2 cells (64% to 83%) and decreased the activation of the mitogen-activated protein kinase (MAPK) pathway. The main compounds in SM were alkaloids. SM showed hepatoprotective effects possibly mediated by the suppression of oxidative stress through the MAPK pathway.
Collapse
Affiliation(s)
- Ruiying Yuan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, China.,Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Zhuoma Dongzhi
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Wei Guo
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Pu Zhen
- Department of Medicament, College of Medicine, Tibet University, Lhasa, China
| | - Zhiming Liu
- Department of Pharmacy, Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Shan Huang
- Department of Pharmacy, Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Bin Li
- Department of Pharmacy, Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China
| | - Jianqing Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| |
Collapse
|
15
|
Chen C, Gao Q, Luo Y, Zhang G, Xu X, Li Z, Wang J, He Q, Sheng L, Ma X. The immunotherapy with hMASP-2 DNA nanolipoplexes against echinococcosis in experimentally protoscolex-infected mice. Acta Trop 2020; 210:105579. [PMID: 32535067 DOI: 10.1016/j.actatropica.2020.105579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/19/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Cystic echinococcosis (CE), a complex and neglected zoonotic infectious disease, is mainly caused by larval tapeworm Echinococcus granulosus with a worldwide distribution. For CE, an effective drug treatment is not yet available. The present study was conducted to evaluate the efficacy of hMASP-2-based immunotherapy against hydatid cysts by using murine model. Eighteen weeks after infection with 2000 viable protoscoleces intraperitoneally, the infected mice were treated with hMASP-2 DNA nanolipoplexes (pcDNA3.1-hMASP-2) and albendazole respectively. After six weeks treatment, a significant reduction in the weight of cysts was observed both in the pcDNA3.1-hMASP-2 group and albendazole group compared with the untreated group (P < 0.05). The hMASP-2 DNA nanolipoplexes not only inhibited the development of germinal layer, but also induced the extensive degeneration and damage of the germinal layer cells. Furthermore, compared with the untreated group, the number of CD4+T cells and CD8+T cells and the level of serum IFN-γ were significantly increased (P < 0.05). The frequency of PD-1+T-cell subpopulations including CD4+PD-1+T cells and CD8+PD-1+T cells and the level of serum IL-4 were notably decreased (P < 0.05) in the pcDNA3.1-hMASP-2 treatment group. Therefore, the hMASP-2 DNA nanolipoplexes displayed an effective treatment for echinococcosis through inhibiting the development of cysts and up-regulatory T-cell immunity. This new hMASP-2-based immunotherapeutic strategy could be a potential alternative for the treatment of CE, but further studies are recommended to evaluate the full potential of these hMASP-2 DNA nanolipoplexes in the treatment of human CE.
Collapse
Affiliation(s)
- Chong Chen
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qi Gao
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yanping Luo
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guochao Zhang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoying Xu
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhi Li
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianghua Wang
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qi He
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Li Sheng
- Department of Immunology, Medical College, Northwest Minzu University, Lanzhou, 730030, China
| | - Xingming Ma
- Department of Immunology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China; Key Lab of Preclinical Study for New Drugs of Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
16
|
In vivo effect of magnetic microspheres loaded with E2-a in the treatment of alveolar echinococcosis. Sci Rep 2020; 10:12589. [PMID: 32724060 PMCID: PMC7387340 DOI: 10.1038/s41598-020-69484-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
The alveolar echinococcosis of human is a severe helminthic disease caused by the larva of Echinococcus multilocularis tapeworms. Novel compounds or therapy strategies for the treatment of alveolar echinococcosis are urgently needed due to the limitation of the widely used albendazole. Magnetic microspheres as drug carriers in magnetically targeted therapy of tumor have gained growing interests advantaged by delivering the drug to the aimed site, achieving localized therapeutic effect effectively under the influence of an external magnetic field. In this study, we formulated magnetic microspheres loaded with E2-a (PLGA-Fe-E2-a) and identified the activity in E. multilocularis-infected mice which infected with 3,000 protoscoleces intraperitoneally. Compared with the untreated control, with the help of a magnet, there was a significant reduction in parasite burden with PLGA-Fe-E2-a treatment and similar reduction observed with albendazole. PLGA-Fe-E2-a treatment group also showed a significant increase in the IFN-γ level and impaired morphological and ultrastructural alterations. Most importantly, one-third concentrations of E2-a from PLGA-Fe-E2 based on the release profile of E2-a was equally effective in inhibiting metacestode growth as E2-a treated group, supporting efficacy and bioavailability of a drug. It will be an alternative treatment for alveolar echinococcosis using magnetic microspheres as drug carriers.
Collapse
|
17
|
Nassef NE, Saad AGE, Harba NM, Beshay EVN, Gouda MA, Shendi SS, Mohamed ASED. Evaluation of the therapeutic efficacy of albendazole-loaded silver nanoparticles against Echinococcus granulosus infection in experimental mice. J Parasit Dis 2019; 43:658-671. [PMID: 31749538 PMCID: PMC6841915 DOI: 10.1007/s12639-019-01145-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/10/2019] [Indexed: 01/08/2023] Open
Abstract
The drug of choice for treatment of hydatid disease, albendazole (ABZ) is a poorly water-soluble drug; thus, enhancing its solubility is required. Among metal nanoparticles (NPs), silver (Ag) NPs showed antimicrobial efficacies. Therefore, this study was conducted to evaluate nanosilver particles (Ag NPs) free or combined with albendazole against Echinococcus granulosus infection in vivo. In this study, besides the normal control group (GI) (n = 5), 80 mice were infected with 2000 viable protoscoleces intraperitoneally then divided equally (n = 20) into the infected control (GII), ABZ-treated (GIII), nanosilver-treated (GIV) and ABZ-loaded-Ag NPs-treated (GV) groups. On the 90th post-infection day, treatment was started and continued for 8 weeks then the experiment was terminated. Each mouse was subjected to measurement of hydatid cysts' sizes and weights, serum IFN-γ, liver enzymes; histopathological and transmission electron microscopy studies. In all treated groups, there were significant reductions of hydatid cysts' sizes and weights; however, the highest efficacy rate (63.9%) was detected in group V associated with obvious ultrastructure alterations of the cysts. The liver tissues of group II showed intense granulomatous reactions, congestion, fibrosis, necrosis and steatosis associated with significant increases in serum IFN-γ and liver enzymes. Interestingly, the best antiparasitic effect and the most significant reduction of IFN-γ towards the normal values were found in GV. Moreover, Ag NPs had reduced the toxic effects of ABZ such as necrosis, steatosis and the elevated serum liver enzymes. Therefore, loading ABZ on Ag NPs could be a potential method to improve ABZ efficacy against hydatid disease.
Collapse
Affiliation(s)
- Nashaat E. Nassef
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Abdel-Gawad E. Saad
- Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Nancy M. Harba
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Engy V. N. Beshay
- Medical Parasitology Department, Faculty of Medicine, Menoufia University, Yassin abdel Gaffar St. from Gamal Abdel Nasser St., Shebin El-Kom, Menoufia Egypt
| | - Marwa A. Gouda
- Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sawsan S. Shendi
- Clinical and Molecular Parasitology Department, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | | |
Collapse
|
18
|
Aly SH, Elissawy AM, Eldahshan OA, Elshanawany MA, Efferth T, Singab ANB. The pharmacology of the genus Sophora (Fabaceae): An updated review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153070. [PMID: 31514082 DOI: 10.1016/j.phymed.2019.153070] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/04/2019] [Accepted: 08/20/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND The genus Sophora (Fabaceae) represents one of the important medicinal plant genera regarding its chemical constituents and outstanding pharmacological activities. PURPOSE In this review, we surveyed the latest findings on the bioactivities of different Sophora extracts and isolated phytochemicals during the past 8 years (2011-2019) updating the latest review article in 2011. The aim of this review is to focus on the molecular pharmacology of Sophora species to provide the rationale basis for the development of novel drugs. RESULTS Sophora and its bioactive compounds possess outstanding pharmacological properties, especially as anticancer and anti-inflammatory drugs, in addition to its antioxidant, antibacterial, antifungal and antiviral properties. CONCLUSION Based on their use in traditional medicine, Sophora species exert a plethora of cellular and molecular activities, which render them as attractive candidates for rationale drug development. Randomized, placebo-controlled clinical trials are required for further integration of Sophora-based phototherapies into conventional medicine.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, 55128 Mainz, Germany.
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, 11566, Cairo, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| |
Collapse
|