1
|
Li D, Mailand N, Ewing E, Hoffmann S, Caswell RC, Pang L, Eason J, Dou Y, Sullivan KE, Hakonarson H, Levine MA. Quantitative hypermorphic FAM111A alleles cause autosomal recessive Kenny-Caffey syndrome type 2 and osteocraniostenosis. JCI Insight 2025; 10:e186862. [PMID: 39932783 PMCID: PMC11949059 DOI: 10.1172/jci.insight.186862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 02/05/2025] [Indexed: 02/13/2025] Open
Abstract
Kenny-Caffey syndrome (KCS) is a rare genetic disorder characterized by extreme short stature, cortical thickening and medullary stenosis of tubular bones, facial dysmorphism, abnormal T cell function, and hypoparathyroidism. Biallelic loss-of-function variants in TBCE cause autosomal recessive type 1 KCS (KCS1). By contrast, heterozygous missense variants in a restricted region of the FAM111A gene have been identified in autosomal dominant type 2 KCS (KCS2) and a more severe lethal phenotype, osteocraniostenosis (OCS); these variants have recently been shown to confer a gain of function. In this study, we describe 2 unrelated children with KCS and OCS who were homozygous for different FAM111A variant alleles that result in replacement of the same residue, Tyr414 (c.1241A>G, p.Y414C and c.1240T>A, p.Y414N), in the mature FAM111A protein. Their heterozygous relatives are asymptomatic. Functional studies of recombinant FAM111AY414C demonstrated normal dimerization and a mild gain-of-function effect. This study provides evidence that both biallelic and monoallelic variants of FAM111A with varying degrees of activation can lead to dominant or recessive KCS2 and OCS.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Niels Mailand
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Emma Ewing
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Saskia Hoffmann
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark
| | - Richard C. Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Lewis Pang
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Jacqueline Eason
- Department of Clinical Genetics, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Ying Dou
- Division of Allergy and Immunology and
| | - Kathleen E. Sullivan
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Allergy and Immunology and
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael A. Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Endocrinology and Diabetes and Center for Bone Health, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Simsek E, Eren SE, Cayir A, Tokur O, Cilingir O, Simsek T. Key Clinical and X-Ray Characteristics for the Diagnosis of Kenny-Caffey Syndrome Types 1 and 2. Mol Syndromol 2025; 16:77-86. [PMID: 39911167 PMCID: PMC11793900 DOI: 10.1159/000540377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/14/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Kenny-Caffey syndrome (KCS) is a rare syndrome characterized by short stature, hypoparathyroidism, eye abnormalities, and skeletal dysplasia. Two types of KCS result from pathogenic variants in the tubulin-specific chaperone E (TBCE) gene and the family with sequence similarity 111 member A (FAM111A) gene, respectively. Case Presentation In this study, we present 4 patients from three different families exhibiting facial dysmorphism, postnatal growth retardation, short stature, delayed bone age, cortical thickening and medullary stenosis of the bones, and hypoparathyroidism. Two of these cases were diagnosed with growth hormone (GH) deficiency and underwent GH therapy, highlighting the response to GH treatment in KCS. Three consanguineous cases of KCS type 1 possess a homozygous variant c.155_166del in the TBCE gene, and 1 patient with KCS type 2 has a de novo pathogenic variant c.1706G>A (p.Arg569His) in the FAM111 gene. Conclusions Our findings suggest that prenatal and postnatal growth failure is a prominent characteristic of this syndrome, with KCS types 1 and 2 showing overlapping features.
Collapse
Affiliation(s)
- Enver Simsek
- Department of Pediatric Endocrinology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Sumeyye Emel Eren
- Department of Pediatric Endocrinology, Ankara Etlik State Hospital, Ankara, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Oguzhan Tokur
- Department of Radiology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Oguz Cilingir
- Department of Medical Genetics, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Tulay Simsek
- Department of Ophthalmology, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
3
|
Bonde LD, Abdelrazek IM, Seif L, Alawi M, Matrawy K, Nabil K, Abdalla E, Kutsche K, Harms FL. Homozygous synonymous FAM111A variant underlies an autosomal recessive form of Kenny-Caffey syndrome. J Hum Genet 2025; 70:87-97. [PMID: 39501122 PMCID: PMC11762410 DOI: 10.1038/s10038-024-01301-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
FAM111A (family with sequence similarity 111 member A) is a serine protease and removes covalent DNA-protein cross-links during DNA replication. Heterozygous gain-of-function variants in FAM111A cause skeletal dysplasias, such as the perinatal lethal osteocraniostenosis and the milder Kenny-Caffey syndrome (KCS). We report two siblings born to consanguineous parents with dysmorphic craniofacial features, postnatal growth retardation, ophthalmologic manifestations, hair and nail anomalies, and skeletal abnormalities such as thickened cortex and stenosis of the medullary cavity of the long bones suggestive of KCS. Using exome sequencing, a homozygous synonymous FAM111A variant, NM_001312909.2:c.81 G > A; p.Pro27=, that affects the last base of the exon and is predicted to alter FAM111A pre-mRNA splicing, was identified in both siblings. We identified aberrantly spliced FAM111A transcripts, reduced FAM111A mRNA levels, and near-complete absence of FAM111A protein in fibroblasts of both patients. After treatment of patient and control fibroblasts with different concentrations of camptothecin that induces covalent DNA-protein cross-links, we observed a tendency towards a reduced proportion of metabolically active cells in patient compared to control fibroblasts. However, under these culture conditions, we did not find consistent and statistically significant differences in cell cycle progression and apoptotic cell death between patient and control cells. Our findings show that FAM111A deficiency underlies an autosomal recessive form of FAM111A-related KCS. Based on our results and published data, we hypothesize that loss of FAM111A and FAM111A protease hyperactivity, as observed for gain-of-function patient-variant proteins, may converge on a similar pathomechanism underlying skeletal dysplasias.
Collapse
Affiliation(s)
- Loisa Dana Bonde
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ibrahim M Abdelrazek
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Lara Seif
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Khaled Matrawy
- Diagnostic Radiology and Medical Imaging Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Karim Nabil
- Department of Ophthalmology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ebtesam Abdalla
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederike Leonie Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
4
|
Hatziagapiou K, Sertedaki A, Dermentzoglou V, Popović NČ, Lambrou GI, Papageorgiou L, Thireou T, Kanaka-Gantenbein C, Sakka SD. Kenny-Caffey Syndrome Type 2 (KCS2): A New Case Report and Patient Follow-Up Optimization. J Clin Med 2024; 14:118. [PMID: 39797201 PMCID: PMC11721953 DOI: 10.3390/jcm14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Kenny-Caffey syndrome 2 (KCS2) is a rare cause of hypoparathyroidism, inherited in an autosomal dominant mode, resulting from pathogenic variants of the FAM111A gene, which is implicated in intracellular pathways regulating parathormone (PTH) synthesis and skeletal and parathyroid gland development. Methods: The case of a boy is reported, presenting with the characteristic and newly identified clinical, biochemical, radiological, and genetic abnormalities of KCS2. Results: The proband had noticeable dysmorphic features, and the closure of the anterior fontanel was delayed until the age of 4 years. Biochemical evaluation at several ages revealed persistent hypocalcemia, high normal phosphorous, and inappropriately low normal PTH. To exclude other causes of short stature, the diagnostic approach revealed low levels of IGF-1, and on CNS MRI, small pituitary gland and empty sella. Nocturnal levels of growth hormone were normal. MRI also revealed bilateral symmetrical microphthalmia and torturous optic nerves. Skeletal survey was compatible with cortical thickening and medullary stenosis of the long bones. Genomic data analysis revealed a well-known pathogenic variant of the FAM111A gene (c.1706G>A, p. R569H), which is linked with KCS2 or nanophthalmos. Conclusions: KCS2, although a rare disease, should be included in the differential diagnosis of hypoparathyroidism and short stature. Understanding the association of pathogenic variants with KCS2 phenotypic variability will allow the advancement of clinical genetics and personalized long-term follow-up and will offer insights into the role of the FAM111A gene in the disease pathogenesis and normal embryogenesis of implicated tissues and organs.
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- Division of Endocrinology, Diabetes and Metabolism, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece; (A.S.); (C.K.-G.); (S.D.S.)
| | - Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece; (A.S.); (C.K.-G.); (S.D.S.)
| | | | - Nataša Čurović Popović
- Department of Endocrinology, Institute for Children’s Diseases, Clinical Centre of Montenegro, 81000 Podgorica, Montenegro;
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (L.P.); (T.T.)
- Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Egaleo, Greece
| | - Trias Thireou
- Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (L.P.); (T.T.)
| | - Christina Kanaka-Gantenbein
- Division of Endocrinology, Diabetes and Metabolism, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece; (A.S.); (C.K.-G.); (S.D.S.)
| | - Sophia D. Sakka
- Division of Endocrinology, Diabetes and Metabolism, ENDO-ERN Center for Rare Pediatric Endocrine Disorders, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children’s Hospital, 11527 Athens, Greece; (A.S.); (C.K.-G.); (S.D.S.)
| |
Collapse
|
5
|
Chen X, Zou C. Further delineation of phenotype and genotype of Kenny-Caffey syndrome type 2 (phenotype and genotype of KCS type 2). Mol Genet Genomic Med 2024; 12:e2433. [PMID: 38591167 PMCID: PMC11002637 DOI: 10.1002/mgg3.2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/10/2024] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Kenny-Caffey syndrome type 2 (KCS2) is an extremely rare inherited disorder characterized by proportionate short stature, skeletal defects, ocular and dental abnormalities, and transient hypocalcemia. It is caused by variants in FAM111A gene. Diagnosis of KCS2 can be challenging because of its similarities to other syndromes, the absence of clear hallmarks and the deficient number of genetically confirmed cases. Here, we aimed to further delineate and summarize the genotype and phenotype of KCS2, in order to get a better understanding of this rare disorder, and promote early diagnosis and intervention. METHODS We present clinical and genetic characteristics of eight newly affected individuals with KCS2 from six families, including one family with three individuals found to be a father-to-daughter transmission, adding to the limited literature. Furthermore, we performed a review of genetically confirmed KCS2 cases in PubMed, MEDLINE and CNKI databases. RESULTS There were six females and two males in our cohort. All the patients presented with short stature (100.0%). Clinical manifestations included ocular defects such as hypermetropia (5/8), dental problems such as defective dentition (3/8) and dental caries (3/8), skeletal and brain anomalies such as delayed closure of anterior fontanelle (6/8), cerebral calcification (3/8), cortical thickening (3/8) and medullary stenosis (4/8) of tubular bones. Endocrinologic abnormalities included hypoparathyroidism (5/8) and hypocalcemia (3/8). One male patient had micropenis and microorchidism. All cases harboured missense variants of FAM111A, and nucleotides c.1706 arose as a mutational hotspot, with seven individuals harbouring a c.1706G>A (p.Arg569His) variant, and one child harbouring a c.1531T>C (p.Tyr511His) variant. Literature review yielded a total of 46 patients from 20 papers. Data analysis showed that short stature, hypoparathyroidism and hypocalcemia, ocular and dental defects, skeletal features including cortical thickening and medullary stenosis of tubular bones, and seizures/spasms were present in more than 70% of the reported KCS2 cases. CONCLUSION We provide detailed characteristics of the largest KCS2 group in China and present the first genetically confirmed instance of father-to-daughter transmission of KCS2. Our study confirms that Arg569His is the hot spot variant and summarizes the typical phenotypes of KCS2, which would help early diagnosis and intervention.
Collapse
Affiliation(s)
- Xuefei Chen
- Department of Endocrinology, Children's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chaochun Zou
- Department of Endocrinology, Children's HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
6
|
Naicker D, Rhoda C, Sunda F, Arowolo A. Unravelling the Intricate Roles of FAM111A and FAM111B: From Protease-Mediated Cellular Processes to Disease Implications. Int J Mol Sci 2024; 25:2845. [PMID: 38474092 DOI: 10.3390/ijms25052845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Proteases are critical enzymes in cellular processes which regulate intricate events like cellular proliferation, differentiation and apoptosis. This review highlights the multifaceted roles of the serine proteases FAM111A and FAM111B, exploring their impact on cellular functions and diseases. FAM111A is implicated in DNA replication and replication fork protection, thereby maintaining genome integrity. Additionally, FAM111A functions as an antiviral factor against DNA and RNA viruses. Apart from being involved in DNA repair, FAM111B, a paralog of FAM111A, participates in cell cycle regulation and apoptosis. It influences the apoptotic pathway by upregulating anti-apoptotic proteins and modulating cell cycle-related proteins. Furthermore, FAM111B's association with nucleoporins suggests its involvement in nucleo-cytoplasmic trafficking and plays a role in maintaining normal telomere length. FAM111A and FAM111B also exhibit some interconnectedness and functional similarity despite their distinct roles in cellular processes and associated diseases resulting from their dysfunction. FAM111A and FAM111B dysregulation are linked to genetic disorders: Kenny-Caffey Syndrome type 2 and Gracile Bone Dysplasia for FAM111A and POIKTMP, respectively, and cancers. Therefore, the dysregulation of these proteases in diseases emphasizes their potential as diagnostic markers and therapeutic targets. Future research is essential to unravel the intricate mechanisms governing FAM111A and FAM111B and explore their therapeutic implications comprehensively.
Collapse
Affiliation(s)
- Danielle Naicker
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Cenza Rhoda
- Hair and Skin Research Unit, Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Falone Sunda
- Hair and Skin Research Unit, Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
| | - Afolake Arowolo
- Hair and Skin Research Unit, Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town 7925, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town 7500, South Africa
| |
Collapse
|
7
|
Rios-Szwed DO, Alvarez V, Sanchez-Pulido L, Garcia-Wilson E, Jiang H, Bandau S, Lamond A, Alabert C. FAM111A regulates replication origin activation and cell fitness. Life Sci Alliance 2023; 6:e202302111. [PMID: 37793778 PMCID: PMC10551639 DOI: 10.26508/lsa.202302111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023] Open
Abstract
FAM111A is a replisome-associated protein and dominant mutations within its trypsin-like peptidase domain are linked to severe human developmental syndrome, the Kenny-Caffey syndrome. However, FAM111A functions remain unclear. Here, we show that FAM111A facilitates efficient activation of DNA replication origins. Upon hydroxyurea treatment, FAM111A-depleted cells exhibit reduced single-stranded DNA formation and a better survival rate. Unrestrained expression of FAM111A WT and patient mutants causes accumulation of DNA damage and cell death, only when the peptidase domain remains intact. Unrestrained expression of FAM111A WT also causes increased single-stranded DNA formation that relies on S phase entry, FAM111A peptidase activity but not its binding to proliferating cell nuclear antigen. Altogether, these data unveil how FAM111A promotes DNA replication under normal conditions and becomes harmful in a disease context.
Collapse
Affiliation(s)
| | - Vanesa Alvarez
- MCDB, School of Life Sciences, University of Dundee, Dundee, UK
| | - Luis Sanchez-Pulido
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, UK
| | | | - Hao Jiang
- MCDB, Quantitative Proteomics Laboratory, School of Life Sciences, University of Dundee, Dundee, UK
| | - Susanne Bandau
- MCDB, School of Life Sciences, University of Dundee, Dundee, UK
| | - Angus Lamond
- MCDB, Quantitative Proteomics Laboratory, School of Life Sciences, University of Dundee, Dundee, UK
| | | |
Collapse
|
8
|
Schigt H, Bald M, van der Eerden BCJ, Gal L, Ilenwabor BP, Konrad M, Levine MA, Li D, Mache CJ, Mackin S, Perry C, Rios FJ, Schlingmann KP, Storey B, Trapp CM, Verkerk AJMH, Zillikens MC, Touyz RM, Hoorn EJ, Hoenderop JGJ, de Baaij JHF. Expanding the Phenotypic Spectrum of Kenny-Caffey Syndrome. J Clin Endocrinol Metab 2023; 108:e754-e768. [PMID: 36916904 PMCID: PMC10438882 DOI: 10.1210/clinem/dgad147] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
CONTEXT Kenny-Caffey syndrome (KCS) is a rare hereditary disorder characterized by short stature, hypoparathyroidism, and electrolyte disturbances. KCS1 and KCS2 are caused by pathogenic variants in TBCE and FAM111A, respectively. Clinically the phenotypes are difficult to distinguish. OBJECTIVE The objective was to determine and expand the phenotypic spectrum of KCS1 and KCS2 in order to anticipate complications that may arise in these disorders. METHODS We clinically and genetically analyzed 10 KCS2 patients from 7 families. Because we found unusual phenotypes in our cohort, we performed a systematic review of genetically confirmed KCS cases using PubMed and Scopus. Evaluation by 3 researchers led to the inclusion of 26 papers for KCS1 and 16 for KCS2, totaling 205 patients. Data were extracted following the Cochrane guidelines and assessed by 2 independent researchers. RESULTS Several patients in our KCS2 cohort presented with intellectual disability (3/10) and chronic kidney disease (6/10), which are not considered common findings in KCS2. Systematic review of all reported KCS cases showed that the phenotypes of KCS1 and KCS2 overlap for postnatal growth retardation (KCS1: 52/52, KCS2: 23/23), low parathyroid hormone levels (121/121, 16/20), electrolyte disturbances (139/139, 24/27), dental abnormalities (47/50, 15/16), ocular abnormalities (57/60, 22/23), and seizures/spasms (103/115, 13/16). Symptoms more prevalent in KCS1 included intellectual disability (74/80, 5/24), whereas in KCS2 bone cortical thickening (1/18, 16/20) and medullary stenosis (7/46, 27/28) were more common. CONCLUSION Our case series established chronic kidney disease as a new feature of KCS2. In the literature, we found substantial overlap in the phenotypic spectra of KCS1 and KCS2, but identified intellectual disability and the abnormal bone phenotype as the most distinguishing features.
Collapse
Affiliation(s)
- Heidi Schigt
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin Bald
- Department of Pediatric Nephrology, Olga Hospital, Clinics of Stuttgart, 70174 Stuttgart, Germany
| | - Bram C J van der Eerden
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Lars Gal
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Barnabas P Ilenwabor
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin Konrad
- Pediatric Nephrology, Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Michael A Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Division of Endocrinology and Diabetes and Center for Bone Health, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Dong Li
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christoph J Mache
- Pediatric Nephrology, Department of Pediatrics, Medical University Graz, 8036 Graz, Austria
| | - Sharon Mackin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Department of Endocrinology, Glasgow Royal Infirmary, Glasgow G4 0SF, UK
| | - Colin Perry
- Department of Endocrinology, Queen Elizabeth University Hospital, Glasgow G51 4TF, UK
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H3H 2R9, Canada
| | - Karl Peter Schlingmann
- Pediatric Nephrology, Department of General Pediatrics, University Children's Hospital Münster, 48149 Münster, Germany
| | - Ben Storey
- Oxford Kidney Unit, Oxford University Hospitals, Oxford OX3 7LE, UK
| | - Christine M Trapp
- Trapp-Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06032, USA
- Division of Endocrinology, Connecticut Children's Medical Center, Hartford, CT 06106, USA
| | - Annemieke J M H Verkerk
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec H3H 2R9, Canada
| | - Ewout J Hoorn
- Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Joost G J Hoenderop
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Medical BioSciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
9
|
Gelineau-van Waes J, van Waes MA, Hallgren J, Hulen J, Bredehoeft M, Ashley-Koch AE, Krupp D, Gregory SG, Stessman HA. Gene-nutrient interactions that impact magnesium homeostasis increase risk for neural tube defects in mice exposed to dolutegravir. Front Cell Dev Biol 2023; 11:1175917. [PMID: 37377737 PMCID: PMC10292217 DOI: 10.3389/fcell.2023.1175917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
In 2018, data from a surveillance study in Botswana evaluating adverse birth outcomes raised concerns that women on antiretroviral therapy (ART) containing dolutegravir (DTG) may be at increased risk for neural tube defects (NTDs). The mechanism of action for DTG involves chelation of Mg2+ ions in the active site of the viral integrase. Plasma Mg2+ homeostasis is maintained primarily through dietary intake and reabsorption in the kidneys. Inadequate dietary Mg2+ intake over several months results in slow depletion of plasma Mg2+ and chronic latent hypomagnesemia, a condition prevalent in women of reproductive age worldwide. Mg2+ is critical for normal embryonic development and neural tube closure. We hypothesized that DTG therapy might slowly deplete plasma Mg2+ and reduce the amount available to the embryo, and that mice with pre-existing hypomagnesemia due to genetic variation and/or dietary Mg2+ insufficiency at the time of conception and initiation of DTG treatment would be at increased risk for NTDs. We used two different approaches to test our hypothesis: 1) we selected mouse strains that had inherently different basal plasma Mg2+ levels and 2) placed mice on diets with different concentrations of Mg2+. Plasma and urine Mg2+ were determined prior to timed mating. Pregnant mice were treated daily with vehicle or DTG beginning on the day of conception and embryos examined for NTDs on gestational day 9.5. Plasma DTG was measured for pharmacokinetic analysis. Our results demonstrate that hypomagnesemia prior to conception, due to genetic variation and/or insufficient dietary Mg2+ intake, increases the risk for NTDs in mice exposed to DTG. We also analyzed whole-exome sequencing data from inbred mouse strains and identified 9 predicted deleterious missense variants in Fam111a that were unique to the LM/Bc strain. Human FAM111A variants are associated with hypomagnesemia and renal Mg2+ wasting. The LM/Bc strain exhibits this same phenotype and was the strain most susceptible to DTG-NTDs. Our results suggest that monitoring plasma Mg2+ levels in patients on ART regimens that include DTG, identifying other risk factors that impact Mg2+ homeostasis, and correcting deficiencies in this micronutrient might provide an effective strategy for mitigating NTD risk.
Collapse
Affiliation(s)
- J. Gelineau-van Waes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | | | - J. Hallgren
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - J. Hulen
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - M. Bredehoeft
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| | - A. E. Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, United States
| | - D. Krupp
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - S. G. Gregory
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, United States
| | - H. A. Stessman
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
10
|
Yuan N, Lu L, Xing XP, Wang O, Jiang Y, Wu J, He MH, Wang XJ, Cao LW. Clinical and genetic features of Kenny-Caffey syndrome type 2 with multiple electrolyte disturbances: A case report. World J Clin Cases 2023; 11:2290-2300. [PMID: 37122511 PMCID: PMC10131010 DOI: 10.12998/wjcc.v11.i10.2290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Hypoparathyroidism, which can be sporadic or a component of an inherited syndrome, is the most common cause of hypocalcemia. If hypocalcemia is accompanied by other electrolyte disturbances, such as hypokalemia and hypomagnesemia, then the cause, such as renal tubular disease, should be carefully identified.
CASE SUMMARY An 18-year-old female visited our clinic because of short stature and facial deformities, including typical phenotypes, such as low ear position, depression of the nasal bridge, small hands and feet, and loss of dentition. The lab results suggested normal parathyroid hormone but hypocalcemia. In addition, multiple electrolyte disturbances were found, including hypokalemia, hypocalcemia and hypomagnesemia. The physical signs showed a short fourth metatarsal bone of both feet. The X-ray images showed cortical thickening of long bones and narrowing of the medulla of the lumen. Cranial computed tomography indicated calcification in the bilateral basal ganglia. Finally, the genetic investigation showed a de novo heterogenous mutation of “FAM111A” (c. G1706A:p.R569H). Through a review of previously reported cases, the mutation was found to be the most common mutation site in Kenny-Caffey syndrome type 2 (KCS2) cases reported thus far (16/23, 69.6%). The mutation was slightly more prevalent in females than in males (11/16, 68.8%). Except for hypocalcemia, other clinical manifestations are heterogeneous.
CONCLUSION As a rare autosomal dominant genetic disease of hypoparathyroidism, the clinical manifestations of KCS2 are atypical and diverse. This girl presented with short stature, facial deformities and skeletal deformities. The laboratory results revealed hypocalcemia as the main electrolyte disturbance. Even though her family members showed normal phenotypes, gene detection was performed to find the mutation of the FAM111A gene and confirmed the diagnosis of KCS2.
Collapse
Affiliation(s)
- Ning Yuan
- Department of Endocrinology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Lin Lu
- Department of Endocrinology, Key Laboratory of National health commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Xiao-Ping Xing
- Department of Endocrinology, Key Laboratory of National health commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of National health commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Yue Jiang
- Department of Endocrinology, Key Laboratory of National health commission, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing 100730, China
| | - Ji Wu
- Department of Urology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Ming-Hai He
- Department of Endocrinology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Xiao-Juan Wang
- Department of Endocrinology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Le-Wei Cao
- Department of Endocrinology, Nanchong Central Hospital, The Second Clinical College, North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| |
Collapse
|
11
|
Ohmachi Y, Urai S, Bando H, Yokoi J, Yamamoto M, Kanie K, Motomura Y, Tsujimoto Y, Sasaki Y, Oi Y, Yamamoto N, Suzuki M, Shichi H, Iguchi G, Uehara N, Fukuoka H, Ogawa W. Case report: Late middle-aged features of FAM111A variant, Kenny-Caffey syndrome type 2-suggestive symptoms during a long follow-up. Front Endocrinol (Lausanne) 2023; 13:1073173. [PMID: 36686468 PMCID: PMC9846794 DOI: 10.3389/fendo.2022.1073173] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Kenny-Caffey syndrome type 2 (KCS2) is an extremely rare skeletal disorder involving hypoparathyroidism and short stature. It has an autosomal dominant pattern of inheritance and is caused by variants in the FAM111 trypsin-like peptidase A (FAM111A) gene. This disease is often difficult to diagnose due to a wide range of more common diseases manifesting hypoparathyroidism and short stature. Herein, we present the case of a 56-year-old female patient with idiopathic hypoparathyroidism and a short stature. The patient was treated for these conditions during childhood. Upon re-evaluating the etiology of KCS2, we suspected that the patient had the disorder because of clinical manifestations, such as cortical thickening and medullary stenosis of the bones, and lack of intellectual abnormalities. Genetic testing identified a heterozygous missense variant in the FAM111A gene (p.R569H). Interestingly, the patient also had bilateral sensorineural hearing loss and vestibular dysfunction, which have been rarely described in previous reports of pediatric cases. In KCS2, inner ear dysfunction due to Eustachian tube dysfunction may progress in middle age or later. However, this disease is now being reported in younger patients. Nevertheless, our case may be instructive of how such cases emerge chronically after middle age. Herein, we also provide a literature review of KCS2.
Collapse
Affiliation(s)
- Yuka Ohmachi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Shin Urai
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hironori Bando
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
- Clinical and Translational Research Center, Kobe University Hospital, Kobe, Japan
| | - Jun Yokoi
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Keitaro Kanie
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Yuma Motomura
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Yasutaka Tsujimoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Yuriko Sasaki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuka Oi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Yamamoto
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaki Suzuki
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroki Shichi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Genzo Iguchi
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
- Medical Center for Student Health, Kobe University, Kobe, Japan
- Division of Biosignal Pathophysiology, Kobe University, Kobe, Japan
| | - Natsumi Uehara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
12
|
Welter AL, Machida YJ. Functions and evolution of FAM111 serine proteases. Front Mol Biosci 2022; 9:1081166. [PMID: 36589246 PMCID: PMC9798293 DOI: 10.3389/fmolb.2022.1081166] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Proteolysis plays fundamental and regulatory roles in diverse cellular processes. The serine protease FAM111A (FAM111 trypsin-like peptidase A) emerged recently as a protease involved in two seemingly distinct processes: DNA replication and antiviral defense. FAM111A localizes to nascent DNA and plays a role at the DNA replication fork. At the fork, FAM111A is hypothesized to promote DNA replication at DNA-protein crosslinks (DPCs) and protein obstacles. On the other hand, FAM111A has also been identified as a host restriction factor for mutants of SV40 and orthopoxviruses. FAM111A also has a paralog, FAM111B, a serine protease with unknown cellular functions. Furthermore, heterozygous missense mutations in FAM111A and FAM111B cause distinct genetic disorders. In this review, we discuss possible models that could explain how FAM111A can function as a protease in both DNA replication and antiviral defense. We also review the consequences of FAM111A and FAM111B mutations and explore possible mechanisms underlying the diseases. Additionally, we propose a possible explanation for what drove the evolution of FAM111 proteins and discuss why some species have two FAM111 proteases. Altogether, studies of FAM111 proteases in DNA repair, antiviral defense, and genetic diseases will help us elucidate their functions and the regulatory mechanisms.
Collapse
Affiliation(s)
- Allison L. Welter
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Yuichi J. Machida
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
13
|
Wang Q, Zhang J, Jiang N, Xie J, Yang J, Zhao X. De novo nonsense variant in ASXL3 in a Chinese girl causing Bainbridge-Ropers syndrome: A case report and review of literature. Mol Genet Genomic Med 2022; 10:e1924. [PMID: 35276034 PMCID: PMC9034677 DOI: 10.1002/mgg3.1924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Bainbridge-Ropers syndrome (BRPS, OMIM #615485) was first identified in 2013 by Bainbridge et al. and is a neurodevelopment disorder characterized by failure to thrive, facial dysmorphism and severe developmental delay. BRPS is caused by heterozygous loss-of-function (LOF) variants in the additional sex combs-like 3 (ASXL3) gene. Due to the limited specific recognizable features and overlapping symptoms with Bohring-Opitz syndrome (BOS, OMIM #612990), clinical diagnosis of BRPS is challenging. METHODS In this study, a 2-year-8-month-old Chinese girl was referred for genetic evaluation of severe developmental delay. The reduced fetal movement was found during the antenatal period and bilateral varus deformity of feet was observed at birth. Whole-exome sequencing and Sanger sequencing were used to detect and confirm the variant. RESULTS A novel nonsense variant c.1063G>T (p.E355*) in the ASXL3 gene (NM_030632.3) was identified in the proband and the clinical symptoms were compatible with BRPS. The parents were physical and genetic normal and prenatal diagnosis was requested for her pregnant mother with a negative Sanger sequencing result. CONCLUSION The study revealed a de novo LOF variant in the ASXL3 gene and expanded the mutation spectrum for this clinical condition. By performing a literature review, we summarized genetic results and the clinical phenotypes of all BPRSs reported so far. More cases study may help to elucidate the function of the ASXL3 gene may be critical to understand the genetic aetiology of this syndrome and assist in accurate genetic counselling, informed decision making and prenatal diagnosis.
Collapse
Affiliation(s)
- Qin Wang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Jianming Zhang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Nan Jiang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Jiansheng Xie
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
- The University of Hong Kong‐Shenzhen Hospital ShenzhenShenzhenChina
| | - Jingxin Yang
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| | - Xiaoshan Zhao
- Affiliated Shenzhen Maternity & Child Healthcare HospitalSouthern Medical UniversityShenzhenChina
| |
Collapse
|
14
|
Clinical and Molecular Diagnosis of Osteocraniostenosis in Fetuses and Newborns: Prenatal Ultrasound, Clinical, Radiological and Pathological Features. Genes (Basel) 2022; 13:genes13020261. [PMID: 35205306 PMCID: PMC8871755 DOI: 10.3390/genes13020261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Osteocraniostenosis (OCS, OMIM #602361) is a severe, usually lethal condition characterized by gracile bones with thin diaphyses, a cloverleaf-shaped skull and splenic hypo/aplasia. The condition is caused by heterozygous mutations in the FAM111A gene and is allelic to the non-lethal, dominant disorder Kenny‐Caffey syndrome (KCS, OMIM #127000). Here we report two new cases of OCS, including one with a detailed pathological examination. We review the main diagnostic signs of OCS both before and after birth based on our observations and on the literature. We then review the current knowledge on the mutational spectrum of FAM111A associated with either OCS or KCS, including three novel variants, both from one of the OCS fetuses described here, and from further cases diagnosed at our centers. This report refines the previous knowledge on OCS and expands the mutational spectrum that results in either OCS or KCS.
Collapse
|
15
|
Affiliation(s)
- C Yerawar
- Department of Biochemistry, Shree Narayana Institute of Medical Superspeciality, Nanded, Maharashtra 431602, India
| | - A Kabde
- Department of Biochemistry, Shree Narayana Institute of Medical Superspeciality, Nanded, Maharashtra 431602, India
| | - P Deokar
- Department of Biochemistry, Shree Narayana Institute of Medical Superspeciality, Nanded, Maharashtra 431602, India
| |
Collapse
|
16
|
Differential Regulation of Cellular FAM111B by Human Adenovirus C Type 5 E1 Oncogenes. Viruses 2021; 13:v13061015. [PMID: 34071532 PMCID: PMC8227810 DOI: 10.3390/v13061015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
The adenovirus type 5 (HAdV-C5) E1 transcription unit encodes regulatory proteins that are essential for viral replication and transformation. Among these, E1A and E1B-55K act as key multifunctional HAdV-C5 proteins involved in various steps of the viral replication cycle and in virus-induced cell transformation. In this context, HAdV-C5-mediated dysregulations of cellular factors such as the tumor suppressors p53 and pRB have been intensively investigated. However, cellular components of downstream events that could affect infection and viral transformation are widely unknown. We recently observed that cellular FAM111B is highly regulated in an E1A-dependent fashion. Intriguingly, previous reports suggest that FAM111B might play roles in tumorigenesis, but its exact functions are not known to date. Here, we set out to investigate the role of FAM111B in HAdV-C5 infections. We found that (i) FAM111B levels are upregulated early and downregulated late during infection, that (ii) FAM111B expression is differentially regulated, that (iii) FAM111B expression levels depend on the presence of E1B-55K and E4orf6 and that (iv) a FAM111B knockdown increases HAdV-C5 replication. Our data indicate that FAM111B acts as an anti-adenoviral host factor that is involved in host cell defense mechanisms in productive HAdV-C5 infection. Moreover, these findings suggest that FAM111B might play an important role in the host antiviral immune response that is counteracted by HAdV-C5 E1B-55K and E4orf6 oncoproteins.
Collapse
|
17
|
Müller R, Steffensen T, Krstić N, Cain MA. Report of a novel variant in the FAM111A gene in a fetus with multiple anomalies including gracile bones, hypoplastic spleen, and hypomineralized skull. Am J Med Genet A 2021; 185:1903-1907. [PMID: 33750016 DOI: 10.1002/ajmg.a.62182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/26/2021] [Accepted: 03/06/2021] [Indexed: 02/05/2023]
Abstract
Kenny-Caffey syndrome type 2 (KCS2) and osteocraniostenosis (OCS) are allelic disorders caused by heterozygous pathogenic variants in the FAM111A gene. Both conditions are characterized by gracile bones, characteristic facial features, hypomineralized skull with delayed closure of fontanelles and hypoparathyroidism. OCS and KCS2 are often referred to as FAM111A-related syndromes as a group; although OCS presents with a more severe, perinatal lethal phenotype. We report a novel FAM111A mutation in a fetus with poorly ossified skull, proportionate long extremities with thin diaphysis, and hypoplastic spleen consistent with FAM111A-related syndromes. Trio whole exome sequencing identified a p.Y562S de novo missense variant in the FAM111A gene. The variant shows significant similarity to other reported pathogenic mutations fitting proposed pathophysiologic mechanism which provide sufficient evidence for classification as likely pathogenic. Our report contributed a novel variant to the handful of OCS and KCS2 cases reported with pathogenic variants.
Collapse
Affiliation(s)
- Réka Müller
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Thora Steffensen
- Department of Pathology, Tampa General Hospital, Tampa, Florida, USA
| | - Nevena Krstić
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Mary Ashley Cain
- Maternal Fetal Medicine Division, Department of Obstetrics and Gynecology, College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
18
|
Cheng SSW, Chan PKJ, Luk HM, Mok MTS, Lo IFM. Adult Chinese twins with Kenny-Caffey syndrome type 2: A potential age-dependent phenotype and review of literature. Am J Med Genet A 2020; 185:636-646. [PMID: 33263187 DOI: 10.1002/ajmg.a.61991] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 11/07/2022]
Abstract
Kenny-Caffey syndrome (KCS) type 2 (OMIM 127000) is a rare syndromic cause of hypoparathyroidism which is characterized by proportionate short stature, long bone abnormalities, delayed closure of anterior fontanelle, eye abnormalities, and normal intelligence. It is caused by variants in FAM111A (NM_001942519.1). In this review, we reported the first Chinese patients, a pair of monozygotic twins, with genetically confirmed KCS type 2 with over 20 years follow-up. We summarized the clinical features of 14 previously reported and genetically confirmed KCS type 2 patients; our twin patients exhibited a unique spinal manifestation which could be an important age-dependent feature of KCS type 2. In this review, over 60% KCS type 2 patients had dental problem and over 80% suffered from refractive errors or structural eye abnormalities. Therefore, early dental, ophthalmological, and orthopedic assessments are warranted for KCS type 2 patients. Micro-orchidism, previously reported in KCS type 2 patients, was also detected in our patients. The possibility of subfertility should be considered in male KCS type 2 patients. A multidisciplinary management approach for this rare syndrome is recommended.
Collapse
MESH Headings
- Abnormalities, Multiple/diagnosis
- Abnormalities, Multiple/epidemiology
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/physiopathology
- Adult
- China/epidemiology
- Dwarfism/diagnosis
- Dwarfism/epidemiology
- Dwarfism/genetics
- Dwarfism/physiopathology
- Eye Abnormalities/diagnosis
- Eye Abnormalities/epidemiology
- Eye Abnormalities/genetics
- Eye Abnormalities/physiopathology
- Female
- Humans
- Hyperostosis, Cortical, Congenital/diagnosis
- Hyperostosis, Cortical, Congenital/epidemiology
- Hyperostosis, Cortical, Congenital/genetics
- Hyperostosis, Cortical, Congenital/physiopathology
- Hypocalcemia/diagnosis
- Hypocalcemia/epidemiology
- Hypocalcemia/genetics
- Hypocalcemia/physiopathology
- Male
- Middle Aged
- Phenotype
- Receptors, Virus/genetics
- Twins/genetics
Collapse
Affiliation(s)
- Shirley S W Cheng
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong, Hong Kong
| | - Pui Kwan Joyce Chan
- Department of Radiology, Hong Kong Children's Hospital, Hong Kong, Hong Kong
| | - Ho-Ming Luk
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong, Hong Kong
| | - Myth Tsz-Shun Mok
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong, Hong Kong
| | - Ivan F M Lo
- Clinical Genetic Service, Department of Health, HKSAR, Hong Kong, Hong Kong
| |
Collapse
|
19
|
Cavole TR, Perrone E, de Faria Soares MDF, Dias da Silva MR, Maeda SS, Lazaretti-Castro M, Alvarez Perez AB. Overlapping phenotype comprising Kenny-Caffey type 2 and Sanjad-Sakati syndromes: The first case report. Am J Med Genet A 2020; 182:3029-3034. [PMID: 33010201 DOI: 10.1002/ajmg.a.61896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 11/07/2022]
Abstract
Kenny-Caffey syndrome (KCS) is a rare hereditary skeletal disorder involving hypoparathyroidism. The autosomal dominant form (KCS2), caused by heterozygous pathogenic variants in the FAM111A gene, is distinguished from the autosomal recessive form (KCS1) and Sanjad-Sakati syndrome (SSS), both caused by pathogenic variants in the tubulin folding cofactor E (TBCE) gene, by the absence of microcephaly and intellectual disability. We present a patient with KCS2 caused by a de novo pathogenic variant c.1706G>A (p.Arg569His) in FAM111A gene, presenting intellectual disability and microcephaly, which are considered to be typical signs of SSS. We suggest that KCS1, KCS2, and SSS may not represent mutually exclusive clinical entities, but possibly an overlapping spectrum.
Collapse
Affiliation(s)
- Thiago Rodrigues Cavole
- Department of Medical Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Eduardo Perrone
- Department of Medical Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Magnus Régios Dias da Silva
- Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio Setsuo Maeda
- Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marise Lazaretti-Castro
- Division of Endocrinology, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Beatriz Alvarez Perez
- Department of Medical Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Hoffmann S, Pentakota S, Mund A, Haahr P, Coscia F, Gallo M, Mann M, Taylor NM, Mailand N. FAM111 protease activity undermines cellular fitness and is amplified by gain-of-function mutations in human disease. EMBO Rep 2020; 21:e50662. [PMID: 32776417 PMCID: PMC7534640 DOI: 10.15252/embr.202050662] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Dominant missense mutations in the human serine protease FAM111A underlie perinatally lethal gracile bone dysplasia and Kenny-Caffey syndrome, yet how FAM111A mutations lead to disease is not known. We show that FAM111A proteolytic activity suppresses DNA replication and transcription by displacing key effectors of these processes from chromatin, triggering rapid programmed cell death by Caspase-dependent apoptosis to potently undermine cell viability. Patient-associated point mutations in FAM111A exacerbate these phenotypes by hyperactivating its intrinsic protease activity. Moreover, FAM111A forms a complex with the uncharacterized homologous serine protease FAM111B, point mutations in which cause a hereditary fibrosing poikiloderma syndrome, and we demonstrate that disease-associated FAM111B mutants display amplified proteolytic activity and phenocopy the cellular impact of deregulated FAM111A catalytic activity. Thus, patient-associated FAM111A and FAM111B mutations may drive multisystem disorders via a common gain-of-function mechanism that relieves inhibitory constraints on their protease activities to powerfully undermine cellular fitness.
Collapse
Affiliation(s)
- Saskia Hoffmann
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Satyakrishna Pentakota
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Mund
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Peter Haahr
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Coscia
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Marta Gallo
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Mi Taylor
- Protein Structure and Function Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Niels Mailand
- Protein Signaling Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Abstract
BACKGROUND Hypoparathyroidism is a rare endocrine disorder characterized by hypocalcemia and low or undetectable levels of parathyroid hormone. METHODS This review is an evidence-based summary of hypoparathyroidism in terms of relevant pathophysiological, clinical, and therapeutic concepts. RESULTS Many clinical manifestations of hypoparathyroidism are due to the lack of the physiological actions of parathyroid hormone on its 2 major target organs: the skeleton and the kidney. The skeleton is inactive, accruing bone without remodeling it. The kidneys lose the calcium-conserving actions of parathyroid hormone and, thus, excrete a greater fraction of calcium. Biochemical manifestations, besides hypocalcemia and low or undetectable levels of parathyroid hormone, include hyperphosphatemia and low levels of 1,25-dihydroxyvitamin D. Calcifications in the kidney, brain, and other soft tissues are common. Removal of, or damage to, the parathyroid glands at the time of anterior neck surgery is, by far, the most likely etiology. Autoimmune destruction of the parathyroid glands and other genetic causes represent most of the other etiologies. Conventional treatment with calcium and active vitamin D can maintain the serum calcium level but high doses may be required, adding to the risk of long-term soft tissue calcifications. The advent of replacement therapy with recombinant human PTH(1-84) represents a major step in the therapeutics of this disease. CONCLUSIONS Advances in our knowledge of hypoparathyroidism have led to greater understanding of the disease itself and our approach to it.
Collapse
Affiliation(s)
- John P Bilezikian
- Department of Medicine, Division of Endocrinology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
- Correspondence and Reprint Requests: John P. Bilezikian, Vice-Chair, International Research and Education, Department of Medicine, Vagelos College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032. E-mail:
| |
Collapse
|
22
|
FAM111A protects replication forks from protein obstacles via its trypsin-like domain. Nat Commun 2020; 11:1318. [PMID: 32165630 PMCID: PMC7067828 DOI: 10.1038/s41467-020-15170-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
Persistent protein obstacles on genomic DNA, such as DNA-protein crosslinks (DPCs) and tight nucleoprotein complexes, can block replication forks. DPCs can be removed by the proteolytic activities of the metalloprotease SPRTN or the proteasome in a replication-coupled manner; however, additional proteolytic mechanisms may exist to cope with the diversity of protein obstacles. Here, we show that FAM111A, a PCNA-interacting protein, plays an important role in mitigating the effect of protein obstacles on replication forks. This function of FAM111A requires an intact trypsin-like protease domain, the PCNA interaction, and the DNA-binding domain that is necessary for protease activity in vivo. FAM111A, but not SPRTN, protects replication forks from stalling at poly(ADP-ribose) polymerase 1 (PARP1)-DNA complexes trapped by PARP inhibitors, thereby promoting cell survival after drug treatment. Altogether, our findings reveal a role of FAM111A in overcoming protein obstacles to replication forks, shedding light on cellular responses to anti-cancer therapies.
Collapse
|
23
|
Deconte D, Kreusch TC, Salvaro BP, Perin WF, Ferreira MAT, Kopacek C, da Rosa EB, Heringer JI, Ligabue-Braun R, Zen PRG, Rosa RFM, Fiegenbaum M. Ophthalmologic Impairment and Intellectual Disability in a Girl Presenting Kenny-Caffey Syndrome Type 2. J Pediatr Genet 2020; 9:263-269. [PMID: 32765931 DOI: 10.1055/s-0039-3401831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
Kenny-Caffey syndrome (KCS) is a rare genetic condition characterized by growth retardation, bone abnormalities, and hypoparathyroidism. Herein, we report an unusual case of a 10-year-old girl with Kenny-Caffey syndrome type 2 (KCS2) presenting with vision impairment-suspected maculopathy and intellectual disability. Endocrine evaluation showed low calcium and high phosphorus plasma levels. Radiographic evaluation revealed short metacarpal bones and delayed bone age. Sequencing analysis showed a missense variant in FAM111A (R569H), unidentified in her parents. Better understanding of potential neurological and ophthalmological findings in KCS2 patients is important to improve quality of life of these patients as usually they exhibit long survival.
Collapse
Affiliation(s)
- Desirée Deconte
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tulia Cristina Kreusch
- Graduation in Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna Pavan Salvaro
- Graduation in Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Wagner Fernando Perin
- Graduation in Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria Angélica Tosi Ferreira
- Graduation in Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane Kopacek
- Department of Pediatric Endocrinology, Hospital Materno Infantil Presidente Vargas and Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ernani Bohrer da Rosa
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jane Iândora Heringer
- Department of Clinical Genetics, Hospital Materno Infantil Presidente Vargas, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rodrigo Ligabue-Braun
- Department of Pharmaceutical Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ricardo Gazzola Zen
- Graduation in Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Clinical Medicine, Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre and Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Fabiano Machado Rosa
- Graduation in Medicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Clinical Genetics, Hospital Materno Infantil Presidente Vargas, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Clinical Medicine, Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre and Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marilu Fiegenbaum
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Basic Health Sciences, Human Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|