1
|
Piesche R, Breithaupt A, Pohlmann A, Ahrens AK, Beer M, Harder T, Grund C. Dominant HPAIV H5N1 genotypes of Germany 2021/2022 are linked to high virulence in Pekin ducklings. NPJ VIRUSES 2024; 2:53. [PMID: 40295819 PMCID: PMC11721377 DOI: 10.1038/s44298-024-00062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/25/2024] [Indexed: 04/30/2025]
Abstract
Highly pathogenic avian influenza viruses (HPAIV) of H5 clade 2.3.4.4b pose an ongoing threat worldwide. It remains unclear whether this panzootic situation would favor low virulent phenotypes expected by the 'avirulence hypothesis' of viral evolution. Assessing virulence in Pekin ducklings in an intramuscular infection model revealed that the two genotypes that dominated the epidemiological situation in Germany during the period 2021 and 2022 (EU-RL:CH and EU-RL:AB) were of high virulence. In contrast, rare genotypes were of intermediate virulence. The genetic constellation of these reassortants pointed to an important role of the viral polymerase complex (RdRP), particularly the PB1 genome segment, in shaping virulence in ducklings. Occulo-nasal infection of ducklings confirmed the phenotypes for two representative viruses and indicated a more efficient replication for the high virulence strain. These observations would be in line with the 'virulence-transmission trade-off' model for describing HPAIV epidemiology in wild birds in Germany.
Collapse
Affiliation(s)
- Ronja Piesche
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany
| | - Angele Breithaupt
- Friedrich- Loeffler- Institute, Department of Experimental Animal Facilities and Biorisk Management (ATB), Greifswald, Germany
| | - Anne Pohlmann
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany
| | - Ann Kathrin Ahrens
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany
| | - Martin Beer
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany.
| | - Timm Harder
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany
| | - Christian Grund
- Friedrich- Loeffler- Institute, Institute of Diagnostic Virology, Greifswald, Germany.
| |
Collapse
|
2
|
Hsueh CS, Fasina O, Piñeyro P, Ruden R, El-Gazzar MM, Sato Y. Histopathologic Features and Viral Antigen Distribution of H5N1 Highly Pathogenic Avian Influenza Virus Clade 2.3.4.4b from the 2022-2023 Outbreak in Iowa Wild Birds. Avian Dis 2024; 68:272-281. [PMID: 39400223 DOI: 10.1637/aviandiseases-d-23-00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/03/2024] [Indexed: 10/15/2024]
Abstract
In 2022, a new epornitic of H5N1 highly pathogenic avian influenza (HPAI) virus clade 2.3.4.4b emerged in U.S. domestic poultry with high prevalence in wild bird populations. We describe pathological findings of HPAI H5N1 in nine wild birds encompassing eight different species, including Accipitriformes (red-tailed hawk, bald eagle), Cathartiforme (turkey vulture), Falconiforme (peregrine falcon), Strigiforme (one adult great-horned owl, one juvenile great-horned owl), Pelecaniforme (American white pelican), and Anseriformes (American green-winged teal, trumpeter swan). All these birds died naturally (found dead, or died in transit to or within a rehabilitation center), except for the bald eagle and American green-winged teal, which were euthanized. Gross lesions were subtle, characterized by meningeal congestion observed in the turkey vulture, bald eagle, and adult great-horned owl. Histologically, encephalitis was observed in all cases (9/9, 100%). Leukocytoclastic and fibrinoid vasculitis with necrotizing encephalitis was observed in the red-tailed hawk, great-horned owls, and American white pelican (5/9, 55.6%), and perivascular lymphohistiocytic encephalitis was seen in the turkey vulture, peregrine falcon, green-winged teal, and bald eagle (4/9, 44.4%). Coagulative necrosis or lymphohistiocytic/lymphoplasmacytic inflammation was identified in the kidney (6/8, 75%), liver (6/9, 66.7%), heart (5/9, 55.6%), and lung (2/9, 22.2%). Immunopositive signals against Influenza virus A nucleoprotein were predominantly detected within the brain (9/9, 100%), air sac (7/9, 77.8%), lung (7/9, 77.8%), kidney (6/8, 75%), heart (6/9, 66.7%), and liver (5/9, 55.6%). Additionally, other organs, such as the pancreas, spleen, intestines, gonads, and adrenals occasionally exhibited positive viral protein signals. In these organs, in addition to parenchymal cells, viral protein signals were often identified in endothelial cells. Our results suggest that the 2022-2023 HPAIV H5N1 clade 2.3.4.4b replicated systemically in all examined birds, with brain lesions being the most prevalent and associated with a subset of birds displaying clinical signs observed perimortem.
Collapse
Affiliation(s)
- Cheng-Shun Hsueh
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Olufemi Fasina
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Rachel Ruden
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
- Wildlife Bureau Iowa De artment of Natural Resources Ames IA 50011
| | - Mohamed Medhat El-Gazzar
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Yuko Sato
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011,
| |
Collapse
|
3
|
Li T, Spruit CM, Wei N, Liu L, Wolfert MA, de Vries RP, Boons GJ. Chemoenzymatic Synthesis of Tri-antennary N-Glycans Terminating in Sialyl-Lewis x Reveals the Importance of Glycan Complexity for Influenza A Virus Receptor Binding. Chemistry 2024; 30:e202401108. [PMID: 38567703 PMCID: PMC11156558 DOI: 10.1002/chem.202401108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 05/09/2024]
Abstract
Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Present address: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cindy M Spruit
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Lean FZX, Falchieri M, Furman N, Tyler G, Robinson C, Holmes P, Reid SM, Banyard AC, Brown IH, Man C, Núñez A. Highly pathogenic avian influenza virus H5N1 infection in skua and gulls in the United Kingdom, 2022. Vet Pathol 2024; 61:421-431. [PMID: 38140946 DOI: 10.1177/03009858231217224] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
The reemergence of the highly pathogenic avian influenza virus (HPAIV) subtype H5N1 in the United Kingdom in 2021-2022 has caused unprecedented epizootic events in wild birds and poultry. During the summer of 2022, there was a shift in virus transmission dynamics resulting in increased HPAIV infection in seabirds, and consequently, a profound impact on seabird populations. To understand the pathological impact of HPAIV in seabirds, we evaluated the virus antigen distribution and associated pathological changes in the tissues of great skua (Stercorarius skua, n = 8), long-tailed skua (Stercorarius longicaudus, n = 1), European herring gull (Larus argentatus, n = 5), and black-headed gull (Chroicocephalus ridibundus, n = 4), which succumbed to natural infection of HPAIV during the summer of 2022. Cases were collected from Shetland, including Scatness (mainland), No Ness (mainland), Clumlie (mainland), Hermaness (island), Fair Isle (island), Noss (island), and the West Midlands, South East, and South West of England. Grossly, gizzard ulceration was observed in one great skua and pancreatic necrosis was observed in 4 herring gulls, with intralesional viral antigen detected subsequently. Microscopical analysis revealed neuro-, pneumo-, lymphoid-, and cardiomyotropism of HPAIV H5N1, with the most common virus-associated pathological changes being pancreatic and splenic necrosis. Examination of the reproductive tract of the great skua revealed HPAIV-associated oophoritis and salpingitis, and virus replication within the oviductal epithelium. The emergence of HPAIV in seabirds Stercorariidae and Laridae, particularly during summer 2022, has challenged the dogma of HPAIV dynamics, posing a significant threat to wild bird life with potential implications for the reproductive performance of seabirds of conservation importance.
Collapse
Affiliation(s)
- Fabian Z X Lean
- Animal and Plant Health Agency, Weybridge, UK
- Royal Veterinary College, Hertfordshire, UK
| | | | | | | | | | - Paul Holmes
- APHA Shrewsbury Veterinary Investigation Centre, UK
| | | | | | - Ian H Brown
- Animal and Plant Health Agency, Weybridge, UK
| | | | | |
Collapse
|
5
|
Spruit CM, Palme DI, Li T, Ríos Carrasco M, Gabarroca García A, Sweet IR, Kuryshko M, Maliepaard JCL, Reiding KR, Scheibner D, Boons GJ, Abdelwhab EM, de Vries RP. Complex N-glycans are important for interspecies transmission of H7 influenza A viruses. J Virol 2024; 98:e0194123. [PMID: 38470143 PMCID: PMC11019957 DOI: 10.1128/jvi.01941-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Diana I. Palme
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - María Ríos Carrasco
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alba Gabarroca García
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Igor R. Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maryna Kuryshko
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Joshua C. L. Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karli R. Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Crispo M, Muñoz MC, Lacroix F, Kheyi MR, Delverdier M, Croville G, Dirat M, Gaide N, Guerin JL, Le Loc'h G. Pathological investigation of high pathogenicity avian influenza H5N8 in captive houbara bustards (Chlamydotis undulata), the United Arab Emirates 2020. Sci Rep 2024; 14:4235. [PMID: 38378877 PMCID: PMC10879111 DOI: 10.1038/s41598-024-54884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
At the end of 2020, an outbreak of HPAI H5N8 was registered in captive African houbara bustards (Chlamydotis undulata) in the United Arab Emirates. In order to better understand the pathobiology of this viral infection in bustards, a comprehensive pathological characterization was performed. A total of six birds were selected for necropsy, histopathology, immunohistochemistry, RNAscope in situ hybridization and RT-qPCR and nanopore sequencing on formalin-fixed and paraffin-embedded (FFPE) tissue blocks. Gross lesions included mottled and/or hemorrhagic pancreas, spleen and liver and fibrinous deposits on air sacs and intestine. Necrotizing pancreatitis, splenitis and concurrent vasculitis, hepatitis and fibrino-heterophilic peritonitis were identified, microscopically. Viral antigens (nucleoprotein) and RNAs (matrix gene) were both detected within necro-inflammatory foci, parenchymal cells, stromal cells and endothelial cells of affected organs, including the myenteric plexus. Molecular analysis of FFPE blocks successfully detected HPAI H5N8, further confirming its involvement in the lesions observed. In conclusion, HPAI H5N8 in African houbara bustards results in hyperacute/acute forms exhibiting marked pantropism, endotheliotropism and neurotropism. In addition, our findings support the use of FFPE tissues for molecular studies of poorly characterized pathogens in exotic and endangered species, when availability of samples is limited.
Collapse
Affiliation(s)
- Manuela Crispo
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France.
| | - Mar Carrasco Muñoz
- Reneco International Wildlife Consultants LLC, PO Box 61741, Abu Dhabi, United Arab Emirates
| | - Frédéric Lacroix
- Reneco International Wildlife Consultants LLC, PO Box 61741, Abu Dhabi, United Arab Emirates
| | - Mohamed-Reda Kheyi
- Reneco International Wildlife Consultants LLC, PO Box 61741, Abu Dhabi, United Arab Emirates
| | - Maxence Delverdier
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Guillaume Croville
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Malorie Dirat
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Nicolas Gaide
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Jean Luc Guerin
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| | - Guillaume Le Loc'h
- IHAP, Université de Toulouse, ENVT, INRAE, 23 Chemin des Capelles, 31076, Toulouse Cedex 3, France
| |
Collapse
|
7
|
Croville G, Walch M, Sécula A, Lèbre L, Silva S, Filaire F, Guérin JL. An amplicon-based nanopore sequencing workflow for rapid tracking of avian influenza outbreaks, France, 2020-2022. Front Cell Infect Microbiol 2024; 14:1257586. [PMID: 38318163 PMCID: PMC10839014 DOI: 10.3389/fcimb.2024.1257586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
During the recent avian influenza epizootics that occurred in France in 2020/21 and 2021/22, the virus was so contagiousness that it was impossible to control its spread between farms. The preventive slaughter of millions of birds consequently was the only solution available. In an effort to better understand the spread of avian influenza viruses (AIVs) in a rapid and innovative manner, we established an amplicon-based MinION sequencing workflow for the rapid genetic typing of circulating AIV strains. An amplicon-based MinION sequencing workflow based on a set of PCR primers targeting primarily the hemagglutinin gene but also the entire influenza virus genome was developed. Thirty field samples from H5 HPAIV outbreaks in France, including environmental samples, were sequenced using the MinION MK1C. A real-time alignment of the sequences with MinKNOW software allowed the sequencing run to be stopped as soon as enough data were generated. The consensus sequences were then generated and a phylogenetic analysis was conducted to establish links between the outbreaks. The whole sequence of the hemagglutinin gene was obtained for the 30 clinical samples of H5Nx HPAIV belonging to clade 2.3.4.4b. The consensus sequences comparison and the phylogenetic analysis demonstrated links between some outbreaks. While several studies have shown the advantages of MinION for avian influenza virus sequencing, this workflow has been applied exclusively to clinical field samples, without any amplification step on cell cultures or embryonated eggs. As this type of testing pipeline requires only a short amount of time to link outbreaks or demonstrate a new introduction, it could be applied to the real-time management of viral epizootics.
Collapse
|
8
|
Pantin-Jackwood MJ, Spackman E, Leyson C, Youk S, Lee SA, Moon LM, Torchetti MK, Killian ML, Lenoch JB, Kapczynski DR, Swayne DE, Suarez DL. Pathogenicity in Chickens and Turkeys of a 2021 United States H5N1 Highly Pathogenic Avian Influenza Clade 2.3.4.4b Wild Bird Virus Compared to Two Previous H5N8 Clade 2.3.4.4 Viruses. Viruses 2023; 15:2273. [PMID: 38005949 PMCID: PMC10674317 DOI: 10.3390/v15112273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs) of subtype H5 of the Gs/GD/96 lineage remain a major threat to poultry due to endemicity in wild birds. H5N1 HPAIVs from this lineage were detected in 2021 in the United States (U.S.) and since then have infected many wild and domestic birds. We evaluated the pathobiology of an early U.S. H5N1 HPAIV (clade 2.3.4.4b, 2021) and two H5N8 HPAIVs from previous outbreaks in the U.S. (clade 2.3.4.4c, 2014) and Europe (clade 2.3.4.4b, 2016) in chickens and turkeys. Differences in clinical signs, mean death times (MDTs), and virus transmissibility were found between chickens and turkeys. The mean bird infective dose (BID50) of the 2021 H5N1 virus was approximately 2.6 log10 50% embryo infective dose (EID50) in chickens and 2.2 log10 EID50 in turkeys, and the virus transmitted to contact-exposed turkeys but not chickens. The BID50 for the 2016 H5N8 virus was also slightly different in chickens and turkeys (4.2 and 4.7 log10 EID50, respectively); however, the BID50 for the 2014 H5N8 virus was higher for chickens than turkeys (3.9 and ~0.9 log10 EID50, respectively). With all viruses, turkeys took longer to die (MDTs of 2.6-8.2 days for turkeys and 1-4 days for chickens), which increased the virus shedding period and facilitated transmission to contacts.
Collapse
Affiliation(s)
- Mary J. Pantin-Jackwood
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (E.S.); (L.M.M.); (D.L.S.)
| | - Erica Spackman
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (E.S.); (L.M.M.); (D.L.S.)
| | - Christina Leyson
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (E.S.); (L.M.M.); (D.L.S.)
| | - Sungsu Youk
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (E.S.); (L.M.M.); (D.L.S.)
- Department of Medicine, College of Medicine, Chungbuk National University, Cheongju-si 28644, Chungbuk, Republic of Korea
| | - Scott A. Lee
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (E.S.); (L.M.M.); (D.L.S.)
| | - Linda M. Moon
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (E.S.); (L.M.M.); (D.L.S.)
| | - Mia K. Torchetti
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Mary L. Killian
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Ames, IA 50010, USA
| | - Julianna B. Lenoch
- Wildlife Services, National Wildlife Disease Program, Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Fort Collins, CO 80521, USA
| | - Darrell R. Kapczynski
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (E.S.); (L.M.M.); (D.L.S.)
| | - David E. Swayne
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (E.S.); (L.M.M.); (D.L.S.)
| | - David L. Suarez
- Exotic and Emerging Avian Viral Diseases Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (E.S.); (L.M.M.); (D.L.S.)
| |
Collapse
|
9
|
Gaide N, Crispo M, Jbenyeni A, Bleuart C, Delverdier M, Vergne T, Le Loc’h G, Guérin JL. Validation of an RNAscope assay for the detection of avian influenza A virus. J Vet Diagn Invest 2023; 35:500-506. [PMID: 37334770 PMCID: PMC10467460 DOI: 10.1177/10406387231182385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) is an acute viral disease associated with high mortality and great economic losses. Immunohistochemistry (IHC) is a common diagnostic and research tool for the demonstration of avian influenza A virus (AIAV) antigens within affected tissues, supporting etiologic diagnosis and assessing viral distribution in both naturally and experimentally infected birds. RNAscope in situ hybridization (ISH) has been used successfully for the identification of a variety of viral nucleic acids within histologic samples. We validated RNAscope ISH for the detection of AIAV in formalin-fixed, paraffin-embedded (FFPE) tissues. RNAscope ISH targeting the AIAV matrix gene and anti-IAV nucleoprotein IHC were performed on 61 FFPE tissue sections obtained from 3 AIAV-negative, 16 H5 HPAIAV, and 1 low pathogenicity AIAV naturally infected birds, including 7 species sampled between 2009 and 2022. All AIAV-negative birds were confirmed negative by both techniques. All AIAVs were detected successfully by both techniques in all selected tissues and species. Subsequently, H-score comparison was assessed through computer-assisted quantitative analysis on a tissue microarray comprised of 132 tissue cores from 9 HPAIAV-infected domestic ducks. Pearson correlation of r = 0.95 (0.94-0.97), Lin concordance coefficient of ρc = 0.91 (0.88-0.93), and Bland-Altman analysis indicated high correlation and moderate concordance between the 2 techniques. H-score values were significantly higher with RNAscope ISH compared to IHC for brain, lung, and pancreatic tissues (p ≤ 0.05). Overall, our results indicate that RNAscope ISH is a suitable and sensitive tool for in situ detection of AIAV in FFPE tissues.
Collapse
Affiliation(s)
- Nicolas Gaide
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
- Laboratory of Anatomic Pathology, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Manuela Crispo
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Adam Jbenyeni
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Céline Bleuart
- Laboratory of Anatomic Pathology, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Maxence Delverdier
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
- Laboratory of Anatomic Pathology, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Timothée Vergne
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Guillaume Le Loc’h
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Jean-Luc Guérin
- IHAP, National Research Institute for Agriculture Food and Environment (INRAE), Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| |
Collapse
|
10
|
Duong BT, Than DD, Ankhanbaatar U, Gombo-Ochir D, Shura G, Tsolmon A, Pun Mok CK, Basan G, Yeo SJ, Park H. Assessing potential pathogenicity of novel highly pathogenic avian influenza (H5N6) viruses isolated from Mongolian wild duck feces using a mouse model. Emerg Microbes Infect 2022; 11:1425-1434. [PMID: 35451353 PMCID: PMC9154755 DOI: 10.1080/22221751.2022.2069515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Several novel highly pathogenic avian influenza (HPAIVs) A(H5N6) viruses were reported in Mongolia in 2020, some of which included host-specific markers associated with mammalian infection. However, their pathogenicity has not yet been investigated. Here, we isolated and evaluate two novel genotypes of A(H5N6) subtype in Mongolia during 2018–2019 (A/wildDuck/MN/H5N6/2018-19). Their evolution pattern and molecular characteristics were evaluated using gene sequencing and their pathogenicity was determined using a mouse model. We also compared their antigenicity with previous H5 Clade 2.3.4.4 human isolates by cross-hemagglutination inhibition (HI). Our data suggests that A/wildDuck/MN/H5N6/2018-19 belongs to clade 2.3.4.4h, and maintains several residues associated with mammal adaptation. In addition, our evaluations revealed that their isolates are less virulent in mice than the previously identified H5 human isolates. However, their antigenicity is distinct from other HPAIVs H5 clade 2.3.4.4, thus supporting their continued evaluation as potential infection risks and the preparation of novel candidate vaccines for their neutralization.
Collapse
Affiliation(s)
- Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| | - Duc Duong Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| | | | | | - Gansukh Shura
- State Central Veterinary Laboratory, Zaisan, Ulaanbaatar, Mongolia
| | | | - Chris Ka Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ganzorig Basan
- State Central Veterinary Laboratory, Zaisan, Ulaanbaatar, Mongolia
| | - Seon Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| |
Collapse
|
11
|
Gobbo F, Zanardello C, Bottinelli M, Budai J, Bruno F, De Nardi R, Patregnani T, Catania S, Terregino C. Silent Infection of Highly Pathogenic Avian Influenza Virus (H5N1) Clade 2.3.4.4b in a Commercial Chicken Broiler Flock in Italy. Viruses 2022; 14:v14081600. [PMID: 35893671 PMCID: PMC9329940 DOI: 10.3390/v14081600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 01/25/2023] Open
Abstract
From October 2021 to January 2022, different incursions of clade 2.3.4.4b H5N1 HPAIV (Highly Pathogenic Avian Influenza Virus) occurred in several Italian regions with its main diffusion in Densely Poultry Populated Areas (DPPAs) of north-eastern Italy. Monitoring and control activities applied in the affected area clearly evidenced that turkeys and broilers were the most affected species, although several flocks of broilers at times resulted HPAIV H5N1 infected in absence of increased mortality and/or clinical signs. Thus, an approach based on sampling dead birds was adopted in the broiler sector to improve the early detection of infection; this protocol allowed us to confirm that 15 farms were HPAIV-infected with birds ready to be delivered to the slaughterhouse. The aim of this report is to describe the results of the diagnostic activities carried out in one HPAIV H5N1-infected broiler farm, three days after laboratory confirmation during the pre-movement testing without showing increased mortality or clinical signs. Thus, clinical signs, daily cumulative mortality rate (CMR), virus shedding, seroconversion, pathobiology of clade 2.3.4.4b H5N1 HPAIV as well as Avian Influenza Viruses (AIVs) environmental contamination were thoroughly examined in the infected holding. Such in-depth investigation demonstrated low infection prevalence in live birds, low environmental contamination, no seroconversion for AIVs, gross and microscopic findings compatible with systemic infection with peracute death in H5N1 HPAIV-infected birds.
Collapse
Affiliation(s)
- Federica Gobbo
- National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (J.B.); (F.B.); (C.T.)
- Correspondence: ; Tel.: +39-049-8084288
| | - Claudia Zanardello
- Histopathology Department, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy;
| | - Marco Bottinelli
- Avian Medicine Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 37060 Buttapietra, VR, Italy; (M.B.); (S.C.)
| | - Jane Budai
- National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (J.B.); (F.B.); (C.T.)
| | - Francesca Bruno
- National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (J.B.); (F.B.); (C.T.)
| | - Roberta De Nardi
- Veterinary Services, Local Health Unit “AULSS 9 Scaligera”, 37057 Verona, VR, Italy; (R.D.N.); (T.P.)
| | - Tommaso Patregnani
- Veterinary Services, Local Health Unit “AULSS 9 Scaligera”, 37057 Verona, VR, Italy; (R.D.N.); (T.P.)
| | - Salvatore Catania
- Avian Medicine Laboratory, Istituto Zooprofilattico Sperimentale delle Venezie, 37060 Buttapietra, VR, Italy; (M.B.); (S.C.)
| | - Calogero Terregino
- National Reference Laboratory for Avian Influenza and Newcastle Disease, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, PD, Italy; (J.B.); (F.B.); (C.T.)
| |
Collapse
|