1
|
Khan MF, Liao J, Liu Z, Chugh G. Bacterial Cytochrome P450 Involvement in the Biodegradation of Fluorinated Pyrethroids. J Xenobiot 2025; 15:58. [PMID: 40278163 PMCID: PMC12028412 DOI: 10.3390/jox15020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
Fluorinated pyrethroids, such as cyfluthrin and cyhalothrin, are more effective insecticides due to their enhanced stability and lipophilicity. However, they pose greater risks to non-target organisms. Their persistence in the environment and accumulation in tissues can lead to increased toxicity and ecological concerns. This study investigates the biodegradation of the fluorinated pyrethroids β-cyfluthrin (BCF) and λ-cyhalothrin (LCH) using a newly isolated Bacillus sp. MFK14 from a garden soil microbial consortium. Initial screening using 19F NMR analysis showed that the microbial consortium degraded both pyrethroids, leading to the isolation of Bacillus sp. MFK14. Subsequent GC-MS analysis revealed various degradation intermediates in both pyrethroids after incubation with Bacillus sp. MFK14. Notably, Bacillus sp. MFK14 completely degraded β-cyfluthrin and λ-cyhalothrin within 48 h at 30 °C. Fluoride ions from β-cyfluthrin and trifluoroacetic acid (TFA) from λ-cyhalothrin were detected as the end-products by 19F NMR analysis of the aqueous fraction. The pathway of the degradation was proposed for both the pyrethroids indicating shared biodegradation pathways despite different fluorinations. Inhibition studies with 1-ABT suggested the involvement of bacterial cytochrome P450 (CYP) enzymes in their biodegradation. The CYPome of Bacillus sp. MFK14 includes 23 CYP variants that showed significant sequence similarity to known bacterial CYPs, suggesting potential roles in pyrethroid biodegradation and environmental persistence. These findings highlight the potential for bioremediation of fluorinated pesticides, offering an environmentally sustainable approach to mitigate their ecological impact.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Jun Liao
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- China Guangzhou Dublin International College of Life Sciences & Technology, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Zhenyang Liu
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
- China Guangzhou Dublin International College of Life Sciences & Technology, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Gaurav Chugh
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| |
Collapse
|
2
|
Wang Y, Wang L, Luo L, Ning F, Li J. Precision of in Vivo Pesticide Toxicology Research Can Be Promoted by Mass Spectrometry Imaging Technology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8113-8128. [PMID: 40159138 DOI: 10.1021/acs.jafc.5c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pesticides are crucial for agricultural production, but their excessive use has become a significant pollution source, leading to increased pesticide residues in the environment and food and posing a threat to human health. In vivo pesticide toxicology research aims to protect humans with detection technology playing a key role. Spatial information plays a crucial role in in vivo pesticide toxicity research. However, current technologies cannot simultaneously analyze the content and spatial information on pesticides in vivo. Mass spectrometry imaging (MSI) technology can address this limitation by simultaneously analyzing the content and spatial distribution of chemicals in vivo with high sensitivity and efficiency, aiding in the discovery of toxic biomarkers and mechanisms. Nevertheless, the limited application of MSI in vivo pesticide toxicology research hinders the accuracy of such research. Therefore, MSI should be promoted to enhance the accuracy of in vivo pesticide toxicology research.
Collapse
Affiliation(s)
- Yunping Wang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Lintai Wang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Liping Luo
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Fangjian Ning
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Jinwang Li
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
3
|
Wang Y, Shi Y, Li H, Wang S, Wang A. Whole Genome Identification and Biochemical Characteristics of the Tilletia horrida Cytochrome P450 Gene Family. Int J Mol Sci 2024; 25:10478. [PMID: 39408807 PMCID: PMC11476942 DOI: 10.3390/ijms251910478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Rice kernel smut caused by the biotrophic basidiomycete fungus Tilletia horrida causes significant yield losses in hybrid rice-growing areas around the world. Cytochrome P450 (CYP) enzyme is a membrane-bound heme-containing monooxygenase. In fungi, CYPs play a role in cellular metabolism, adaptation, pathogenicity, decomposition, and biotransformation of hazardous chemicals. In this study, we identified 20 CYP genes based on complete sequence analysis and functional annotation from the T. horrida JY-521 genome. The subcellular localization, conserved motifs, and structures of these 20 CYP genes were further predicted. The ThCYP genes exhibit differences in gene structures and protein motifs. Subcellular localization showed that they were located in the plasma membrane, cytoplasm, nucleus, mitochondria, and extracellular space, indicating that they had multiple functions. Some cis-regulatory elements related to stress response and plant hormones were found in the promoter regions of these genes. Protein-protein interaction (PPI) analysis showed that several ThCYP proteins interact with multiple proteins involved in the ergosterol pathway. Moreover, the expression of 20 CYP genes had different responses to different infection time points and underwent dynamic changes during T. horrida JY-521 infection, indicating that these genes were involved in the interaction with rice and their potential role in the pathogenic mechanism. These results provided valuable resources for elucidating the structure of T. horrida CYP family proteins and laid an important foundation for further research of their roles in the pathogenesis.
Collapse
Affiliation(s)
- Yafei Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (H.L.); (S.W.)
| | | | | | | | - Aijun Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; (Y.S.); (H.L.); (S.W.)
| |
Collapse
|
4
|
Zhai Z, Meng M, Zhang Z, Kim J, Zhu Y. Metabolism of a fungicide propiconazole by Cunninghamella elegans ATCC36112. Arch Microbiol 2024; 206:356. [PMID: 39026110 DOI: 10.1007/s00203-024-04062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
The metabolic breakdown of propiconazole by fungi was examined, and it was found that the microbial model (Cunninghamella elegans ATCC36112) efficiently degrades the triazole fungicide propiconazole through the action of cytochrome P450. This enzyme primarily facilitates the oxidation and hydrolysis processes involved in phase I metabolism. We observed major metabolites indicating hydroxylation/oxidation of propyl groups of propiconazole. Around 98% of propiconazole underwent degradation within a span of 3 days post-treatment, leading to the accumulation of five metabolites (M1-M5). The experiments started with a preliminary identification of propiconazole and its metabolites using GC-MS. The identified metabolites were then separated and identified by in-depth analysis using preparative UHPLC and MS/MS. The metabolites of propiconazole are M1 (CGA-118245), M2(CGA-118244), M3(CGA-136735), M4(GB-XLIII-42-1), and M5(SYN-542636). To further investigate the role of key enzymes in potential fungi, we treated the culture medium with piperonyl butoxide (PB) and methimazole (MZ), and then examined the kinetic responses of propiconazole and its metabolites. The results indicated a significant reduction in the metabolism rate of propiconazole in the medium treated with PB, while methimazole showed weaker inhibitory effects on the metabolism of propiconazole in the fungus C. elegans.
Collapse
Grants
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
- Project PJ0140182018 National Institute of Agricultural Sciences, and Rural Development Administration, Republic of Korea.
Collapse
Affiliation(s)
- Zhaochi Zhai
- Qingdao Agricultural University, Chengyang, Qingdao City, China
| | - Min Meng
- Qingdao Agricultural University, Chengyang, Qingdao City, China
| | - Zhenxing Zhang
- Qingdao Agricultural University, Chengyang, Qingdao City, China
| | | | - Yongzhe Zhu
- Qingdao Agricultural University, Chengyang, Qingdao City, China.
| |
Collapse
|
5
|
Zhou EM, Chen XA, Zhou MM, Xu LY, Wang D, Shen HP, Xu WQ. Dissecting the genome sequence of a clinical isolated Cunninghamella bertholletiae Z2 strain with rich cytochrome P450 enzymes (Article). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 120:105575. [PMID: 38403034 DOI: 10.1016/j.meegid.2024.105575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/01/2024] [Accepted: 02/17/2024] [Indexed: 02/27/2024]
Abstract
Mucormycosis is receiving much more attention because of its high morbidity and extremely high mortality rate in immunosuppressed populations. In this study, we isolated a Cunnignhamella bertholletiae Z2 strain from a skin lesion of a 14 year, 9 months old girl with acute lymphoblastic leukemia who die of infection from the Z2 strain. Genome sequencing was performed after isolation and amplification of the Z2 strain to reveal potential virulence factors and pathogenic mechanisms. The results showed that the genome size of the Z2 strain is 30.9 Mb with 9213 genes. Mucoral specific virulence factor genes found are ARF, CalN, and CoTH, while no gliotoxin biosynthesis gene cluster was found, which is a known virulence factor in Aspergillus fumigatus adapted to the environment. The Z2 strain was found to have 69 cytochrome P450 enzymes, which are potential drug resistant targets. Sensitivity testing of Z2 showed it was only inhibited by amphotericin B and posaconazole. Detailed genomic information of the C. bertholletiae Z2 strain may provide useful data for treatment.
Collapse
Affiliation(s)
- En-Min Zhou
- Children's Hospital, Zhejiang University School of Medicine(ZCH), Hangzhou 310058, China
| | - Xin-Ai Chen
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ming-Ming Zhou
- Children's Hospital, Zhejiang University School of Medicine(ZCH), Hangzhou 310058, China
| | - Li-Yao Xu
- Children's Hospital, Zhejiang University School of Medicine(ZCH), Hangzhou 310058, China
| | - Di Wang
- Children's Hospital, Zhejiang University School of Medicine(ZCH), Hangzhou 310058, China
| | - He-Ping Shen
- Children's Hospital, Zhejiang University School of Medicine(ZCH), Hangzhou 310058, China
| | - Wei-Qun Xu
- Children's Hospital, Zhejiang University School of Medicine(ZCH), Hangzhou 310058, China.
| |
Collapse
|
6
|
Yu X, Wang S, Tang J, Zhang Y, Zhou X, Peng C, Chen X, Zhang Q. Microbial Fermentation as an Efficient Method for Eliminating Pyrethroid Pesticide Residues in Food: A Case Study on Cyfluthrin and Aneurinibacillus aneurinilyticus D-21. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4393-4404. [PMID: 38359781 DOI: 10.1021/acs.jafc.3c09024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The microbial fermentation of food has emerged as an efficient means to eliminate pesticide residues in agricultural products; however, the specific degradation characteristics and mechanisms remain unclear. In this study, a Gram-positive bacterium, Aneurinibacillus aneurinilyticus D-21, isolated from fermented Pixian Douban samples exhibited the capability to degrade 45 mg/L of cyfluthrin with an efficiency of 90.37%. Product analysis unveiled a novel cyfluthrin degradation pathway, involving the removal of the cyanide group and ammoniation of the ester bond into an amide. Whole genome analysis discovered the enzymes linked to cyfluthrin degradation, including nitrilase, esterase, carbon-nitrogen ligases, and enzymes associated with aromatic degradation. Additionally, metabolome analysis identified 140 benzenoids distributed across various aromatic metabolic pathways, further substantiating D-21's catabolic capability toward aromatics. This study underscores the exceptional pyrethroid degradation prowess of A. aneurinilyticus D-21, positioning it as a promising candidate for the biotreatment of pesticide residues in food systems.
Collapse
Affiliation(s)
- Xuan Yu
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Su Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Jie Tang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Xihua University, Chengdu 610039, Sichuan, China
| | - Yingyue Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Xuerui Zhou
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Chuanning Peng
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
| | - Xuejiao Chen
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| | - Qing Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, China
- Food Microbiology Key Laboratory of Sichuan Province, Xihua University, Chengdu 610039, Sichuan, China
| |
Collapse
|
7
|
Corrêa-Junior D, Parente CET, Frases S. Hazards Associated with the Combined Application of Fungicides and Poultry Litter in Agricultural Areas. J Xenobiot 2024; 14:110-134. [PMID: 38249104 PMCID: PMC10801622 DOI: 10.3390/jox14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
In recent decades, the poultry farming industry has assumed a pivotal role in meeting the global demand for affordable animal proteins. While poultry farming makes a substantial contribution to food security and nutrition, it also presents environmental and public health challenges. The use of poultry litter as fertilizer for agricultural soils raises concerns about the transfer of pathogens and drug-resistant microorganisms from poultry farms to crop production areas. On the other hand, according to the Food and Agriculture Organization of the United Nations (FAO), fungicides represent the second most used chemical group in agricultural practices. In this context, agricultural soils receive the application of both poultry litter as a fertilizer and fungicides used in agricultural production. This practice can result in fungal contamination of the soil and the development of antifungal resistance. This article explores the necessity of monitoring antifungal resistance, particularly in food production areas with co-application of poultry litter and fungicides. It also highlights the role of fungi in ecosystems, decomposition, and mutualistic plant associations. We call for interdisciplinary research to comprehensively understand fungal resistance to fungicides in the environment. This approach seeks to promote sustainability in the realms of human health, agriculture, and the environment, aligning seamlessly with the One Health concept.
Collapse
Affiliation(s)
- Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro CEP 21941-902, Brazil;
| | - Cláudio Ernesto Taveira Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho s/n, Bloco G0, Sala 60, Subsolo, Rio de Janeiro CEP 21941-902, Brazil;
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro CEP 21941-902, Brazil;
- Rede Micologia RJ, FAPERJ, Rio de Janeiro CEP 21941-902, Brazil
| |
Collapse
|
8
|
Ibrahim ARS, Mansour MK, Ahmed MMA, Ulber R, Zayed A. Metabolism of natural and synthetic bioactive compounds in Cunninghamella fungi and their applications in drug discovery. Bioorg Chem 2023; 140:106801. [PMID: 37643568 DOI: 10.1016/j.bioorg.2023.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Investigation of xenobiotic metabolism is a key step for drug discovery. Since the in vivo investigations may be associated with harmful effects attributed to production of toxic metabolites, it is deemed necessary to predict their structure especially at the preliminary clinical studies. Furthermore, the application of microorganisms that are capable of metabolizing drugs mimic human metabolism and consequently may predict possible metabolites. The genus Cunninghamella has been proven to be a potential candidate, which mimics xenobiotic metabolism occurring inside the human body, including phase I and II metabolic reactions. Moreover, biotransformation with Cunninghamella showed chemical diversity, where a lot of products were detected in relation to the initial substrates after being modified by oxidation, hydroxylation, and conjugation reactions. Some of these products are more bioactive than the parent compounds. The current review presents a comprehensive literature overview regarding the Cunninghamella organisms as biocatalysts, which simulate mammalian metabolism of natural secondary and synthetic compounds.
Collapse
Affiliation(s)
- Abdel-Rahim S Ibrahim
- Department of Pharmacognosy, Tanta University, Faculty of Pharmacy, El-Geish Street, Tanta 31527, Egypt
| | - Mai K Mansour
- Department of Medicinal Plants and Natural Products, Egyptian Drug Authority, Giza 11553, Egypt
| | - Mohammed M A Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, United States; Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Roland Ulber
- Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, Kaiserslautern 67663, Germany
| | - Ahmed Zayed
- Department of Pharmacognosy, Tanta University, Faculty of Pharmacy, El-Geish Street, Tanta 31527, Egypt; Institute of Bioprocess Engineering, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Gottlieb-Daimler-Str. 49, Kaiserslautern 67663, Germany.
| |
Collapse
|
9
|
Khan MF, Hof C, Niemcová P, Murphy CD. Recent advances in fungal xenobiotic metabolism: enzymes and applications. World J Microbiol Biotechnol 2023; 39:296. [PMID: 37658215 PMCID: PMC10474215 DOI: 10.1007/s11274-023-03737-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Fungi have been extensively studied for their capacity to biotransform a wide range of natural and xenobiotic compounds. This versatility is a reflection of the broad substrate specificity of fungal enzymes such as laccases, peroxidases and cytochromes P450, which are involved in these reactions. This review gives an account of recent advances in the understanding of fungal metabolism of drugs and pollutants such as dyes, agrochemicals and per- and poly-fluorinated alkyl substances (PFAS), and describes the key enzymes involved in xenobiotic biotransformation. The potential of fungi and their enzymes in the bioremediation of polluted environments and in the biocatalytic production of important compounds is also discussed.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carina Hof
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patricie Niemcová
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
10
|
Khan MF, Paul Guin J, Thampi RK, Sullivan JA, Murphy CD. Enhanced removal of perfluorooctanoic acid with sequential photocatalysis and fungal treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91478-91486. [PMID: 37474853 PMCID: PMC10439853 DOI: 10.1007/s11356-023-28588-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/30/2023] [Indexed: 07/22/2023]
Abstract
In this paper, we report the degradation of perfluorooctanoic acid (PFOA), which is a persistent contaminant in the environment that can severely impact human health, by exposing it to a photocatalyst, bismuth oxyiodide (BiOI), containing both Bi4O5I2 and Bi5O7I phases and a fungal biocatalyst (Cunninghamella elegans). Individually, the photocatalyst (after 3 h) and biocatalyst (after 48 h) degraded 35-40% of 100 ppm PFOA with 20-30% defluorination. There was a marked improvement in the degree of degradation (90%) and defluorination (60%) when PFOA was first photocatalytically treated, then exposed to the fungus. GC- and LC-MS analysis identified the products formed by the different treatments. Photocatalytic degradation of PFOA yielded short-chain perfluorocarboxylic acids, whereas fungal degradation yielded mainly 5:3 fluorotelomer carboxylic acid, which is a known inhibitor of cytochrome P450-catalysed degradation of PFAS in C. elegans. The combined treatment likely resulted in greater degradation because photocatalysis reduced the PFOA concentration without generating the inhibitory 5:3 fluorotelomer carboxylic acid, enabling the fungus to remove most of the remaining substrate. In addition, new fluorometabolites were identified that shed light on the initial catabolic steps involved in PFOA biodegradation.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield , Dublin 4, Ireland
| | - Jhimli Paul Guin
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ravindranathan K Thampi
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - James A Sullivan
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield , Dublin 4, Ireland.
| |
Collapse
|
11
|
Nolden M, Velten R, Paine MJI, Nauen R. Resilience of transfluthrin to oxidative attack by duplicated CYP6P9 variants known to confer pyrethroid resistance in the major malaria mosquito Anopheles funestus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105356. [PMID: 36963931 DOI: 10.1016/j.pestbp.2023.105356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Resistance to common pyrethroids, such as deltamethrin and permethrin is widespread in the malaria mosquito Anopheles funestus and mainly conferred by upregulated cytochrome P450 monooxygenases (P450s). In the pyrethroid resistant laboratory strain An. funestus FUMOZ-R the duplicated genes CYP6P9a and CYP6P9b are highly upregulated and have been shown to metabolize various pyrethroids, including deltamethrin and permethrin. Here, we recombinantly expressed CYP6P9a and CYP6P9b from An. funestus using a baculovirus expression system and evaluated the interaction of the multifluorinated benzyl pyrethroid transfluthrin with these enzymes by different approaches. First, by Michaelis-Menten kinetics in a fluorescent probe assay with the model substrate 7-benzyloxymethoxy-4-trifluoromethylcoumarin (BOMFC), we showed the inhibition of BOMFC metabolism by increasing concentrations of transfluthrin. Second, we tested the metabolic capacity of recombinantly expressed CYP6P9 variants to degrade transfluthrin utilizing UPLC-MS/MS analysis and detected low depletion rates, explaining the virtual lack of resistance of strain FUMOZ-R to transfluthrin observed in previous studies. However, as both approaches suggested an interaction of CYP6P9 variants with transfluthrin, we analyzed the oxidative metabolic fate and failed to detect hydroxylated transfluthrin, but low amounts of an M-2 transfluthrin metabolite. Based on the detected metabolite we hypothesize oxidative attack of the gem-dimethyl substituted cyclopropyl moiety, resulting in the formation of an allyl cation upon ring opening. In conclusion, these findings support the resilience of transfluthrin to P450-mediated pyrethroid resistance, and thus, reinforces its employment as an important resistance-breaking pyrethroid in resistance management strategies to control the major malaria vector An. funestus.
Collapse
Affiliation(s)
- Melanie Nolden
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany; Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Robert Velten
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany
| | - Mark J I Paine
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, Alfred Nobel Str. 50, D-40789 Monheim am Rhein, Germany.
| |
Collapse
|
12
|
Khan MF, Murphy CD. Fluorotelomer alcohols are efficiently biotransformed by Cunninghamella elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23613-23623. [PMID: 36327087 DOI: 10.1007/s11356-022-23901-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Cunninghamella elegans is a well-studied fungus that biotransforms a range of xenobiotics owing to impressive cytochrome P450 (CYP) activity. In this paper, we report the biotransformation of 6:2 fluorotelomer alcohol (6:2 FTOH) by the fungus, yielding a range of fluorinated products that were detectable by fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR), gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Upon incubation with the pre-grown cultures, the substrate (100 mg/L) was completely consumed within 48 h, which is faster biotransformation than other fungi that have hitherto been studied. The main metabolite formed was the 5:3 fluorotelomer carboxylic acid (5:3 FTCA), which accumulated in the culture supernatant. When the cytochrome P450 inhibitor 1-aminobenzotriazole was included in the culture flasks, there was no biotransformation of 6:2 FTOH, indicating that these enzymes are key to the catalysis. Furthermore, when exogenous 5:3 FTCA was added to the fungus, the standard biotransformation of the drug flurbiprofen was inhibited, strongly suggesting that the main fluorotelomer alcohol biotransformation product inhibits CYP activity and accounts for its accumulation.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
13
|
Khan MF, Murphy CD. Cytochrome P450 5208A3 is a promiscuous xenobiotic biotransforming enzyme in Cunninghamella elegans. Enzyme Microb Technol 2022; 161:110102. [DOI: 10.1016/j.enzmictec.2022.110102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|
14
|
Khan MF, Murphy CD. Nitroreduction of flutamide by Cunninghamella elegans NADPH: Cytochrome P450 reductase. Biochem Biophys Rep 2022; 29:101209. [PMID: 35097225 PMCID: PMC8783101 DOI: 10.1016/j.bbrep.2022.101209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
The microbial model of mammalian drug metabolism, Cunninghamella elegans, has three cytochrome P450 reductase genes in its genome: g1631 (CPR_A), g4301 (CPR_B), and g7609 (CPR_C). The nitroreductase activity of the encoded enzymes was investigated via expression of the genes in the yeast Pichia pastoris X33. Whole cell assays with the recombinant yeast demonstrated that the reductases converted the anticancer drug flutamide to the nitroreduced metabolite that was also produced from the same substrate when incubated with human NADPH: cytochrome P450 reductase. The nitroreductase activity extended to other substrates such as the related drug nilutamide and the environmental contaminants 1-nitronaphthalene and 1,3-dinitronaphthalene. Comparative experiments with cell lysates of recombinant yeast were conducted under aerobic and reduced oxygen conditions and demonstrated that the reductases are oxygen sensitive. Three cytochrome P450 reductase genes from Cunninghamella elegans were heterologously expressed in Pichia pastoris. TThe enzymes displayed nitroreductase activity towards flutamide, which is analogous to human cytochrome P450 reductase. The enzymes are oxygen sensitive, which is also a property shared with the human enzyme. Other nitro-containing substrates can be reduced by the fungal enzymes.
Collapse
|
15
|
Khan MF, Murphy CD. Bacterial degradation of the anti-depressant drug fluoxetine produces trifluoroacetic acid and fluoride ion. Appl Microbiol Biotechnol 2021; 105:9359-9369. [PMID: 34755212 DOI: 10.1007/s00253-021-11675-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/28/2022]
Abstract
Fluoxetine (FLX) is a blockbuster drug with annual sales in the billions of dollars. Its widespread use has resulted in its detection in water courses, where it impacts aquatic life. Investigations on the biodegradation of FLX by microorganisms are important, since augmentation of secondary wastewater treatment by an effective degrader may be one method of improving the drug's removal. In this paper, we demonstrate that common environmental bacteria can use FLX as a sole carbon and energy source. Investigations into the metabolites formed using fluorine-19 nuclear magnetic resonance spectroscopy (19F NMR) and gas chromatography-mass spectrometry indicated that the drug was initially hydrolysed to yield 4-(trifluoromethyl)phenol (TFMP) and 3-(methylamino)-1-phenylpropan-1-ol. Since the fluorometabolite accumulated, the bacteria presumably used the latter compound for carbon and energy. Further growth studies revealed that TFMP could also be used as a sole carbon and energy source and was most likely catabolised via meta-cleavage, since semialdehyde products were detected in culture supernatants. The final products of the degradation pathway were trifluoroacetate and fluoride ion; the former is a dead-end product and was not further catabolised. Fluoride ion most likely arises owing to spontaneous defluorination of the meta-cleavage products that were shown to be photolabile.Key points• Bacteria can use FLX and TFMP as sole carbon and energy sources for their growth.• Biodegradation produces fluorometabolites that were detected by 19F NMR and GC-MS.• Trifluoroacetic acid and fluoride ion were identified as end products.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|