1
|
Hou SM, Cheng CY, Chen WL, Chang EM, Lin CY. NGF-TrkA Axis Enhances PDGF-C-Mediated Angiogenesis in Osteosarcoma via miR-29b-3p Suppression: A Potential Therapeutic Strategy Using Larotrectinib. Life (Basel) 2025; 15:99. [PMID: 39860039 PMCID: PMC11766545 DOI: 10.3390/life15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Angiogenesis plays a critical role in osteosarcoma (OS) growth and metastasis. While nerve growth factor (NGF) is implicated in cancer progression, its role in OS angiogenesis remains unclear. This study explored NGF's effects on angiogenesis and the underlying molecular mechanisms. Analysis of GEO (GSE16088) data identified five angiogenesis markers significantly upregulated in OS tissues. In vitro experiments demonstrated that NGF enhanced HUVEC tube formation by upregulating platelet-derived growth factor C (PDGF-C) expression and suppressing microRNA-29b-3p (miR-29b-3p). The results of tube formation assays confirmed that NGF stimulation significantly increased the angiogenic capacity of MG63/NGF cells compared to MG63 cells. Furthermore, larotrectinib, a TrkA inhibitor, effectively reduced the migration and invasion abilities of MG63/NGF cells in a dose-dependent manner. These findings suggest that the NGF-TrkA axis promotes PDGF-C-mediated angiogenesis by inhibiting miR-29b-3p signaling. Larotrectinib could serve as a potential therapeutic agent targeting NGF-mediated angiogenesis in OS, offering a promising avenue for treatment.
Collapse
Affiliation(s)
- Sheng-Mou Hou
- Department of Research, Taiwan Blood Services Foundation, Taipei 111, Taiwan;
- The Director’s Office, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Ching-Yuan Cheng
- Division of Chest Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Wei-Li Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - En-Ming Chang
- Department of Respiratory Care, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Chih-Yang Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| |
Collapse
|
2
|
Tang G, Zhang Q, Wang F, Zhang H, Qi Y. Combination of Sintilimab and Anlotinib for Metastatic Osteosarcoma: A Case Report. Onco Targets Ther 2024; 17:661-665. [PMID: 39161887 PMCID: PMC11331146 DOI: 10.2147/ott.s464678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/18/2024] [Indexed: 08/21/2024] Open
Abstract
Background As one of the most common types of primary bone sarcomas in adolescents and young adults, osteosarcoma has a high probability of local invasion and distant metastasis with a poor prognosis. Case Presentation Here, we report the case of a 34-year-old patient with advanced metastatic osteosarcoma. Considering the high expression of PD-L1 and the inability of the patient to tolerate chemotherapy, anti-PD-1 antibody (sintilimab 200 mg, q3w) and anti-angiogenesis drug (anlotinib 8 mg D1-14, q3w) were administered. The metastatic lesions were treated with local radiotherapy. The patient obtained an 11.7-month-sustained remission period, and he also enjoyed a better quality of life. Conclusion This case demonstrates that sintilimab plus anlotinib may be a feasible treatment regimen for osteosarcoma patients.
Collapse
Affiliation(s)
- Gaoyan Tang
- Department of Oncology, Weifang People’s Hospital (The First Affiliated Hospital of Shandong Second Medical University), Weifang, Shandong, 261041, People’s Republic of China
| | - Qianqian Zhang
- Department of Oncology, Weifang People’s Hospital (The First Affiliated Hospital of Shandong Second Medical University), Weifang, Shandong, 261041, People’s Republic of China
| | - Fengxia Wang
- Department of Oncology, Weifang People’s Hospital (The First Affiliated Hospital of Shandong Second Medical University), Weifang, Shandong, 261041, People’s Republic of China
| | - Hua Zhang
- Department of Oncology, Weifang People’s Hospital (The First Affiliated Hospital of Shandong Second Medical University), Weifang, Shandong, 261041, People’s Republic of China
| | - Yuanling Qi
- Department of Oncology, Weifang People’s Hospital (The First Affiliated Hospital of Shandong Second Medical University), Weifang, Shandong, 261041, People’s Republic of China
| |
Collapse
|
3
|
Roberts BK, Li DI, Somerville C, Matta B, Jha V, Steinke A, Brune Z, Blanc L, Soffer SZ, Barnes BJ. IRF5 suppresses metastasis through the regulation of tumor-derived extracellular vesicles and pre-metastatic niche formation. Sci Rep 2024; 14:15557. [PMID: 38969706 PMCID: PMC11226449 DOI: 10.1038/s41598-024-66168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Metastasis is driven by extensive cooperation between a tumor and its microenvironment, resulting in the adaptation of molecular mechanisms that evade the immune system and enable pre-metastatic niche (PMN) formation. Little is known of the tumor-intrinsic factors that regulate these mechanisms. Here we show that expression of the transcription factor interferon regulatory factor 5 (IRF5) in osteosarcoma (OS) and breast carcinoma (BC) clinically correlates with prolonged survival and decreased secretion of tumor-derived extracellular vesicles (t-dEVs). Conversely, loss of intra-tumoral IRF5 establishes a PMN that supports metastasis. Mechanistically, IRF5-positive tumor cells retain IRF5 transcripts within t-dEVs that contribute to altered composition, secretion, and trafficking of t-dEVs to sites of metastasis. Upon whole-body pre-conditioning with t-dEVs from IRF5-high or -low OS and BC cells, we found increased lung metastatic colonization that replicated findings from orthotopically implanted cancer cells. Collectively, our findings uncover a new role for IRF5 in cancer metastasis through its regulation of t-dEV programming of the PMN.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Dan Iris Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Carter Somerville
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Vaishali Jha
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | | | - Zarina Brune
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Lionel Blanc
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Samuel Z Soffer
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Department of Pediatric Surgery, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
4
|
Ai JY, Liu CF, Zhang W, Rao GW. Current status of drugs targeting PDGF/PDGFR. Drug Discov Today 2024; 29:103989. [PMID: 38663580 DOI: 10.1016/j.drudis.2024.103989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 04/02/2024] [Accepted: 04/17/2024] [Indexed: 04/30/2024]
Abstract
As an important proangiogenic factor, platelet-derived growth factor (PDGF) and its receptor PDGFR are highly expressed in a variety of tumors, fibrosis, cardiovascular and neurodegenerative diseases. Targeting the PDGF/PDGFR pathway is therefore a promising therapeutic strategy. At present, a variety of PDGF/PDGFR targeted drugs with potential therapeutic effects have been developed, mainly including PDGF agonists, inhibitors targeting PDGFR and proteolysis targeting chimera (PROTACs). This review clarifies the structure, biological function and disease correlation of PDGF and PDGFR, and it discusses the current status of PDGFR-targeted drugs, so as to provide a reference for subsequent research.
Collapse
Affiliation(s)
- Jing-Yan Ai
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chen-Fu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Guo-Wu Rao
- College of Pharmaceutical Science, Zhejiang University of Technology, and Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
5
|
Meijer DM, Ruano D, Briaire-de Bruijn IH, Wijers-Koster PM, van de Sande MAJ, Gelderblom H, Cleton-Jansen AM, de Miranda NFCC, Kuijjer ML, Bovée JVMG. The Variable Genomic Landscape During Osteosarcoma Progression: Insights From a Longitudinal WGS Analysis. Genes Chromosomes Cancer 2024; 63:e23253. [PMID: 39023390 DOI: 10.1002/gcc.23253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Osteosarcoma is a primary bone tumor that exhibits a complex genomic landscape characterized by gross chromosomal abnormalities. Osteosarcoma patients often develop metastatic disease, resulting in limited therapeutic options and poor survival rates. To gain knowledge on the mechanisms underlying osteosarcoma heterogeneity and metastatic process, it is important to obtain a detailed profile of the genomic alterations that accompany osteosarcoma progression. We performed WGS on multiple tissue samples from six patients with osteosarcoma, including the treatment naïve biopsy of the primary tumor, resection of the primary tumor after neoadjuvant chemotherapy, local recurrence, and distant metastases. A comprehensive analysis of single-nucleotide variants (SNVs), structural variants, copy number alterations (CNAs), and chromothripsis events revealed the genomic heterogeneity during osteosarcoma progression. SNVs and structural variants were found to accumulate over time, contributing to an increased complexity of the genome of osteosarcoma during disease progression. Phylogenetic trees based on SNVs and structural variants reveal distinct evolutionary patterns between patients, including linear, neutral, and branched patterns. The majority of osteosarcomas showed variable copy number profiles or gained whole-genome doubling in later occurrences. Large proportions of the genome were affected by loss of heterozygosity (LOH), although these regions remain stable during progression. Additionally, chromothripsis is not confined to a single early event, as multiple other chromothripsis events may appear in later occurrences. Together, we provide a detailed analysis of the complex genome of osteosarcomas and show that five of six osteosarcoma genomes are highly dynamic and variable during progression.
Collapse
Affiliation(s)
- Debora M Meijer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dina Ruano
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke L Kuijjer
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
- Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Medeiros M, Guenka S, Bastos D, Oliveira KL, Brassesco MS. Amicis Omnia Sunt Communia: NF-κB Inhibition as an Alternative to Overcome Osteosarcoma Heterogeneity. Pharmaceuticals (Basel) 2024; 17:734. [PMID: 38931401 PMCID: PMC11206879 DOI: 10.3390/ph17060734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Tumor heterogeneity poses a significant challenge in osteosarcoma (OS) treatment. In this regard, the "omics" era has constantly expanded our understanding of biomarkers and altered signaling pathways (i.e., PI3K/AKT/mTOR, WNT/β-catenin, NOTCH, SHH/GLI, among others) involved in OS pathophysiology. Despite different players and complexities, many commonalities have been described, among which the nuclear factor kappa B (NF-κB) stands out. Its altered activation is pervasive in cancer, with pleiotropic action on many disease-relevant traits. Thus, in the scope of this article, we highlight the evidence of NF-κB dysregulation in OS and its integration with other cancer-related pathways while we summarize the repertoire of compounds that have been described to interfere with its action. In silico strategies were used to demonstrate that NF-κB is closely coordinated with other commonly dysregulated signaling pathways not only by functionally interacting with several of their members but also by actively participating in the regulation of their transcription. While existing inhibitors lack selectivity or act indirectly, the therapeutic potential of targeting NF-κB is indisputable, first for its multifunctionality on most cancer hallmarks, and secondly, because, as a common downstream effector of the many dysregulated pathways influencing OS aggressiveness, it turns complex regulatory networks into a simpler picture underneath molecular heterogeneity.
Collapse
Affiliation(s)
- Mariana Medeiros
- Cell Biology Department, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil;
| | - Sophia Guenka
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - David Bastos
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| | - Karla Laissa Oliveira
- Regional Blood Center, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14051-140, São Paulo, Brazil;
| | - María Sol Brassesco
- Biology Department, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900-Vila Monte Alegre, Ribeirão Preto 14040-900, São Paulo, Brazil; (S.G.); (D.B.)
| |
Collapse
|
7
|
Zorba BI, Boyacıoğlu Ö, Çağlayan T, Reçber T, Nemutlu E, Eroğlu İ, Korkusuz P. CB65 and novel CB65 liposomal system suppress MG63 and Saos-2 osteosarcoma cell growth in vitro. J Liposome Res 2024; 34:274-287. [PMID: 37740901 DOI: 10.1080/08982104.2023.2262025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023]
Abstract
Curable approaches for primary osteosarcoma are inadequate and urge investigation of novel therapeutic formulations. Cannabinoid ligands exert antiproliferative and apoptotic effect on osteosarcoma cells via cannabinoid 2 (CB2) or transient receptor potential vanilloid type (TRPV1) receptors. In this study, we confirmed CB2 receptor expression in MG63 and Saos-2 osteosarcoma cells by qRT-PCR and flow cytometry (FCM), then reported the reduction effect of synthetic specific CB2 receptor agonist CB65 on the proliferation of osteosarcoma cells by WST-1 (water-soluble tetrazolium-1) and RTCA (real-time impedance-based proliferation). CB65 revealed an IC50 (inhibitory concentration) for MG63 and Saos-2 cells as 1.11 × 10-11 and 4.95 × 10-11 M, respectively. The specific antiproliferative effect of CB65 on osteosarcoma cells was inhibited by CB2 antagonist AM630. CB65 induced late apoptosis of MG63 and Saos-2 cells at 24 and 48 h, respectively by FCM when applied submaximal concentration. A novel CB65 liposomal system was generated by a thin film hydration method with optimal particle size (141.7 ± 0.6 nm), polydispersity index (0.451 ± 0.026), and zeta potential (-10.9 ± 0.3 mV) values. The encapsulation efficiency (EE%) of the CB65-loaded liposomal formulation was 51.12%. The CB65 and CB65-loaded liposomal formulation releasing IC50 of CB65 reduced proliferation by RTCA and invasion by scratch assay and induced late apoptosis of MG63 and Saos-2 cells, by FCM. Our results demonstrate the CB2 receptor-mediated antiproliferative and apoptotic effect of a new liposomal CB65 delivery system on osteosarcoma cells that can be used as a targeted and intelligent tool for bone tumors to ameliorate pediatric bone cancers following in vivo validation.
Collapse
Affiliation(s)
- Başak Işıl Zorba
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Özge Boyacıoğlu
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
- Faculty of Medicine, Department of Medical Biochemistry, Atılım University, Ankara, Turkey
| | - Tuğba Çağlayan
- Graduate School of Science and Engineering, Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | - Tuba Reçber
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Ankara, Turkey
| | - İpek Eroğlu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara, Turkey
| | - Petek Korkusuz
- Faculty of Medicine, Department of Histology and Embryology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Zou C, Huang R, Lin T, Wang Y, Tu J, Zhang L, Wang B, Huang J, Zhao Z, Xie X, Huang G, Wang K, Yin J, Shen J. Age-dependent molecular variations in osteosarcoma: implications for precision oncology across pediatric, adolescent, and adult patients. Front Oncol 2024; 14:1382276. [PMID: 38841159 PMCID: PMC11150704 DOI: 10.3389/fonc.2024.1382276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 06/07/2024] Open
Abstract
Background Osteosarcoma is a leading subtype of bone tumor affecting adolescents and adults. Comparative molecular characterization among different age groups, especially in pediatric, adolescents and adults, is scarce. Methods We collected samples from 194 osteosarcoma patients, encompassing pediatric, adolescent, and adult cohorts. Genomic analyses were conducted to reveal prevalent mutations and compare molecular features in pediatric, adolescent, and adult patients. Results Samples from 194 osteosarcoma patients across pediatric to adult ages were analyzed, revealing key mutations such as TP53, FLCN, NCOR1, and others. Children and adolescents showed more gene amplifications and HRD mutations, while adults had a greater Tumor Mutational Burden (TMB). Mutations in those over 15 were mainly in cell cycle and PI3K/mTOR pathways, while under 15s had more in cell cycle and angiogenesis with higher VEGFA, CCND3, TFEB mutations. CNV patterns varied with age: VEGFA and XPO5 amplifications more in under 25s, and CDKN2A/B deletions in over 25s. Genetic alterations in genes like MCL1 and MYC were associated with poor prognosis, with VEGFA mutations also indicating worse outcomes. 58% of patients had actionable mutations, suggesting opportunities for targeted therapies. Age-specific patterns were observed, with Multi-TKI mutations more common in younger patients and CDK4/6 inhibitor mutations in adults, highlighting the need for personalized treatment approaches in osteosarcoma. In a small group of patients with VEGFR amplification, postoperative treatment with multi-kinase inhibitors resulted in a PR in 3 of 13 cases, especially in patients under 15. A significant case involved a 13-year-old with a notable tumor size reduction achieving PR, even with other genetic alterations present in some patients with PD. Conclusion This study delineates the molecular differences among pediatric, adolescent, and adult osteosarcoma patients at the genomic level, emphasizing the necessity for precision diagnostics and treatment strategies, and may offer novel prognostic biomarkers for patients with osteosarcoma. These findings provide a significant scientific foundation for the development of individualized treatment approaches tailored to patients of different age groups.
Collapse
Affiliation(s)
- Changye Zou
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Renxuan Huang
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tiao Lin
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Jian Tu
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Bo Wang
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Zhiqiang Zhao
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Gang Huang
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | | - Junqiang Yin
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Tajvar Nasab N, Jalili-Nik M, Afshari AR, Rezaei Farimani A, Soukhtanloo M. Urolithin B inhibits proliferation and migration and promotes apoptosis and necrosis by inducing G2/M arrest and targeting MMP-2/-9 expression in osteosarcoma cells. J Biochem Mol Toxicol 2023; 37:e23486. [PMID: 37555500 DOI: 10.1002/jbt.23486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Osteosarcoma (OS) is the most prevalent primary bone cancer, with a high morbidity and mortality rate. Over the past decades, therapeutic approaches have not considerably improved patients' survival rates, and further research is required to find efficient treatments for OS. Data from several studies have shown that urolithin B (UB), the intestinal metabolite of polyphenolic ellagitannins, is emerging as a new class of anticancer compounds, yet its effect on OS cancer cells remains elusive. Herein, we investigated UB's antimetastatic, antiproliferative, and apoptotic effects on the MG-63 OS cell line. Cell viability assay, annexin V/propidium iodide staining, cell cycle arrest analysis, determination of the gene expression of MMP-2, MMP-9, Bax, Bcl-2, and p53 messenger RNA (mRNA), evaluation of reactive oxygen species (ROS) generation and migration, and MMP-2 and MMP-9 protein expression assessments were performed. UB caused late apoptosis, necrosis, G2/M arrest, and ROS generation in MG-63 cells. It increased the mRNA expression of the p53 tumor suppressor and Bax proapoptotic genes. UB also inhibited the migration and metastatic behavior of MG-63 OS cells by downregulating mRNA and MMP-2 and MMP-9 protein expression. In general, although further in vivo investigations are warranted, the current results showed that UB might be utilized as a potential novel natural compound for OS therapy due to its nontoxic, antiproliferative, and antimetastatic nature.
Collapse
Affiliation(s)
- Nahid Tajvar Nasab
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azam Rezaei Farimani
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Li S, Zhang H, Liu J, Shang G. Targeted therapy for osteosarcoma: a review. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04614-4. [PMID: 36807762 DOI: 10.1007/s00432-023-04614-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Osteosarcoma is a common primary malignant tumour of the bone that usually occurs in children and adolescents. It is characterised by difficult treatment, recurrence and metastasis, and poor prognosis. Currently, the treatment of osteosarcoma is mainly based on surgery and auxiliary chemotherapy. However, for recurrent and some primary osteosarcoma cases, owing to the rapid progression of disease and chemotherapy resistance, the effects of chemotherapy are poor. With the rapid development of tumour-targeted therapy, molecular-targeted therapy for osteosarcoma has shown promise. PURPOSE In this paper, we review the molecular mechanisms, related targets, and clinical applications of targeted osteosarcoma therapy. In doing this, we provide a summary of recent literature on the characteristics of targeted osteosarcoma therapy, the advantages of its clinical application, and development of targeted therapy in future. We aim to provide new insights into the treatment of osteosarcoma. CONCLUSION Targeted therapy shows potential in the treatment of osteosarcoma and may offer an important means of precise and personalised treatment in the future, but drug resistance and adverse effects may limit its application.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China.,Graduate School, Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - He Zhang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Jinxin Liu
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China
| | - Guanning Shang
- Department of Bone and Soft Tissue Oncology, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110022, Liaoning Province, China.
| |
Collapse
|
11
|
Feng W, Lin H, Rothzerg E, Song D, Zhao W, Ning T, Wei Q, Zhao J, Wood D, Liu Y, Xu J. RNA-seq and Single-Cell Transcriptome Analyses of TRAIL Receptors Gene Expression in Human Osteosarcoma Cells and Tissues. Cancer Inform 2023; 22:11769351231161478. [PMID: 37101729 PMCID: PMC10123892 DOI: 10.1177/11769351231161478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 04/28/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary cancer in the skeletal system, characterized by a high incidence of lung metastasis, local recurrence and death. Systemic treatment of this aggressive cancer has not improved significantly since the introduction of chemotherapy regimens, underscoring a critical need for new treatment strategies. TRAIL receptors have long been proposed to be therapeutic targets for cancer treatment, but their role in osteosarcoma remains unclear. In this study, we investigated the expression profile of four TRAIL receptors in human OS cells using total RNA-seq and single-cell RNA-seq (scRNA-seq). The results revealed that TNFRSF10B and TNFRSF10D but not TNFRSF10A and TNFRSF10C are differentially expressed in human OS cells as compared to normal cells. At the single cell level by scRNA-seq analyses, TNFRSF10B, TNFRSF10D, TNFRSF10A and TNFRSF10C are most abundantly expressed in endothelial cells of OS tissues among nine distinct cell clusters. Notably, in osteoblastic OS cells, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. Similarly, in an OS cell line U2-OS using RNA-seq, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. According to the TARGET online database, poor patient outcomes were associated with low expression of TNFRSF10C. These results could provide a new perspective to design novel therapeutic targets of TRAIL receptors for the diagnosis, prognosis and treatment of OS and other cancers.
Collapse
Affiliation(s)
- Wenyu Feng
- Department of Orthopaedics, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Haiyingjie Lin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Dezhi Song
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | | | | | - Qingjun Wei
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - David Wood
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Yun Liu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Orthopaedics, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Jiake Xu, School of Biomedical Sciences, The University of Western Australia, 35 Stirling Hwy, Perth, WA 6009, Australia.
| |
Collapse
|
12
|
Chen C, Shi Q, Xu J, Ren T, Huang Y, Guo W. Current progress and open challenges for applying tyrosine kinase inhibitors in osteosarcoma. Cell Death Dis 2022; 8:488. [PMID: 36509754 PMCID: PMC9744866 DOI: 10.1038/s41420-022-01252-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 12/15/2022]
Abstract
Osteosarcoma (OS) is a mesenchymal-origin tumor that constitutes the most common primary malignant bone tumor. The survival rate of the patients has significantly improved since the introduction of neoadjuvant chemotherapy and extensive resection, but it has stagnated in recent 40 years. Tyrosine kinase inhibitors (TKIs) have played a key part in the treatment of malignant tumors. In advanced OS, TKIs including anlotinib, apatinib, sorafenib, etc. have significantly improved the progression-free survival of patients, while the overall survival remains unchanged. The main reason is the rapid and inevitable progress of acquired drug resistance of OS. However, as the application of TKIs in OS and other tumors is still in the exploratory phase, its drug resistance mechanism and corresponding solutions are rarely reported. Hence, in this review, we summarize knowledge of the applications of TKIs, the mechanism of TKIs resistance, and the attempts to overcome TKIs resistance in OS, which are the three potentially novel insights of TKIs in OS. Because most evidence is derived from studies using animal and cell models, we also reviewed clinical trials and related bioinformatics data available in public databases, which partially improved our understanding of TKIs applications.
Collapse
Affiliation(s)
- Chenglong Chen
- grid.414360.40000 0004 0605 7104Department of Orthopedics, Beijing Jishuitan Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Qianyu Shi
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Jiuhui Xu
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Tingting Ren
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yi Huang
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Wei Guo
- grid.411634.50000 0004 0632 4559Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, Beijing, People’s Republic of China ,grid.411634.50000 0004 0632 4559Musculoskeletal Tumor Center, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
13
|
cyy260 suppresses the proliferation, migration and tumor growth of osteosarcoma by targeting PDGFR-β signaling pathway. Chem Biol Interact 2022; 367:110200. [PMID: 36170914 DOI: 10.1016/j.cbi.2022.110200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Osteosarcoma (OS) is a group of malignant tumors with high rates of malignancy and metastasis. OS most commonly affects adolescents and young individuals. However, owing to the lack of effective targeted treatments, the 5-year survival rate for OS is still around 20%. Thus, it is essential to develop effective drugs with low toxicity for OS treatment. In the present study, we investigated the antitumor effect and underlying mechanism of cyy260 in OS via suppressing PDGFR-β and its downstream pathway. We demonstrated that cyy260 inhibits OS cell proliferation and promotes apoptosis via inducing DNA damage and causing cell cycle arrest. More importantly, cyy260 also significantly inhibits tumor migration. Further analysis of molecular mechanisms confirmed that PDGFR-β and its downstream AKT, STAT3, and ERK were involved in the cyy260-mediated antitumor effect. Analysis of subcutaneously transplanted tumors in mice showed that cyy260 suppressed tumor cell growth and exhibited low toxicity in vivo. Collectively, these findings proved that cyy260 could serve as a promising PDGFR-β inhibitor for the treatment of OS.
Collapse
|
14
|
Yoon HY, Maron BY, Girald-Berlingeri S, Gasilina A, Gollin JC, Jian X, Akpan I, Yohe ME, Randazzo PA, Chen PW. ERK phosphorylation is dependent on cell adhesion in a subset of pediatric sarcoma cell lines. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119264. [PMID: 35381293 DOI: 10.1016/j.bbamcr.2022.119264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Osteosarcoma (OS) and Pax-Foxo1 fusion negative rhabdomyosarcoma (FN-RMS) are pediatric sarcomas with poor prognoses in patients with advanced disease. In both malignancies, an actin binding protein has been linked to poor prognosis. Integrin adhesion complexes (IACs) are closely coupled to actin networks and IAC-mediated signaling has been implicated in the progression of carcinomas. However, the relationship of IACs and actin cytoskeleton remodeling with cell signaling is understudied in pediatric sarcomas. Here, we tested the hypothesis that IAC dynamics affect ERK activation in OS and FN-RMS cell lines. Adhesion dependence of ERK activation differed among the OS and FN-RMS cells examined. In the OS cell lines, adhesion did not have a consistent effect on phospho-ERK (pERK). ERK phosphorylation in response to fetal calf serum or 1 ng/ml EGF was nearly as efficient in OS cell lines and one FN-RMS cell line in suspension as cells adherent to poly-l-lysine (PL) or fibronectin (FN). By contrast, adhesion to plastic, PL or FN increased ERK phosphorylation and was greater than additive with a 15 min exposure to 1 ng/ml EGF in three FN-RMS cell lines. Increases in pERK were partly dependent on FAK and PAK1/2 but independent of IAC maturation. As far as we are aware, this examination of adhesion-dependent signaling is the first in pediatric sarcomas and has led to the discovery of differences from the prevailing paradigms and differences in the degree of coupling between components in the signaling pathways among the cell lines.
Collapse
Affiliation(s)
- Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Ben Y Maron
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Sofia Girald-Berlingeri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Anjelika Gasilina
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Josephine C Gollin
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Marielle E Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| |
Collapse
|
15
|
Chen X, Liu L, Liu P, Chen Y, Lin D, Yan H, Yan Q, Wang Y, Qiu Y, Fang B, Huang H, Qian J, Zhao Y, Du Z, Zhang Q, Li X, Zheng X, Liu Z. Discovery of Potent and Orally Bioavailable Platelet-Derived Growth Factor Receptor (PDGFR) Inhibitors for the Treatment of Osteosarcoma. J Med Chem 2022; 65:5374-5391. [PMID: 35239349 DOI: 10.1021/acs.jmedchem.1c01732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Platelet-derived growth factor receptors (PDGFRs) are now considered promising targets for the treatment of osteosarcoma. Herein, the design, synthesis, and structure-activity relationships (SAR) of novel pyrimidine-2,4-diamine derivatives that selectively inhibit PDGFRα/β kinases have been studied. The screening cascades revealed that 7m was the preferred compound among these derivatives, with IC50 values of 2.4 and 0.9 nM for PDGFRα and PDGFRβ, respectively. Moreover, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) experiment revealed that 7m has a substantial cytotoxic effect against all osteosarcoma cancer cell lines; 7m also displayed robust antitumor effects and low toxicity in a xenograft model. Additionally, 7m showed excellent bioavailability (F = 62.9%), suitable half-life (T1/2 = 2.12 h), satisfactory metabolic stability, and weak CYP isoform inhibitory activity, suggesting that 7m is a potential drug candidate for PDGFR-driven osteosarcoma.
Collapse
Affiliation(s)
- Xiaojing Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Lu Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Peng Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Yingying Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Dan Lin
- The Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Hao Yan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Qi Yan
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Yi Wang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Yinda Qiu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Bo Fang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Huijing Huang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Jianchang Qian
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Yunjie Zhao
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhou Du
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Qianwen Zhang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xiaokun Li
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Xiaohui Zheng
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, 1210 University Town, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
16
|
Zheng Q, Hou W. Regulation of angiogenesis by microRNAs in cancer. Mol Med Rep 2021; 24:583. [PMID: 34132365 PMCID: PMC8223106 DOI: 10.3892/mmr.2021.12222] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRs) are endogenous, small, non‑coding RNA molecules with ~22 nucleotides, and are involved in regulating the expression of multiple genes and controlling cellular functions. miRs serve key roles in angiogenesis by regulating the proliferation, differentiation, apoptosis and migration of endothelial cells. Regulation of angiogenesis is essential for several physiological and pathological processes, particularly for tumor development and progression. Therefore, it is important to investigate the roles served by miRs in angiogenesis as this may aid in discovering novel strategies for treating tumors via modulating angiogenesis. In this review, miRNA biogenesis, regulation and functions are described with new information and corresponding references. In particular, the latest advances in the role of various miRs and their target genes involved in tumor angiogenesis were updated. Next, different signaling pathways by which miRNAs could be regulated in different types of tumor progression were addressed. Furthermore, the potential clinical value of miRs as biomarkers for diagnosing and monitoring the response to therapy, as well as their ability to regulate tumor angiogenesis and the mechanism underlying this regulation, were investigated.
Collapse
Affiliation(s)
- Qi Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
17
|
Sasaki A, Miyashita H, Kawaida M, Kameyama K. Low-grade osteosarcoma is predominant in gnathic osteosarcomas: A report of seven cases of osteosarcoma of the jaw. Clin Exp Dent Res 2021; 7:1175-1182. [PMID: 34008925 PMCID: PMC8638322 DOI: 10.1002/cre2.442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Primary osteosarcoma of the jaw bones is very rare, and histological features of gnathic osteosarcoma remain obscure. The purpose of this study was to describe the clinicopathological features of gnathic osteosarcoma. MATERIALS AND METHODS Seven cases of gnathic osteosarcoma from Japan diagnosed during the period between 2000 and 2016 were examined retrospectively. The histology of the surgical pathology materials was reviewed by two pathologists. Clinical information was obtained from the hospital's information system. RESULTS Of the seven cases, two patients had secondary osteosarcomas. As for the five cases of primary osteosarcoma, their ages ranged from 26 to 58 years (mean: 36.2, median: 28). Histologically, three cases were fibrotic tumors composed of spindle-shaped cells with mild to moderate nuclear atypia and the collagenous stroma accompanied by woven bones or mature lamellar-like bones. Two cases had cartilage formation. MDM2 and CDK4 expression was observed in two out of three cases on immunostaining. The histopathology of these three cases was regarded as the counterpart of low-grade osteosarcomas, namely, parosteal osteosarcoma and low-grade central osteosarcoma, arising in long bones. CONCLUSIONS The surprisingly high incidence (60%, 3/5 cases) of low-grade osteosarcoma explains the reason why gnathic osteosarcomas present a more favorable prognosis than osteosarcomas arising in long bones. Furthermore, it provides insight into the tumorigenesis mechanism of low-grade osteosarcomas arising in the jaw and other sites.
Collapse
Affiliation(s)
- Aya Sasaki
- Department of Pathology and Laboratory Medicine, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan.,Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Hidetaka Miyashita
- Division of Oral and Maxillofacial Surgery, Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Miho Kawaida
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| | - Kaori Kameyama
- Division of Diagnostic Pathology, Keio University Hospital, Tokyo, Japan
| |
Collapse
|
18
|
Hernández IB, Kromhout JZ, Teske E, Hennink WE, van Nimwegen SA, Oliveira S. Molecular targets for anticancer therapies in companion animals and humans: what can we learn from each other? Theranostics 2021; 11:3882-3897. [PMID: 33664868 PMCID: PMC7914358 DOI: 10.7150/thno.55760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Despite clinical successes in the treatment of some early stage cancers, it is undeniable that novel and innovative approaches are needed to aid in the fight against cancer. Targeted therapies offer the desirable feature of tumor specificity while sparing healthy tissues, thereby minimizing side effects. However, the success rate of translation of these therapies from the preclinical setting to the clinic is dramatically low, highlighting an important point of necessary improvement in the drug development process in the oncology field. The practice of a comparative oncology approach can address some of the current issues, by introducing companion animals with spontaneous tumors in the linear drug development programs. In this way, animals from the veterinary clinic get access to novel/innovative therapies, otherwise inaccessible, while generating robust data to aid therapy refinement and increase translational success. In this review, we present an overview of targetable membrane proteins expressed in the most well-characterized canine and feline solid cancers, greatly resembling the counterpart human malignancies. We identified particular areas in which a closer collaboration between the human and veterinary clinic would benefit both human and veterinary patients. Considerations and challenges to implement comparative oncology in the development of anticancer targeted therapies are also discussed.
Collapse
|
19
|
Ayers J, Milner RJ, Cortés-Hinojosa G, Riva A, Bechtel S, Sahay B, Cascio M, Lejeune A, Shiomitsu K, Souza C, Hernandez O, Salute M. Novel application of single-cell next-generation sequencing for determination of intratumoral heterogeneity of canine osteosarcoma cell lines. J Vet Diagn Invest 2021; 33:261-278. [PMID: 33446089 PMCID: PMC7944434 DOI: 10.1177/1040638720985242] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Osteosarcoma (OSA) is a highly aggressive and metastatic neoplasm of both the canine and human patient and is the leading form of osseous neoplasia in both species worldwide. To gain deeper insight into the heterogeneous and genetically chaotic nature of OSA, we applied single-cell transcriptome (scRNA-seq) analysis to 4 canine OSA cell lines. This novel application of scRNA-seq technology to the canine genome required uploading the CanFam3.1 reference genome into an analysis pipeline (10X Genomics Cell Ranger); this methodology has not been reported previously in the canine species, to our knowledge. The scRNA-seq outputs were validated by comparing them to cDNA expression from reverse-transcription PCR (RT-PCR) and Sanger sequencing bulk analysis of 4 canine OSA cell lines (COS31, DOUG, POS, and HMPOS) for 11 genes implicated in the pathogenesis of canine OSA. The scRNA-seq outputs revealed the significant heterogeneity of gene transcription expression patterns within the cell lines investigated (COS31 and DOUG). The scRNA-seq data showed 10 distinct clusters of similarly shared transcriptomic expression patterns in COS31; 12 clusters were identified in DOUG. In addition, cRNA-seq analysis provided data for integration into the Qiagen Ingenuity Pathway Analysis software for canonical pathway analysis. Of the 81 distinct pathways identified within the clusters, 33 had been implicated in the pathogenesis of OSA, of which 18 had not been reported previously in canine OSA.
Collapse
Affiliation(s)
- Jordan Ayers
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Rowan J Milner
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | | | - Alberto Riva
- ICBR Bioinformatics Core, University of Florida, Gainesville, FL
| | - Sandra Bechtel
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Bikash Sahay
- Infectious Diseases and Immunology, College of Veterinary Medicine
| | - Matthew Cascio
- Pediatric Hematology-Oncology, Department of Pediatrics, College of Medicine
| | - Amandine Lejeune
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Keijiro Shiomitsu
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Carlos Souza
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Oscar Hernandez
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| | - Marc Salute
- Departments of Small Animal Clinical Sciences, College of Veterinary Medicine
| |
Collapse
|
20
|
Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett 2020; 500:1-10. [PMID: 33359211 DOI: 10.1016/j.canlet.2020.12.024] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignancy of the bone and has a high propensity for local invasion and metastasis. Although combining surgery with chemotherapy has immensely improved the outcomes of osteosarcoma patients, the prognosis of metastatic or recurrent osteosarcomas is still unsatisfactory. Immunotherapy has proven to be a promising therapeutic strategy against human malignancies and improved understanding of the immune response to OS, and biomarker development has increased the number of patients who benefit from immunotherapies in recent years. Here, we review recent advances in immunotherapy in osteosarcoma and discuss the mechanisms and status of immunotherapies in both preclinical and clinical trials as well as future therapies on the horizon. These advances may pave the way for novel treatments requisite for patients with osteosarcoma in need of new therapies.
Collapse
|
21
|
Tian Z, Niu X, Yao W. Receptor Tyrosine Kinases in Osteosarcoma Treatment: Which Is the Key Target? Front Oncol 2020; 10:1642. [PMID: 32984034 PMCID: PMC7485562 DOI: 10.3389/fonc.2020.01642] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials have shown several multi-target tyrosine kinase inhibitors (TKIs) to be effective in the treatment of osteosarcoma. However, these TKIs have a number of targets, and it is yet unclear which of these targets has a key role in osteosarcoma treatment. In this review, we first summarize the TKIs that were studied in clinical trials registered on ClinicalTrials.gov. Further, we compare and discuss the targets of these TKIs. We found that TKIs with promising therapeutic effect for osteosarcoma include apatinib, cabozantinib, lenvatinib, regorafenib, and sorafenib. The key targets for osteosarcoma treatment may include VEGFRs and RET. The receptor tyrosine kinases (RTKs) MET, IGF-1R, AXL, PDGFRs, KIT, and FGFRs might be relevant but unimportant targets for osteosarcoma treatment. Inhibition of one type of RTK for the treatment of osteosarcoma is not effective. It is necessary to inhibit several relevant RTKs simultaneously to achieve a breakthrough in osteosarcoma treatment. This review provides comprehensive information on TKI targets relevant in osteosarcoma treatment, and it will be useful for further research in this field.
Collapse
Affiliation(s)
- Zhichao Tian
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaohui Niu
- Department of Orthopedic Oncology, Beijing Jishuitan Hospital, Beijing, China
| | - Weitao Yao
- Department of Orthopedics, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
22
|
Zhang T, Hao H, Zhou ZQ, Zeng T, Zhang JM, Zhou XY. Lipoxin A4 inhibited the activation of hepatic stellate cells -T6 cells by modulating profibrotic cytokines and NF-κB signaling pathway. Prostaglandins Other Lipid Mediat 2020; 146:106380. [DOI: 10.1016/j.prostaglandins.2019.106380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
|
23
|
Receptor Tyrosine Kinases in Osteosarcoma: 2019 Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:141-155. [PMID: 32767239 DOI: 10.1007/978-3-030-43085-6_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary conclusions of our 2014 contribution to this series were as follows: Multiple receptor tyrosine kinases (RTKs) likely contribute to aggressive phenotypes in osteosarcoma and, therefore, inhibition of multiple RTKs is likely necessary for successful clinical outcomes. Inhibition of multiple RTKs may also be useful to overcome resistance to inhibitors of individual RTKs as well as resistance to conventional chemotherapies. Different combinations of RTKs are likely important in individual patients. AXL, EPHB2, FGFR2, IGF1R, and RET were identified as promising therapeutic targets by our in vitro phosphoproteomic/siRNA screen of 42 RTKs in the highly metastatic LM7 and 143B human osteosarcoma cell lines. This chapter is intended to provide an update on these topics as well as the large number of osteosarcoma clinical studies of inhibitors of multiple tyrosine kinases (multi-TKIs) that were recently published.
Collapse
|
24
|
Higuchi T, Sugisawa N, Miyake K, Oshiro H, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. The Combination of Olaratumab with Doxorubicin and Cisplatinum Regresses a Chemotherapy-Resistant Osteosarcoma in a Patient-Derived Orthotopic Xenograft Mouse Model. Transl Oncol 2019; 12:1257-1263. [PMID: 31299622 PMCID: PMC6624322 DOI: 10.1016/j.tranon.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 11/10/2022] Open
Abstract
Chemotherapy-resistant osteosarcoma is a recalcitrant disease. It is a frequent cause of death to the patients who are usually adolescent or young adults. The goal of the present study was to determine the efficacy of the combination of olaratumab (OLA), doxorubicin (DOX), and cisplatinum (CDDP) on osteosarcoma, which is resistant to first-line therapy, in a patient-derived orthotopic xenograft (PDOX) model. The osteosarcoma PDOX model was randomized into six treatment groups of six mice: control; CDDP alone; DOX and CDDP; OLA + DOX; OLA + CDDP; and OLA + DOX and CDDP. Tumor size and body weight were measured during 14 days of treatment. Tumor growth was regressed only by the treatment with a combination of OLA + DOX and CDDP. Tumors treated with this three-drug combination had the most tumor necrosis and the lowest Ki-67 index. The present study demonstrates the power of the PDOX model to identify novel effective treatment strategy for chemotherapy-resistant osteosarcoma.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sugisawa
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
25
|
Riccardo F, Tarone L, Iussich S, Giacobino D, Arigoni M, Sammartano F, Morello E, Martano M, Gattino F, Maria RD, Ferrone S, Buracco P, Cavallo F. Identification of CSPG4 as a promising target for translational combinatorial approaches in osteosarcoma. Ther Adv Med Oncol 2019; 11:1758835919855491. [PMID: 31217827 PMCID: PMC6557023 DOI: 10.1177/1758835919855491] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Osteosarcoma (OSA) is a highly metastatic pediatric bone tumor. Adjuvant chemotherapy and surgical resection represent standard treatments; however, the prognosis is still poor. Effective strategies are urgently needed. Chondroitin sulfate proteoglycan (CSPG)4 is a transmembrane proteoglycan with a low expression in normal tissues but high expression in several solid tumors, where it plays a central tumorigenic role. Therefore, it represents a promising therapeutic target. The high homology between human and canine CSPG4 and the recognized translational power of canine tumors as preclinical models for human malignancies prompted us to evaluate CSPG4 expression and the consequences of its immune-targeting for both human and canine OSA treatment. Methods: We analyzed CSPG4 overexpression in human and canine OSA samples and its significance for the survival of OSA patients. We exploited functional in vitro experiments to assess the antitumor potential of CSPG4 immune-targeting. Results: CSPG4 is overexpressed in OSA and has possible clinical implications as suggested by an evident correlation between CSPG4 overexpression and a shorter survival for both OSA-affected humans and dogs. The potential of CSPG4 immune-targeting for OSA treatment came from the ability of anti-CSPG4 monoclonal antibodies and sera, derived from human-CSPG4-DNA vaccinated canine patients, to significantly inhibit human and canine CSPG4-positive OSA cell proliferation, migration, and osteospheres generation. Moreover, CSPG4 immune-targeting has been shown to potentiate the effect of doxorubicin. Conclusions: Overall, these results provide the rationale to investigate the CSPG4 immune-targeting as a promising weapon for the treatment of CSPG4-positive OSA canine patients, to be successfully translated to a human setting.
Collapse
Affiliation(s)
- Federica Riccardo
- University of Torino, Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, Via Nizza, 52, Torino, TO, 10126, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, Bioinformatics and Genomic Unit, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | | | - Emanuela Morello
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Marina Martano
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Francesca Gattino
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Torino, Grugliasco, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
26
|
Alhabibi AM, Eldewi DM, Wahab MAA, Farouk N, El-Hagrasy HA, Saleh OI. Platelet-derived growth factor-beta as a new marker of deep venous thrombosis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2019; 24:48. [PMID: 31160915 PMCID: PMC6540930 DOI: 10.4103/jrms.jrms_965_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/16/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022]
Abstract
Background: Deep venous thrombosis (DVT) is associated with significant morbidity and mortality. Thus, there is a great need to demonstrate a more efficient biomarker that would confirm the diagnosis of DVT. Our work aimed to evaluate the role of platelet-derived growth factor-beta (PDGF-B) as a new marker of DVT and its correlation with other radiological and laboratory tools used for the diagnosis. Materials and Methods: A case–control study enrolled forty patients selected from our university hospital between April 2018 and August 2018, who divided into two groups: Group I (n = 20) consisted of patients diagnosed with acute venous thrombosis and Group II (n = 20) consisted of patients diagnosed with chronic venous thrombosis. Twenty samples were collected from age- and gender-matched apparently healthy controls to be used as a control. Venous duplex ultrasonography, routine laboratory investigations, D-dimer (DD), and protein expression of PDGF-B were performed on all patients. Results: There was a highly significant increase in a protein expression of PDFG-B in all cases of acute and chronic venous thrombosis compared to the control group with P < 0.001; furthermore, it was more specific than DD for the detection of DVT (specificity 95% and 90%, respectively). Conclusion: Our study submits a novel association of PDGF-B plasma levels with DVT, and PDGF-B is considered to be a more specific indicator for DVT than is DD.
Collapse
Affiliation(s)
- Alshaymaa M Alhabibi
- Department of Clinical Pathology, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| | - Dalia Mahmoud Eldewi
- Department of Clinical Pathology, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| | - Maisa A Abdel Wahab
- Department of Vascular Surgery, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| | - Nehal Farouk
- Department of Vascular Surgery, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| | - Hanan A El-Hagrasy
- Department of Clinical Pathology, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| | - Ola I Saleh
- Department of Radio-Diagnosis, Faculty of Medicine (For Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
27
|
Alonso-Gordoa T, García-Bermejo ML, Grande E, Garrido P, Carrato A, Molina-Cerrillo J. Targeting Tyrosine kinases in Renal Cell Carcinoma: "New Bullets against Old Guys". Int J Mol Sci 2019; 20:E1901. [PMID: 30999623 PMCID: PMC6515337 DOI: 10.3390/ijms20081901] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the seventh most frequently diagnosed tumor in adults in Europe and represents approximately 2.5% of cancer deaths. The molecular biology underlying renal cell carcinoma (RCC) development and progression has been a key milestone in the management of this type of tumor. The discovery of Von Hippel Lindau (VHL) gene alterations that arouse in 50% of ccRCC patients, leads the identification of an intracellular accumulation of HIF and, consequently an increase of VEGFR expression. This change in cell biology represents a new paradigm in the treatment of metastatic renal cancer by targeting angiogenesis. Currently, there are multiple therapeutic drugs available for advanced disease, including therapies against VEGFR with successful results in patients´ survival. Other tyrosine kinases' pathways, including PDGFR, Axl or MET have emerged as key signaling pathways involved in RCC biology. Indeed, promising new drugs targeting those tyrosine kinases have exhibited outstanding efficacy. In this review we aim to present an overview of the central role of these tyrosine kinases' activities in relevant biological processes for kidney cancer and their usefulness in RCC targeted therapy development. In the immunotherapy era, angiogenesis is still an "old guy" that the medical community is trying to fight using "new bullets".
Collapse
Affiliation(s)
- Teresa Alonso-Gordoa
- Medical Oncology Department, The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - María Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group and Core Facility, Ramón y Cajal Research Institute, (IRYCIS), 28034 Madrid, Spain.
| | - Enrique Grande
- Medical Oncology Department, MD Anderson Cancer Center, 28034 Madrid, Spain.
| | - Pilar Garrido
- Medical Oncology Department, The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS). CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| | - Javier Molina-Cerrillo
- Medical Oncology Department, The Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain.
| |
Collapse
|
28
|
Hypoxia promotes osteosarcoma cell proliferation and migration through enhancing platelet-derived growth factor-BB/platelet-derived growth factor receptor-β axis. Biochem Biophys Res Commun 2019; 512:360-366. [PMID: 30894277 DOI: 10.1016/j.bbrc.2019.03.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 03/07/2019] [Indexed: 01/10/2023]
Abstract
Osteosarcoma is a primary malignant bone tumor, characterized by high therapeutic resistance and poor outcomes, due to unclear pathological mechanisms. It has been shown recently that the platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor (PDGFR) pathway is closely associated with the pathogenesis of osteosarcoma. Hypoxia is a critical hallmark of tumor microenvironment that promotes the malignant phenotype in many solid tumors and a fundamental impediment to effective tumor therapy. In this study, we confirmed that hypoxia is an important feature of osteosarcoma, validated by the positive immunohistochemistry staining of hypoxia marker hypoxia-inducible factor-1α (HIF-1α) and carbonic anhydrase IX (CAIX) in osteosarcoma tissue samples. More importantly, we discovered that hypoxia could transcriptionally upregulate the expression of both PDGF-BB and PDGFR-β in osteosarcoma cells in vitro. Likewise, we also established that hypoxia-induced PDGF-BB is strongly related to the enhanced cell proliferation and migration, by activating AKT, ERK1/2, and STAT3 signaling pathways. Notably, when using an antibody to block the autocrine of PDGF-BB, cell proliferation and migration were partially aborted in hypoxia. Collectively, we demonstrated that the hypoxia-activated PDGF-BB/PDGFR-β axis plays essential roles in osteosarcoma progression. These findings may shed light on the molecular pathogenesis of osteosarcoma, and provide a novel strategy for osteosarcoma treatment by combinational targeting hypoxia and PDGF-BB/PDGFR signaling.
Collapse
|