1
|
Duman H, Akdaşçi E, Eker F, Bechelany M, Karav S. Gold Nanoparticles: Multifunctional Properties, Synthesis, and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1805. [PMID: 39591046 PMCID: PMC11597081 DOI: 10.3390/nano14221805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/08/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
Gold nanoparticles (NPs) are among the most commonly employed metal NPs in biological applications, with distinctive physicochemical features. Their extraordinary optical properties, stemming from strong localized surface plasmon resonance (LSPR), contribute to the development of novel approaches in the areas of bioimaging, biosensing, and cancer research, especially for photothermal and photodynamic therapy. The ease of functionalization with various ligands provides a novel approach to the precise delivery of these molecules to targeted areas. Gold NPs' ability to transfer heat and electricity positions them as valuable materials for advancing thermal management and electronic systems. Moreover, their inherent characteristics, such as inertness, give rise to the synthesis of novel antibacterial and antioxidant agents as they provide a biocompatible and low-toxicity approach. Chemical and physical synthesis methods are utilized to produce gold NPs. The pursuit of more ecologically sustainable and economically viable large-scale technologies, such as environmentally benign biological processes referred to as green/biological synthesis, has garnered increasing interest among global researchers. Green synthesis methods are more favorable than other synthesis techniques as they minimize the necessity for hazardous chemicals in the reduction process due to their simplicity, cost-effectiveness, energy efficiency, and biocompatibility. This article discusses the importance of gold NPs, their optical, conductivity, antibacterial, antioxidant, and anticancer properties, synthesis methods, contemporary uses, and biosafety, emphasizing the need to understand toxicology principles and green commercialization strategies.
Collapse
Affiliation(s)
- Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, F-34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye; (H.D.); (E.A.); (F.E.)
| |
Collapse
|
2
|
Pourali P, Neuhöferová E, Dzmitruk V, Svoboda M, Stodůlková E, Flieger M, Yahyaei B, Benson V. Bioproduced Nanoparticles Deliver Multiple Cargoes via Targeted Tumor Therapy In Vivo. ACS OMEGA 2024; 9:33789-33804. [PMID: 39130536 PMCID: PMC11307291 DOI: 10.1021/acsomega.4c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
This study recognized biologically produced gold nanoparticles (AuNPs) as multiple cargo carriers with a perspective of drug delivery into specialized tumor cells in vivo. Paclitaxel (PTX), transferrin, and antimiR-135b were conjugated with AuNPs and their uptake by mouse tumor cells in an induced breast cancer model was investigated. Each of the above-mentioned molecules was conjugated to the AuNPs separately as well as simultaneously, loading efficiency of each cargo was assessed, and performance of the final product (FP) was judged. After tumor induction in BALB/c mice, sub-IC50 doses of FP as well as control AuNPs, PTX, and phosphate buffered saline were administered in vivo. Round AuNPs were prepared using Fusarium oxysporum and exhibited a size of 13 ± 1.3 nm and a zeta potential of -35.8 ± 1.3 mV. The cytotoxicity of individual conjugates and FP were tested by MTT assay in breast tumor cells 4T1 and nontumor fibroblasts NIH/3T3 cells. The conjugation of individual molecules with AuNPs was confirmed, and FP (size of 54 ± 14 nm and zeta potential of -31.9 ± 2.08 mV) showed higher 4T1-specific toxicity in vitro when compared to control conjugates. After in vivo application of the FP, transmission electron microscopy analyses proved the presence of AuNPs in the tumor cells. Hematoxylin and eosin staining of the tumor tissue revealed that the FP group exhibited the highest amounts of inflammatory, necrotic, and apoptotic cells in contrast to the control groups. Finally, qPCR results showed that FP could transfect and suppress miR-135b expression in vivo, confirming the tumor-targeting properties of FP. The capacity of biologically produced gold nanoparticles to conjugate with multiple decorative molecules while retaining their stability and effective intracellular uptake makes them a promising alternative strategy superior to current drug carriers.
Collapse
Affiliation(s)
- Parastoo Pourali
- Institute
of Microbiology, Czech Academy of Sciences, Praha 142 20, Czech Republic
| | - Eva Neuhöferová
- Institute
of Microbiology, Czech Academy of Sciences, Praha 142 20, Czech Republic
| | - Volha Dzmitruk
- Center
of Molecular Structure, Institute of Biotechnology,
Czech Academy of Sciences, Vestec 252 20, Czech Republic
| | - Milan Svoboda
- Institute
of Analytical Chemistry, Czech Academy of
Sciences, Brno 602 00, Czech Republic
| | - Eva Stodůlková
- Institute
of Microbiology, Czech Academy of Sciences, Praha 142 20, Czech Republic
| | - Miroslav Flieger
- Institute
of Microbiology, Czech Academy of Sciences, Praha 142 20, Czech Republic
| | - Behrooz Yahyaei
- Department
of Medical Sciences, Shahrood Branch, Islamic
Azad University, Shahrood 9WVM+5HC, Iran
- Department
of Medical Sciences, Biological Nanoparticles in Medicine Research
Center, Shahrood Branch, Islamic Azad University, Shahrood 9WVM+5HC, Iran
| | - Veronika Benson
- Institute
of Microbiology, Czech Academy of Sciences, Praha 142 20, Czech Republic
- Faculty of
Health Studies, Technical University of
Liberec, Liberec 46001, Czech Republic
| |
Collapse
|
3
|
Ziaolhagh SJ, Mirkatuli HA, Baghbani M, Safari M, Jokandan SSE, Ameli N, Yahyaei B. The effects of biological and chemical silver nanoparticles along with aerobic and anaerobic training protocols on tissues: Morphological and histopathological evaluation. Microsc Res Tech 2024; 87:1766-1788. [PMID: 38511835 DOI: 10.1002/jemt.24553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024]
Abstract
Nanotechnology and its byproducts are used increasingly considering its global nanotechnology market size and many applications in the health field. The aim of the present study was to investigate the effect of aerobic and anaerobic exercises on cellular uptake of nanoparticles in body tissues. Fusarium oxysporum was used to synthesize biological AgNPs in silver nitrate solution and UV-vis spectrophotometer; XRD and TEM were used to confirm production of nanoparticles. Moreover, 45 male Wistar rats were purchased and randomly divided into 9 equal groups including healthy control groups, aerobic preparation, anaerobic preparation, biological AgNPs, chemical AgNPs, biological AgNPs+aerobic preparation, biological AgNPs+anaerobic preparation, chemical AgNPs+ aerobic preparation, chemical AgNPs+anaerobic preparation. In order to induce aerobic and anaerobic preparation and to create tissue adaptations, male rats completed two types of aerobic and anaerobic protocols three sessions per week for 10 weeks. At the end of the study, sampling was done for histopathology study. The size and shape of AgNPs was 20-30 nm and spherical to polygonal, respectively. The results showed that anaerobic exercise was significantly effective in weight loss. The chemical nanoparticle group led to more intensive tissue degradation in all variables and there were no significant tissue changes in the aerobic, anaerobic, the biological nanoparticles + aerobic and anaerobic groups. It seems that biological AgNPs are more effective than chemical AgNPs on body tissues and chemical AgNPs lead to more tissue damage in most variables. RESEARCH HIGHLIGHTS: There were severe degradative histological effects in the chemical AgNPs groups compare biological AgNPs groups, in terms of most variables.
Collapse
Affiliation(s)
- Sayyed-Javad Ziaolhagh
- Department of Sport Physiology, Shahrood Branch, Islamic Azad University, Shahrood, Iran
- Department of Medical Sciences, Biological Nanoparticles in Medicine Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | | | - Miromid Safari
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Nima Ameli
- Department of Medical Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Behrooz Yahyaei
- Department of Medical Sciences, Biological Nanoparticles in Medicine Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
4
|
Pourali P, Svoboda M, Neuhöferová E, Dzmitruk V, Benson V. Accumulation and toxicity of biologically produced gold nanoparticles in different types of specialized mammalian cells. Biotechnol Appl Biochem 2024; 71:766-778. [PMID: 38480514 DOI: 10.1002/bab.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/17/2024] [Indexed: 08/09/2024]
Abstract
The biologically produced gold nanoparticles (AuNPs) are novel carriers with promising use in targeted tumor therapy. Still, there are no studies regarding the efficacy of nanoparticle internalization by cancer and noncancer cells. In this study, AuNPs were produced by Fusarium oxysporum and analyzed by spectrophotometry, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and Zetasizer. Obtained AuNPs were about 15 nm in size with a zeta potential of -35.8 mV. The AuNPs were added to cancer cells (4T1), noncancer cells (NIH/3T3), and macrophages (RAW264.7). The viability decreased in 4T1 (77 ± 3.74%) in contrast to NIH/3T3 and RAW264.7 cells (89 ± 4.9% and 90 ± 3.5%, respectively). The 4T1 cancer cells also showed the highest uptake and accumulation of Au (∼80% of AuNPs was internalized) as determined by graphite furnace atomic absorption spectroscopy. The lowest amount of AuNPs was internalized by the NIH/3T3 cells (∼30%). The NIH/3T3 cells exhibited prominent reorganization of F-actin filaments as examined by confocal microscopy. In RAW264.7, we analyzed the release of proinflammatory cytokines by flow cytometry and we found the AuNP interaction triggered transient secretion of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In summary, we proved the biologically produced AuNPs entered all the tested cell types and triggered cell-specific responses. High AuNP uptake by tumor cells was related to decreased cell viability, while low nanoparticle uptake by fibroblasts triggered F-actin reorganization without remarkable toxicity. Thus, the biologically produced AuNPs hold promising potential as cancer drug carriers and likely require proper surface functionalization to shield phagocytizing cells.
Collapse
Affiliation(s)
- Parastoo Pourali
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Svoboda
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Neuhöferová
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Volha Dzmitruk
- Center of Molecular Structure, Institute of Biotechnology, Czech Academy of Sciences, Vestec, Czech Republic
| | - Veronika Benson
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Liberec, Czech Republic
| |
Collapse
|
5
|
Garrigós MM, de Oliveira FA, Costa CJS, Rodrigues LR, Nucci MP, Alves ADH, Mamani JB, Rego GNDA, Munoz JM, Gamarra LF. Assessing the toxicity of one-step-synthesized PEG-coated gold nanoparticles: in vitro and in vivo studies. EINSTEIN-SAO PAULO 2024; 22:eAO0764. [PMID: 38775605 PMCID: PMC11081025 DOI: 10.31744/einstein_journal/2024ao0764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/18/2023] [Indexed: 05/25/2024] Open
Abstract
OBJECTIVE To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nanoparticles synthesized using a one-step process. METHODS Gold nanoparticles were prepared via a co-precipitation method using polyethylene glycol, and the synthesis product was characterized. For the in vitro evaluation, a flow cytometry analysis with Annexin V and iodide propidium staining was used to assess cytotoxicity in MG-63 cells labeled with 10, 50, and 100µg/mL of nanoparticle concentration. For the in vivo evaluation, nanoparticles were administered intraperitoneally at a dose of 10mg/kg dose in 10-week-old mice. Toxicity was assessed 24 hours and 7 days after administration via histopathological analysis of various tissues, as well as through renal, hepatic, and hematopoietic evaluations. RESULTS Synthesized nanoparticles exhibited different hydrodynamic sizes depending on the medium: 51.27±1.62nm in water and 268.12±28.45nm (0 hour) in culture medium. They demonstrated a maximum absorbance at 520nm and a zeta potential of -8.419mV. Cellular viability exceeded 90%, with less than 3% early apoptosis, 6% late apoptosis, and 1% necrosis across all labeling conditions, indicating minimal cytotoxicity differences. Histopathological analysis highlighted the accumulation of nanoparticles in the mesentery; however, no lesions or visible agglomeration was observed in the remaining tissues. Renal, hepatic, and hematopoietic analyses showed no significant differences at any time point. CONCLUSION Polyethylene glycol-coated gold nanoparticles exhibit extremely low toxicity and high biocompatibility, showing promise for future studies.
Collapse
Affiliation(s)
- Murilo Montenegro Garrigós
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | | | - Cícero Júlio Silva Costa
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Lucas Renan Rodrigues
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Mariana Penteado Nucci
- Hospital das ClínicasFaculdade MedicinaUniversidade de São PauloSão PauloSPBrazil LIM44 - Hospital das Clínicas, Faculdade Medicina, Universidade de São Paulo, São Paulo, SP, Brazil.
| | - Arielly da Hora Alves
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Javier Bustamante Mamani
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | | | - Juan Matheus Munoz
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Lionel Fernel Gamarra
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Niżnik Ł, Noga M, Kobylarz D, Frydrych A, Krośniak A, Kapka-Skrzypczak L, Jurowski K. Gold Nanoparticles (AuNPs)-Toxicity, Safety and Green Synthesis: A Critical Review. Int J Mol Sci 2024; 25:4057. [PMID: 38612865 PMCID: PMC11012566 DOI: 10.3390/ijms25074057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In recent years, the extensive exploration of Gold Nanoparticles (AuNPs) has captivated the scientific community due to their versatile applications across various industries. With sizes typically ranging from 1 to 100 nm, AuNPs have emerged as promising entities for innovative technologies. This article comprehensively reviews recent advancements in AuNPs research, encompassing synthesis methodologies, diverse applications, and crucial insights into their toxicological profiles. Synthesis techniques for AuNPs span physical, chemical, and biological routes, focusing on eco-friendly "green synthesis" approaches. A critical examination of physical and chemical methods reveals their limitations, including high costs and the potential toxicity associated with using chemicals. Moreover, this article investigates the biosafety implications of AuNPs, shedding light on their potential toxic effects on cellular, tissue, and organ levels. By synthesizing key findings, this review underscores the pressing need for a thorough understanding of AuNPs toxicities, providing essential insights for safety assessment and advancing green toxicology principles.
Collapse
Affiliation(s)
- Łukasz Niżnik
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Maciej Noga
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Damian Kobylarz
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Adrian Frydrych
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| | - Alicja Krośniak
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090 Lublin, Poland
- World Institute for Family Health, Calisia University, 62-800 Kalisz, Poland
| | - Kamil Jurowski
- Department of Regulatory and Forensic Toxicology, Institute of Medical Expertise, Łódź, ul. Aleksandrowska 67/93, 91-205 Łódź, Poland (K.J.)
- Laboratory of Innovative Toxicological Research and Analyses, Institute of Medical Studies, Medical College, Rzeszów University, Al. mjr. W. Kopisto 2a, 35-959 Rzeszów, Poland
| |
Collapse
|
7
|
Pourali P, Dzmitruk V, Benada O, Svoboda M, Benson V. Conjugation of microbial-derived gold nanoparticles to different types of nucleic acids: evaluation of transfection efficiency. Sci Rep 2023; 13:14669. [PMID: 37674013 PMCID: PMC10482973 DOI: 10.1038/s41598-023-41567-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
In this study, gold nanoparticles produced by eukaryotic cell waste (AuNP), were analyzed as a transfection tool. AuNP were produced by Fusarium oxysporum and analyzed by spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) were used before and after conjugation with different nucleic acid (NA) types. Graphite furnace atomic absorption spectroscopy (GF-AAS) was used to determine the AuNP concentration. Conjugation was detected by electrophoresis. Confocal microscopy and quantitative real-time PCR (qPCR) were used to assess transfection. TEM, SEM, and EDS showed 25 nm AuNP with round shape. The amount of AuNP was 3.75 ± 0.2 µg/µL and FTIR proved conjugation of all NA types to AuNP. All the samples had a negative charge of - 36 to - 46 mV. Confocal microscopy confirmed internalization of the ssRNA-AuNP into eukaryotic cells and qPCR confirmed release and activity of carried RNA.
Collapse
Affiliation(s)
- P Pourali
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - V Dzmitruk
- Center of Molecular Structure, Institute of Biotechnology, Czech Academy of Sciences, Vesec, Czech Republic
| | - O Benada
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - M Svoboda
- Institute of Analytical Chemistry, Czech Academy of Sciences, Brno, Czech Republic
| | - V Benson
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
8
|
El-Naggar NEA, Rabei NH, Elmansy MF, Elmessiry OT, El-Sherbeny MK, El-Saidy ME, Sarhan MT, Helal MG. Artificial neural network approach for prediction of AuNPs biosynthesis by Streptomyces flavolimosus, characterization, antitumor potency in-vitro and in-vivo against Ehrlich ascites carcinoma. Sci Rep 2023; 13:12686. [PMID: 37542154 PMCID: PMC10403537 DOI: 10.1038/s41598-023-39177-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged as promising and versatile nanoparticles for cancer therapy and are widely used in drug and gene delivery, biomedical imaging, diagnosis, and biosensors. The current study describes a biological-based strategy for AuNPs biosynthesis using the cell-free supernatant of Streptomyces flavolimosus. The biosynthesized AuNPs have an absorption peak at 530-535 nm. The TEM images indicate that AuNPs were spherical and ranged in size from 4 to 20 nm. The surface capping molecules of AuNPs are negatively charged, having a Zeta potential of - 10.9 mV. FTIR analysis revealed that the AuNPs surface composition contains a variety of functional groups as -OH, C-H, N-, C=O, NH3+, amine hydrochloride, amide group of proteins, C-C and C-N. The bioprocess variables affecting AuNPs biosynthesis were optimized by using the central composite design (CCD) in order to maximize the AuNPs biosynthesis. The maximum yield of AuNPs (866.29 µg AuNPs/mL) was obtained using temperature (35 °C), incubation period (4 days), HAuCl4 concentration (1000 µg/mL) and initial pH level 6. Comparison was made between the fitness of CCD versus Artificial neural network (ANN) approach based on their prediction and the corresponding experimental results. AuNPs biosynthesis values predicted by ANN exhibit a more reasonable agreement with the experimental result. The anticancer activities of AuNPs were assessed under both in vitro and in vivo conditions. The results revealed a significant inhibitory effect on the proliferation of the MCF-7 and Hela carcinoma cell lines treated with AuNPs with IC50 value of 13.4 ± 0.44 μg/mL and 13.8 ± 0.45 μg/mL for MCF-7 and Hela cells; respectively. Further, AuNPs showed potential inhibitory effect against tumor growth in tumor-bearing mice models. AuNPs significantly reduced the tumor volume, tumor weight, and decreased number of viable tumor cells in EAC bearing mice.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Nashwa H Rabei
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt
| | - Mohamed F Elmansy
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Omar T Elmessiry
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mostafa K El-Sherbeny
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohanad E El-Saidy
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed T Sarhan
- Biotechnology and Its Application Program, Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Manar G Helal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
9
|
Ziaolhagh SJ, Ardakanizadeh M, Kaveh A, Yahyaei B. Liver tissue changes induced by biological and chemical silver nanoparticles in trained male Wistar rats. J Trace Elem Med Biol 2023; 79:127253. [PMID: 37399685 DOI: 10.1016/j.jtemb.2023.127253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/10/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION Despite the widespread use of chemical and biological nano-silver are in industry, their side effects on hepatocytes have been less studied. On the other hand, different types of physical activities may increase liver resistance to toxins. Therefore, the aim of this study was to evaluate the resistance of hepatocytes to receiving chemical versus biological silver nanoparticles in aerobic and anaerobic pre-conditioned rats. MATERIALS AND METHODS 45 male Wistar rats with similar average range of age (8-12 weeks) and weight (180-220 g), were randomly divided normally into 9 groups, including Control (C), Aerobic (A), Anaerobic (AN), Biological nano-silver (BNS), Chemical nano-silver (CNS), Biological nano-silver + Aerobic (BNS+A), Biological nano-silver + Anaerobic (BNS+AN), Chemical nano-silver + Aerobic (CNS+A) and Chemical nano-silver + Anaerobes (CNS+AN). Prior to injection, rats trained on a rodent treadmill, 10 weeks, 3 sessions per week, according to aerobic and anaerobic protocols.Then, 48 h after the last training session, the rats received 10 % of their body weight, chemical and biological nanosilver intraperitoneally. Liver enzymes (ALT, AST, and ALP) and liver tissue were sent to the relevant laboratories for further evaluation. RESULTS Results showed that the weight of rats in all groups of physical pre-conditioning, decreased comparison to the control and non-exercise groups, and this decrease was much greater in the anaerobic group (p-value=0.045). Also, the distance traveled in the progressive endurance running a test on a rodent treadmill, increased significantly in the training groups compared to the nano-exercise and control groups (p-value=0.001). Also, the results showed that the level of ALT in chemical nano-silver (p-value=0.004) and biological nano-silver (p-value=0.044), increased significantly compared to other groups. Also, histopathological results showed that nano-silver injection affects the structure of the liver of male Wistar rats and causes inflammation, hyperemia and destruction of liver cells, especially in chemical nano-silver. CONCLUSION The results of the present study showed that chemical silver nanoparticles cause liver damage more than comparison biological ones. Also, physical pre-conditioning increases hepatocyte resistance to toxic nanoparticle doses and aerobic preparation appears to be more effective than anaerobic.
Collapse
Affiliation(s)
- Sayyed Javad Ziaolhagh
- Department of Sport Physiology, Shahrood Branch, Islamic Azad University, Shahrood, Iran; Department of Medical Sciences, Biological Nanoparticles in Medicine Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Malihe Ardakanizadeh
- Department of Sport Sciences, Faculty of Human Sciences, Damghan University, Semnan, Iran
| | - Armin Kaveh
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Behrooz Yahyaei
- Department of Medical Sciences, Biological Nanoparticles in Medicine Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran; Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| |
Collapse
|
10
|
Phukan K, Sarma H, Devi R, Chowdhury D. Acute toxicity study of onion peel-derived gold nano-bioconjugate. 3 Biotech 2023; 13:172. [PMID: 37188292 PMCID: PMC10169968 DOI: 10.1007/s13205-023-03592-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/23/2023] [Indexed: 05/17/2023] Open
Abstract
The acute anti-inflammatory activity of onion peel-derived gold nano-bioconjugate was already established earlier. The current study was aimed to investigate the acute oral toxicity of onion peel-derived gold nano-bioconjugate (GNBC) for safe therapeutic utilization in vivo. The acute toxicity study was carried out in female mice for 15 days and showed no mortality and any abnormal complications. The lethal dose (LD50) was evaluated and found to be higher than 2000 mg/kg. After 15 days, animals were euthanized and hematological, and biochemical analyses were performed. In all hematological and biochemical assays, treated animals did not show significant toxicity when compared to the control group. The body weight, behavior, and histopathological studies showed that GNBC is nontoxic. Thereby, the results suggest that onion peel-derived gold nano-bioconjugate GNBC can be utilized for therapeutic applications in vivo.
Collapse
Affiliation(s)
- Kabyashree Phukan
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035 India
- Present Address: Baosi Banikanta Kakati College, Nagaon, Barpeta, 781311 India
| | - Himangshu Sarma
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035 India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035 India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati, 781035 India
| |
Collapse
|
11
|
Sultana R, Yadav D, Puranik N, Chavda V, Kim J, Song M. A Review on the Use of Gold Nanoparticles in Cancer Treatment. Anticancer Agents Med Chem 2023; 23:2171-2182. [PMID: 37842886 DOI: 10.2174/0118715206268664231004040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023]
Abstract
According to a 2020 WHO study, cancer is responsible for one in every six fatalities. One in four patients die due to side effects and intolerance to chemotherapy, making it a leading cause of patient death. Compared to traditional tumor therapy, emerging treatment methods, including immunotherapy, gene therapy, photothermal therapy, and photodynamic therapy, have proven to be more effective. The aim of this review is to highlight the role of gold nanoparticles in advanced cancer treatment. A systematic and extensive literature review was conducted using the Web of Science, PubMed, EMBASE, Google Scholar, NCBI, and various websites. Highly relevant literature from 141 references was chosen for inclusion in this review. Recently, the synergistic benefits of nano therapy and cancer immunotherapy have been shown, which could allow earlier diagnosis, more focused cancer treatment, and improved disease control. Compared to other nanoparticles, the physical and optical characteristics of gold nanoparticles appear to have significantly greater effects on the target. It has a crucial role in acting as a drug carrier, biomarker, anti-angiogenesis agent, diagnostic agent, radiosensitizer, cancer immunotherapy, photodynamic therapy, and photothermal therapy. Gold nanoparticle-based cancer treatments can greatly reduce current drug and chemotherapy dosages.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Zoology, SKM Govt College, Nawapara, Raipur, 493881, India
| | - Dhananjay Yadav
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| | - Nidhi Puranik
- Department of Biochemistry & Genetics, Barkatullah University, Bhopal, 462026, India
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, 38541, Gyeongsan, Republic of Korea
| |
Collapse
|
12
|
Kazaryan S, Farsiyan L, Tumoyan J, Kirakosyan G, Ayvazyan N, Gasparyan H, Buloyan S, Arshakyan L, Kirakosyan A, Hovhannisyan A. Oxidative stress and histopathological changes in several organs of mice injected with biogenic silver nanoparticles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:331-342. [DOI: 10.1080/21691401.2022.2149931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shushanik Kazaryan
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, Yerevan, Armenia
| | - Lilit Farsiyan
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, Yerevan, Armenia
| | - Juleta Tumoyan
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, Yerevan, Armenia
| | | | - Naira Ayvazyan
- Orbeli Institute of Physiology of NAS RA, Yerevan, Armenia
| | - Hrachik Gasparyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, NAS RA, Yerevan, Armenia
| | - Sona Buloyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, NAS RA, Yerevan, Armenia
| | - Lilit Arshakyan
- Scientific Technological Center of Organic and Pharmaceutical Chemistry, NAS RA, Yerevan, Armenia
| | - Ara Kirakosyan
- Department of Chemistry, Northern Michigan University, Marquette, MI, USA
| | - Ashkhen Hovhannisyan
- Department of Medical Biochemistry and Biotechnology, Russian-Armenian University, Yerevan, Armenia
| |
Collapse
|
13
|
Klein JP, Mery L, Boudard D, Ravel C, Cottier M, Bitounis D. Impact of Nanoparticles on Male Fertility: What Do We Really Know? A Systematic Review. Int J Mol Sci 2022; 24:576. [PMID: 36614018 PMCID: PMC9820737 DOI: 10.3390/ijms24010576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
The real impact of nanoparticles on male fertility is evaluated after a careful analysis of the available literature. The first part reviews animal models to understand the testicular biodistribution and biopersistence of nanoparticles, while the second part evaluates their in vitro and in vivo biotoxicity. Our main findings suggest that nanoparticles are generally able to reach the testicle in small quantities where they persist for several months, regardless of the route of exposure. However, there is not enough evidence that they can cross the blood-testis barrier. Of note, the majority of nanoparticles have low direct toxicity to the testis, but there are indications that some might act as endocrine disruptors. Overall, the impact on spermatogenesis in adults is generally weak and reversible, but exceptions exist and merit increased attention. Finally, we comment on several methodological or analytical biases which have led some studies to exaggerate the reprotoxicity of nanoparticles. In the future, rigorous clinical studies in tandem with mechanistic studies are needed to elucidate the real risk posed by nanoparticles on male fertility.
Collapse
Affiliation(s)
- Jean-Philippe Klein
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Lionel Mery
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Delphine Boudard
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35000 Rennes, France
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Michèle Cottier
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
- CHU de Saint-Etienne, Service D’Histologie-Embryologie-Cytogénétique, F-42023 Saint-Etienne, France
| | - Dimitrios Bitounis
- Université Jean Monnet Saint-Étienne, INSERM, SAINBIOSE U1059, F-42023 Saint-Etienne, France
| |
Collapse
|
14
|
McCourt KM, Cochran J, Abdelbasir SM, Carraway ER, Tzeng TRJ, Tsyusko OV, Vanegas DC. Potential Environmental and Health Implications from the Scaled-Up Production and Disposal of Nanomaterials Used in Biosensors. BIOSENSORS 2022; 12:1082. [PMID: 36551049 PMCID: PMC9775545 DOI: 10.3390/bios12121082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Biosensors often combine biological recognition elements with nanomaterials of varying compositions and dimensions to facilitate or enhance the operating mechanism of the device. While incorporating nanomaterials is beneficial to developing high-performance biosensors, at the stages of scale-up and disposal, it may lead to the unmanaged release of toxic nanomaterials. Here we attempt to foster connections between the domains of biosensors development and human and environmental toxicology to encourage a holistic approach to the development and scale-up of biosensors. We begin by exploring the toxicity of nanomaterials commonly used in biosensor design. From our analysis, we introduce five factors with a role in nanotoxicity that should be considered at the biosensor development stages to better manage toxicity. Finally, we contextualize the discussion by presenting the relevant stages and routes of exposure in the biosensor life cycle. Our review found little consensus on how the factors presented govern nanomaterial toxicity, especially in composite and alloyed nanomaterials. To bridge the current gap in understanding and mitigate the risks of uncontrolled nanomaterial release, we advocate for greater collaboration through a precautionary One Health approach to future development and a movement towards a circular approach to biosensor use and disposal.
Collapse
Affiliation(s)
- Kelli M McCourt
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
| | - Jarad Cochran
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sabah M Abdelbasir
- Central Metallurgical Research and Development Institute, P.O. Box 87, Helwan 11421, Egypt
| | - Elizabeth R Carraway
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - Tzuen-Rong J Tzeng
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Diana C Vanegas
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
- Global Alliance for Rapid Diagnostics (GARD), Michigan State University, East Lancing, MI 48824, USA
- Interdisciplinary Group for Biotechnology Innovation and Ecosocial Change (BioNovo), Universidad del Valle, Cali 76001, Colombia
| |
Collapse
|
15
|
Jarrar Q, Al-Doaiss A, Jarrar BM, Alshehri M. On the toxicity of gold nanoparticles: Histological, histochemical and ultrastructural alterations. Toxicol Ind Health 2022; 38:789-800. [PMID: 36253334 DOI: 10.1177/07482337221133881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gold nanoparticles (Au NPs) are used in diagnostic and therapeutic applications together with a variety of industrial purposes and in many biomedical sectors with potential risks to human health. The present study aimed to the histological, histochemical, and ultrastructural alterations induced by Au NPS in vital organs. Healthy male Wistar Albino rats (Rattus norvegicus) were subjected to 20 injections of 10-nm Au NPs at a daily dose of 2 mg/kg. Liver, kidney, heart, and lung biopsies from control and Au NPs-treated rats under study were subjected to histological and histochemical examinations. In comparison with the control rats, the renal tissue of Au NPs-treated rats demonstrated glomerular congestion, interstitial inflammatory cell infiltration, renal tubular hydropic degeneration, cloudy swelling, necrosis, and hyaline cast precipitation. In addition, Au NPs induced the following hepatic alterations: hepatocyte cytolysis, cytoplasmic vacuolation, hydropic degeneration, and nuclear alterations together with sinusoidal dilatation. Moreover, the hearts of the treated rats demonstrated myocarditis, cardiac congestion, hyalinosis, cardiomyocyte hydropic degeneration, myofiber disarray and cardiac congestion. The lungs of Au NPs-treated rats also exhibited the following pulmonary alterations: alectasis, emphysema, inflammatory cell inflammation, thickened alveolar walls, pulmonary interstitial edema, congestion, hypersensitivity, fibrocyte proliferation, and honeycombing. In conclusion, exposure to Au NPs induced histological, histochemical and ultrastructural alterations in the vital organs that may alter the function of these organs. Additional efforts are needed for better understanding the potential risks of Au NPs to human health.
Collapse
Affiliation(s)
- Qais Jarrar
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, 108568Isra University, Amman, Jordan
| | - Amin Al-Doaiss
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia.,Histology Department, College of Medicine, Sana University
| | - Bashir M Jarrar
- Nanobiology Unit, College of Applied Medical Sciences, 123295Jerash University, Jerash, Jordan
| | - Mohammed Alshehri
- Department of Biology, College of Science, 48144King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
16
|
Adewale OB, Cairncross L, Xakaza H, Wickens N, Anadozie SO, Davids H, Roux S. Short- and long-term effect of colorectal cancer targeting peptides conjugated to gold nanoparticles in rats' liver and colon after single exposure. Toxicol Res 2022; 38:259-273. [PMID: 35874503 PMCID: PMC9247135 DOI: 10.1007/s43188-021-00108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022] Open
Abstract
Peptides play important roles in the diagnosis, prognostic predictors, and treatment of various kinds of cancer. Peptides (p.C, p.L and p.14), derived from the phage display peptide libraries, specifically binds to colorectal cancer (CRC) cells in vitro. To allow tumor specificity and selectivity for in vivo diagnosis of CRC, biotinylated p.C, p.L and p.14 were conjugated to AuNPs (14 nm) via the biotin-streptavidin interaction. Male Wistar rats were intravenously injected with a single dose (100 µg/kg body weight) of AuNPs (citrate-AuNPs, PEG-AuNPs, p.C-PEG-, p.L-PEG- and p.14-PEG-AuNPs). Animals were monitored for behavioral changes, and sacrificed either 14 days or 84 days post-injection. Biochemical changes, oxidative stress, and histology of the liver and colon were assessed. No significant changes were noted in the rats injected with all the AuNPs, except p.L-PEG-AuNPs that caused significant toxicity (p < 0.05) 14 days post-exposure when compared to control group, as evidenced by increased relative liver weight, increased malondialdehyde levels and histological changes in the liver. These changes, however, returned to normalcy 84 days post-injection. It can be concluded, based on these findings, that p.L induced a transient toxicity in rats after a single intravenous injection, and can therefore be considered non-toxic long-term after a single exposure.
Collapse
Affiliation(s)
- Olusola B. Adewale
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa
- Present Address: Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, P.M.B 5454, Ado-Ekiti, Nigeria
| | - Lynn Cairncross
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa
| | - Hlumisa Xakaza
- Department of Human Physiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa
| | - Nicolas Wickens
- Department of Medical Laboratory Science, Nelson Mandela University, Port Elizabeth, 6031 South Africa
| | - Scholastica O. Anadozie
- Department of Biochemistry and Microbiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa
- Present Address: Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, P.M.B 5454, Ado-Ekiti, Nigeria
| | - Hajierah Davids
- Department of Human Physiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa
| | - Saartjie Roux
- Department of Human Physiology, Nelson Mandela University, Port Elizabeth, 6031 South Africa
| |
Collapse
|
17
|
Investigation of Protein Corona Formed around Biologically Produced Gold Nanoparticles. MATERIALS 2022; 15:ma15134615. [PMID: 35806737 PMCID: PMC9267809 DOI: 10.3390/ma15134615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/01/2023]
Abstract
Although there are several research articles on the detection and characterization of protein corona on the surface of various nanoparticles, there are no detailed studies on the formation, detection, and characterization of protein corona on the surface of biologically produced gold nanoparticles (AuNPs). AuNPs were prepared from Fusarium oxysporum at two different temperatures and characterized by spectrophotometry, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The zeta potential of AuNPs was determined using a Zetasizer. AuNPs were incubated with 3 different concentrations of mouse plasma, and the hard protein corona was detected first by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then by electrospray liquid chromatography–mass spectrometry (LC-MS). The profiles were compared to AuNPs alone that served as control. The results showed that round and oval AuNPs with sizes below 50 nm were produced at both temperatures. The AuNPs were stable after the formation of the protein corona and had sizes larger than 86 nm, and their zeta potential remained negative. We found that capping agents in the control samples contained small peptides/amino acids but almost no protein(s). After hard protein corona formation, we identified plasma proteins present on the surface of AuNPs. The identified plasma proteins may contribute to the AuNPs being shielded from phagocytizing immune cells, which makes the AuNPs a promising candidate for in vivo drug delivery. The protein corona on the surface of biologically produced AuNPs differed depending on the capping agents of the individual AuNP samples and the plasma concentration.
Collapse
|
18
|
Dantas GP, Ferraz FS, Andrade LM, Costa GM. Male reproductive toxicity of inorganic nanoparticles in rodent models: A systematic review. Chem Biol Interact 2022; 363:110023. [DOI: 10.1016/j.cbi.2022.110023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
|
19
|
Masekameni MD, Andraos C, Yu IJ, Gulumian M. Exposure Assessment of Silver and Gold Nanoparticles Generated During the Synthesis Process in a South African Research Laboratory. FRONTIERS IN TOXICOLOGY 2022; 4:892703. [PMID: 35694683 PMCID: PMC9174523 DOI: 10.3389/ftox.2022.892703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
During the synthesis of engineered nanomaterials (ENMs), various occupational exposures occur, leading to health consequences. To date, there is paucity of studies focused on modeling the deposition of nanoparticles emitted from ENMs synthesis processes. This study aimed to characterise and assess exposure to gold (AuNPs) and silver nanoparticles (AgNPs) during a synthesis process in a research laboratory in South Africa. AuNPs and AgNPs synthesis processes were monitored for an hour in a laboratory using a Scanning Mobility Particle Sizer. The monitoring was conducted at a height of 1.2–1.5 m (m) and 1.5 m away from the hood, assuming a 30 cm (cm) breathing circumference zone. Each synthesis process was monitored thrice to generate reliable point estimates, which were used to assess exposure over 8 hours. A time-weighted average concentration was calculated and compared to the derived 8-h occupational exposure limit (OEL) for AgNPs (0.19 μg/m3) and the proposed provisional nano reference value for AuNPs (20,000 particles/cm3). The Multiple-Path Particle Dosimetry model was used to calculate the deposition and retention of both AuNPs and AgNPs. NPs emitted during the synthesis process were dominant in the nuclei (79% for AuNPs and 54% for AgNPs), followed by the Aitken (12% for AuNPs and 29% for AgNPs), with fewer particles in the accumulation mode (9.2% for AuNPs and 17% for AgNPs). AuNPs and AgNPs generated during the synthesis process were determined at 1617.3 ± 102 cm3 (0.046 μg/m3) and 2,687 cm3 ± 620 (0.077 μg/m3), respectively. For the three exposure scenarios, none exceeded the occupational exposure limit for both AuNPs (provisional) and AgNPs (OEL). Workers in the synthesis laboratory are exposed to a concentration below the recommended occupational exposure limit for silver and the proposed provisional nano reference value for gold. Although, the concentrations to which laboratory workers are exposed to are below safe levels, the assessment of the lung deposition patterns indicate a high particle lung retention which raise concerns about long term safety of workers.
Collapse
Affiliation(s)
- Masilu D. Masekameni
- Occupational Health Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
- *Correspondence: Masilu D. Masekameni,
| | - Charlene Andraos
- N Toxicology and Biochemistry Department, National Institute for Occupational Health, National 7 Health Laboratory Services, Braamfontein, Johannesburg, South Africa
| | - Il Je Yu
- HCT, Majang-myeon, Icheon, Korea
| | - Mary Gulumian
- Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
20
|
Three-dimensional (3D) liver cell models - a tool for bridging the gap between animal studies and clinical trials when screening liver accumulation and toxicity of nanobiomaterials. Drug Deliv Transl Res 2022; 12:2048-2074. [PMID: 35507131 PMCID: PMC9066991 DOI: 10.1007/s13346-022-01147-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Despite the exciting properties and wide-reaching applications of nanobiomaterials (NBMs) in human health and medicine, their translation from bench to bedside is slow, with a predominant issue being liver accumulation and toxicity following systemic administration. In vitro 2D cell-based assays and in vivo testing are the most popular and widely used methods for assessing liver toxicity at pre-clinical stages; however, these fall short in predicting toxicity for NBMs. Focusing on in vitro and in vivo assessment, the accurate prediction of human-specific hepatotoxicity is still a significant challenge to researchers. This review describes the relationship between NBMs and the liver, and the methods for assessing toxicity, focusing on the limitations they bring in the assessment of NBM hepatotoxicity as one of the reasons defining the poor translation for NBMs. We will then present some of the most recent advances towards the development of more biologically relevant in vitro liver methods based on tissue-mimetic 3D cell models and how these could facilitate the translation of NBMs going forward. Finally, we also discuss the low public acceptance and limited uptake of tissue-mimetic 3D models in pre-clinical assessment, despite the demonstrated technical and ethical advantages associated with them.
Collapse
|
21
|
Mobaraki F, Momeni M, Barghbani M, Far BF, Hosseinian S, Hosseini SM. Extract-mediated biosynthesis and characterization of gold nanoparticles: Exploring their protective effect against cyclophosphamide-induced oxidative stress in rat testis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Gaharwar US, Pardhiya S, Rajamani P. A Perspective on Reproductive Toxicity of Metallic Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:97-117. [PMID: 36472819 DOI: 10.1007/978-3-031-12966-7_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanotechnological tools have been greatly exploited in all possible fields. However, advancement of nanotechnology has raised concern about their adverse effects on human and environment. These deleterious effects cannot be ignored and need to be explored due to safety purpose. Several recent studies have demonstrated possible health hazard of nanoparticles on organism. Moreover, studies showed that toxicity of metallic nanomaterial could also lead to reproductive toxicity. Various deleterious effects have demonstrated decreased sperm motility, increased abnormal spermatozoa, altered sperm count, and altered sperm morphology. Morphological and ultrastructural changes also have been reported due to the accumulation of these nanomaterials in reproductive organs. Nonetheless, studies also suggest crossing of metallic nanoparticles through blood testes barrier and generation of oxidative stress which plays major role in reproductive toxicity. In the present study, we have incorporated updated information by gathering all available literature about various metallic nanomaterials and risk related to reproductive system.
Collapse
Affiliation(s)
- Usha Singh Gaharwar
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sonali Pardhiya
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
23
|
Boruah JS, Devi C, Hazarika U, Bhaskar Reddy PV, Chowdhury D, Barthakur M, Kalita P. Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities. RSC Adv 2021; 11:28029-28041. [PMID: 35480751 PMCID: PMC9038048 DOI: 10.1039/d1ra02669k] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/28/2021] [Indexed: 01/02/2023] Open
Abstract
Gold nanoparticles are one of the widely used metallic nanoparticle having unique surface plasmon characteristic, offers major utility in biomedical and therapeutic fields. However, chemically synthesized nanoparticle creates toxicity in the living organisms and contradicts the eco-friendly and cost-effective nature. So, developing greener synthetic route for synthesis of gold nanoparticle using natural materials is an enthralling field of research for its effectiveness in synthesizing eco-friendly, non-toxic materials. Moreover, biological components attached as stabilizing agent can exert its own effect along with the advantages of nanoparticle conjugation. In this work, we used for the first time methanolic leaf extract of Moringa oleifera as this fraction of M. oleifera exerts a neuroactive modulation against seizure as evidenced by earlier literature. The green gold nanoparticles synthesized were characterized by different characterization tools, dynamic light scattering and transmission electron microscopy techniques etc. Prepared nanoparticles were biologically (antioxidant, antimicrobial and blood cytotoxicity) characterized to screen their further utility in therapeutic strategies. Characteristics and activities of green gold nanoparticles were compared with conventional citrate stabilized gold nanoparticles. It was observed that green gold nanoparticles prepared using M. oleifera show less cytotoxicity and helps in regeneration of neuronal cells in animal model study. It establishes the fact that conjugation of different plant extract fraction for stabilization of gold nanoparticle may be responsible factor for enhancement of bioactive nature of green gold nanoparticle. In addition, the green gold nanoparticle show efficient photo-catalytic efficiency. Development of such bioactive gold nanoparticles will lead to functional materials for biomedical and therapeutic applications. Gold nanoparticles are one of the widely used metallic nanoparticle having unique surface plasmon characteristic, offers major utility in biomedical and therapeutic fields.![]()
Collapse
Affiliation(s)
- Jayanta S Boruah
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 India .,Department of Chemistry, Cotton University Assam India
| | - Chayanika Devi
- Department of Life Science and Bioinformatics, Assam University, Diphu Campus Diphu Assam India
| | - Upasana Hazarika
- Department of Biophysics, Pub Kamrup College Baihata Chariali Assam India
| | - P Vijaya Bhaskar Reddy
- Department of Life Science and Bioinformatics, Assam University, Diphu Campus Diphu Assam India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology Paschim Boragaon, Garchuk Guwahati 781035 India
| | - Manash Barthakur
- Department of Zoology, Pub Kamrup College Baihata Chariali Assam India
| | - Pankaj Kalita
- Department of Zoology, Eastern Karbi Anglong College Karbi Anglong Assam India
| |
Collapse
|
24
|
Mirkatuli HA, Baghbani M, Yahyaei B. Comparison of the possible histopathological changes of the rat neonatal cerebellum induced by toxic and nontoxic doses of biological silver nanoparticles with chemical silver nanoparticles. Brain Behav 2021; 11:e2319. [PMID: 34333877 PMCID: PMC8413823 DOI: 10.1002/brb3.2319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Today, due to the increasing application of silver nanoparticles in medical products, it is necessary to pay attention to the user's safety. There are three methods, namely, chemical, physical, and biological, used for the production of nanoparticles. Although the first two methods might introduce health hazards, the latter is hypothetically safe. In this study, we examined the histopathological changes in the cerebellum of neonatal Wistar rats induced by injection of toxic and nontoxic doses of silver nanoparticles, which were produced by green synthetic method and were compared with chemical silver nanoparticles. METHODS This study was a laboratory interventional study performed on 25 Wistar rats in the Animal Laboratory of Islamic Azad University of Shahrood. These rats were divided into five groups of the control group, the group with nonpoisonous injection of chemical nanoparticles, the group with nonpoisonous injection of biological nanoparticles, the group with injection of poisonous chemical nanoparticles, and the group with injection of poisonous biological nanoparticles. The rats were impregnated by the males of the same race and the cerebellum of their offspring was studied after birth. RESULTS We found that the injection of nonpoisonous chemical nanoparticles caused hyperemia, inappropriate size, and dark cytoplasm in some Purkinje cells. Also, injection of poisonous chemical nanoparticles caused hyperemia and cellular dispersion in the molecular layer, caused abnormal shapes, and reduced the number of cells in Purkinje cells. However, injection of poisonous and nonpoisonous biological nanoparticles did not alter cerebellum cells nor did it cause any inflammation or hyperemia. CONCLUSION In contrast with chemical nanoparticles, biological nanoparticles have less significant effect on the cerebellum cells.
Collapse
Affiliation(s)
| | | | - Behrooz Yahyaei
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran.,Department of Medical Sciences, Biological Nanoparticles in Medicine Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| |
Collapse
|
25
|
Li S, Su J, Cai W, Liu JX. Nanomaterials Manipulate Macrophages for Rheumatoid Arthritis Treatment. Front Pharmacol 2021; 12:699245. [PMID: 34335264 PMCID: PMC8316763 DOI: 10.3389/fphar.2021.699245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/09/2021] [Indexed: 12/25/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, and systemic inflammatory autoimmune disease, characterized by synovial inflammation, synovial lining hyperplasia and inflammatory cell infiltration, autoantibody production, and cartilage/bone destruction. Macrophages are crucial effector cells in the pathological process of RA, which can interact with T, B, and fibroblast-like synovial cells to produce large amounts of cytokines, chemokines, digestive enzymes, prostaglandins, and reactive oxygen species to accelerate bone destruction. Therefore, the use of nanomaterials to target macrophages has far-reaching therapeutic implications for RA. A number of limitations exist in the current clinical therapy for patients with RA, including severe side effects and poor selectivity, as well as the need for frequent administration of therapeutic agents and high doses of medication. These challenges have encouraged the development of targeting drug delivery systems and their application in the treatment of RA. Recently, obvious therapeutic effects on RA were observed following the use of various types of nanomaterials to manipulate macrophages through intravenous injection (active or passive targeting), oral administration, percutaneous absorption, intraperitoneal injection, and intra-articular injection, which offers several advantages, such as high-precision targeting of the macrophages and synovial tissue of the joint. In this review, the mechanisms involved in the manipulation of macrophages by nanomaterials are analyzed, and the prospect of clinical application is also discussed. The objective of this article was to provide a reference for the ongoing research concerning the treatment of RA based on the targeting of macrophages.
Collapse
Affiliation(s)
- Shuang Li
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China.,College Pharmacy, Jiamusi University, Jiamusi, China
| | - Jin Su
- College Pharmacy, Jiamusi University, Jiamusi, China
| | - Wei Cai
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| | - Jian-Xin Liu
- Hunan Province Key Laboratory of Antibody-based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, China
| |
Collapse
|
26
|
Sani A, Cao C, Cui D. Toxicity of gold nanoparticles (AuNPs): A review. Biochem Biophys Rep 2021; 26:100991. [PMID: 33912692 PMCID: PMC8063742 DOI: 10.1016/j.bbrep.2021.100991] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles are a kind of nanomaterials that have received great interest in field of biomedicine due to their electrical, mechanical, thermal, chemical and optical properties. With these great potentials came the consequence of their interaction with biological tissues and molecules which presents the possibility of toxicity. This paper aims to consolidate and bring forward the studies performed that evaluate the toxicological aspect of AuNPs which were categorized into in vivo and in vitro studies. Both indicate to some extent oxidative damage to tissues and cell lines used in vivo and in vitro respectively with the liver, spleen and kidney most affected. The outcome of these review showed small controversy but however, the primary toxicity and its extent is collectively determined by the characteristics, preparations and physicochemical properties of the NPs. Some studies have shown that AuNPs are not toxic, though many other studies contradict this statement. In order to have a holistic inference, more studies are required that will focus on characterization of NPs and changes of physical properties before and after treatment with biological media. So also, they should incorporate controlled experiment which includes supernatant control Since most studies dwell on citrate or CTAB-capped AuNPs, there is the need to evaluate the toxicity and pharmacokinetics of functionalized AuNPs with their surface composition which in turn affects their toxicity. Functionalizing the NPs surface with more peculiar ligands would however help regulate and detoxify the uptake of these NPs.
Collapse
Affiliation(s)
- A. Sani
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Department of Biological Sciences, Bayero University Kano, P.M.B. 3011, Kano, Nigeria
| | - C. Cao
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - D. Cui
- Department of Instrument Science and Engineering, School of Electronic, Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
27
|
Souza MR, Mazaro-Costa R, Rocha TL. Can nanomaterials induce reproductive toxicity in male mammals? A historical and critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144354. [PMID: 33736249 DOI: 10.1016/j.scitotenv.2020.144354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 12/05/2020] [Indexed: 05/28/2023]
Abstract
The nanotechnology enabled the development of nanomaterials (NMs) with a variety of industrial, biomedical, and consumer applications. However, the mechanism of action (MoA) and toxicity of NMs remain unclear, especially in the male reproductive system. Thus, this study aimed to perform a bibliometric and systematic review of the literature on the toxic effects of different types of NMs on the male reproductive system and function in mammalian models. A series of 236 articles related to the in vitro and in vivo reproductive toxicity of NMs in mammalian models were analyzed. The data concerning the bioaccumulation, experimental conditions (types of NMs, species, cell lines, exposure period, and routes of exposure), and the MoA and toxicity of NMs were summarized and discussed. Results showed that this field of research began in 2005 and has experienced an exponential increase since 2012. Revised data confirmed that the NMs have the ability to cross the blood-testis barrier and bioaccumulate in several organs of the male reproductive system, such as testis, prostate, epididymis, and seminal vesicle. A similar MoA and toxicity were observed after in vitro and in vivo exposure to NMs. The NM reproductive toxicity was mainly related to ROS production, oxidative stress, DNA damage and apoptosis. In conclusion, the NM exposure induces bioaccumulation and toxic effects on male reproductive system of mammal models, confirming its potential risk to human and environmental health. The knowledge concerning the NM reproductive toxicity contributes to safety and sustainable use of nanotechnology.
Collapse
Affiliation(s)
- Maingredy Rodrigues Souza
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil
| | - Renata Mazaro-Costa
- Laboratory of Physiology and Pharmacology of Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiás, Brazil.
| |
Collapse
|
28
|
Chang SY, Huang KY, Chao TL, Kao HC, Pang YH, Lu L, Chiu CL, Huang HC, Cheng TJR, Fang JM, Yang PC. Nanoparticle composite TPNT1 is effective against SARS-CoV-2 and influenza viruses. Sci Rep 2021; 11:8692. [PMID: 33888738 PMCID: PMC8062499 DOI: 10.1038/s41598-021-87254-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
A metal nanoparticle composite, namely TPNT1, which contains Au-NP (1 ppm), Ag-NP (5 ppm), ZnO-NP (60 ppm) and ClO2 (42.5 ppm) in aqueous solution was prepared and characterized by spectroscopy, transmission electron microscopy, dynamic light scattering analysis and potentiometric titration. Based on the in vitro cell-based assay, TPNT1 inhibited six major clades of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with effective concentration within the range to be used as food additives. TPNT1 was shown to block viral entry by inhibiting the binding of SARS-CoV-2 spike proteins to the angiotensin-converting enzyme 2 (ACE2) receptor and to interfere with the syncytium formation. In addition, TPNT1 also effectively reduced the cytopathic effects induced by human (H1N1) and avian (H5N1) influenza viruses, including the wild-type and oseltamivir-resistant virus isolates. Together with previously demonstrated efficacy as antimicrobials, TPNT1 can block viral entry and inhibit or prevent viral infection to provide prophylactic effects against both SARS-CoV-2 and opportunistic infections.
Collapse
Affiliation(s)
- Sui-Yuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Chung-Shan South Rd., No. 7, Taipei, 10002, Taiwan
| | - Kuo-Yen Huang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Tai-Ling Chao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
| | - Han-Chieh Kao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
| | - Yu-Hao Pang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, No. 1, Sec. 1, Ren-Ai Rd., Taipei, 10002, Taiwan
| | - Lin Lu
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan, 32656, Taiwan
| | - Chun-Lun Chiu
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan, 32656, Taiwan
| | - Hsin-Chang Huang
- Tripod Nano Technology, No. 171, Sec. 1, Mei Shi Rd., Yang Mei District, Taoyuan, 32656, Taiwan
| | - Ting-Jen Rachel Cheng
- The Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Jim-Min Fang
- The Genomics Research Center, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10607, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Chung-Shan South Rd., Taipei, 10002, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
| |
Collapse
|
29
|
Asadi S, Bianchi L, De Landro M, Korganbayev S, Schena E, Saccomandi P. Laser-induced optothermal response of gold nanoparticles: From a physical viewpoint to cancer treatment application. JOURNAL OF BIOPHOTONICS 2021; 14:e202000161. [PMID: 32761778 DOI: 10.1002/jbio.202000161] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Gold nanoparticles (GNPs)-based photothermal therapy (PTT) is a promising minimally invasive thermal therapy for the treatment of focal malignancies. Although GNPs-based PTT has been known for over two decades and GNPs possess unique properties as therapeutic agents, the delivery of a safe and effective therapy is still an open question. This review aims at providing relevant and recent information on the usage of GNPs in combination with the laser to treat cancers, pointing out the practical aspects that bear on the therapy outcome. Emphasis is given to the assessment of the GNPs' properties and the physical mechanisms underlying the laser-induced heat generation in GNPs-loaded tissues. The main techniques available for temperature measurement and the current theoretical simulation approaches predicting the therapeutic outcome are reviewed. Topical challenges in delivering safe thermal dosage are also presented with the aim to discuss the state-of-the-art and the future perspective in the field of GNPs-mediated PTT.
Collapse
Affiliation(s)
- Somayeh Asadi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Martina De Landro
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | | | - Emiliano Schena
- Laboratory of Measurement and Biomedical Instrumentation, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
30
|
Adewale OB, Egbeyemi KA, Onwuelu JO, Potts-Johnson SS, Anadozie SO, Fadaka AO, Osukoya OA, Aluko BT, Johnson J, Obafemi TO, Onasanya A. Biological synthesis of gold and silver nanoparticles using leaf extracts of Crassocephalum rubens and their comparative in vitro antioxidant activities. Heliyon 2020; 6:e05501. [PMID: 33251363 PMCID: PMC7680780 DOI: 10.1016/j.heliyon.2020.e05501] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/21/2020] [Accepted: 11/10/2020] [Indexed: 01/20/2023] Open
Abstract
The use of plant and plant products in the synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) is made possible because of the natural inherent phytochemicals responsible for the reduction of respective metallic salts to nanoparticle forms, and ensuring therapeutic applicability. In this study, synthesis of AgNPs and AuNPs was performed using two different aqueous extraction methods for Crassocephalum rubens: maceration using laboratory method of extraction (cold aqueous extract of Crassocephalum rubens (AECR)), and decoction using traditional healer's method of extraction (hot aqueous crude extract of Crassocephalum rubens (CECR)). The synthesized nanoparticles were characterized using various methods, and in vitro antioxidant potential were thereafter investigated. The characterization results indicated the formation of mostly spherical-shaped AgNPs and AuNPs with surface plasmon resonance (SPR) band of 470 nm and 540 nm, respectively. The nanoparticles possess high antioxidant potentials but AECR synthesized AuNPs exhibited the least phytochemical contents and antioxidant potential when compared to other nanoparticles. It can therefore be concluded that extraction method and nanoparticle type are important factors that could influence the antioxidant properties of the nanoparticles. Further studies using these nanoparticles as anticancer or anti-inflammatory agent in both in vitro and in vivo are underway.
Collapse
Affiliation(s)
- Olusola B Adewale
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti 360001, Nigeria
| | - Kayode A Egbeyemi
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti 360001, Nigeria
| | - Joan O Onwuelu
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti 360001, Nigeria
| | - Sotonye S Potts-Johnson
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti 360001, Nigeria
| | - Scholastica O Anadozie
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti 360001, Nigeria
| | - Adewale O Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Olukemi A Osukoya
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti 360001, Nigeria
| | - Bukola T Aluko
- Department of Biochemistry, Ekiti State University, Ado-Ekiti, P.M.B. 5363, Ado-Ekiti Nigeria
| | - Jonathan Johnson
- Department of Chemical Sciences, Chemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti 360001, Nigeria
| | - Tajudeen O Obafemi
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti 360001, Nigeria
| | - Amos Onasanya
- Department of Chemical Sciences, Biochemistry Program, Afe Babalola University, Ado-Ekiti, P.M.B. 5454, Ado-Ekiti 360001, Nigeria
| |
Collapse
|
31
|
Yahyaei B, Pourali P. One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci Rep 2019; 9:10242. [PMID: 31308430 PMCID: PMC6629879 DOI: 10.1038/s41598-019-46602-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 07/02/2019] [Indexed: 11/23/2022] Open
Abstract
Recent research tried to analyze the conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles (GNPs) in one step, without the use of any additional linkers. GNPs was produced using Fusarium oxysporum and their presence was confirmed using spectrophotometer, transmission electron microscope (TEM), X-ray diffraction (XRD) and fourier transform infrared (FTIR) analyses. In order to carry out the conjugation study, capecitabine, tamoxifen, and paclitaxel were added dropwise to the GNPs solution under stirring condition and spectrophotometer, dynamic light scattering (DLS) and FTIR analyses were performed to prove the successful conjugation. Finally, AGS and MCF7 cell lines were used for methyl thiazol tetrazolium (MTT) assay to determine the toxicity of each drug and its conjugated form. Results showed that the spherical and hexagonal GNPs with maximum absorbance peak around 524 nm and average sizes less than 20 nm were produced. FTIR analysis clarified the presence of proteins on the surfaces of the GNPs. After the conjugation process although the FTIR analysis demonstrated that all the drugs were successfully conjugated to GNPs, MTT assay revealed that unlike the paclitaxel conjugated GNPs, capecitabine and tamoxifen conjugates displayed no toxic effects due to their deactivation and low half-lives. Moreover the average size and polydispersity index (PDI) of the GNPs after conjugation with all the three tested drugs increased. In conclusion different types of drugs could conjugate to the GNPs but it is important to employ high stable forms of the drugs in the conjugation procedure.
Collapse
Affiliation(s)
- Behrooz Yahyaei
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran.,Biological Nanoparticles in Medicine Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Parastoo Pourali
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran. .,Biological Nanoparticles in Medicine Research Center, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| |
Collapse
|