1
|
Yang K, Cai L, Zhao Y, Cheng H, Zhou R. Optimization of genome editing by CRISPR ribonucleoprotein for high efficiency of germline transmission of Sox9 in zebrafish. N Biotechnol 2025; 86:47-54. [PMID: 39848539 DOI: 10.1016/j.nbt.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Primordial germ cells (PGCs) are the first germline stem cells to emerge during early embryonic development and are essential for the propagation and survival of species. Genome editing creates mutagenesis possibilities in vivo, but the generation of precise mutations in PGCs is still challenging. Here, we report an optimized approach for highly efficient genome editing via introducing biallelic variations in early embryos in zebrafish. We adopted an extended, GC-rich, and chemically modified sgRNA along with microinjection of the CRISPR ribonucleoprotein (RNP) complex into the yolk sac at the 1-cell stage. We found that genome editing of Sox9a generated a high proportion of heterozygotes with edited alleles in the F1 generation, indicating biallelic editing. Deep sequencing and mapping the edited cells from early embryos to future tissues revealed that the edited founder has a dominantly edited allele, sox9a M1, accounting for over 99 % of alleles in the testis. Specifically, all offspring of the founder inherited the edited allele, suggesting nearly complete editing of the alleles in early germline cells. Overall, the optimization delineates biallelic editing of sox9a in early embryos and transmission of edited alleles to offspring, thus presenting a method to create a desired genetic mutation line of Sox9a avoiding lengthy traditional crossbreeding.
Collapse
Affiliation(s)
- Kangning Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Le Cai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Yu Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Zhang S, Song Y, Liu M, Yuan Z, Zhang M, Zhang H, Seim I, Fan G, Liu S, Liu X. Chromosome-level genome of butterflyfish unveils genomic features of unique colour patterns and morphological traits. DNA Res 2023; 30:dsad018. [PMID: 37590994 PMCID: PMC10468729 DOI: 10.1093/dnares/dsad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chaetodontidae, known as butterflyfishes, are typical fish in coral ecosystems, exhibiting remarkable interspecific differences including body colour patterns and feeding ecology. In this study, we report genomes of three butterflyfish species (Chelmon rostratus, Chaetodon trifasciatus and Chaetodon auriga) and a closely related species from the Pomacanthidae family, Centropyge bicolour, with an average genome size of 65,611 Mb. Chelmon rostratus, comprising 24 chromosomes assembled to the chromosome level, could be served as a reference genome for butterflyfish. By conducting a collinearity analysis between butterflyfishes and several fishes, we elucidated the specific and conserved genomic features of butterflyfish, with particular emphasis on novel genes arising from tandem duplications and their potential functions. In addition to the two melanocyte-specific tyr genes commonly found in fish, we found the gene tyrp3, a new tyrosinase-related proteins gene in the reef fish, including butterflyfish and clownfish, implicating their involvement in the pigmentation diversity of fish. Additionally, we observed a tandem duplication expansion of three copies of nell1 gene in C. rostratus genome, which likely contribute to its unique jaw development and distinctive morphology of its sharp mouth. These results provided valuable genomic resources for further investigations into the genetic diversity and evolutionary adaptations of reef fish.
Collapse
Affiliation(s)
- Suyu Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Meiru Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Mengqi Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4102, Queensland, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
3
|
Zhao Y, Liu Y, Wu J, Kong D, Zhao S, Li G, Li W. Swamp eel aldehyde reductase is involved in response to nitrosative stress via regulating NO/GSH levels. JOURNAL OF FISH BIOLOGY 2023; 103:529-543. [PMID: 37266950 DOI: 10.1111/jfb.15471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Aldehyde reductase (ALR) plays key roles in the detoxification of toxic aldehyde. In this study, the authors cloned the swamp eel ALR gene using rapid amplification of cDNA ends-PCR (RACE-PCR). The recombinant protein (rALR) was expressed in Escherichia coli and purified using a Ni2+ -NTA chelating column. The rALR protein exhibited efficient reductive activity towards several aldehydes, ketones and S-nitrosoglutathione (GSNO). A spot assay suggested that the recombinant E. coli strain expressing rALR showed better resistance to formaldehyde, sodium nitrite and GSNO stress, suggesting that swamp eel ALR is crucial for redox homeostasis in vivo. Consequently, the authors investigated the effect of rALR on the oxidative parameters of the liver in swamp eels challenged with Aeromonas hydrophila. The hepatic glutathione (GSH) content significantly increased, and the hepatic NO content and levels of reactive oxygen species and reactive nitrogen species significantly decreased when rALR was administered. In addition, the mRNA expression of hepatic Alr, HO1 and Nrf2 was significantly upregulated, whereas the expression levels of NF-κB, IL-1β and NOS1 were significantly downregulated in the rALR-administered group. Collectively, these results suggest that ALR is involved in the response to nitrosative stress by regulating GSH/NO levels in the swamp eel.
Collapse
Affiliation(s)
- Yuhe Zhao
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Yang Liu
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Jianfen Wu
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Dan Kong
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Sifan Zhao
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Guopan Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Wei Li
- College of Life Sciences, Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Gong G, Xiong Y, Xiao S, Li XY, Huang P, Liao Q, Han Q, Lin Q, Dan C, Zhou L, Ren F, Zhou Q, Gui JF, Mei J. Origin and chromatin remodeling of young X/Y sex chromosomes in catfish with sexual plasticity. Natl Sci Rev 2022; 10:nwac239. [PMID: 36846302 PMCID: PMC9945428 DOI: 10.1093/nsr/nwac239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 11/15/2022] Open
Abstract
Assembly of a complete Y chromosome is a significant challenge in animals with an XX/XY sex-determination system. Recently, we created YY-supermale yellow catfish by crossing XY males with sex-reversed XY females, providing a valuable model for Y-chromosome assembly and evolution. Here, we assembled highly homomorphic Y and X chromosomes by sequencing genomes of the YY supermale and XX female in yellow catfish, revealing their nucleotide divergences with only less than 1% and with the same gene compositions. The sex-determining region (SDR) was identified to locate within a physical distance of 0.3 Mb by FST scanning. Strikingly, the incipient sex chromosomes were revealed to originate via autosome-autosome fusion and were characterized by a highly rearranged region with an SDR downstream of the fusion site. We found that the Y chromosome was at a very early stage of differentiation, as no clear evidence of evolutionary strata and classical structure features of recombination suppression for a rather late stage of Y-chromosome evolution were observed. Significantly, a number of sex-antagonistic mutations and the accumulation of repetitive elements were discovered in the SDR, which might be the main driver of the initial establishment of recombination suppression between young X and Y chromosomes. Moreover, distinct three-dimensional chromatin organizations of the Y and X chromosomes were identified in the YY supermales and XX females, as the X chromosome exhibited denser chromatin structure than the Y chromosome, while they respectively have significantly spatial interactions with female- and male-related genes compared with other autosomes. The chromatin configuration of the sex chromosomes as well as the nucleus spatial organization of the XX neomale were remodeled after sex reversal and similar to those in YY supermales, and a male-specific loop containing the SDR was found in the open chromatin region. Our results elucidate the origin of young sex chromosomes and the chromatin remodeling configuration in the catfish sexual plasticity.
Collapse
Affiliation(s)
- Gaorui Gong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Xiong
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shijun Xiao
- Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing 314000, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Peipei Huang
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qian Liao
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingqing Han
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaohong Lin
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China,State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Cheng Dan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, Institute of Hydrobiology, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Wuhan 430072, China
| | - Fan Ren
- Hubei Hongshan Laboratory, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | | | - Jie Mei
- Corresponding author. E-mail:
| |
Collapse
|
5
|
Lysak MA. Celebrating Mendel, McClintock, and Darlington: On end-to-end chromosome fusions and nested chromosome fusions. THE PLANT CELL 2022; 34:2475-2491. [PMID: 35441689 PMCID: PMC9252491 DOI: 10.1093/plcell/koac116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/13/2022] [Indexed: 05/04/2023]
Abstract
The evolution of eukaryotic genomes is accompanied by fluctuations in chromosome number, reflecting cycles of chromosome number increase (polyploidy and centric fissions) and decrease (chromosome fusions). Although all chromosome fusions result from DNA recombination between two or more nonhomologous chromosomes, several mechanisms of descending dysploidy are exploited by eukaryotes to reduce their chromosome number. Genome sequencing and comparative genomics have accelerated the identification of inter-genome chromosome collinearity and gross chromosomal rearrangements and have shown that end-to-end chromosome fusions (EEFs) and nested chromosome fusions (NCFs) may have played a more important role in the evolution of eukaryotic karyotypes than previously thought. The present review aims to summarize the limited knowledge on the origin, frequency, and evolutionary implications of EEF and NCF events in eukaryotes and especially in land plants. The interactions between nonhomologous chromosomes in interphase nuclei and chromosome (mis)pairing during meiosis are examined for their potential importance in the origin of EEFs and NCFs. The remaining open questions that need to be addressed are discussed.
Collapse
Affiliation(s)
- Martin A Lysak
- CEITEC—Central European Institute of Technology, Masaryk University, Brno, CZ-625 00, Czech Republic
| |
Collapse
|
6
|
Tian HF, Hu Q, Lu HY, Li Z. Chromosome-Scale, Haplotype-Resolved Genome Assembly of Non-Sex-Reversal Females of Swamp Eel Using High-Fidelity Long Reads and Hi-C Data. Front Genet 2022; 13:903185. [PMID: 35669182 PMCID: PMC9165713 DOI: 10.3389/fgene.2022.903185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
The Asian swamp eel (Monopterus albus) is an excellent model species for studying sex change and chromosome evolution. M. albus is also widely reared in East Asia and South-East Asia because of its great nutritional value. The low fecundity of this species (about 300 eggs per fish) greatly hinders fries production and breeding programs. Interestingly, about 3–5% of the eels could remain as females for 3 years and lay more than 3,000 eggs per fish, which are referred to as non-sex-reversal (NSR) females. Here, we presented a new chromosome-level genome assembly of such NSR females using Illumina, HiFi, and Hi-C sequencing technologies. The new assembly (Mal.V2_NSR) is 838.39 Mb in length, and the N50 of the contigs is 49.8 Mb. Compared with the previous assembly obtained using the continuous long-read sequencing technology (Mal.V1_CLR), we found a remarkable increase of continuity in the new assembly Mal.V2_NSR with a 20-times longer contig N50. Chromosomes 2 and 12 were assembled into a single contig, respectively. Meanwhile, two highly contiguous haplotype assemblies were also obtained, with contig N50 being 14.54 and 12.13 Mb, respectively. BUSCO and Merqury analyses indicate completeness and high accuracy of these three assemblies. A comparative genomic analysis revealed substantial structural variations (SVs) between Mal.V2_NSR and Mal.V1_CLR and two phased haplotype assemblies, as well as whole chromosome fusion events when compared with the zig-zag eel. Additionally, our newly obtained assembly provides a genomic view of sex-related genes and a complete landscape of the MHC genes. Therefore, these high-quality genome assemblies would provide great help for future breeding works of the swamp eel, and it is a valuable new reference for genetic and genomic studies of this species.
Collapse
Affiliation(s)
- Hai-Feng Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qiaomu Hu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hong-Yi Lu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- *Correspondence: Zhong Li,
| |
Collapse
|
7
|
Cheng H, Zhou R. Decoding genome recombination and sex reversal. Trends Endocrinol Metab 2022; 33:175-185. [PMID: 35000844 DOI: 10.1016/j.tem.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022]
Abstract
Over the past 440 years since the discovery of the medicinal value of swamp eels, much progress has been made in the study of their biology. The fish is emerging as an important model animal in sexual development, in addition to economic and pharmaceutical implications. Tracing genomic history that shapes speciation of the fish has led to discovery of the whole genome-wide chromosome fission/fusion events. Natural intersex differentiation is a compelling feature for sexual development research. Notably, identification of progenitors of germline stem cells that have bipotential to differentiate into either male or female germline stem cells provides new insight into sex reversal. Here, we review these advances that have propelled the field forwards and present unsolved issues that will guide future investigations to finally elucidate vertebrate sexual development using the new model.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
8
|
Liu W, Fan Y, Zhou Y, Jiang N, Li Y, Meng Y, Xue M, Li Z, Zeng L. Susceptibility of a cell line derived from the kidney of Chinese rice-field eel, Monopterus albus to the infection of rhabdovirus, CrERV. JOURNAL OF FISH DISEASES 2022; 45:361-371. [PMID: 34843633 DOI: 10.1111/jfd.13563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Chinese rice-field eels rhabdovirus (CrERV), belonging to the genus Perhabdovirus in the family Rhabdoviridae, is the causative agent of the haemorrhagic disease of Chinese rice-field eels, Monopterus albus. The present study aims to establish a cell line derived from the kidney of Chinese rice-field eel (CrEK) for the further study of the pathogenic virus. CrEK cells were epithelioid-like and grew well in M199 medium supplemented with 10% foetal bovine serum at 28°C, and the cell line has been subcultured for more than 80 times. Karyotyping analysis of CrEK cells at 25th passage indicated a modal chromosome number of 24. Significant cytopathic effect (CPE) was observed in CrEK cells after infection with CrERV, and the virus titre reached 107.8 ± 0.45 TCID50 /mL. The transmission electron microscopy revealed that there were a large number of virus particles in the cytoplasm of cells. The virus infection in cells was also assayed by using indirect immunofluorescence assay (IFA), fluorescence in situ hybridization (FISH), reverse transcription PCR (RT-PCR) and quantitative real-time reverse transcription-PCR (qRT-PCR). In experimental infection, CrERV cultured by cells could cause over 90% mortality in fish. CrEK represents the first kidney cell line originated from Chinese rice-field eels and be a potential material for investigating the mechanism of virus infection in this fish and the control methods for the disease.
Collapse
Affiliation(s)
- Wenzhi Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yiqun Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Zhong Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Lingbing Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
9
|
Xuan Y, Ma B, Li D, Tian Y, Zeng Q, He N. Chromosome restructuring and number change during the evolution of Morus notabilis and Morus alba. HORTICULTURE RESEARCH 2022; 9:6510928. [PMID: 35043186 PMCID: PMC8769039 DOI: 10.1093/hr/uhab030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/19/2021] [Accepted: 09/16/2021] [Indexed: 05/20/2023]
Abstract
Mulberry (Morus spp.) is an economically important plant as the main food plant used for rearing domesticated silkworm and it has multiple uses in traditional Chinese medicine. Two basic chromosome numbers (Morus notabilis, n = 7, and Morus alba, n = 14) have been reported in the genus Morus, but the evolutionary history and relationship between them remain unclear. In the present study, a 335-Mb high-quality chromosome-scale genome was assembled for the wild mulberry species M. notabilis. Comparative genomic analyses indicated high chromosomal synteny between the 14 chromosomes of cultivated M. alba and the six chromosomes of wild M. notabilis. These results were successfully verified by fluorescence in situ hybridization. Chromosomal fission/fusion events played crucial roles in the chromosome restructuring process between M. notabilis and M. alba. The activity of the centromere was another key factor that ensured the stable inheritance of chromosomes. Our results also revealed that long terminal repeat retrotransposons were a major driver of the genome divergence and evolution of the mulberry genomes after they diverged from each other. This study provides important insights and a solid foundation for studying the evolution of mulberry, allowing the accelerated genetic improvement of cultivated mulberry species.
Collapse
Affiliation(s)
- Yahui Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Dong Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Yu Tian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Qiwei Zeng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
- Corresponding author. E-mail:
| |
Collapse
|
10
|
Liu L, Zhou Q, Lin C, He L, Wei L. Histological alterations, oxidative stress, and inflammatory response in the liver of swamp eel (Monopterus albus) acutely exposed to copper. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1865-1878. [PMID: 34564773 DOI: 10.1007/s10695-021-01014-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Copper (Cu) is widely used as an essential trace element in diets as well as a therapeutic chemical. However, excessive Cu has deleterious effects on organisms, including teleosts. Although numerous toxic effects of Cu have been reported, the effects of Cu exposure on the swamp eel (Monopterus albus) as well as the underlying mechanisms have not yet been elucidated. In this study, swamp eels were acutely exposed to 100, 200, and 400 μg/L of Cu for 96 h to evaluate liver histopathology, oxidative stress, and inflammation. Dissolution of hepatocyte membrane, vacuolar degeneration, and inflammatory cell infiltration were detected in the livers of the Cu-treated swamp eels, especially in the 400 μg Cu/L group. Cu-induced hepatic dysfunction was further verified by the elevated activities of glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) and transcript levels of GOT and GPT genes. In addition, Cu exposure decreased the activities of total superoxide dismutase T-SOD and catalase (CAT) and the contents of glutathione (GSH) and total antioxidant capacity (T-AOC) and increased the levels of malondialdehyde (MDA). Cu exposure also significantly decreased the transcript levels of glutathione synthetase (GSS) and increased the transcript levels of SOD1, SOD2, CAT, and heme oxygenase-1 (HO-1) genes. Furthermore, pro-inflammatory genes such as interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), and IL-8 were significantly upregulated. These results indicate that Cu induces oxidative stress and inflammatory response and causes pathological changes in the liver of the swamp eel.
Collapse
Affiliation(s)
- Lin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, People's Republic of China
| | - Qiubai Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, People's Republic of China
| | - Changgao Lin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, People's Republic of China
| | - Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, People's Republic of China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, People's Republic of China.
| |
Collapse
|
11
|
Li H, Chen C, Wang Z, Wang K, Li Y, Wang W. Pattern of New Gene Origination in a Special Fish Lineage, the Flatfishes. Genes (Basel) 2021; 12:genes12111819. [PMID: 34828425 PMCID: PMC8618825 DOI: 10.3390/genes12111819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Origination of new genes are of inherent interest of evolutionary geneticists for decades, but few studies have addressed the general pattern in a fish lineage. Using our recent released whole genome data of flatfishes, which evolved one of the most specialized body plans in vertebrates, we identified 1541 (6.9% of the starry flounder genes) flatfish-lineage-specific genes. The origination pattern of these flatfish new genes is largely similar to those observed in other vertebrates, as shown by the proportion of DNA-mediated duplication (1317; 85.5%), RNA-mediated duplication (retrogenes; 96; 6.2%), and de novo-origination (128; 8.3%). The emergence rate of species-specific genes is 32.1 per Mya and the whole average level rate for the flatfish-lineage-specific genes is 20.9 per Mya. A large proportion (31.4%) of these new genes have been subjected to selection, in contrast to the 4.0% in primates, while the old genes remain quite similar (66.4% vs. 65.0%). In addition, most of these new genes (70.8%) are found to be expressed, indicating their functionality. This study not only presents one example of systematic new gene identification in a teleost taxon based on comprehensive phylogenomic data, but also shows that new genes may play roles in body planning.
Collapse
|
12
|
Ferchaud AL, Mérot C, Normandeau E, Ragoussis J, Babin C, Djambazian H, Bérubé P, Audet C, Treble M, Walkusz W, Bernatchez L. Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland Halibut (Reinhardtius hippoglossoides). G3-GENES GENOMES GENETICS 2021; 12:6428537. [PMID: 34791178 DOI: 10.1093/g3journal/jkab376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022]
Abstract
Despite the commercial importance of Greenland Halibut (Reinhardtius hippoglossoides), important gaps still persist in our knowledge of this species, including its reproductive biology and sex determination mechanism. Here, we combined single-molecule sequencing of long reads (Pacific Sciences) with chromatin conformation capture sequencing (Hi-C) data to assemble the first chromosome-level reference genome for this species. The high-quality assembly encompassed more than 598 Megabases (Mb) assigned to 1 594 scaffolds (scaffold N50 = 25 Mb) with 96% of its total length distributed among 24 chromosomes. Investigation of the syntenic relationship with other economically important flatfish species revealed a high conservation of synteny blocks among members of this phylogenetic clade. Sex determination analysis revealed that, similar to other teleost fishes, flatfishes also exhibit a high level of plasticity and turnover in sex-determination mechanisms. A low-coverage whole-genome sequence analysis of 198 individuals revealed that Greenland Halibut possesses a male heterogametic XY system and several putative candidate genes implied in the sex determination of this species. Our study also suggests for the first time in flatfishes that a putative Y-autosomal fusion could be associated with a reduction of recombination typical of the early steps of sex chromosome evolution.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Charles Babin
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Haig Djambazian
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Pierre Bérubé
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Céline Audet
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Margaret Treble
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Wocjciech Walkusz
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
13
|
Cheng H, He Y, Zhou R. Swamp eel (Monopterus albus). Trends Genet 2021; 37:1137-1138. [PMID: 34635349 DOI: 10.1016/j.tig.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, Department of Genetics, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| | - Yan He
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, Department of Genetics, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
14
|
Mattick J, Libro S, Bromley R, Chaicumpa W, Chung M, Cook D, Khan MB, Kumar N, Lau YL, Misra-Bhattacharya S, Rao R, Sadzewicz L, Saeung A, Shahab M, Sparklin BC, Steven A, Turner JD, Tallon LJ, Taylor MJ, Moorhead AR, Michalski M, Foster JM, Dunning Hotopp JC. X-treme loss of sequence diversity linked to neo-X chromosomes in filarial nematodes. PLoS Negl Trop Dis 2021; 15:e0009838. [PMID: 34705823 PMCID: PMC8575316 DOI: 10.1371/journal.pntd.0009838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 11/08/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The sequence diversity of natural and laboratory populations of Brugia pahangi and Brugia malayi was assessed with Illumina resequencing followed by mapping in order to identify single nucleotide variants and insertions/deletions. In natural and laboratory Brugia populations, there is a lack of sequence diversity on chromosome X relative to the autosomes (πX/πA = 0.2), which is lower than the expected (πX/πA = 0.75). A reduction in diversity is also observed in other filarial nematodes with neo-X chromosome fusions in the genera Onchocerca and Wuchereria, but not those without neo-X chromosome fusions in the genera Loa and Dirofilaria. In the species with neo-X chromosome fusions, chromosome X is abnormally large, containing a third of the genetic material such that a sizable portion of the genome is lacking sequence diversity. Such profound differences in genetic diversity can be consequential, having been associated with drug resistance and adaptability, with the potential to affect filarial eradication.
Collapse
Affiliation(s)
- John Mattick
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Silvia Libro
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Robin Bromley
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Matthew Chung
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Darren Cook
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Mohammad Behram Khan
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nikhil Kumar
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Ramakrishna Rao
- Division of Infectious Diseases, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Lisa Sadzewicz
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Atiporn Saeung
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Mohd Shahab
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Benjamin C. Sparklin
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Andrew Steven
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D. Turner
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Luke J. Tallon
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
| | - Mark J. Taylor
- Centre for Neglected Tropical Diseases, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew R. Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Michelle Michalski
- University of Wisconsin Oshkosh, Oshkosh, Wisconsin, United States of America
| | - Jeremy M. Foster
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Julie C. Dunning Hotopp
- Institute for Genome Science, University of Maryland, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Cellular fate of intersex differentiation. Cell Death Dis 2021; 12:388. [PMID: 33846307 PMCID: PMC8041806 DOI: 10.1038/s41419-021-03676-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/02/2023]
Abstract
Infertile ovotestis (mixture of ovary and testis) often occurs in intersex individuals under certain pathological and physiological conditions. However, how ovotestis is formed remains largely unknown. Here, we report the first comprehensive single-cell developmental atlas of the model ovotestis. We provide an overview of cell identities and a roadmap of germline, niche, and stem cell development in ovotestis by cell lineage reconstruction and a uniform manifold approximation and projection. We identify common progenitors of germline stem cells with two states, which reveal their bipotential nature to differentiate into both spermatogonial stem cells and female germline stem cells. Moreover, we found that ovotestis infertility was caused by degradation of female germline cells via liquid-liquid phase separation of the proteasomes in the nucleus, and impaired histone-to-protamine replacement in spermatid differentiation. Notably, signaling pathways in gonadal niche cells and their interaction with germlines synergistically determined distinct cell fate of both male and female germlines. Overall, we reveal a cellular fate map of germline and niche cell development that shapes cell differentiation direction of ovotestis, and provide novel insights into ovotestis development.
Collapse
|
16
|
Trostchansky A, Wood I, Rubbo H. Regulation of arachidonic acid oxidation and metabolism by lipid electrophiles. Prostaglandins Other Lipid Mediat 2021; 152:106482. [PMID: 33007446 DOI: 10.1016/j.prostaglandins.2020.106482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
Arachidonic acid (AA) is a precursor of enzymatic and non-enzymatic oxidized products such as prostaglandins, thromboxanes, leukotrienes, lipoxins, and isoprostanes. These products may exert signaling or damaging roles during physiological and pathological conditions, some of them being markers of oxidative stress linked to inflammation. Recent data support the concept that cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 (CYP450) followed by cytosolic and microsomal dehydrogenases can convert AA to lipid-derived electrophiles (LDE). Lipid-derived electrophiles are fatty acid derivatives bearing an electron-withdrawing group that can react with nucleophiles at proteins, DNA, and small antioxidant molecules exerting potent signaling properties. This review aims to describe the formation, sources, and electrophilic anti-inflammatory actions of key mammalian LDE.
Collapse
Affiliation(s)
- Andrés Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Irene Wood
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Homero Rubbo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
17
|
Wang X, Lai F, Xiong J, Zhu W, Yuan B, Cheng H, Zhou R. DNA methylation modification is associated with gonadal differentiation in Monopterus albus. Cell Biosci 2020; 10:129. [PMID: 33292595 PMCID: PMC7654577 DOI: 10.1186/s13578-020-00490-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Both testis and ovary can be produced sequentially in an individual with the same genome when sex reversal occurs in the teleost Monopterus albus, and epigenetic modification is supposed to be involved in gonadal differentiation. However, DNA methylation regulation mechanism underlying the gonadal differentiation remains unclear. Results Here, we used liquid chromatography-electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) to simultaneously determine endogenous levels of both 5-methyl-2′-deoxycytidine (m5dC) and 5-hydroxymethyl-2′-deoxycytidine (hm5dC) during gonadal differentiation. Overall DNA methylation level was upregulated from ovary to testis via ovotestis. As a de novo methylase, dnmt3aa expression was also upregulated in the process. Notably, we determined transcription factor Foxa1 for dnmt3aa gene expression. Site-specific mutations and chromatin immunoprecipitation showed that Foxa1 can bind to and activate the dnmt3aa promoter. Furthermore, DNA methylation levels of key genes foxl2 (forkhead box L2) and cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a) in regulation of female hormone synthesis were consistently upregulated during gonadal differentiation. Conclusions These data suggested that dynamic change of DNA methylation modification is associated with gonadal differentiation.
Collapse
Affiliation(s)
- Xin Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fengling Lai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Xiong
- Key Laboratory of Analytical Chemistry for Biology and Medicine of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Wang Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bifeng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|