1
|
Xie T, Shu Y, Huang W, Ren A, Lin J, Tan Y, Zhao S, Bu J. β-eudesmol inhibits cell growth and enhances cell chemosensitivity of NPC through targeting FGF1/FGFR signaling. Oral Oncol 2025; 162:107168. [PMID: 39864398 DOI: 10.1016/j.oraloncology.2024.107168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND Chemoresistance is one ofthe main challenges for advanced NPCtreatment.We previouslyproved LHX2 transcriptionally regulates FGF1 and promotes cancer progression through activating FGF1/FGFR axis,which prompted us toexplore the potential inhibitors for FGFR to improve the therapy response. METHODS RT-qPCR, immunohistochemistry, western blot assayand immunofluorescencewere applied to verify the gene expression levels. Xenograftmodel as well as lung metastasis model was performed forin vitroassays. Flow cytometry and Tunel stainingwere used to determine the apoptosis of NPC cells.The interaction between β-eudesmol and FGFR1/2 was analyzed by Autodock software. RESULTS β-eudesmol inhibited the growth and metastasisof NPCin vivoandin vitro.In addition,β-eudesmol treatment promoted NPC apoptosis and sensitized NPC to cisplatin. β-eudesmol putatively bound to FGFR and blocked the Akt signaling, STAT3 signalingandERKsignaling,which in turn restrainedABCC1 transcription. CONCLUSION β-eudesmol suppressed cell growth, metastasis and chemoresistance in NPC through targetingFGF1/FGFR signaling, thereby blocking the Akt signaling, STAT3 signaling andERKsignaling, as well as down-regulating ABCC1 expression. Our findings provided a novel potential drug for NPC treatment.
Collapse
Affiliation(s)
- Tao Xie
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China; Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yuqi Shu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Laboratory of Heart Center, Department of Cardiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Wei Huang
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Anbang Ren
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China; Department of Radiation Oncology, Shunde Hospital, Southern Medical University, Foshan, Guangdong Province, People's Republic of China
| | - Jie Lin
- Department of Radiation Oncology, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yujing Tan
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Shufen Zhao
- Department of Radiation Oncology, Shunde Hospital, Southern Medical University, Foshan, Guangdong Province, People's Republic of China.
| | - Junguo Bu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
2
|
Karabay AZ, Ozkan T, Karadag Gurel A, Koc A, Hekmatshoar Y, Sunguroglu A, Aktan F, Buyukbingöl Z. Identification of exosomal microRNAs and related hub genes associated with imatinib resistance in chronic myeloid leukemia. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9701-9721. [PMID: 38916832 PMCID: PMC11582232 DOI: 10.1007/s00210-024-03198-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024]
Abstract
Chemotherapy resistance is a major obstacle in cancer therapy, and identifying novel druggable targets to reverse this phenomenon is essential. The exosome-mediated transmittance of drug resistance has been shown in various cancer models including ovarian and prostate cancer models. In this study, we aimed to investigate the role of exosomal miRNA transfer in chronic myeloid leukemia drug resistance. For this purpose, firstly exosomes were isolated from imatinib sensitive (K562S) and resistant (K562R) chronic myeloid leukemia (CML) cells and named as Sexo and Rexo, respectively. Then, miRNA microarray was used to compare miRNA profiles of K562S, K562R, Sexo, Rexo, and Rexo-treated K562S cells. According to our results, miR-125b-5p and miR-99a-5p exhibited increased expression in resistant cells, their exosomes, and Rexo-treated sensitive cells compared to their sensitive counterparts. On the other hand, miR-210-3p and miR-193b-3p were determined to be the two miRNAs which exhibited decreased expression profile in resistant cells and their exosomes compared to their sensitive counterparts. Gene targets, signaling pathways, and enrichment analysis were performed for these miRNAs by TargetScan, KEGG, and DAVID. Potential interactions between gene candidates at the protein level were analyzed via STRING and Cytoscape software. Our findings revealed CCR5, GRK2, EDN1, ARRB1, P2RY2, LAMC2, PAK3, PAK4, and GIT2 as novel gene targets that may play roles in exosomal imatinib resistance transfer as well as mTOR, STAT3, MCL1, LAMC1, and KRAS which are already linked to imatinib resistance. MDR1 mRNA exhibited higher expression in Rexo compared to Sexo as well as in K562S cells treated with Rexo compared to K562S cells which may suggest exosomal transfer of MDR1 mRNA.
Collapse
Affiliation(s)
- Arzu Zeynep Karabay
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
| | - Tulin Ozkan
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey.
| | - Aynur Karadag Gurel
- Department of Medical Biology, Faculty of Medicine, Usak University, Usak, Turkey.
| | - Asli Koc
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Yalda Hekmatshoar
- Department of Medical Biology, Faculty of Medicine, Altinbas University, Istanbul, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Fugen Aktan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Zeliha Buyukbingöl
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Lu XY, Jin H. MiRNAs function in the development of resistance against doxorubicin in cancer cells: targeting ABC transporters. Front Pharmacol 2024; 15:1486783. [PMID: 39679367 PMCID: PMC11638538 DOI: 10.3389/fphar.2024.1486783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024] Open
Abstract
Resistance to chemotherapeutic agents poses a significant challenge in cancer treatment, particularly with doxorubicin, a widely used drug for various cancers, including breast cancer, leukaemia, osteosarcoma, and gastrointestinal cancers. This review aims to elucidate the critical role of microRNAs (miRNAs) in the development of doxorubicin resistance, focusing on their interactions with ATP-binding cassette (ABC) transporters. Despite extensive research, the molecular mechanisms governing doxorubicin resistance still need to be completed, particularly regarding the regulatory influence of miRNAs on ABC transporter expression. By analyzing current literature, this review identifies a notable gap: the lack of comprehensive insight into how specific miRNAs modulate the expression and activity of ABC transporters in cancer cells, contributing to doxorubicin resistance. We systematically examine recent findings on the interplay between miRNAs and ABC transporters, providing a detailed assessment of potential therapeutic strategies that leverage miRNA modulation to overcome drug resistance. Ultimately, this review underscores the significance of integrating miRNA research into existing therapeutic frameworks to enhance the efficacy of doxorubicin in cancer treatment.
Collapse
Affiliation(s)
- Xin-Yan Lu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
4
|
To KKW, Huang Z, Zhang H, Ashby CR, Fu L. Utilizing non-coding RNA-mediated regulation of ATP binding cassette (ABC) transporters to overcome multidrug resistance to cancer chemotherapy. Drug Resist Updat 2024; 73:101058. [PMID: 38277757 DOI: 10.1016/j.drup.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Multidrug resistance (MDR) is one of the primary factors that produces treatment failure in patients receiving cancer chemotherapy. MDR is a complex multifactorial phenomenon, characterized by a decrease or abrogation of the efficacy of a wide spectrum of anticancer drugs that are structurally and mechanistically distinct. The overexpression of the ATP-binding cassette (ABC) transporters, notably ABCG2 and ABCB1, are one of the primary mediators of MDR in cancer cells, which promotes the efflux of certain chemotherapeutic drugs from cancer cells, thereby decreasing or abolishing their therapeutic efficacy. A number of studies have suggested that non-coding RNAs (ncRNAs), particularly microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a pivotal role in mediating the upregulation of ABC transporters in certain MDR cancer cells. This review will provide updated information about the induction of ABC transporters due to the aberrant regulation of ncRNAs in cancer cells. We will also discuss the measurement and biological profile of circulating ncRNAs in various body fluids as potential biomarkers for predicting the response of cancer patients to chemotherapy. Sequence variations, such as alternative polyadenylation of mRNA and single nucleotide polymorphism (SNPs) at miRNA target sites, which may indicate the interaction of miRNA-mediated gene regulation with genetic variations to modulate the MDR phenotype, will be reviewed. Finally, we will highlight novel strategies that could be used to modulate ncRNAs and circumvent ABC transporter-mediated MDR.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Zoufang Huang
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Hang Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, United States
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| |
Collapse
|
5
|
Zhang F, Lei X, Yang X. Emerging roles of ncRNAs regulating ABCC1 on chemotherapy resistance of cancer - a review. J Chemother 2024; 36:1-10. [PMID: 38263773 DOI: 10.1080/1120009x.2023.2247202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 01/25/2024]
Abstract
In the process of chemotherapy, drug resistance of cancer cells is a common and difficult problem of chemotherapy failure, and it is also the main cause of cancer recurrence and metastasis. Non-coding RNAs (ncRNAs) refer to the RNA that does not encode proteins, including microRNA (miRNA), long non-coding RNA (lncRNA) and circularRNA (circRNA), etc. NcRNAs are involved in a series of important life processes and further regulate the expression of ABCC1 by directly or indirectly up-regulating or down-regulating the expression of targeted mRNAs, making cancer cells more susceptible to drug resistance. A growing number of studies have shown that ncRNAs have effects on cancer cell proliferation, invasion, metastasis, and drug sensitivity, by regulating the expression of ABCC1. In this review, we will discuss the emerging roles of ncRNAs regulating ABCC1 in chemotherapy resistance and mechanisms to reverse drug resistance as well as provide potential targets for future cancer treatment.
Collapse
Affiliation(s)
- Feng Zhang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
6
|
Mirzaei S, Paskeh MDA, Moghadam FA, Entezari M, Koohpar ZK, Hejazi ES, Rezaei S, Kakavand A, Aboutalebi M, Zandieh MA, Rajabi R, Salimimoghadam S, Taheriazam A, Hashemi M, Samarghandian S. miRNAs as short non-coding RNAs in regulating doxorubicin resistance. J Cell Commun Signal 2023:10.1007/s12079-023-00789-0. [PMID: 38019354 DOI: 10.1007/s12079-023-00789-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023] Open
Abstract
The treatment of cancer patients has been prohibited by chemoresistance. Doxorubicin (DOX) is an anti-tumor compound disrupting proliferation and triggering cell cycle arrest via inhibiting activity of topoisomerase I and II. miRNAs are endogenous RNAs localized in cytoplasm to reduce gene level. Abnormal expression of miRNAs changes DOX cytotoxicity. Overexpression of tumor-promoting miRNAs induces DOX resistance, while tumor-suppressor miRNAs inhibit DOX resistance. The miRNA-mediated regulation of cell death and hallmarks of cancer can affect response to DOX chemotherapy in tumor cells. The transporters such as P-glycoprotein are regulated by miRNAs in DOX chemotherapy. Upstream mediators including lncRNAs and circRNAs target miRNAs in affecting capacity of DOX. The response to DOX chemotherapy can be facilitated after administration of agents that are mostly phytochemicals including curcumol, honokiol and ursolic acid. These agents can regulate miRNA expression increasing DOX's cytotoxicity. Since delivery of DOX alone or in combination with other drugs and genes can cause synergistic impact, the nanoparticles have been introduced for drug sensitivity. The non-coding RNAs determine the response of tumor cells to doxorubicin chemotherapy. microRNAs play a key role in this case and they can be sponged by lncRNAs and circRNAs, showing interaction among non-coding RNAs in the regulation of doxorubicin sensitivity.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farhad Adhami Moghadam
- Department of Ophthalmology, Fauclty of Medicine, Tehran Medical Sciences Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
7
|
Marjamaa A, Gibbs B, Kotrba C, Masamha CP. The role and impact of alternative polyadenylation and miRNA regulation on the expression of the multidrug resistance-associated protein 1 (MRP-1/ABCC1) in epithelial ovarian cancer. Sci Rep 2023; 13:17476. [PMID: 37838788 PMCID: PMC10576765 DOI: 10.1038/s41598-023-44548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
The ATP-binding cassette transporter (ABCC1) is associated with poor survival and chemotherapy drug resistance in high grade serous ovarian cancer (HGSOC). The mechanisms driving ABCC1 expression are poorly understood. Alternative polyadenylation (APA) can give rise to ABCC1 mRNAs which differ only in the length of their 3'untranslated regions (3'UTRs) in a process known as 3'UTR-APA. Like other ABC transporters, shortening of the 3'UTR of ABCC1 through 3'UTR-APA would eliminate microRNA binding sites found within the longer 3'UTRs, hence eliminating miRNA regulation and altering gene expression. We found that the HGSOC cell lines Caov-3 and Ovcar-3 express higher levels of ABCC1 protein than normal cells. APA of ABCC1 occurs in all three cell lines resulting in mRNAs with both short and long 3'UTRs. In Ovcar-3, mRNAs with shorter 3'UTRs dominate resulting in a six-fold increase in protein expression. We were able to show that miR-185-5p and miR-326 both target the ABCC1 3'UTR. Hence, 3'UTR-APA should be considered as an important regulator of ABCC1 expression in HGSOC. Both HGSOC cell lines are cisplatin resistant, and we used erastin to induce ferroptosis, an alternative form of cell death. We showed that we could induce ferroptosis and sensitize the cisplatin resistant cells to cisplatin by using erastin. Knocking down ABCC1 resulted in decreased cell viability, but did not contribute to erastin induced ferroptosis.
Collapse
Affiliation(s)
- Audrey Marjamaa
- Department of Chemistry and Biochemistry, Butler University, Indianapolis, IN, 46208, USA
| | - Bettine Gibbs
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chloe Kotrba
- Department of Pharmaceutical Sciences, Butler University, Indianapolis, IN, 46208, USA
| | | |
Collapse
|
8
|
Liu Y, Zhang H, Fang Y, Tang D, Luo Z. Non-coding RNAs in renal cell carcinoma: Implications for drug resistance. Biomed Pharmacother 2023; 164:115001. [PMID: 37315433 DOI: 10.1016/j.biopha.2023.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023] Open
Abstract
Renal cell carcinoma (RCC) represents a malignant tumor of the urinary system. Individuals with early-stage RCC could be cured by surgical treatment, but a considerable number of cases of advanced RCC progress to drug resistance. Recently, numerous reports have demonstrated that a variety of non-coding RNAs (ncRNAs) contribute to tumor occurrence and development. ncRNAs can act as oncogenic or tumor suppressor genes to regulate proliferation, migration, drug resistance and other processes in RCC cells through a variety of signaling pathways. Considering the lack of treatment options for advanced RCC after drug resistance, ncRNAs may be a good choice as biomarkers of drug resistance in RCC and targets to overcome drug resistance. In this review, we discussed the effects of ncRNAs on drug resistance in RCC and the great potential of ncRNAs as a biomarker of or a new therapeutic method in RCC.
Collapse
Affiliation(s)
- Yiqi Liu
- Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Hu Zhang
- The First Affiliated Hospital, Department of Urology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China
| | - Yuan Fang
- Organ Transplantation Center, The First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, 650032, PR China
| | - Dongshan Tang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, PR China.
| | - Zhigang Luo
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, PR China.
| |
Collapse
|
9
|
Pérez-Rodríguez D, Penedo MA, Rivera-Baltanás T, Peña-Centeno T, Burkhardt S, Fischer A, Prieto-González JM, Olivares JM, López-Fernández H, Agís-Balboa RC. MiRNA Differences Related to Treatment-Resistant Schizophrenia. Int J Mol Sci 2023; 24:ijms24031891. [PMID: 36768211 PMCID: PMC9916039 DOI: 10.3390/ijms24031891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
Schizophrenia (SZ) is a serious mental disorder that is typically treated with antipsychotic medication. Treatment-resistant schizophrenia (TRS) is the condition where symptoms remain after pharmacological intervention, resulting in long-lasting functional and social impairments. As the identification and treatment of a TRS patient requires previous failed treatments, early mechanisms of detection are needed in order to quicken the access to effective therapy, as well as improve treatment adherence. In this study, we aim to find a microRNA (miRNA) signature for TRS, as well as to shed some light on the molecular pathways potentially involved in this severe condition. To do this, we compared the blood miRNAs of schizophrenia patients that respond to medication and TRS patients, thus obtaining a 16-miRNA TRS profile. Then, we assessed the ability of this signature to separate responders and TRS patients using hierarchical clustering, observing that most of them are grouped correctly (~70% accuracy). We also conducted a network, pathway analysis, and bibliography search to spot molecular pathways potentially altered in TRS. We found that the response to stress seems to be a key factor in TRS and that proteins p53, SIRT1, MDM2, and TRIM28 could be the potential mediators of such responses. Finally, we suggest a molecular pathway potentially regulated by the miRNAs of the TRS profile.
Collapse
Affiliation(s)
- Daniel Pérez-Rodríguez
- NeuroEpigenetics Lab, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
| | - Maria Aránzazu Penedo
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Grupo de Neurofarmacología de Las Adicciones y Los Trastornos Degenerativos (NEUROFAN), Universidad CEU San Pablo, 28925 Madrid, Spain
| | - Tania Rivera-Baltanás
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
| | - Tonatiuh Peña-Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, 37075 Göttingen, Germany
| | - José M. Prieto-González
- NeuroEpigenetics Lab, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Grupo Trastornos del Movimiento, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
| | - José Manuel Olivares
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Department of Psychiatry, Área Sanitaria de Vigo, 36312 Vigo, Spain
| | - Hugo López-Fernández
- SING Research Group, Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain
- CINBIO, Department of Computer Science, ESEI-Escuela Superior de Ingeniería Informática, Universidade de Vigo, 32004 Ourense, Spain
- Correspondence: (H.L.-F.); (R.C.A.-B.)
| | - Roberto Carlos Agís-Balboa
- NeuroEpigenetics Lab, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Translational Neuroscience Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Área Sanitaria de Vigo-Hospital Álvaro Cunqueiro, SERGAS-UVIGO, CIBERSAM-ISCIII, 36213 Vigo, Spain
- Servicio de Neurología, Hospital Clínico Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Grupo Trastornos del Movimiento, Instituto de Investigación Sanitaria de Santiago (IDIS), Complejo Hospitalario Universitario de Santiago, 15706 Santiago de Compostela, Spain
- Correspondence: (H.L.-F.); (R.C.A.-B.)
| |
Collapse
|
10
|
Tu MJ, Yu AM. Recent Advances in Novel Recombinant RNAs for Studying Post-transcriptional Gene Regulation in Drug Metabolism and Disposition. Curr Drug Metab 2023; 24:175-189. [PMID: 37170982 PMCID: PMC10825985 DOI: 10.2174/1389200224666230425232433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 05/13/2023]
Abstract
Drug-metabolizing enzymes and transporters are major determinants of the absorption, disposition, metabolism, and excretion (ADME) of drugs, and changes in ADME gene expression or function may alter the pharmacokinetics/ pharmacodynamics (PK/PD) and further influence drug safety and therapeutic outcomes. ADME gene functions are controlled by diverse factors, such as genetic polymorphism, transcriptional regulation, and coadministered medications. MicroRNAs (miRNAs) are a superfamily of regulatory small noncoding RNAs that are transcribed from the genome to regulate target gene expression at the post-transcriptional level. The roles of miRNAs in controlling ADME gene expression have been demonstrated, and such miRNAs may consequently influence cellular drug metabolism and disposition capacity. Several types of miRNA mimics and small interfering RNA (siRNA) reagents have been developed and widely used for ADME research. In this review article, we first provide a brief introduction to the mechanistic actions of miRNAs in post-transcriptional gene regulation of drug-metabolizing enzymes, transporters, and transcription factors. After summarizing conventional small RNA production methods, we highlight the latest advances in novel recombinant RNA technologies and applications of the resultant bioengineered RNA (BioRNA) agents to ADME studies. BioRNAs produced in living cells are not only powerful tools for general biological and biomedical research but also potential therapeutic agents amenable to clinical investigations.
Collapse
Affiliation(s)
- Mei-Juan Tu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA 95817, USA
| |
Collapse
|
11
|
Ding P, Gao Y, Wang J, Xiang H, Zhang C, Wang L, Ji G, Wu T. Progress and challenges of multidrug resistance proteins in diseases. Am J Cancer Res 2022; 12:4483-4501. [PMID: 36381332 PMCID: PMC9641395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023] Open
Abstract
Chemotherapy remains the first choice for patients with advanced cancers when other treatments are ineffective. Multidrug resistance (MDR) is an unavoidable factor that negatively affects the effectiveness of cancer chemotherapy drugs. Researchers are trying to reduce MDR, improve the effectiveness of chemotherapeutic drugs, and alleviate patient suffering to positively contribute to disease treatment. MDR also occurs in inflammation and genetic disorders, which increases the difficulty of clinically beneficial treatments. The ATP-binding cassette (ABC) is an active transporter that plays an important role in the barrier and secretory functions of many normal cells. As the C subfamily in the ABC family, multidrug resistance proteins (MRPs/ABCCs) export a variety of antitumour drugs and are expressed in a variety of cancers. The present review summarises the role of MRPs in cancer and other diseases and recent research progress of MRP inhibitors to better examine the mechanism and function of MRPs, and establish a good relationship with clinical treatment.
Collapse
Affiliation(s)
- Peilun Ding
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Ying Gao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| | - Lei Wang
- Department of Hepatology, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai 200032, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese MedicineShanghai 201203, China
| |
Collapse
|
12
|
Elebiyo TC, Rotimi D, Evbuomwan IO, Maimako RF, Iyobhebhe M, Ojo OA, Oluba OM, Adeyemi OS. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat Res Commun 2022; 32:100620. [PMID: 35964475 DOI: 10.1016/j.ctarc.2022.100620] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/02/2022] [Accepted: 08/05/2022] [Indexed: 05/23/2023]
Abstract
Vascularization is fundamental to the growth and spread of tumor cells to distant sites. As a consequence, angiogenesis, the sprouting of new blood vessels from existing ones, is a characteristic trait of cancer. In 1971, Judah Folkman postulated that tumour growth is angiogenesis dependent and that by cutting off blood supply, a neoplastic lesion could be potentially starved into remission. Decades of research have been devoted to understanding the role that vascular endothelial growth factor (VEGF) plays in tumor angiogenesis, and it has been identified as a significant pro-angiogenic factor that is frequently overexpressed within a tumor mass. Today, anti-VEGF drugs such as Sunitinib, Sorafenib, Axitinib, Tanibirumab, and Ramucirumab have been approved for the treatment of advanced and metastatic cancers. However, anti-angiogenic therapy has turned out to be more complex than originally thought. The failure of this therapeutic option calls for a reevaluation of VEGF as the major target in anti-angiogenic cancer therapy. The call for reassessment is based on two rationales: first, tumour blood vessels are abnormal, disorganized, and leaky; this not only prevents optimal drug delivery but it also promotes hypoxia and metastasis; secondly, tumour growth or regrowth might be blood vessel dependent and not angiogenesis dependent as tumour cells can acquire blood vessels via non-angiogenic mechanisms. Therefore, a critical assessment of VEGF, VEGFRs, and their inhibitors could glean newer options such as repurposing anti-VEGF drugs as vascular normalizing agents to enhance drug delivery of immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | - Damilare Rotimi
- Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | | | | | | | - Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria..
| | | | | |
Collapse
|
13
|
Xiang Y, Zheng G, Zhong J, Sheng J, Qin H. Advances in Renal Cell Carcinoma Drug Resistance Models. Front Oncol 2022; 12:870396. [PMID: 35619895 PMCID: PMC9128023 DOI: 10.3389/fonc.2022.870396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common form of kidney cancer. Systemic therapy is the preferred method to eliminate residual cancer cells after surgery and prolong the survival of patients with inoperable RCC. A variety of molecular targeted and immunological therapies have been developed to improve the survival rate and prognosis of RCC patients based on their chemotherapy-resistant properties. However, owing to tumor heterogeneity and drug resistance, targeted and immunological therapies lack complete and durable anti-tumor responses; therefore, understanding the mechanisms of systemic therapy resistance and improving clinical curative effects in the treatment of RCC remain challenging. In vitro models with traditional RCC cell lines or primary cell culture, as well as in vivo models with cell or patient-derived xenografts, are used to explore the drug resistance mechanisms of RCC and screen new targeted therapeutic drugs. Here, we review the established methods and applications of in vivo and in vitro RCC drug resistance models, with the aim of improving our understanding of its resistance mechanisms, increasing the efficacy of combination medications, and providing a theoretical foundation for the development and application of new drugs, drug screening, and treatment guidelines for RCC patients.
Collapse
Affiliation(s)
- Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Ge Zheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Jianfeng Zhong
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, China
| | - Hanjiao Qin
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
15
|
Młynarczyk G, Mikłosz A, Suchański J, Reza S, Romanowicz L, Sobolewski K, Chabowski A, Baranowski M. Grade‐dependent changes in sphingolipid metabolism in clear cell renal cell carcinoma. J Cell Biochem 2022; 123:819-829. [DOI: 10.1002/jcb.30227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - Agnieszka Mikłosz
- Department of Physiology Medical University of Białystok Bialystok Poland
| | - Jarosław Suchański
- Department of Biochemistry and Molecular Biology Wroclaw University of Environmental and Life Sciences Wroclaw Dolnośląskie Poland
| | - Safoura Reza
- Department of Biochemistry and Molecular Biology Wroclaw University of Environmental and Life Sciences Wroclaw Dolnośląskie Poland
| | - Lech Romanowicz
- Department of Medical Biochemistry Medical University of Białystok Bialystok Poland
| | - Krzysztof Sobolewski
- Department of Medical Biochemistry Medical University of Białystok Bialystok Poland
| | - Adrian Chabowski
- Department of Physiology Medical University of Białystok Bialystok Poland
| | - Marcin Baranowski
- Department of Physiology Medical University of Białystok Bialystok Poland
| |
Collapse
|
16
|
The Role of Circulating Biomarkers in the Oncological Management of Metastatic Renal Cell Carcinoma: Where Do We Stand Now? Biomedicines 2021; 10:biomedicines10010090. [PMID: 35052770 PMCID: PMC8773056 DOI: 10.3390/biomedicines10010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is an increasingly common malignancy that can progress to metastatic renal cell carcinoma (mRCC) in approximately one-third of RCC patients. The 5-year survival rate for mRCC is abysmally low, and, at the present time, there are sparingly few if any effective treatments. Current surgical and pharmacological treatments can have a long-lasting impact on renal function, as well. Thus, there is a compelling unmet need to discover novel biomarkers and surveillance methods to improve patient outcomes with more targeted therapies earlier in the course of the disease. Circulating biomarkers, such as circulating tumor DNA, noncoding RNA, proteins, extracellular vesicles, or cancer cells themselves potentially represent a minimally invasive tool to fill this gap and accelerate both diagnosis and treatment. Here, we discuss the clinical relevance of different circulating biomarkers in metastatic renal cell carcinoma by clarifying their potential role as novel biomarkers of response or resistance to treatments but also by guiding clinicians in novel therapeutic approaches.
Collapse
|
17
|
Hanssen KM, Haber M, Fletcher JI. Targeting multidrug resistance-associated protein 1 (MRP1)-expressing cancers: Beyond pharmacological inhibition. Drug Resist Updat 2021; 59:100795. [PMID: 34983733 DOI: 10.1016/j.drup.2021.100795] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/30/2022]
Abstract
Resistance to chemotherapy remains one of the most significant obstacles to successful cancer treatment. While inhibiting drug efflux mediated by ATP-binding cassette (ABC) transporters is a seemingly attractive and logical approach to combat multidrug resistance (MDR), small molecule inhibition of ABC transporters has so far failed to confer clinical benefit, despite considerable efforts by medicinal chemists, biologists, and clinicians. The long-sought treatment to eradicate cancers displaying ABC transporter overexpression may therefore lie within alternative targeting strategies. When aberrantly expressed, the ABC transporter multidrug resistance-associated protein 1 (MRP1, ABCC1) confers MDR, but can also shift cellular redox balance, leaving the cell vulnerable to select agents. Here, we explore the physiological roles of MRP1, the rational for targeting this transporter in cancer, the development of small molecule MRP1 inhibitors, and the most recent developments in alternative therapeutic approaches for targeting cancers with MRP1 overexpression. We discuss approaches that extend beyond simple MRP1 inhibition by exploiting the collateral sensitivity to glutathione depletion and ferroptosis, the rationale for targeting the shared transcriptional regulators of both MRP1 and glutathione biosynthesis, advances in gene silencing, and new molecules that modulate transporter activity to the detriment of the cancer cell. These strategies illustrate promising new approaches to address multidrug resistant disease that extend beyond the simple reversal of MDR and offer exciting routes for further research.
Collapse
Affiliation(s)
- Kimberley M Hanssen
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Meng F, Xiao Y, Xie L, Liu Q, Qian K. Diagnostic and prognostic value of ABC transporter family member ABCG1 gene in clear cell renal cell carcinoma. Channels (Austin) 2021; 15:375-385. [PMID: 33825659 PMCID: PMC8032227 DOI: 10.1080/19336950.2021.1909301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
As the most common histologic subtype of renal cancer, clear cell renal cell carcinoma (ccRCC) poses a serious threat to public health. However, there are no specific molecular-targeted drugs for ccRCC at present. Human ATP-binding cassette (ABC) transporter family plays an important role in homeostasis maintenance. This study aimed to evaluate the potential diagnostic value of ABC genes in ccRCC. A total of 952 samples of ccRCC patients (707) and controls (245) from three different datasets were included for analysis. Receiver operating characteristic analysis and t-test were used to analyze the differential expression of ABC genes in ccRCC patients and control samples at mRNA level during screening and validations. The Cancer Genome Atlas (TCGA-ccRCC) dataset was utilized to investigate the correlation between ABC genes expression and prognostic value in ccRCC. We then investigated the interactions between ABCG1 and proteins in the Comparative Toxicogenomics Database (CTD). Finally, we found that ATP-binding cassette transporter G member 1 (ABCG1) was over-expressed in ccRCC patients compared with healthy samples at mRNA level. Cox regression analysis and Kaplan-Meier analysis showed that ccRCC patients with high ABCG1 expression had better overall survival (OS) than those patients with low expression (hazard ratio (HR) = 0.662, p = 0.007). This study demonstrated that ABCG1 is a potential diagnostic and prognostic biomarker in ccRCC and discussed the molecular mechanisms underlying the relationship between ccRCC and ABCG1, which might provide guidance for better management and treatment of ccRCC in the future.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/diagnosis
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/diagnosis
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Prognosis
- Male
- Female
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Fucheng Meng
- Department of Infection Control, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yafei Xiao
- Department of Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Longxiang Xie
- Department of Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiao Liu
- Department of Pediatric Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Keli Qian
- Department of Infection Control, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Resistance to Targeted Agents Used to Treat Paediatric ALK-Positive ALCL. Cancers (Basel) 2021; 13:cancers13236003. [PMID: 34885113 PMCID: PMC8656581 DOI: 10.3390/cancers13236003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary In general, the non-Hodgkin lymphoma (NHL), anaplastic large cell lymphoma (ALCL) diagnosed in childhood has a good survival outcome when treated with multi-agent chemotherapy. However, side effects of treatment are common, and outcomes are poorer after relapse, which occurs in up to 30% of cases. New drugs are required that are more effective and have fewer side effects. Targeted therapies are potential solutions to these problems, however, the development of resistance may limit their impact. This review summarises the potential resistance mechanisms to these targeted therapies. Abstract Non-Hodgkin lymphoma (NHL) is the third most common malignancy diagnosed in children. The vast majority of paediatric NHL are either Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), anaplastic large cell lymphoma (ALCL), or lymphoblastic lymphoma (LL). Multi-agent chemotherapy is used to treat all of these types of NHL, and survival is over 90% but the chemotherapy regimens are intensive, and outcomes are generally poor if relapse occurs. Therefore, targeted therapies are of interest as potential solutions to these problems. However, the major problem with all targeted agents is the development of resistance. Mechanisms of resistance are not well understood, but increased knowledge will facilitate optimal management strategies through improving our understanding of when to select each targeted agent, and when a combinatorial approach may be helpful. This review summarises currently available knowledge regarding resistance to targeted therapies used in paediatric anaplastic lymphoma kinase (ALK)-positive ALCL. Specifically, we outline where gaps in knowledge exist, and further investigation is required in order to find a solution to the clinical problem of drug resistance in ALCL.
Collapse
|
20
|
Taheri M, Mahmud Hussen B, Tondro Anamag F, Shoorei H, Dinger ME, Ghafouri-Fard S. The role of miRNAs and lncRNAs in conferring resistance to doxorubicin. J Drug Target 2021; 30:1-21. [PMID: 33788650 DOI: 10.1080/1061186x.2021.1909052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Doxorubicin is a chemotherapeutic agent that inhibits topoisomerase II, intercalates within DNA base pairs and results in oxidative DNA damage, thus inducing cell apoptosis. Although it is effective in the treatment of a wide range of human cancers, the emergence of resistance to this drug can increase tumour growth and impact patients' survival. Numerous molecular mechanisms and signalling pathways have been identified that induce resistance to doxorubicin via stimulation of cell proliferation, cell cycle switch and preclusion of apoptosis. A number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have also been identified that alter sensitivity to doxorubicin. Understanding the particular impact of these non-coding RNAs in conferring resistance to doxorubicin has considerable potential to improve selection of chemotherapeutic regimens for cancer patients. Moreover, modulation of expression of these transcripts is a putative strategy for combating resistance. In the current paper, the influence of miRNAs and lncRNAs in the modification of resistance to doxorubicin is discussed.
Collapse
Affiliation(s)
- Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
The Ambivalent Role of miRNAs in Carcinogenesis: Involvement in Renal Cell Carcinoma and Their Clinical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040322. [PMID: 33918154 PMCID: PMC8065760 DOI: 10.3390/ph14040322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
The analysis of microRNA (miRNAs), small, non-coding endogenous RNA, plays a crucial role in oncology. These short regulatory sequences, acting on thousands of messenger RNAs (mRNAs), modulate gene expression at the transcriptional and post-transcriptional level leading to translational repression or degradation of target molecules. Although their function is required for several physiological processes, such as proliferation, apoptosis and cell differentiation, miRNAs are also responsible for development and/or progression of several cancers, since they may interact with classical tumor pathways. In this review, we highlight recent advances in deregulated miRNAs in cancer focusing on renal cell carcinoma (RCC) and provide an overview of the potential use of miRNA in their clinical settings, such as diagnostic and prognostic markers.
Collapse
|
22
|
Choromańska A, Chwiłkowska A, Kulbacka J, Baczyńska D, Rembiałkowska N, Szewczyk A, Michel O, Gajewska-Naryniecka A, Przystupski D, Saczko J. Modifications of Plasma Membrane Organization in Cancer Cells for Targeted Therapy. Molecules 2021; 26:1850. [PMID: 33806009 PMCID: PMC8037978 DOI: 10.3390/molecules26071850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Modifications of the composition or organization of the cancer cell membrane seem to be a promising targeted therapy. This approach can significantly enhance drug uptake or intensify the response of cancer cells to chemotherapeutics. There are several methods enabling lipid bilayer modifications, e.g., pharmacological, physical, and mechanical. It is crucial to keep in mind the significance of drug resistance phenomenon, ion channel and specific receptor impact, and lipid bilayer organization in planning the cell membrane-targeted treatment. In this review, strategies based on cell membrane modulation or reorganization are presented as an alternative tool for future therapeutic protocols.
Collapse
Affiliation(s)
- Anna Choromańska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Chwiłkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dagmara Baczyńska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Nina Rembiałkowska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Olga Michel
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Agnieszka Gajewska-Naryniecka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| | - Dawid Przystupski
- Department of Paediatric Bone Marrow Transplantation, Oncology and Haematology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (J.K.); (D.B.); (N.R.); (A.S.); (O.M.); (A.G.-N.); (J.S.)
| |
Collapse
|
23
|
Wang Y, Wang Y, Qin Z, Cai S, Yu L, Hu H, Zeng S. The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol 2021; 17:291-306. [PMID: 33544643 DOI: 10.1080/17425255.2021.1887139] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Multi-drug resistance (MDR) is a hindrance toward the successful treatment of cancers. The primary mechanism that gives rise to acquired chemoresistance is the overexpression of adenosine triphosphate-binding cassette (ABC) transporters. The dysregulation of non-coding RNAs (ncRNAs) is a widely concerned reason contributing to this phenotype. AREAS COVERED In this review, we describe the role of intracellular and exosomal ncRNAs including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in ABC transporters-induced tumor MDR. Meanwhile, we will introduce the potential therapeutic strategies which reverse MDR in terms of reducing the expression of ABC transporters via targeting ncRNAs, like nucleic acid delivery with nanoparticles as well as miRNAs-targeted small molecular compounds. EXPERT OPINION The dysregulated ncRNAs-mediated overexpression of ABC transporters in chemo-resistant cancer is not negligible. Finding out the underlying mechanism may provide a theoretical basis for clinical therapy of cancer MDR, and the emergence of new approaches for gene therapy targeting ncRNAs to suppress ABC transporters makes reversing cancer MDR possible despite its clinical application requires further investigations. Also, the discovered ncRNAs regulating ABC transporters in chemo-resistant cancers are just a tip of the iceberg of the genetic transcripts, especially for circRNAs, which justify more concern.Abbreviations: MDR, multi-drug resistance; ABC, adenosine triphosphate-binding cassette; NcRNAs, non-coding RNAs; MiRNAs, microRNAs; LncRNAs, long non-coding RNAs; CircRNAs, circular RNAs; CeRNAs, competing endogenous RNAs; 3'UTR, 3'-untranslated regions; SLC, solute carrier; ABCB1/MDR1, ABC subfamily B member 1; ABCG2/BCRP, ABC subfamily G member 2; ABCCs/MRPs, ABC subfamily C 1 to 12; DLL1: Delta-like protein 1; DTX, docetaxel; DOX/ADM/ADR, doxorubicin/adriamycin; PTX, paclitaxel; VBL, vinblastine; VCR, vincristine; MTX, methotrexate; CDDP/DDP, cisplatin/cis-diaminedichloroplatinum; OXA/L-OHP, oxaliplatin; TMZ, temozolomide; 5-FU, 5-fluorouracil; MTA, pemetrexed; NSCLC, non-small cell lung carcinoma; HCC, hepatocellular carcinoma; CRC, colorectal carcinoma; RB, retinoblastoma; RCC, renal cell carcinoma; OS, osteosarcoma; PDAC, pancreatic ductal adenocarcinoma; TNBC, triple-negative breast cancer.
Collapse
Affiliation(s)
- Yu Wang
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingying Wang
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhiyuan Qin
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sheng Cai
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haihong Hu
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Lampis A, Hahne JC, Hedayat S, Valeri N. MicroRNAs as mediators of drug resistance mechanisms. Curr Opin Pharmacol 2020; 54:44-50. [PMID: 32898724 DOI: 10.1016/j.coph.2020.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/24/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs are small RNA transcripts involved in fine-tuning of several cellular mechanisms and pathways crucial for maintaining cells' homeostasis like apoptosis, differentiation, inflammation and cell-cycle regulation. They act by regulation of gene expression at post-transcriptional level through fine-tuning of target proteins expression. Expression of microRNAs is cell-type specific and since their discovery they have been proven to be deregulated in various disorders including cancer. Several lines of evidence are emerging that link microRNAs to drug resistance mechanisms in tumours given their important role in modulating oncogenic and tumour suppressive mechanisms. This review will focus on latest knowledge of the roles and mechanisms of microRNAs as mediators to drug resistance and the implications for future therapies.
Collapse
Affiliation(s)
- Andrea Lampis
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Jens C Hahne
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Somaieh Hedayat
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Nicola Valeri
- Division of Molecular Pathology and Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK; Department of Medicine, The Royal Marsden Hospital, London and Sutton, UK
| |
Collapse
|
25
|
Fang QL, Li KC, Wang L, Gu XL, Song RJ, Lu S. Targeted Inhibition of CCL22 by miR-130a-5p Can Enhance the Sensitivity of Cisplatin-Resistant Gastric Cancer Cells to Chemotherapy. Cancer Manag Res 2020; 12:3865-3875. [PMID: 32547223 PMCID: PMC7263884 DOI: 10.2147/cmar.s249738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Objective This study set out to explore the regulatory mechanism of miR-130a-5p in cisplatin (DDP)-resistant gastric cancer (GC) cells. Materials and Methods Forty cases of GC and paracancerous tissues were collected, and the miR-130a-5p and CCL22 levels were detected by qRT-PCR. DDP-resistant cell lines of GC cells were established. Cell viability, invasion, and apoptosis were measured by CCK-8, Transwell, and flow cytometry, respectively. The relationship between miR-130a-5p and CCL22 was verified by dual-luciferase reporter enzyme, and the protein levels of caspase-3, bax, bcl-2, and CCL22 were determined by Western blot. Results miR-130a-5p was low expressed in GC tissues and cells, while CCL22 showed marked negative correlation, and the area under the curve (AUC) for diagnosing GC was not less than 0.850. Up-regulating miR-130a-5p or knocking down CCL22 expression can inhibit the proliferation and invasion of GC cells and promote their apoptosis, reverse the resistance of NCI-N87/DDP to DDP, and also enhance the chemosensitivity of GC cells. Dual-luciferase reporter enzyme identified that there was a targeted relationship between miR-130a-5p and CCL22. At the same time, miR-130a-5p and CCL22 were up-regulated or down-regulated, and the malignant proliferation, invasion, apoptosis, and DDP chemotherapy resistance of the cells had no difference compared with miR-NC with transfection-unrelated sequences. Conclusion Up-regulating miR-130a-5p can enhance the sensitivity of DDP-resistant GC cells to chemotherapy and regulate their biological function by targeted inhibition of CCL22.
Collapse
Affiliation(s)
- Qing-Liang Fang
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Kai-Chun Li
- Department of Oncology, Tianyou Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| | - Lei Wang
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiang-Lian Gu
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ren-Jie Song
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Song Lu
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Yin J, Sun W, Li F, Hong J, Li X, Zhou Y, Lu Y, Liu M, Zhang X, Chen N, Jin X, Xue J, Zeng S, Yu L, Zhu F. VARIDT 1.0: variability of drug transporter database. Nucleic Acids Res 2020; 48:D1042-D1050. [PMID: 31495872 PMCID: PMC6943059 DOI: 10.1093/nar/gkz779] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/20/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
The absorption, distribution and excretion of drugs are largely determined by their transporters (DTs), the variability of which has thus attracted considerable attention. There are three aspects of variability: epigenetic regulation and genetic polymorphism, species/tissue/disease-specific DT abundances, and exogenous factors modulating DT activity. The variability data of each aspect are essential for clinical study, and a collective consideration among multiple aspects becomes crucial in precision medicine. However, no database is constructed to provide the comprehensive data of all aspects of DT variability. Herein, the Variability of Drug Transporter Database (VARIDT) was introduced to provide such data. First, 177 and 146 DTs were confirmed, for the first time, by the transporting drugs approved and in clinical/preclinical, respectively. Second, for the confirmed DTs, VARIDT comprehensively collected all aspects of their variability (23 947 DNA methylations, 7317 noncoding RNA/histone regulations, 1278 genetic polymorphisms, differential abundance profiles of 257 DTs in 21 781 patients/healthy individuals, expression of 245 DTs in 67 tissues of human/model organism, 1225 exogenous factors altering the activity of 148 DTs), which allowed mutual connection between any aspects. Due to huge amount of accumulated data, VARIDT made it possible to generalize characteristics to reveal disease etiology and optimize clinical treatment, and is freely accessible at: https://db.idrblab.org/varidt/ and http://varidt.idrblab.net/.
Collapse
Affiliation(s)
- Jiayi Yin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wen Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiajun Hong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiaoxu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ying Zhou
- The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yinjing Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Mengzhi Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xue Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Na Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiuping Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia Xue
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lushan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
27
|
Qin A, Liu Q, Wang J. Ropivacaine inhibits proliferation, invasion, migration and promotes apoptosis of papillary thyroid cancer cells via regulating ITGA2 expression. Drug Dev Res 2020; 81:700-707. [PMID: 32314406 DOI: 10.1002/ddr.21671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/24/2022]
Abstract
The present study aimed to investigate the roles of Ropivacaine in papillary thyroid cancer (PTC) and identify the possible mechanisms. The expression of integrin alpha-2 (ITGA2) in TC cell lines was tested using Western blotting and RT-qPCR. Subsequently, the level of ITGA2 in human PTC cell line (TPC-1) was measured following intervention with a series of concentrations of Ropivacaine. Then, cell counting kit-8 (CCK-8) assay and colony formation assay were executed for detecting proliferation of cells after transfection with ITGA2 pcDNA3.1. The expression of proliferation-related protein was determined by Western blotting. Additionally, the abilities of TPC-1 cell invasion and migration were examined using Transwell assay and scratch wound healing assay. Apoptosis of TPC-1 cells was analyzed using TUNEL assay and the expressions of apoptosis-related proteins were tested via West blotting. The results suggested that ITGA2 was highly expressed in TC cell lines, especially in TPC-1 cells. Ropivacaine decreased the expression of ITGA2 in a dose-dependent manner. Moreover, after treatment with Ropivacaine, cell proliferation was inhibited accompanied by changes of proliferation-related protein expressions, which was reversed following co-transfection with ITGA2 pcDNA3.1. Furthermore, Ropivacaine concentration-dependently suppressed invasion and migration of TPC-1 cells, whereas these inhibitory effects were attenuated after ITGA2 overexpression. Furthermore, apoptosis was promoted, coupled with a decrease of Bcl-2 expression and increases of Bax, cleaved caspase-3 and cleaved caspase-9 expression, in Ropivacaine-treated TPC-1 cells, which was restored following ITGA2 overexpression. These findings demonstrated that Ropivacaine could suppress proliferation, invasion, migration, and accelerate apoptosis of PTC cells via regulating ITGA2 expression.
Collapse
Affiliation(s)
- Aichun Qin
- Department of Anesthesiology, Hubei Cancer Hospital, Wuhan, China
| | - Qiong Liu
- Otolaryngological Department, General Hospital of the Central Theater of the People's Liberation Army of China, Wuhan, China
| | - Jingfang Wang
- Department of Anesthesiology, Zhejiang Sian International Hospital, Jiaxing, China
| |
Collapse
|
28
|
Bruhn O, Lindsay M, Wiebel F, Kaehler M, Nagel I, Böhm R, Röder C, Cascorbi I. Alternative Polyadenylation of ABC Transporters of the C-Family (ABCC1, ABCC2, ABCC3) and Implications on Posttranscriptional Micro-RNA Regulation. Mol Pharmacol 2020; 97:112-122. [PMID: 31757862 DOI: 10.1124/mol.119.116590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022] Open
Abstract
ATP-binding cassette (ABC) transporters represent a large group of efflux pumps that are strongly involved in the pharmacokinetics of various drugs and nutrient distribution. It was recently shown that micro-RNAs (miRNAs) may significantly alter their expression as proven, e.g., for miR-379 and ABCC2 However, alternative mRNA polyadenylation may result in expression of 3'-untranslated regions (3'-UTRs) with varying lengths. Thus, length variants may result in presence or absence of miRNA binding sites for regulatory miRNAs with consequences on posttranscriptional control. In the present study, we report on 3'-UTR variants of ABCC1, ABCC2, and ABCC3 mRNA. Applying in vitro luciferase reporter gene assays, we show that expression of short ABCC2 3'-UTR variants leads to a significant loss of miR-379/ABCC2 interaction and subsequent upregulation of ABCC2 expression. Furthermore, we show that expression of ABCC2 3'-UTR lengths varies significantly between human healthy tissues but is not directly correlated to the respective protein level in vivo. In conclusion, the presence of altered 3'-UTR lengths in ABC transporters could lead to functional consequences regarding posttranscriptional gene expression, potentially regulated by alternative polyadenylation. Hence, 3'-UTR length variability may be considered as a further mechanism contributing to variability of ABCC transporter expression and subsequent drug variation in drug response. SIGNIFICANCE STATEMENT: micro-RNA (miRNA) binding to 3'-untranslated region (3'-UTR) plays an important role in the control of ATP-binding cassette (ABC)-transporter mRNA degradation and translation into proteins. We disclosed various 3'-UTR length variants of ABCC1, C2, and C3 mRNA, with loss of mRNA seed regions partly leading to varying and tissue-dependent interaction with miRNAs, as proven by reporter gene assays. Alternative 3'-UTR lengths may contribute to variable ABCC transporter expression and potentially explains inconsistent findings in miRNA studies.
Collapse
Affiliation(s)
- Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Marie Lindsay
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Friederike Wiebel
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ruwen Böhm
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christian Röder
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology (O.B., M.L., F.W., M.K., I.N., R.B., I.C.) and Institute for Experimental Cancer Research (C.R.), University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
29
|
Hsa-miR-210-3p expression in breast cancer and its putative association with worse outcome in patients treated with Docetaxel. Sci Rep 2019; 9:14913. [PMID: 31624308 PMCID: PMC6797767 DOI: 10.1038/s41598-019-51581-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNA-210-3p is the most prominent hypoxia regulated microRNA, and it has been found significantly overexpressed in different human cancers. We performed the expression analysis of miR-210-3p in a retrospective cohort of breast cancer patients with a median follow-up of 76 months (n = 283). An association between higher levels of miR-210-3p and risk of disease progression (HR: 2.13, 95%CI: 1.33-3.39, P = 0.002) was found in the subgroup of patients treated with Epirubicin and Cyclophosphamide followed by Docetaxel. Moreover, a cut off value of 20.966 established by ROC curve analyses allowed to discriminate patients who developed distant metastases with an accuracy of 85% at 3- (AUC: 0.870, 95%CI: 0.690-1.000) and 83% at 5-years follow up (AUC: 0.832, 95%CI: 0.656–1.000). Whereas the accuracy in discriminating patients who died for the disease was of 79.6% at both 5- (AUC: 0.804, 95%CI: 0.517–1.000) and 10-years (AUC: 0.804. 95%CI: 0.517–1.000) follow-up. In silico analysis of miR-210-3p and Docetaxel targets provided evidence for a putative molecular cross-talk involving microtubule regulation, drug efflux metabolism and oxidative stress response. Overall, our data point to the miR-210-3p involvement in the response to therapeutic regimens including Docetaxel in sequential therapy with anthracyclines, suggesting it may represent a predictive biomarker in breast cancer patients.
Collapse
|
30
|
Dai P, He Y, Luo G, Deng J, Jiang N, Fang T, Li Y, Cheng Y. Screening candidate microRNA-mRNA network for predicting the response to chemoresistance in osteosarcoma by bioinformatics analysis. J Cell Biochem 2019; 120:16798-16810. [PMID: 31090103 DOI: 10.1002/jcb.28938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/16/2019] [Accepted: 03/22/2019] [Indexed: 01/16/2023]
Abstract
The search for biomarkers is important for providing more targeted treatments for osteosarcoma patients with chemoresistance. In this study, differentially expressed microRNAs (miRNAs) were identified from miRNA expression profiles. And the target messenger RNAs (mRNAs) of miRNA were obtained from two websites in public domains. Analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway by these miRNA targets suggests that they may have potential links to osteosarcoma chemoresistance. In the protein-protein interaction (PPI) network, we screened three subnetworks and 10 hub RNAs, and analyzed through KEGG pathway and searched the PubMed database, indicating that they were significantly associated with drug resistance. Then we found 12 key mRNAs by analyzing the mRNA expression profile. Survival analyses showed that most of the 10 hub mRNAs and 12 key mRNAs had a significant influence on the prognosis of patients with chemoresistance osteosarcoma. A miRNA-mRNA network is constructed by integrating mRNAs and miRNAs information. The network biomarkers in this study have an advantage over traditional single-molecule biomarkers in terms of predictive power. And the mRNAs in this network biomarkers are supported by survival analysis or by existing theories. These results will contribute to the choice of chemotherapy before treatment and the prediction of patient prognosis.
Collapse
Affiliation(s)
- Penggao Dai
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yancheng He
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Guosong Luo
- Department of Health Management, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaqi Deng
- Department of Ultrasound Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Nan Jiang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Tingting Fang
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yujuan Li
- Department of Health Management, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Cheng
- College of Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
31
|
Stitzlein L, Rao PSS, Dudley R. Emerging oral VEGF inhibitors for the treatment of renal cell carcinoma. Expert Opin Investig Drugs 2018; 28:121-130. [DOI: 10.1080/13543784.2019.1559296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lea Stitzlein
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH, USA
| | - PSS Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH, USA
| | - Richard Dudley
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Findlay, Findlay, OH, USA
| |
Collapse
|
32
|
Shi C, Wang M. LINC01118 Modulates Paclitaxel Resistance of Epithelial Ovarian Cancer by Regulating miR-134/ABCC1. Med Sci Monit 2018; 24:8831-8839. [PMID: 30521500 PMCID: PMC6292151 DOI: 10.12659/msm.910932] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/06/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) has a high mortality rate and is a common malignant tumor of women, seriously impairing health. Chemoresistance is one of the major causes of poor prognosis. Therefore, analyzing the molecular mechanism of paclitaxel resistance has great significance. MATERIAL AND METHODS We analyzed aberrantly expressed lncRNAs in chemoresistant EOC cells by microarray and confirmed LINC01118 expression by real-time PCR. The paclitaxel sensitivity alternation was analyzed by MTS, flow cytometry, and Transwell assay, while wound healing assays were performed to assess apoptosis, migration, and invasion in vitro. The interaction between LINC01118 and miR-134 was confirmed by luciferase assay. RESULTS LINC01118 was highly expressed in EOC tissues and chemoresistant cells. Biological function experiments showed LINC01118 could facilitate paclitaxel resistance and promote migration and invasion while inhibiting apoptosis of EOC cells. Moreover, LINC01118 targets miR-134 and then affects ABCC1 expression. CONCLUSIONS LINC01118 acted as an oncogene and modulated EOC paclitaxel sensitivity by regulating miR-134/ABCC1.
Collapse
|