1
|
Shahari AS, Palanisamy NK, Mohd Nor F. Genetic profiling of multidrug-resistant Acinetobacter baumannii from a tertiary care center in Malaysia. Microbiol Spectr 2025; 13:e0087224. [PMID: 39704504 PMCID: PMC11792510 DOI: 10.1128/spectrum.00872-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Genetic characterization of multidrug-resistant (MDR) Acinetobacter baumannii remains scarce in Malaysia. This study aimed to characterize antibiotic resistance, genomic location, and genetic relatedness among the A. baumannii isolates obtained from a tertiary hospital in Malaysia. A total of 128 MDR A. baumannii isolates were collected from patients admitted to various wards (intensive care unit [ICU], neonatal intensive care unit, coronary care unit, high dependency ward [HDW], and general wards). The isolates were identified by Vitek 2 and PCR amplification of the 16S rRNA gene followed by sequencing. The isolates were tested against imipenem, ceftazidime, amikacin, gentamicin, ampicillin, and ciprofloxacin using disk diffusion, Epsilometer test, and broth microdilution. The antibiotic resistance genes, blaOXA-23, blaOXA-24, blaADC, blaVIM, and blaIMP, were detected in chromosomal and plasmid DNA using PCR. Insertion sequence ISAba1/blaOXA-23 gene was detected on chromosomal DNA only. Isolates with different antibiotic susceptibility patterns and PCR profiles were subjected to multi-locus sequence typing. MDR A. baumannii was predominantly found in HDW (39.84%), general wards (29.69%), and ICU (28.13%). All isolates conferred resistance to carbapenem and more than 90% resistance to the remaining antibiotics. The antibiotic resistance genes blaOXA-23, blaVIM, and blaADC were detected in both chromosomal and plasmid DNA. The ISAba1/blaOXA-23 gene was detected in 99.22% of the isolates. Four sequence types (STs) were distinguished: ST2 (76.67%), ST164 (10%), ST642 (10%), and ST643 (3.33%). ST164 and ST642 were unique and represent a significant finding in Malaysia's surveillance data. These STs are associated with acquired blaOXA-23, indicating an evolutionary adaptation of A. baumannii within the hospital setting.IMPORTANCEAcinetobacter baumannii is a ubiquitous Gram-negative coccobacillus bacterium that is primarily associated with nosocomial infections that can colonize biotic and abiotic surfaces to enhance cell-to-cell adhesion, ensuring the establishment of infections. To date, the spread of multidrug-resistant A. baumannii (MDRAB) has become rampant and a great concern in the hospital setting, as the available antibiotics are insufficient to treat infections. The antibiotic resistance island resides in a mobile element and rapidly evolved. The antibiotic susceptibility data with its resistance mechanisms would contribute to and facilitate the management and infection control caused by MDRAB.
Collapse
Affiliation(s)
- Aisyah Syakirah Shahari
- Institute for Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
| | - Navindra Kumari Palanisamy
- Institute for Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
| | - Fadzilah Mohd Nor
- Institute for Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Universiti Teknologi MARA, Sg. Buloh Campus, Jalan Hospital, Sg. Buloh, Selangor, Malaysia
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Puncak Alam Campus, Puncak Alam, Selangor, Malaysia
| |
Collapse
|
2
|
Mendes Pedro D, Santos D, Meneses M, Gonçalves F, Domingos GJ, Caneiras C. Risk of Colonization with Multidrug-Resistant Gram-Negative Bacteria Among Travellers and Migrants: A Narrative Review. Trop Med Infect Dis 2025; 10:26. [PMID: 39852677 PMCID: PMC11769174 DOI: 10.3390/tropicalmed10010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Globalization in the 21st century has posed several challenges. In particular, the spread of multidrug-resistant bacterial strains, especially Gram-negative bacteria, which are prevalent in certain regions of the world, is one of the most critical issues. This raises concerns about the risks associated with the booming tourism industry and migratory flows. In fact, even transient colonization with multidrug-resistant strains can present significant challenges to individual, family, and public health. Understanding the epidemiology and mechanisms of resistance, associated risk factors and prevention policies is therefore essential to ensure that strategies are in place to limit the global spread of high-risk bacterial clones and thereby protect public health.
Collapse
Affiliation(s)
- Diogo Mendes Pedro
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal; (D.S.); (M.M.); (C.C.)
- Infectious Diseases Department, ULS Santa Maria, 1649-028 Lisboa, Portugal; (F.G.); (G.J.D.)
- Infectious Diseases University Clinic, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal
- Institute of Pharmacology and Neurosciences, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal
| | - Daniela Santos
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal; (D.S.); (M.M.); (C.C.)
| | - Maria Meneses
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal; (D.S.); (M.M.); (C.C.)
| | - Fátima Gonçalves
- Infectious Diseases Department, ULS Santa Maria, 1649-028 Lisboa, Portugal; (F.G.); (G.J.D.)
| | | | - Cátia Caneiras
- Laboratory of Microbiology Research in Environmental Health (EnviHealthMicro Lab), Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal; (D.S.); (M.M.); (C.C.)
- Egas Moniz Interdisciplinary Research Center, Egas Moniz School of Health & Science, Monte da Caparica, 2829-511 Almada, Portugal
- Institute of Preventive Medicine and Public Health (IMP&SP), Faculdade de Medicina, Universidade de Lisboa, 1249-028 Lisboa, Portugal
| |
Collapse
|
3
|
Shanks G, Grandjean L. Carbapenem-Resistant Infections in Neonates and Children in Latin America: A Literature Review. Am J Trop Med Hyg 2025; 112:26-29. [PMID: 39471506 PMCID: PMC11720759 DOI: 10.4269/ajtmh.24-0422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/29/2024] [Indexed: 11/01/2024] Open
Abstract
Carbapenems are broad-spectrum beta-lactam antibiotics that are increasingly being used worldwide to treat multidrug-resistant infections, but since their introduction, carbapenem resistance has emerged. This phenomenon has been well documented in the adult population, but there is a paucity of evidence from the neonatal and pediatric populations. A literature search of carbapenem-resistant infections in Latin American neonates and children was conducted via PubMed/Medline and SCOPUS: 551 titles were screened, and 17 articles were included in the review. The most commonly reported predominant isolate was Klebsiella pneumoniae (11 of 17 studies). Genotypic data were available in 10 of 17 studies, and the KPC gene was the most commonly reported resistance gene. The mortality rate ranged from 13% to 52.6%. Carbapenem-resistant infections are prevalent in children and neonates in Latin America and are associated with high rates of mortality, highlighting the need for enhanced antimicrobial stewardship and surveillance within these populations.
Collapse
Affiliation(s)
- Gabriella Shanks
- Charité–Universitätsmedizin Berlin, Institute of Tropical Medicine and International Health, Berlin, Germany
| | - Louis Grandjean
- Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
4
|
Salim SNM, Din NIM, Rashid R, Hitam SAS, Deris ZZ. Risk Factors and Outcomes of Multidrug-resistant Pseudomonas aeruginosa in Kelantan, Malaysia: A Multicenter Case-control Study. SAUDI JOURNAL OF MEDICINE & MEDICAL SCIENCES 2025; 13:18-25. [PMID: 39935999 PMCID: PMC11809758 DOI: 10.4103/sjmms.sjmms_429_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/05/2024] [Accepted: 09/22/2024] [Indexed: 02/13/2025]
Abstract
Background Increasing trend and spread of multidrug-resistant Pseudomonas aeruginosa (MDR-PA) in clinical settings is a great challenge in managing patients with infections caused by this pathogen. Objective To determine the risk factors and outcomes of MDR-PA acquisition in the northeastern state of Malaysia. In addition, this study also reported on the susceptibility pattern and common resistant genes among MDR-PA. Materials and Methods MDR-PA isolates obtained between March 2021 and February 2022 from all four major hospitals in the state of Kelantan, Malaysia, were submitted for susceptibility and resistant genes identification. The clinical data of the patients with MDR-PA were retrospectively reviewed. The risk factors and outcomes of MDR-PA acquired patients were analyzed by comparing with patients who acquired susceptible-PA while admitted to the same hospital during the study time. Results A total of 100 MDR-PA and 100 susceptible-PA cases were included. Ceftolozane-tazobactam was susceptible in 41.3% of MDR-PA compared to only 4%-8% with other β-lactams. About half (46%) of the MDR-PA isolates harbored the bla -NDM-1 gene, but none had the bla -OXA-48 gene. Factors independently associated with MDR-PA acquisitions were age (OR: 1.02; P = 0.028), genitourinary disorder (OR: 6.89; P = 0.001), and central venous catheter (OR: 3.18; P = 0.001). In addition, MDR-PA acquisitions were found to be associated with antimicrobial treatment failure (41.1% vs. 25.0%; P = 0.001) and mortality (40.0% versus 6.0%; P <0.001). Conclusion Most of the MDR-PA strains in Kelantan tertiary hospitals harbored the bla -NDM-1 gene, which is easily transmissible and can lead to an outbreak. Nonetheless, a significant number of the MDR-PA isolates were still susceptible to ceftolozane-tazobactam.
Collapse
Affiliation(s)
- Siti Norfairuz Md. Salim
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia Health Campus, Kota Bharu, Malaysia
- Department of Pathology, Hospital Raja Permaisuri Bainun, Jalan Raja Ashman Shah, Ipoh, Perak Darul Ridzuan, Malaysia
| | - Nurul Izzah Md Din
- Unit of Microbiology, Hospital Raja Perempuan Zainab II, Kota Bharu, Malaysia
| | - Rosnita Rashid
- Unit of Microbiology, Hospital Tanah Merah, Tanah Merah, Malaysia
| | - Sharifah Aisyah Sayed Hitam
- Unit of Microbiology, Hospital Raja Perempuan Zainab II, Kota Bharu, Malaysia
- Unit of Microbiology, Hospital Sultan Ismail Petra, Kuala Krai, Kelantan, Malaysia
| | - Zakuan Zainy Deris
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia Health Campus, Kota Bharu, Malaysia
- Microbiology Laboratory, Hospital USM, Health Campus, USM, Kubang Kerian, Malaysia
| |
Collapse
|
5
|
Boonyalai N, Peerapongpaisarn D, Thamnurak C, Oransathid W, Wongpatcharamongkol N, Oransathid W, Lurchachaiwong W, Griesenbeck JS, Waters NC, Demons ST, Ruamsap N, Vesely BA. Screening of the Pandemic Response Box library identified promising compound candidate drug combinations against extensively drug-resistant Acinetobacter baumannii. Sci Rep 2024; 14:21709. [PMID: 39289446 PMCID: PMC11408719 DOI: 10.1038/s41598-024-72603-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Infections caused by antimicrobial-resistant Acinetobacter baumannii pose a significant threat to human health, particularly in the context of hospital-acquired infections. As existing antibiotics lose efficacy against Acinetobacter isolates, there is an urgent need for the development of novel antimicrobial agents. In this study, we assessed 400 structurally diverse compounds from the Medicines for Malaria Pandemic Response Box for their activity against two clinical isolates of A. baumannii: A. baumannii 5075, known for its extensive drug resistance, and A. baumannii QS17-1084, obtained from an infected wound in a Thai patient. Among the compounds tested, seven from the Pathogen box exhibited inhibitory effects on the in vitro growth of A. baumannii isolates, with IC50s ≤ 48 µM for A. baumannii QS17-1084 and IC50s ≤ 17 µM for A. baumannii 5075. Notably, two of these compounds, MUT056399 and MMV1580854, shared chemical scaffolds resembling triclosan. Further investigations involving drug combinations identified five synergistic drug combinations, suggesting potential avenues for therapeutic development. The combination of MUT056399 and brilacidin against A. baumannii QS17-1084 and that of MUT056399 and eravacycline against A. baumannii 5075 showed bactericidal activity. These combinations significantly inhibited biofilm formation produced by both A. baumannii strains. Our findings highlight the drug combinations as promising candidates for further evaluation in murine wound infection models against multidrug-resistant A. baumannii. These compounds hold potential for addressing the critical need for effective antibiotics in the face of rising antimicrobial resistance.
Collapse
Affiliation(s)
- Nonlawat Boonyalai
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Biological Chemistry and Drug Discovery, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Dutsadee Peerapongpaisarn
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Chatchadaporn Thamnurak
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wilawan Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nantanat Wongpatcharamongkol
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wirote Oransathid
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Woradee Lurchachaiwong
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
- Division of Global Health Protection, Thailand MoPH-US CDC Collaboration, Nonthaburi, Thailand
| | - John S Griesenbeck
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Norman C Waters
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Samandra T Demons
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Nattaya Ruamsap
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Brian A Vesely
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand.
| |
Collapse
|
6
|
Zhou Y, Shi R, Mu L, Tian L, Zhou M, Lyu W, Chen Y. Recombinase-aided amplification assay for rapid detection of imipenem-resistant Pseudomonas aeruginosa and rifampin-resistant Pseudomonas aeruginosa. Front Cell Infect Microbiol 2024; 14:1428827. [PMID: 39318475 PMCID: PMC11420161 DOI: 10.3389/fcimb.2024.1428827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/24/2024] [Indexed: 09/26/2024] Open
Abstract
The indiscriminate use of antibiotics has resulted in a growing resistance to drugs in Pseudomonas aeruginosa. The identification of antibiotic resistance genes holds considerable clinical significance for prompt diagnosis. In this study, we established and optimized a Recombinase-Aided Amplification (RAA) assay to detect two genes associated with drug resistance, oprD and arr, in 101 clinically collected P. aeruginosa isolates. Through screening for the detection or absence of oprD and arr, the results showed that there were 52 Imipenem-resistant P. aeruginosa (IRPA) strains and 23 Rifampin-resistant P. aeruginosa (RRPA) strains. This method demonstrated excellent detection performance even when the sample concentration is 10 copies/μL at isothermal conditions and the results could be obtained within 20 minutes. The detection results were in accordance with the results of conventional PCR and Real-time PCR. The detection outcomes of the arr gene were consistently with the resistance spectrum. However, the antimicrobial susceptibility results revealed that 65 strains were resistant to imipenem, while 49 strains sensitive to imipenem with oprD were identified. This discrepancy could be attributed to genetic mutations. In summary, the RAA has higher sensitivity, shorter time, and lower-cost instrument requirements than traditional detection methods. In addition, to analyze the epidemiological characteristics of the aforementioned drug-resistant strains, we conducted Multilocus Sequence Typing (MLST), virulence gene, and antimicrobial susceptibility testing. MLST analysis showed a strong correlation between the sequence types ST-1639, ST-639, ST-184 and IRPA, while ST-261 was the main subtype of RRPA. It was observed that these drug-resistant strains all possess five or more virulence genes, among which exoS and exoU do not coexist, and they are all multidrug-resistant strains. The non-coexistence of exoU and exoS in P.aeruginosa is related to various factors including bacterial regulatory mechanisms and pathogenic mechanisms. This indicates that the relationship between the presence of virulence genes and the severity of patient infection is worthy of attention. In conclusion, we have developed a rapid and efficient RAA (Recombinase-Aided Amplification) detection method that offers significant advantages in terms of speed, simplicity, and cost-effectiveness (especially in time and equipment aspect). This novel approach is designed to meet the demands of clinical diagnostics.
Collapse
Affiliation(s)
- Yao Zhou
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Ruiqing Shi
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Liang Mu
- Ultrasound Diagnosis Center, Shaanxi Provincial People’s Hospital, Shaanxi, Xi’an, China
| | - Linlin Tian
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Mengshan Zhou
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| | - Wenhan Lyu
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi’an, China
| | - Yaodong Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
7
|
Firdose A, Maeda T, Sukri MAM, Yasin NHM, Sabturani N, Aqma WS. Antibacterial mechanism of Pseudomonas aeruginosa UKMP14T rhamnolipids against multidrug resistant Acinetobacter baumannii. Microb Pathog 2024; 193:106743. [PMID: 38879138 DOI: 10.1016/j.micpath.2024.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Rhamnolipids, a major category of glycolipid biosurfactant, have recently gained enormous attention in medical field because of their relevance as effective antibacterial agents against a wide variety of pathogenic bacteria. Our previous studies have shown that rhamnolipids from an environmental isolate of Pseudomonas aeruginosa UKMP14T possess antibacterial, anti-adhesive and anti-biofilm activity against multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter sp.) pathogens. However, the mechanism of their antibacterial action remains unclear. Thus, this study aimed to elucidate the mechanism of the antibacterial action of P. aeruginosa UKMP14T rhamnolipids by studying the changes in cells of one of the ESKAPE pathogens, Acinetobacter baumannii, which is the most difficult strain to kill. Results revealed that rhamnolipid treatment rendered A. baumannii cells more hydrophobic as evaluated through contact angle measurements. It also induced the release of cellular proteins measuring 510 μg/mL at a rhamnolipid concentration of 1000 μg/mL. In addition, rhamnolipids were found to be bactericidal in their action as they could permeate the inner membranes, leading to a leak-out of nucleotides. More than 50 % of the cells were found to be killed upon 1000 μg/mL rhamnolipid treatment as observed through fluorescence microscopy. Other cellular changes such as irregular shape and size, membrane perturbations, clumping, shrinkage and physical damage were clearly visible in SEM, FESEM and laser micrographs. Furthermore, rhamnolipid treatment inhibited the levels of acyl-homoserine lactones (AHLs) in A. baumannii, which are vital for their biofilm formation and virulence. The obtained results indicate that P. aeruginosa UKMP14T rhamnolipids target outer and inner bacterial membranes through permeation, including physical damage to the cells, leading to cell leakage. Furthermore, AHL inhibition appears to be the mechanism behind their anti-biofilm action. All these observations can be correlated to rhamnolipids' antibacterial effect against A. baumannii.
Collapse
Affiliation(s)
- Ayesha Firdose
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia.
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohd Asif Mohd Sukri
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia
| | - Nazlina Haiza Mohd Yasin
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia
| | - Noramiza Sabturani
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia
| | - Wan Syaidatul Aqma
- Department of Biological Sciences & Biotechnology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 46300 Bangi, Selangor, Malaysia.
| |
Collapse
|
8
|
Maina JW, Mutua JM, Musyoki AM. Carbapenem-resistant gram-negative bacterial infections and risk factors for acquisition in a Kenyan intensive care unit. BMC Infect Dis 2024; 24:522. [PMID: 38783175 PMCID: PMC11118991 DOI: 10.1186/s12879-024-09256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Carbapenem-resistant Gram-negative bacteria (CR-GNB) are a critical public health threat globally; however, there are inadequate surveillance data, especially in intensive care units (ICU), to inform infection prevention and control in many resource-constrained settings. Here, we assessed the prevalence of CR-GNB infections and risk factors for acquisition in a Kenyan ICU. METHODS A hospital-based cross-sectional study design was adopted, recruiting 162 patients clinically presenting with bacterial infection after 48 h of ICU admission, from January to October 2022 at the Nairobi West Hospital, Kenya. Demographics and clinical data were collected by case report form. The type of sample collected, including blood, tracheal aspirate, ascitic tap, urine, stool, and sputum depended on the patient's clinical presentation and were transported to the hospital Microbiology laboratory in a cool box for processing within 2 h. The samples were analyzed by cultured and BD Phoenix system used for isolates' identity and antimicrobial susceptibility. RESULTS CR-GNB infections prevalence was 25.9% (42/162), with Klebsiella pneumoniae (35.7%, 15/42) and Pseudomonas aeruginosa (26.2%, 11/42) predominating. All isolates were multidrug-resistant (MDR). P. aeruginosa and A. baumannii were 100% colistin-resistant, while K. pneumoniae (33.3%) was tigecycline-resistant. History of antibiotics (aOR = 3.40, p = 0.005) and nasogastric tube (NGT) use (aOR = 5.84, p = < 0.001) were the risk factors for infection. CONCLUSION Our study highlights high MDR- and CR-GNB infections in ICU, with prior antibiotic exposure and NGT use as risk factors, and diminishing clinical value of colistin and tigecycline. In this study setting and beyond, strict implementation of antimicrobial stewardship programs and adherence to infection prevention and control through monitoring, evaluation and feedback are warranted to curb CR-GNB infections, especially among the risk groups.
Collapse
Affiliation(s)
- Jane Wairimu Maina
- Department of Medical Laboratory, The Nairobi West Hospital, Nairobi, P.O BOX 43375-00100, Kenya
| | - Jeniffer Munyiva Mutua
- Department of Laboratory Medicine, Kenyatta National Hospital, Nairobi, P.O Box 20723-00202, Kenya
| | - Abednego Moki Musyoki
- Department of Medical Laboratory Sciences, Kenyatta University, Nairobi, P.O BOX 43844-00100, Kenya.
| |
Collapse
|
9
|
Al-Zubairy SA. Microbiologic Cure with a Simplified Dosage of Intravenous Colistin in Adults: A Retrospective Cohort Study. Infect Drug Resist 2023; 16:4237-4249. [PMID: 37404254 PMCID: PMC10317528 DOI: 10.2147/idr.s411381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/10/2023] [Indexed: 07/06/2023] Open
Abstract
Purpose Colistin's FDA weight-based dosing (WBD) and frequency are both expressed in a broad range. Therefore, a simplified fixed-dose regimen (SFDR) of intravenous colistin based on three body-weight segments has been established for adults. The SFDR falls within the WBD range of each body-weight segment and accounts for the pharmacokinetic features. This study compared microbiologic cure with colistin SFDR to WBD in critically ill adults. Patients and Methods A retrospective cohort study was conducted for colistin orders from January 2014 to February 2022. The study included ICU patients who received intravenous colistin for carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections. Patients received the SFDR after the protocol was implemented, as the WBD was previously used. The primary endpoint was microbiologic cure. Secondary endpoints were 30-day infection recurrence and acute kidney injury (AKI). Results Of the 228 screened patients, 84 fulfilled the inclusion and matching criteria (42 in each group). The microbiologic cure rate was 69% with the SFDR and 36% with the WBD [p=0.002]. Infection recurred in four of the 29 patients who had a microbiologic cure with the SFDR (14%), and in six of the 15 patients with WBD (40%); [p=0.049]. AKI occurred in seven of the 36 SFDR patients who were not on hemodialysis (19%) and 15 of the 33 WBD patients (46%); [p=0.021]. Conclusion In this study, colistin SFDR was associated with a higher microbiologic cure in carbapenem-non-susceptible, colistin-intermediate Gram-negative bacilli infections and with a lower incidence of AKI in critically ill adults compared to WBD.
Collapse
|
10
|
Hadi HA, Al-Hail H, Aboidris LE, Al-Orphaly M, Ahmed MAS, Samuel BG, Mohamed HA, Sultan AA, Skariah S. Prevalence and genetic characterization of clinically relevant extended-spectrum β-lactamase-producing Enterobacterales in the Gulf Cooperation Council countries. FRONTIERS IN ANTIBIOTICS 2023; 2:1177954. [PMID: 39816644 PMCID: PMC11732020 DOI: 10.3389/frabi.2023.1177954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 01/03/2025]
Abstract
Introduction Among Gram-negative bacteria (GNB), Enterobacterales (Enterobacterales), such as Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae), are the most clinically relevant pathogens in healthcare settings. Infections secondary to these pathogens are widely common but multidrug resistance (MDR) in Enterobacterales has become a significant challenge with increased morbidity, mortality, and cost of management. The escalating global prevalence of MDR in Enterobacterales has led to limited treatment options, raising an urgent need for novel antimicrobial therapy(s) and detailed studies exploring underlying resistance mechanisms. In Enterobacterales, the prime antimicrobial resistance mechanism against β-lactam antibiotics is mainly the production of β-lactamases, particularly extended-spectrum β-lactamases (ESBLs). Although the Gulf region is witnessing major challenges from infections secondary to MDR GNB, the extent of the problem has not been fully evaluated. Therefore, this review aims to address the prevalence and genetic characterization of ESBL-producing Enterobacterales in the Gulf Cooperation Council (GCC) countries. Methods PubMed® (National Library of Medicine, Bethesda, MD, USA) search was conducted, which looked for academic articles discussing the epidemiology of MDR Enterobacterales in the GCC countries, published in the last 5 years. Results and conclusions In GCC countries there is a high prevalence rate of MDR Enterobacterales, particularly ESBLs. Prevalence rates of ESBL-producing Enterobacterales among the Enterobacterales in general clinical samples in the GCC region is 21.6%-29.3%, with a slightly higher prevalence rate in intensive care unit patients (17.3-31.3%) and in patients with urinary tract infections (25.2%-31.7%). ESBL carriers have also been noted in the general community. ESBL-producing Enterobacterales from the GCC region show high levels of resistance to ampicillin, aztreonam, third-/fourth-generation cephalosporins, fluoroquinolones, and trimethoprim-sulfamethoxazole. Intermediate resistance rates are observed against nitrofurantoin, piperacillin/tazobactam, and gentamicin, with increasing resistance observed against tigecycline. The isolates demonstrate low-level resistance to carbapenems, fosfomycin, colistin, and amikacin. Enterobacterales isolates that are concomitant ESBL producers and are carbapenem resistant have been increasingly reported and demonstrate alarmingly increased antibiotic resistance patterns compared with ESBL Enterobacterales. The most prevalent genes for ESBL resistance in the Enterobacterales isolates in the GCC region are: bla CTX-M (subtype group 1) followed by/co-dominated by bla TEM and bla SHV, whereas the most common carbapenem-resistant genes are bla OXA-48 and bla NDM-1.
Collapse
Affiliation(s)
- Hamad A. Hadi
- Department of Infectious Diseases, Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Hissa Al-Hail
- Department of Medical Education, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Leena Elsheikh Aboidris
- Department of Medical Education, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Mahmood Al-Orphaly
- Department of Medical Education, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Mazen A. Sid Ahmed
- Laboratory Services, Philadelphia Department of Public Health, Philadelphia, PA, United States
- The Life Science Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Bincy Gladson Samuel
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Hana Adam Mohamed
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
11
|
Pei Y, Huang Y, Pan X, Yao Z, Chen C, Zhong A, Xing Y, Qian B, Minhua S, Zhou T. Nomogram for predicting 90-day mortality in patients with Acinetobacter baumannii-caused hospital-acquired and ventilator-associated pneumonia in the respiratory intensive care unit. J Int Med Res 2023; 51:3000605231161481. [PMID: 36935582 PMCID: PMC10028662 DOI: 10.1177/03000605231161481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
OBJECTIVE We built a prediction model of mortality risk in patients the with Acinetobacter baumannii (AB)-caused hospital-acquired (HAP) and ventilator-associated pneumonia (VAP). METHODS In this retrospective study, 164 patients with AB lower respiratory tract infection were admitted to the respiratory intensive care unit (RICU) from January 2019 to August 2021 (29 with HAP, 135 with VAP) and grouped randomly into a training cohort (n = 115) and a validation cohort (n = 49). Least absolute shrinkage and selection operator regression and multivariate Cox regression were used to identify risk factors of 90-day mortality. We built a nomogram prediction model and evaluated model discrimination and calibration using the area under the receiver operating characteristic curve (AUC) and calibration curves, respectively. RESULTS Four predictors (days in intensive care unit, infection with carbapenem-resistant AB, days of carbapenem use within 90 days of isolating AB, and septic shock) were used to build the nomogram. The AUC of the two groups was 0.922 and 0.823, respectively. The predictive model was well-calibrated; decision curve analysis showed the proposed nomogram would obtain a net benefit with threshold probability between 1% and 100%. CONCLUSIONS The nomogram model showed good performance, making it useful in managing patients with AB-caused HAP and VAP.
Collapse
Affiliation(s)
- Yongjian Pei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yongkang Huang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xue Pan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhen Yao
- Department of Hematology, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu, China
| | - Chen Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Anyuan Zhong
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yufei Xing
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Qian
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Shi Minhua
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Tong Zhou
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
12
|
A Nationwide Plasmidome Surveillance in Thailand Reveals a Limited Variety of New Delhi Metallo-β-Lactamase-Producing Carbapenem-Resistant Enterobacteriaceae Clones and Spreading Plasmids. J Clin Microbiol 2022; 60:e0108022. [PMID: 36445367 PMCID: PMC9769800 DOI: 10.1128/jcm.01080-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite frequent identification of plasmids carrying carbapenemase genes, the transfer of plasmids carrying carbapenemase genes is not well recognized in clinical settings because of technical limitations. To investigate the detailed mechanisms of the spread of carbapenem-resistant Enterobacteriaceae (CRE), we performed multifaceted genomic surveillance of CRE isolates in Thailand and analyzed their plasmidome. We analyzed 371 Enterobacteriaceae isolates carrying blaNDM-1 and 114 Enterobacteriaceae isolates carrying blaNDM-5 obtained from clinical samples of 473 patients in 11 representative hospitals located in six provinces in Thailand between 2012 and 2017. The complete structures of plasmids carrying blaNDM and chromosomal phylogeny were determined by combining Southern blotting hybridization analysis and our previously performed whole-genome short-read sequencing data. Dissemination of the blaNDM-5 gene among the Enterobacteriaceae isolates in Thailand was mainly owing to the nationwide clonal spread of Escherichia coli ST410 and regional clonal spreads of Escherichia coli ST361 and ST405. Analysis of blaNDM-1-carrying isolates revealed nationwide dissemination of two specific plasmids and nationwide clonal dissemination of Klebsiella pneumoniae ST16 accompanied with regional disseminations of three distinctive K. pneumoniae clones (ST231, ST14, and ST147) with different plasmids. Dissemination of CRE carrying blaNDM in Thailand is mainly based on nationwide clonal expansions of E. coli ST410 carrying blaNDM-5 and K. pneumoniae ST16 carrying blaNDM-1, nationwide dissemination of two distinctive plasmids carrying blaNDM-1, and accumulation of clonal expansions in regional areas. Although the overuse of antibiotics can promote CRE dissemination, the limited variety of transmitters highlights the importance of preventing horizontal dissemination among patients.
Collapse
|
13
|
Nithichanon A, Kewcharoenwong C, Da-oh H, Surajinda S, Khongmee A, Koosakunwat S, Wren BW, Stabler RA, Brown JS, Lertmemongkolchai G. Acinetobacter nosocomialis Causes as Severe Disease as Acinetobacter baumannii in Northeast Thailand: Underestimated Role of A. nosocomialis in Infection. Microbiol Spectr 2022; 10:e0283622. [PMID: 36227120 PMCID: PMC9769887 DOI: 10.1128/spectrum.02836-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 01/09/2023] Open
Abstract
Infections by Acinetobacter species are recognized as a serious global threat due to causing severe disease and their high levels of antibiotic resistance. Acinetobacter baumannii is the most prevalent pathogen in the genus, but infection by Acinetobacter nosocomialis has been reported widely. Diagnosis of patients with A. baumannii infection is often misdiagnosed with other Acinetobacter species, especially A. nosocomialis. This study investigated whether there were significant differences in clinical outcomes between patients infected with A. baumannii versus A. nosocomialis in Northeast Thailand, and to characterize serological responses to infection with these pathogens. The results show that A. baumannii had higher levels of multidrug resistance. Despite this, clinical outcomes for infection with A. baumannii or A. nosocomialis were similar with mortalities of 33% and 36%, respectively. Both pathogens caused community-acquired infections (A. baumannii 35% and A. nosocomialis 29% of cases). Plasma from uninfected healthy controls contained IgG antibody that recognized both organisms, and infected patients did not show a significantly enhanced antibody response from the first week versus 2 weeks later. Finally, the patterns of antigen recognition for plasma IgG were similar for patients infected with A. baumannii or A. nosocomialis infection, and distinct to the pattern for patients infected with non-Acinetobacter. In conclusion, our data revealed that infection with A. nosocomialis was associated with a similarly high level of mortality as infection with A. baumannii, the high rate of community-acquired infection and antibodies in uninfected individuals suggesting that there is significant community exposure to both pathogens. IMPORTANCE Bacterial infections by Acinetobacter species are global threats due to their severity and high levels of antibiotic resistance. A. baumannii is the most common pathogen in the genus; however, infection by A. nosocomialis has also been widely reported but is thought to be less severe. In this study, we have prospectively investigated 48 reported cases of A. baumannii infection in Northeast Thailand, and characterized the serological responses to infection. We found that 14 (29%) of these infections were actually caused by A. nosocomialis. Furthermore, the incidence of antibiotic resistance among A. nosocomialis strains, APACHE II scores, and mortality for patients infected with A. nosocomialis were much higher than published data. Both A. baumannii and A. nosocomialis had unexpectedly mortality rates of over 30%, and both pathogens caused a high rate of community-acquired infections. Importantly, background antibodies in uninfected individuals suggest significant community exposure to both pathogens in the environment.
Collapse
Affiliation(s)
- Arnone Nithichanon
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chidchamai Kewcharoenwong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Hudadini Da-oh
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Sirithorn Surajinda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Aranya Khongmee
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | | | - Brendan W. Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, London, United Kingdom
| | - Richard A. Stabler
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Infectious and Tropical Disease, London, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, London, United Kingdom
| | - Ganjana Lertmemongkolchai
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
14
|
Kempf M, Arhin FF, Stone G, Utt E. Ceftazidime-avibactam activity against Gram-negative respiratory isolates collected between 2018 and 2019. J Glob Antimicrob Resist 2022; 31:239-247. [PMID: 36208850 DOI: 10.1016/j.jgar.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES The objective of this study was to assess the in vitro activity of ceftazidime-avibactam (CAZ-AVI) and a panel of comparator agents against isolates of Enterobacter spp., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa collected in 2018 and 2019 by different centres worldwide from patients with respiratory tract infections. METHODS Susceptibility and minimum inhibitory concentration (MIC) of all organisms were determined using broth microdilution methodology for CAZ-AVI, and a panel of comparator antimicrobial agents by a central reference laboratory according to Clinical and Laboratory Standards Institute guidelines and European Committee on Antimicrobial Susceptibility Testing guidelines. RESULTS CAZ-AVI demonstrated potent antimicrobial activity against isolates of Enterobacter spp. (97.6% susceptibility, MIC90, 1 µg/ml), E. coli (98.5% susceptibility, MIC90, 0.25 µg/ml), K. pneumoniae (94.7% susceptibility, MIC90 2 µg/ml), and P. aeruginosa (91.2% susceptibility, MIC90 8 µg/ml). CAZ-AVI was also active (susceptibility >85%) against MDR isolates for all organisms except P. aeruginosa. Only a small proportion (<10%) of all isolates of Enterobacter spp. and E. coli were identified as XDR compared to isolates of K. pneumoniae and P. aeruginosa isolates (>20%). Susceptibility to CAZ-AVI was high (>70%) among XDR isolates of Enterobacter spp., K. pneumoniae, and E. coli, compared to P. aeruginosa (<70%). Among the comparator agents, only colistin showed consistent activity across all the organisms (>85%). CONCLUSION Gram-negative respiratory isolates collected in 2018-2019 showed high susceptibility to CAZ-AVI; CAZ-AVI represents a potential treatment option against infection caused by these organisms.
Collapse
Affiliation(s)
- Marie Kempf
- University Hospital Angers, Laboratory of Bacteriology, France; CRCINA, INSERM U1232, Université d'Angers, Angers, France
| | | | | | - Eric Utt
- Pfizer, Inc., Groton, Connecticut.
| |
Collapse
|
15
|
Chang FY, Chuang YC, Veeraraghavan B, Apisarnthanarak A, Tayzon MF, Kwa AL, Chiu CH, Deris ZZ, Amir Husin S, Hashim H, Karuniawati A, Ahmed A, Matsumoto T, Nguyen VK, Dinh TTH. Gaps in antimicrobial stewardship programmes in Asia: a survey of 10 countries. JAC Antimicrob Resist 2022; 4:dlac117. [PMID: 36439993 PMCID: PMC9683392 DOI: 10.1093/jacamr/dlac117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/25/2022] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES To determine antimicrobial stewardship (AMS) programme practices in Asian secondary- and tertiary-care hospitals. METHODS AMS programme team members within 349 hospitals from 10 countries (Cambodia, India, Indonesia, Japan, Malaysia, Pakistan, the Philippines, Taiwan, Thailand and Vietnam) completed a questionnaire via a web-based survey link. The survey contained questions as to whether 12 core components deemed essential for AMS programmes were implemented. RESULTS Overall, 47 (13.5%) hospitals fulfilled all core AMS programme components. There was a mean positive response rate (PRR) of 85.6% for the responding countries in relation to a formal hospital leadership statement of support for AMS activities, but this was not matched by budgeted financial support for AMS activities (mean PRR 57.1%). Mean PRRs were ≥80.0% for the core AMS team comprising a physician or other leader responsible for AMS activities, a pharmacist and infection control and microbiology personnel. Most hospitals had access to a timely and reliable microbiology service (mean PRR 90.4%). Facility-specific antibiotic treatment guidelines for common infections (mean PRR 78.7%) were in place more often than pre-authorization and/or prospective audit and feedback systems (mean PRR 66.5%). In terms of AMS monitoring and reporting, PRRs of monitoring specific antibiotic use, regularly publishing AMS outcome measures, and the existence of a hospital antibiogram were 75.1%, 64.4% and 77.9%, respectively. CONCLUSIONS Most hospitals participating in this survey did not have AMS programmes fulfilling the requirements for gold standard AMS programmes in hospital settings. Urgent action is required to address AMS funding and resourcing deficits.
Collapse
Affiliation(s)
- Feng-Yee Chang
- Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yin Ching Chuang
- Medical Research Department, Chi Mei Medical Center, Tainan City, Taiwan
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | | | - Maria Fe Tayzon
- Department of Medicine, Section of Infectious Diseases, Hospital Infection Control and Epidemiology Center, The Medical City, Pasig City, Philippines
| | - Andrea L Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Zakuan Zainy Deris
- Department of Medical Microbiology and Parasitology, School of Medical Sciences/Hospital Universiti Sains Malaysia, USM Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Suraya Amir Husin
- Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| | - Hazimah Hashim
- Pharmacy Practice and Development Division, Ministry of Health, Petaling Jaya, Malaysia
| | - Anis Karuniawati
- Department of Microbiology, Medical Faculty, Universitas Indonesia, Jakarta, Indonesia
| | - Altaf Ahmed
- Department of Pathology/Microbiology, Pakistan Kidney and Liver Institute, Lahore, Pakistan
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, International University of Health and Welfare, Chiba-ken, Japan
| | - Van Kinh Nguyen
- Infectious Diseases Department, Hanoi Medical University, Hanoi, Vietnam
| | - Thi Thu Huong Dinh
- Emergency Department - Infection Control, National Hospital for Tropical Diseases, Hanoi, Vietnam
| |
Collapse
|
16
|
Ruekit S, Srijan A, Serichantalergs O, Margulieux KR, Mc Gann P, Mills EG, Stribling WC, Pimsawat T, Kormanee R, Nakornchai S, Sakdinava C, Sukhchat P, Wojnarski M, Demons ST, Crawford JM, Lertsethtakarn P, Swierczewski BE. Molecular characterization of multidrug-resistant ESKAPEE pathogens from clinical samples in Chonburi, Thailand (2017-2018). BMC Infect Dis 2022; 22:695. [PMID: 35978294 PMCID: PMC9386987 DOI: 10.1186/s12879-022-07678-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND ESKAPEE pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli are multi-drug resistant (MDR) bacteria that present increasing treatment challenges for healthcare institutions and public health worldwide. METHODS 431 MDR ESKAPEE pathogens were collected from Queen Sirikit Naval Hospital, Chonburi, Thailand between 2017 and 2018. Species identification and antimicrobial resistance (AMR) phenotype were determined following CLSI and EUCAST guidelines on the BD Phoenix System. Molecular identification of antibiotic resistant genes was performed by polymerase chain reaction (PCR), real-time PCR assays, and whole genome sequencing (WGS). RESULTS Of the 431 MDR isolates collected, 1.2% were E. faecium, 5.8% were S. aureus, 23.7% were K. pneumoniae, 22.5% were A. baumannii, 4.6% were P. aeruginosa, 0.9% were Enterobacter spp., and 41.3% were E. coli. Of the 401 Gram-negative MDR isolates, 51% were carbapenem resistant, 45% were ESBL producers only, 2% were colistin resistance and ESBLs producers (2%), and 2% were non-ESBLs producers. The most prevalent carbapenemase genes were blaOXA-23 (23%), which was only identified in A. baumannii, followed by blaNDM (17%), and blaOXA-48-like (13%). Beta-lactamase genes detected included blaTEM, blaSHV, blaOXA, blaCTX-M, blaDHA, blaCMY, blaPER and blaVEB. Seven E. coli and K. pneumoniae isolates showed resistance to colistin and carried mcr-1 or mcr-3, with 2 E. coli strains carrying both genes. Among 30 Gram-positive MDR ESKAPEE, all VRE isolates carried the vanA gene (100%) and 84% S. aureus isolates carried the mecA gene. CONCLUSIONS This report highlights the prevalence of AMR among clinical ESKAPEE pathogens in eastern Thailand. E. coli was the most common MDR pathogen collected, followed by K. pneumoniae, and A. baumannii. Carbapenem-resistant Enterobacteriaceae (CRE) and extended spectrum beta-lactamases (ESBLs) producers were the most common resistance profiles. The co-occurrence of mcr-1 and mcr-3 in 2 E. coli strains, which did not affect the level of colistin resistance, is also reported. The participation of global stakeholders and surveillance of MDR remain essential for the control and management of MDR ESKAPEE pathogens.
Collapse
Affiliation(s)
- Sirigade Ruekit
- Bacterial and Parasitic Diseases Department, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Apichai Srijan
- Bacterial and Parasitic Diseases Department, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Oralak Serichantalergs
- Bacterial and Parasitic Diseases Department, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Katie R Margulieux
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Patrick Mc Gann
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Emma G Mills
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - William C Stribling
- Multidrug-Resistant Organism Repository and Surveillance Network (MRSN), Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | | | | | - Mariusz Wojnarski
- Bacterial and Parasitic Diseases Department, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - Samandra T Demons
- Bacterial and Parasitic Diseases Department, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand
| | - John M Crawford
- US Army Medical Research Institute of Chemical Defense, Gunpowder, MD, USA
| | - Paphavee Lertsethtakarn
- Bacterial and Parasitic Diseases Department, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, 10400, Thailand.
| | - Brett E Swierczewski
- Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
17
|
Siriphap A, Kitti T, Khuekankaew A, Boonlao C, Thephinlap C, Thepmalee C, Suwannasom N, Khoothiam K. High prevalence of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates: A 5-year retrospective study at a Tertiary Hospital in Northern Thailand. Front Cell Infect Microbiol 2022; 12:955774. [PMID: 36004324 PMCID: PMC9393477 DOI: 10.3389/fcimb.2022.955774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Background The global emergence and spread of extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales, especially Escherichia coli and Klebsiella pneumoniae, have been recognized as a public health concern as severe infections caused by these microorganisms increase morbidity and mortality. This study aimed to assess the prevalence of ESBL-positive E. coli and K. pneumoniae strains isolated from hospitalized patients in Chiangrai Prachanukroh hospital, Chiangrai province, Thailand. Methods This retrospective analysis was conducted from January 2016 to December 2020. A total of 384,001 clinical specimens were collected aseptically and further cultivated on an appropriate medium. All clinical isolates (one isolate per patient) were identified based on standard laboratory methods. Antibiotic susceptibility testing was performed by the Kirby Bauer disc diffusion technique following CLSI guidelines. ESBL production was screened with ceftazidime and cefotaxime discs based on the CLSI recommendations. Phenotypic confirmation of ESBL production was carried out using a double-disc synergy technique following the CLSI standard. Results Of a total of 384,001 clinical samples analyzed for bacterial species identification, 11,065 (2.9%) tested positive for E. coli and 5,617 (1.5%) for K. pneumoniae. Approximately 42.5% (4,706/11,065) of E. coli and 30.2% (1,697/5,617) of K. pneumoniae isolates were classified as ESBL producers. A higher proportion of ESBL producers was found in patients older than 60 years and male groups. The highest infection rates of ESBL-positive pathogens were observed among patients in a medical unit. ESBL-producing E. coli and K. pneumoniae isolates were predominantly found in urine and sputum, respectively. ESBL producers exhibited a high resistance rate to ampicillin (99.8–100%), cefazolin (100%), cefotaxime (100%), fluoroquinolones, and trimethoprim/sulfamethoxazole. Conclusions This study demonstrated the high prevalence and emerging antibiotic resistance of ESBL-positive E. coli and K. pneumoniae isolates from patients admitted to a provincial hospital in northern Thailand. Most ESBL-producing strains were highly resistant to several antimicrobial agents apart from carbapenems and aminoglycosides. These findings indicated that carbapenems and aminoglycosides should be advised as the first-line drugs of choice for serious infections with ESBL-producing Enterobacterales.
Collapse
Affiliation(s)
- Achiraya Siriphap
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Thawatchai Kitti
- Faculty of Oriental Medicine, Chiang Rai College, Chiang Rai, Thailand
| | | | - Chalermchai Boonlao
- Department of Clinical Microbiology, Chiangrai Prachanukroh Hospital, Chiang Rai, Thailand
| | - Chonthida Thephinlap
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Chutamas Thepmalee
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Nittiya Suwannasom
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Krissana Khoothiam
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
- *Correspondence: Krissana Khoothiam,
| |
Collapse
|
18
|
Assawatheptawee K, Treebupachatsakul P, Luangtongkum T, Niumsup PR. Risk Factors for Community-Acquired Urinary Tract Infections Caused by Multidrug-Resistant Enterobacterales in Thailand. Antibiotics (Basel) 2022; 11:antibiotics11081039. [PMID: 36009908 PMCID: PMC9405395 DOI: 10.3390/antibiotics11081039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 02/01/2023] Open
Abstract
The dissemination of multidrug-resistant Enterobacterales (MDRE) in community settings is becoming a great concern. This study aimed to assess the incidence and risk factors associated with community-acquired urinary tract infections (CA-UTIs) caused by MDRE. A prospective case−control study was undertaken among patients with UTIs visiting an outpatient department in Phitsanulok Province, Thailand. Urine samples were collected and screened to include only patients with Enterobacterales infections. Risk factors were analyzed by multivariate logistic regression analysis. Of the 284 patients with CA-UTIs, 25.7% (n = 73) and 74.3% (n = 211) were positive for MDRE (case) and non-MDRE (control), respectively. Being a farmer was identified as an independent risk factor for MDRE-associated CA-UTIs (adjusted odds ratio = 3.101; 95% confidence interval = 1.272−7.564; p = 0.013). A total of 309 Enterobacterales isolates were recovered, and Escherichia coli was the most frequently detected (86.4%). The highest resistance rate was observed for ampicillin (67.0%), followed by ciprofloxacin (34.0%) and cotrimoxazole (32.7%), while resistance to third-generation cephalosporins (cefotaxime, ceftriaxone) and levofloxacin remained <20%. Resistance to ampicillin−gentamicin−cotrimoxazole was the most common pattern among MDRE isolates. Interestingly, we detected a colistin-resistant Enterobacter cloacae harboring mcr-9 (colistin MIC = 16 µg/mL). mcr-9 was transferable at high frequency (4.5 × 10−4) and resided on IncF plasmid. This study demonstrates that being a farmer is a risk factor for MDRE-associated CA-UTIs. Interestingly, this is the first report to identify mcr-9-positive E. cloacae from a Thai patient in the community.
Collapse
Affiliation(s)
- Kanit Assawatheptawee
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | | | - Taradon Luangtongkum
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pannika R. Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
- Center of Excellent in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Correspondence: ; Tel.: +66-55-964612
| |
Collapse
|
19
|
Kanj SS, Bassetti M, Kiratisin P, Rodrigues C, Villegas MV, Yu Y, van Duin D. Clinical data from studies involving novel antibiotics to treat multidrug-resistant Gram-negative bacterial infections. Int J Antimicrob Agents 2022; 60:106633. [PMID: 35787918 DOI: 10.1016/j.ijantimicag.2022.106633] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/15/2022] [Accepted: 06/26/2022] [Indexed: 11/05/2022]
Abstract
Multidrug-resistant (MDR) Gram-negative bacteria (GNB) are a critical threat to healthcare worldwide, worsening outcomes and increasing mortality among infected patients. Carbapenemase- and extended-spectrum β-lactamase-producing Enterobacterales, as well as carbapenemase-producing Pseudomonas and Acinetobacter spp., are common MDR pathogens. To address this threat, new antibiotics and combinations have been developed. Clinical trial findings support several combinations, notably ceftazidime-avibactam (CZA, a cephalosporin-β-lactamase inhibitor combination) which is effective in treating complicated urinary tract infections (cUTI), complicated intra-abdominal infections and hospital-acquired and ventilator-associated pneumonia caused by GNBs. Other clinically effective combinations include meropenem-vaborbactam (MVB), ceftolozane-tazobactam (C/T) and imipenem- relebactam (I-R). Cefiderocol is a recent siderophore β-lactam antibiotic that is useful against cUTIs caused by carbapenem-resistant Enterobacterales (CRE) and is stable against many β-lactamases. CRE are a genetically heterogeneous group that vary in different world regions and are a substantial cause of infections, among which Klebsiella pneumoniae are the most common. Susceptible CRE infections can be treated with fluoroquinolones, aminoglycosides or fosfomycin, but alternatives include CZA, MVB, I-R, cefiderocol, tigecycline and eravacycline. MDR Acinetobacter baumannii and Pseudomonas aeruginosa are increasingly common pathogens producing a range of different carbapenemases, and infections are challenging to treat, often requiring novel antibiotics or combinations. Currently, no single agent can treat all MDR-GNB infections, but new β-lactam-β-lactamase inhibitor combinations are often effective for different infection sites, and, when used appropriately, have the potential to improve outcomes. This article reviews clinical studies investigating novel β-lactam approaches for treatment of MDR-GNB infections.
Collapse
Key Words
- Antibiotic resistance
- BAT, best available treatment
- BL, β-lactamase
- BL–BLI, β-lactam-β-lactamase inhibitor
- BSI, bloodstream infection
- C/T, ceftolozane–tazobactam
- CAZ, ceftazidime
- CDC, Centers for Disease Control and Prevention
- CRAB, carbapenem-resistant Acinetobacter baumannii
- CRE, carbapenem-resistant Enterobacterales
- CRKP, carbapenem-resistant K. pneumoniae
- CRPA, carbapenem-resistant Pseudomonas aeruginosa
- CZA, ceftazidime–avibactam
- Clinical trial
- DBO, diazabicyclooctane
- ESBL, extended-spectrum β-lactamase
- FDA, US Food and Drug Administration
- GNB, Gram-negative bacteria
- Gram-negative bacteria Abbreviations: AVI, avibactam
- HAP, hospital-acquired pneumonia
- IAI, intra-abdominal infection
- ICU, intensive care unit
- IDSA, Infectious Diseases Society of America
- IPM, imipenem
- I–R, imipenem–relebactam
- KPC, Klebsiella pneumoniae carbapenemase
- MBL, metallo-β-lactamase
- MDR, multidrug-resistant
- MEM, meropenem
- MIC, minimum inhibitory concentration
- MVB, meropenem–vaborbactam
- NDM, New Delhi metallo-β-lactamase
- OXA, oxacillinase
- REL, relebactam
- US, United States
- UTI, urinary tract infection
- VAB, vaborbactam
- VAP, ventilator-associated pneumonia
- VIM, Verona integron-encoded metallo-β-lactamase
- XDR, extensively drug-resistant
- cIAI, complicated intra-abdominal infection
- cUTI, complicated urinary tract infection
- β-lactam-β-lactamase inhibitor
Collapse
Affiliation(s)
- Souha S Kanj
- Division of Infectious Diseases, American University of Beirut Medical Center, Beirut, Lebanon
| | - Matteo Bassetti
- Department of Health Science, University of Genoa, Italy; Infectious Diseases Clinic, Ospedale Policlinico San Martino Hospital - IRCCS, Genoa, Italy
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Camilla Rodrigues
- Department of Microbiology, P. D. Hinduja Hospital and Medical Research Centre, Mumbai, Maharashtra, India
| | - María Virginia Villegas
- Grupo de Investigaciones en Resistencia Antimicrobiana y Epidemiología Hospitalaria (RAEH), Universidad El Bosque, Bogotá D.C., Colombia
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - David van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
20
|
Pudpong K, Pattharachayakul S, Santimaleeworagun W, Nwabor OF, Laohaprertthisan V, Hortiwakul T, Charernmak B, Chusri S. Association Between Types of Carbapenemase and Clinical Outcomes of Infection Due to Carbapenem Resistance Enterobacterales. Infect Drug Resist 2022; 15:3025-3037. [PMID: 35720254 PMCID: PMC9205317 DOI: 10.2147/idr.s363588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Compared with non-carbapenemase producing carbapenem-resistant Enterobacterales (non-CP-CRE), carbapenemase-producing carbapenem-resistant Enterobacterales (CP-CRE) are associated with considerable mortality. However, given that the patients are treated with various therapeutic options, it remains unclear whether differences in types of carbapenemase genes yield different mortality rates. Therefore, this study aims to identify carbapenemase genes and identify whether clinical outcomes differ according to the prevalence of genotype and phenotype of carbapenemase among Enterobacterales clinical isolated. Patients and Methods A retrospective cohort study was performed to determine whether types of carbapenemase genes have an impact on clinical outcomes. Carbapenem-resistant clinical isolates were collected at a tertiary care university hospital in Songkhla, Thailand, between June 2018 and February 2020. Demographic and microbiological data such as antimicrobial susceptibility, carbapenemase genes, and overall mortality were evaluated. Results A total of 121 Enterobacterales clinical isolated were evaluated. The blaNDM-1 gene was detected in 44% of the isolates, followed by blaOXA-48 (28%) and blaNDM-1/OXA-48 (28%). NDM-1- or NDM-1/OXA-48- producing isolates were more likely to require meropenem MICs of ≥16 mg/L, while OXA-48-producing isolates were more likely to require meropenem MICs of <16 mg/L. The patients with NDM-1 or NDM-1/OXA-48 had a higher 14 days mortality rate than those with OXA-48 after treating with carbapenem-containing regimens (P-value 0.001) or colistin-containing regimens (P-value < 0.001). Conclusion Our findings suggest that the mortality for CP-CRE infection in patients with NDM-1 or NDM-1/OXA-48 was higher than the mortality in those with OXA-48, which It seems that the type of carbapenemase gene may affect meropenem MIC levels. Hence, in treatment decisions involving the use of either carbapenem-containing regiment or colistin-containing regiment in patients with CP-CRE infection, especially those in the NDM-1 and NDM-1/OXA-48 groups, the patient symptoms should be closely monitored.
Collapse
Affiliation(s)
- Korawan Pudpong
- Department of Pharmacy, College of Pharmacotherapy Thailand, Nontaburi, 11000, Thailand.,Pharmaceutical Care Unit, Department of Pharmacy, Sunpasitthiprasong Hospital, Ubon Ratchathani, 34000, Thailand
| | - Sutthiporn Pattharachayakul
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Wichai Santimaleeworagun
- Department of Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakorn Pathom, 73000, Thailand.,Department of Pharmacy, Pharmaceutical Initiative for Resistant Bacteria and Infectious Disease Working Group (PIRBIG), Nakorn Pathom, 73000, Thailand
| | - Ozioma F Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Varaporn Laohaprertthisan
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand
| | - Thanaporn Hortiwakul
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Boonsri Charernmak
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| |
Collapse
|
21
|
Tantisiriwat W, Buppanharun J, Ekpanyaskul C, Onruang K, Yungyuen T, Kiratisin P, Santiwatanakul S. In Vitro Activity of Ceftolozane-Tazobactam and Other Antibiotics against Pseudomonas aeruginosa Infection-Isolates from an Academic Medical Center in Thailand. Antibiotics (Basel) 2022; 11:antibiotics11060732. [PMID: 35740139 PMCID: PMC9219754 DOI: 10.3390/antibiotics11060732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: Resistant Pseudomonas aeruginosa (PA) infections have limited treatment options. Data on the activity of ceftolozane-tazobactam (C-T) against PA in Thailand are limited. Objectives: The objective of this study was to identify the in vitro activity of C-T against general and resistant PA isolates from patients with real clinical infections from the HRH Princess Maha Chakri Sirindhorn Medical Center (MSMC) compared to other antibiotics and to study the resistant molecular patterns of those PA strains which were resistant to C-T. (2) Materials and Methods: This was an in vitro susceptibility study of 100 PA isolates plus an additional seven resistant PA isolates collected from MSMC patients. All PA isolates were tested with susceptibility broth (Sensititre™) and C-T minimal inhibitory concentration (MIC) test strips (Liofilchem, Roseto degli, Abruzzi, Italy). The C-T-resistant PA isolates were analyzed for six β-lactamase genes (blaCTX-M, blaNDM, blaIMP, blaVIM, blaOXA-23 and blaOXA-48) and the mcr-1 gene. (3) Results: A total of 100 PA isolates were collected between January 2020 and January 2021 and between February 2021 and September 2021 for the additional 7 resistant isolates. There were 18 resistant PA isolates (6 MDR, 11 XDR and 1 pan-drug resistant isolate). The overall susceptibility of the initial 100 PA isolates and the 18 resistant PA isolates was 94% and 44.5%, respectively, for C-T. The C-T susceptibility rates for isolates non-susceptible to ceftazidime, piperacillin-tazobactam, carbapenems and antipseudomonal β-lactams were 65.5%, 69.7%, 50% and 44.5%, respectively. Among the 10 isolates which were resistant to C-T, there were only 3 isolates found to have the resistant gene, which included 1 for blaIMP, 1 for blaVIM and 1 for blaNDM. (4) Conclusions: Although C-T was the best susceptibility antibiotic overall for PA isolates and MDR PA isolates at the MSMC, most of the XDR PA isolates and the PDR PA isolate were not susceptible to C-T. The mechanisms for C-T resistance involved multiple factors including the presence of blaIMP, blaVIM and blaNDM.
Collapse
Affiliation(s)
- Woraphot Tantisiriwat
- Department of Preventive Medicine, HRH Princess Maha Chakri Sirindhorn Medical Center, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok 26120, Thailand; (J.B.); (C.E.)
- Correspondence: ; Tel.: +66-81-811-5425
| | - Jirawat Buppanharun
- Department of Preventive Medicine, HRH Princess Maha Chakri Sirindhorn Medical Center, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok 26120, Thailand; (J.B.); (C.E.)
| | - Chatchai Ekpanyaskul
- Department of Preventive Medicine, HRH Princess Maha Chakri Sirindhorn Medical Center, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok 26120, Thailand; (J.B.); (C.E.)
| | - Kwanchai Onruang
- Department of Pathology, HRH Princess Maha Chakri Sirindhorn Medical Center, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok 26120, Thailand; (K.O.); (S.S.)
| | - Thitiya Yungyuen
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.Y.); (P.K.)
| | - Pattarachai Kiratisin
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (T.Y.); (P.K.)
| | - Somchai Santiwatanakul
- Department of Pathology, HRH Princess Maha Chakri Sirindhorn Medical Center, Faculty of Medicine, Srinakharinwirot University, Nakhon Nayok 26120, Thailand; (K.O.); (S.S.)
| |
Collapse
|
22
|
Kk S, Ekedahl E, Hoang NTB, Sewunet T, Berglund B, Lundberg L, Nematzadeh S, Nilsson M, Nilsson LE, Le NK, Tran DM, Hanberger H, Olson L, Larsson M, Giske CG, Westerlund F. High diversity of bla NDM-1-encoding plasmids in Klebsiella pneumoniae isolated from neonates in a Vietnamese hospital. Int J Antimicrob Agents 2022; 59:106496. [PMID: 34921976 DOI: 10.1016/j.ijantimicag.2021.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/08/2021] [Accepted: 12/01/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The carbapenemase-encoding gene blaNDM-1 has been reported in Vietnam during the last 10 years, and blaNDM-producing Enterobacteriaceae are now silently and rapidly spreading. A key factor behind dissemination of blaNDM-1 is plasmids, mobile genetic elements that commonly carry antibiotic resistance genes and spread via conjugation. The diversity of blaNDM-1-encoding plasmids from neonates at a large Vietnamese hospital was characterized in this study. METHODS 18 fecal Klebsiella pneumoniae and Klebsiella quasipneumoniae isolates collected from 16 neonates at a large pediatric hospital in Vietnam were studied using optical DNA mapping (ODM) and next-generation sequencing (NGS). Plasmids carrying the blaNDM-1 gene were identified by combining ODM with Cas9 restriction. The plasmids in the isolates were compared to investigate whether the same plasmid was present in different patients. RESULTS Although the same plasmid was found in some isolates, ODM confirmed that there were at least 10 different plasmids encoding blaNDM-1 among the 18 isolates, thus indicating wide plasmid diversity. The ODM results concur with the NGS data. Interestingly, some isolates had two distinct plasmids encoding blaNDM-1 that could be readily identified with ODM. The coexistence of different plasmids carrying the same blaNDM-1 gene in a single isolate has rarely been reported, probably because of limitations in plasmid characterization techniques. CONCLUSIONS The plasmids encoding the blaNDM-1 gene in this study cohort were diverse and may represent a similar picture in Vietnamese society. The study highlights important aspects of the usefulness of ODM for plasmid analysis.
Collapse
Affiliation(s)
- Sriram Kk
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Elina Ekedahl
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ngoc Thi Bich Hoang
- Department of Microbiology, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Tsegaye Sewunet
- Division of Clinical Microbiology, Department of Laboratory medicine, Karolinska Institutet, Stockholm, Sweden
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Faculty of medicine, Linköping University, Linköping, Sweden
| | - Ludwig Lundberg
- Department of Biomedical and Clinical Sciences, Faculty of medicine, Linköping University, Linköping, Sweden; Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Shoeib Nematzadeh
- Division of Clinical Microbiology, Department of Laboratory medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maud Nilsson
- Department of Biomedical and Clinical Sciences, Faculty of medicine, Linköping University, Linköping, Sweden
| | - Lennart E Nilsson
- Department of Biomedical and Clinical Sciences, Faculty of medicine, Linköping University, Linköping, Sweden
| | - Ngai Kien Le
- Department of Infection Control, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Dien Minh Tran
- Department of Surgery, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Håkan Hanberger
- Department of Biomedical and Clinical Sciences, Faculty of medicine, Linköping University, Linköping, Sweden
| | - Linus Olson
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden; Department of Women and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Mattias Larsson
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Christian G Giske
- Division of Clinical Microbiology, Department of Laboratory medicine, Karolinska Institutet, Stockholm, Sweden; Clinical microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden..
| |
Collapse
|
23
|
Win EE, Htun KW, Tragulpiankit P, Tangtrakultham S, Montakantikul P. The Evaluation of Meropenem Dosing Regimens Against ESBL-Producing Escherichia coli in ICU Patients Using Monte Carlo Simulation. Infect Drug Resist 2022; 15:439-453. [PMID: 35177911 PMCID: PMC8846559 DOI: 10.2147/idr.s345385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Ei Ei Win
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Pramote Tragulpiankit
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Suwida Tangtrakultham
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Preecha Montakantikul
- Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
- Correspondence: Preecha Montakantikul, Division of Clinical Pharmacy, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand, Tel +66-26448694, Email
| |
Collapse
|
24
|
Shirazi OU, Ab Rahman NS, Zin CS. An overview of the hospitals’ antimicrobial stewardship programs implemented to improve antibiotics’ utilization, cost and resistance patterns. JOURNAL OF PHARMACY 2022. [DOI: 10.31436/jop.v2i1.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction: The high reliance of the physicians and surgeons on the antibiotics since their discovery has led to an irrational antibiotic utilization which not only has raised the incidence of antimicrobial resistance (AMR) but also increased the cost of treatment with antibiotics as high use of antibiotics has been found related to the occurrence of certain nosocomial infections which need extra antibiotic courses to be cured. In order to overcome these antibiotic utilization related problems an antimicrobial stewardship (AMS) program being the set of various persuasive, restrictive and structural interventions is considered an effective tool to rationalize the in-patient antimicrobial utilization worldwide.
Method: The focus of this review is on the interventions that are being implemented during the in-patient AMS programs and have been described effective in controlling the antibiotic utilization, their cost of treatment and an overall infection control. The literature containing the information about various AMS interventions effecting the utilization and cost patterns along with the impact on AMR was searched in various databases such as PubMed, Google Scholar, Science Direct, Ovid (Medline) and Scopus. The categorical sorting of the published data is based on various AMS interventions such as the guideline development, formulary restriction (pre-authorization), educative interventions, clinical pathway development and prospective (post prescription) audit. Considering the objectives of the study such as the goal to curb overutilization of antibiotics, control of their cost of treatment for in-patients and infection control the sorted literature is presented in three different tables describing the AMS impact on the said outcomes.
Results: The post AMS changes in utilization patterns are described as fall of antibiotics defined daily doses (DDD) and days of therapy (DOT) which resulted in the reduction of the cost of treatment with antibiotics. The reduction of the cost of treatment with antibiotics also resulted due to the AMS impact on the control of various nosocomial and multi-drug resistant (MDR) infections.
Conclusion: It has been concluded that the AMS program if implemented under the supervision of an expert AMS team mainly comprising of an infectious disease (ID) physician, clinical pharmacists and microbiologists with considerable support by the hospital authorities could be a highly efficient tool of the pharmacovigilance for rationalizing the in-patient antimicrobial practice.
Collapse
|
25
|
Correlation between Carbapenem Consumption and Carbapenems Susceptibility Profiles of Acinetobacter baumannii and Pseudomonas aeruginosa in an Academic Medical Center in Thailand. Antibiotics (Basel) 2022; 11:antibiotics11020143. [PMID: 35203746 PMCID: PMC8868269 DOI: 10.3390/antibiotics11020143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
The emergent issue of carbapenem-resistant Acinetobacter baumannii (A. baumannii) and Pseudomonas aeruginosa (P. aeruginosa) is a major problem in Thailand. The wide use of carbapenems can increase selective pressure of bacterial resistance. The objective of this study was to determine the relationship between carbapenem consumption and the susceptibility rates of A. baumannii and P. aeruginosa, including multi-drug resistance (MDR) strains. This was a retrospective study. Carbapenem consumption and susceptibility profiles were collected from 2007 to 2013 at the Her Royal Highness Princess Maha Chakri Sirindhorn Medical Center, Thailand. We found that the susceptibility rate of A. baumannii to imipenem and meropenem from the sputum and the bronchoalveolar lavage (BAL) specimens was significantly decreased during the study period, but no significant change was found in the P. aeruginosa data. The relationship between carbapenem consumption and the susceptibility rate of A. baumannii had a clear association with the use of ertapenem. We found a statistically significant negative correlation between ertapenem consumption and the susceptibility rate of A. baumannii to imipenem (r = −0.91; p = 0.004) and meropenem (r = −0.97; p = 0.000) in the data from the non-ICU wards. In addition, imipenem use had a moderate negative correlation with the MDR P. aeruginosa data but no statistical significance (r = −0.714; p > 0.05). In conclusion, our study suggested there is an association between carbapenem use and the susceptibility of A. baumannii and P. aeruginosa. Notwithstanding this, information on ecological factors should be considered for further study. These findings showed the need to optimize the carbapenem prescription policy. Avoiding carbapenem overuse and rethinking the appropriate initial therapy might decrease the rate of resistant organisms.
Collapse
|
26
|
Quynh NTN, Dat VQ. Purchase of carbapenems in Vietnam, a low- to middle-income pharmaceutical market with a high burden of antimicrobial drug resistance. WHO South East Asia J Public Health 2022; 10:12-17. [PMID: 35046152 DOI: 10.4103/who-seajph.who-seajph_76_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Carbapenems are the last-resort antibiotics used for the treatment of multidrug-resistant bacterial infections. We reported the expenditure and prices of carbapenems in public healthcare institutions in Vietnam. Materials and Methods Data on carbapenem procurement were obtained from tender-winning bids from provincial health authorities and public hospitals from 2013 to 2018. We use the anatomical therapeutic chemical index 2019 and the defined daily doses (DDDs) to describe the purchase (in number of DDD) and the price of carbapenem (presented in US dollar per DDD). Results There are four available carbapenems in Vietnam between 2013 and 2018. Imipenem/cilastatin was the most common purchased antibiotic, accounting for 50.7% of total carbapenem consumption. The vast majority of carbapenem purchase (in DDD) was imported (79.1%). By 2018, among available carbapenems, the average price of doripenem was the highest (US $85.25/DDD), followed by meropenem (US $39.4/DDD), imipenem/cilastatin (US $36.5/DDD), and ertapenem (US $24.5 per DDD). The average carbapenem price decreased by 6.3% annually. The price of doripenem (P = -0.8518, r = 0.0313) and meropenem (P = 0.8875, r = 0.0183) had a significant correlation with the number of manufacturers in the market. The price variability and the number of manufacturers of doripenem (P = 0.8173, r = 0.047) and meropenem (P = -0.8116, r = 0.499) also had a strong positive correlation. Conclusion The price of carbapenems in the Vietnam pharmaceutical market was high. Monitoring the price and consumption of last-resort antibiotic are needed to ensure availability of antibiotics in the setting with high burden of antibiotic drug resistance.
Collapse
Affiliation(s)
- Ninh Thi Nhu Quynh
- Department of Infectious Diseases, Hanoi Medical University, Hanoi, Vietnam
| | - Vu Quoc Dat
- Department of Infectious Diseases, Hanoi Medical University; Tropical Diseases and Harm Reduction, Hanoi Medical University Hospital, Hanoi, Vietnam
| |
Collapse
|
27
|
Uddin F, Imam SH, Khan S, Khan TA, Ahmed Z, Sohail M, Elnaggar AY, Fallatah AM, El-Bahy ZM. NDM Production as a Dominant Feature in Carbapenem-Resistant Enterobacteriaceae Isolates from a Tertiary Care Hospital. Antibiotics (Basel) 2021; 11:antibiotics11010048. [PMID: 35052925 PMCID: PMC8772831 DOI: 10.3390/antibiotics11010048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/19/2022] Open
Abstract
The worldwide spread and increasing prevalence of carbapenem-resistant Enterobacteriaceae (CRE) is of utmost concern and a problem for public health. This resistance is mainly conferred by carbapenemase production. Such strains are a potential source of outbreaks in healthcare settings and are associated with high rates of morbidity and mortality. In this study, we aimed to determine the dominance of NDM-producing Enterobacteriaceae at a teaching hospital in Karachi. A total of 238 Enterobacteriaceae isolates were collected from patients admitted to Jinnah Postgraduate Medical Centre (Unit 4) in Karachi, Pakistan, a tertiary care hospital. Phenotypic and genotypic methods were used for detection of metallo-β-lactamase. Out of 238 isolates, 52 (21.8%) were CRE and 50 isolates were carbapenemase producers, as determined by the CARBA NP test; two isolates were found negative for carbapenemase production by CARB NP and PCR. Four carbapenemase-producing isolates phenotypically appeared negative for metallo-β-lactamase (MBL). Of the 52 CRE isolates, 46 (88.46%) were blaNDM positive. Most of the NDM producers were Klebsiella pneumoniae, followed by Enterobacter cloacae and Escherichia coli. In all the NDM-positive isolates, the blaNDM gene was found on plasmid. These isolates were found negative for the VIM and IPM MBLs. All the CRE and carbapenem-sensitive isolates were sensitive to colistin. It is concluded that the NDM is the main resistance mechanism against carbapenems and is dominant in this region.
Collapse
Affiliation(s)
- Fakhur Uddin
- Jinnah Postgraduate Medical Center (JPMC), Department of Microbiology, Basic Medical Sciences Institute (BMSI), Karachi 75510, Pakistan;
| | - Syed Hadi Imam
- Basildon University Hospital Essex, Basildon SS16 5NL, UK;
| | - Saeed Khan
- Department of Pathology, Dow University of Health Sciences (DUHS), Karachi 74200, Pakistan;
| | - Taseer Ahmed Khan
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan; (T.A.K.); (Z.A.)
| | - Zulfiqar Ahmed
- Department of Physiology, University of Karachi, Karachi 75270, Pakistan; (T.A.K.); (Z.A.)
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi 75270, Pakistan
- Correspondence:
| | - Ashraf Y. Elnaggar
- Department of Food Nutrition Science, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed M. Fallatah
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Zeinhom M. El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasir City, Cairo 11884, Egypt;
| |
Collapse
|
28
|
Antibiotic Resistance and Pathogenomics of Staphylococci Circulating in Novosibirsk, Russia. Microorganisms 2021; 9:microorganisms9122487. [PMID: 34946089 PMCID: PMC8706439 DOI: 10.3390/microorganisms9122487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
A total of 394 strains of staphylococci found in humans and pets in Novosibirsk, Siberian Russia, were characterized in terms of antibiotic resistance and corresponding genes. Two coagulase-positive and 17 coagulase-negative species were identified. The majority of isolates, with the exception of S. haemolyticus and hospital S. epidermidis isolates, were sensitive to most of the tested antibiotics, and isolates from pets displayed the lowest level of resistance. Nevertheless, methicillin-resistant (MRS) and/or multidrug-resistant (MDR) isolates were found in all prevailed species, including coagulase-negative. A set of genes corresponding to the detected resistance was identified: mecA (beta-lactam resistance), aac(6')-Ie-aph(2″)-Ia, aph(3')-IIIa, ant(4')-Ia (aminoglycoside-modifying enzymes), ermA/ermC, and msrA (macrolide resistance). Complete genome analysis for ten MDR S. epidermidis and five MDR S. haemolyticus isolates revealed additional antibiotic resistance genes mphC, qacA/qacB, norA, dfrC/dfrG, lnuA, BseSR, and fosB. NorA, dfrC, and fosB were present in all S. epidermidis genomes, whereas mphC and msrA were identified in all S. haemolyticus ones. All investigated MDR S. epidermidis and four of five S. haemolyticus strains were moderate or strong biofilm producers, whereas multiple genes responsible for this function and for virulence and pathogenicity were identified mostly in S. epidermidis, but were less frequently represented in S. haemolyticus.
Collapse
|
29
|
Singh SR, Teo AKJ, Prem K, Ong RTH, Ashley EA, van Doorn HR, Limmathurotsakul D, Turner P, Hsu LY. Epidemiology of Extended-Spectrum Beta-Lactamase and Carbapenemase-Producing Enterobacterales in the Greater Mekong Subregion: A Systematic-Review and Meta-Analysis of Risk Factors Associated With Extended-Spectrum Beta-Lactamase and Carbapenemase Isolation. Front Microbiol 2021; 12:695027. [PMID: 34899618 PMCID: PMC8661499 DOI: 10.3389/fmicb.2021.695027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the rapid spread of extended-spectrum beta-lactamase (ESBL) producing-Enterobacterales (ESBL-E) and carbapenemase-producing Enterobacterales (CPE), little is known about the extent of their prevalence in the Greater Mekong Subregion (GMS). In this systematic review, we aimed to determine the epidemiology of ESBL-E and CPE in clinically significant Enterobacterales: Escherichia coli and Klebsiella pneumoniae from the GMS (comprising of Cambodia, Laos, Myanmar, Thailand, Vietnam and Yunnan province and Guangxi Zhuang region of China). Methods: Following a list of search terms adapted to subject headings, we systematically searched databases: Medline, EMBASE, Scopus and Web of Science for articles published on and before October 20th, 2020. The search string consisted of the bacterial names, methods involved in detecting drug-resistance phenotype and genotype, GMS countries, and ESBL and carbapenemase detection as the outcomes. Meta-analyses of the association between the isolation of ESBL from human clinical and non-clinical specimens were performed using the "METAN" function in STATA 14. Results: One hundred and thirty-nine studies were included from a total of 1,513 identified studies. Despite the heterogeneity in study methods, analyzing the prevalence proportions on log-linear model scale for ESBL producing-E. coli showed a trend that increased by 13.2% (95%CI: 6.1-20.2) in clinical blood specimens, 8.1% (95%CI: 1.7-14.4) in all clinical specimens and 17.7% (95%CI: 4.9-30.4) increase in carriage specimens. Under the log-linear model assumption, no significant trend over time was found for ESBL producing K. pneumoniae and ESBL-E specimens. CPE was reported in clinical studies and carriage studies past 2010, however a trend could not be determined because of the small dataset. Twelve studies were included in the meta-analysis of risk factors associated with isolation of ESBL. Recent antibiotic exposure was the most studied variable and showed a significant positive association with ESBL-E isolation (pooled OR: 2.9, 95%CI: 2.3-3.8) followed by chronic kidney disease (pooled OR: 4.7, 95%CI: 1.8-11.9), and other co-morbidities (pooled OR: 1.6, 95%CI: 1.2-2.9). Conclusion: Data from GMS is heterogeneous with significant data-gaps, especially in community settings from Laos, Myanmar, Cambodia and Yunnan and Guangxi provinces of China. Collaborative work standardizing the methodology of studies will aid in better monitoring, surveillance and evaluation of interventions across the GMS.
Collapse
Affiliation(s)
- Shweta R. Singh
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Alvin Kuo Jing Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Kiesha Prem
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Department of Infectious Disease Epidemiology, Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Elizabeth A. Ashley
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - H. Rogier van Doorn
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Direk Limmathurotsakul
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul Turner
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Li Yang Hsu
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
30
|
Bassetti M, Garau J. Current and future perspectives in the treatment of multidrug-resistant Gram-negative infections. J Antimicrob Chemother 2021; 76:iv23-iv37. [PMID: 34849997 PMCID: PMC8632738 DOI: 10.1093/jac/dkab352] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbial resistance is a serious threat to human health worldwide. Among the World Health Organisation's list of priority resistant bacteria, three are listed as critical-the highest level of concern-and all three are Gram-negative. Gram-negative resistance has spread worldwide via a variety of mechanisms, the most problematic being via AmpC enzymes, extended-spectrum β-lactamases, and carbapenemases. A combination of older drugs, many with high levels of toxicity, and newer agents are being used to combat multidrug resistance, with varying degrees of success. This review discusses the current treatments for multidrug-resistant Gram-negative bacteria, including new agents, older compounds, and new combinations of both, and some new treatment targets that are currently under investigation.
Collapse
Affiliation(s)
- Matteo Bassetti
- Clinica Malattie Infettive, Ospedale Policlinico San Martino—IRCCS, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Javier Garau
- Hospital Universitari Mutua de Terrassa, Barcelona, Spain
- Clínica Rotger Quironsalud, Palma de Mallorca, Spain
| |
Collapse
|
31
|
Baral R, Shrestha LB, Ortuño-Gutiérrez N, Pyakure P, Rai B, Rimal SP, Singh S, Sharma SK, Khanal B, Selvaraj K, Kumar AMV. Low yield but high levels of multidrug resistance in urinary tract infections in a tertiary hospital, Nepal. Public Health Action 2021; 11:70-76. [PMID: 34778019 DOI: 10.5588/pha.21.0044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
SETTING There are concerns about the occurrence of multidrug resistance (MDR) in patients with urine tract infections (UTI) in Nepal. OBJECTIVE To determine culture positivity, trends in MDR among Escherichia coli and Klebsiella pneumoniae infections and seasonal changes in culture-positive UTI specimens isolated from 2014 to 2018 at the B P Koirala Institute of Health Sciences, Dharan, Eastern Nepal. DESIGN This was a cross-sectional study using secondary laboratory data. RESULTS Among 116,417 urine samples tested, 19,671 (16.9%) were culture-positive, with an increasing trend in the number of samples tested and culture positivity. E. coli was the most common bacteria (54.3%), followed by K. pneumoniae (8.8%). Among E. coli and K. pneumoniae isolates, MDR was found in respectively 42.5% and 36.0%. MDR was higher in males and people aged >55 years, but showed a decreasing trend over the years. The numbers of isolates increased over the years, with a peak always observed from July to August. CONCLUSION Low culture positivity is worrying and requires further work into improving diagnostic protocols. Decreasing trends in MDR are a welcome sign. Information on seasonal changes that peak in July-August can help laboratories better prepare for this time with adequate buffer stocks to ensure culture and antibiotic susceptibility testing.
Collapse
Affiliation(s)
- R Baral
- BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Nepal
| | - L B Shrestha
- BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Nepal
| | | | - P Pyakure
- BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Nepal.,School of Public Health and Community Medicine, BPKIHS, Dharan, Nepal
| | - B Rai
- BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Nepal
| | - S P Rimal
- BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Nepal
| | - S Singh
- BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Nepal
| | - S K Sharma
- BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Nepal
| | - B Khanal
- BP Koirala Institute of Health Sciences (BPKIHS), Dharan, Nepal
| | - K Selvaraj
- All India Institute of Medical Sciences, Nagpur, India
| | - A M V Kumar
- International Union Against Tuberculosis and Lung Disease (The Union), Paris, France.,The Union South-East Asia Office, New Delhi, India.,Yenepoya Medical College, Yenepoya (deemed University), Mangaluru, India
| |
Collapse
|
32
|
Son TV, Manh ND, Trung NT, Quyen DT, Meyer CG, Phuong NTK, Hoan PQ, Sang VV, Nurjadi D, Velavan TP, Bang MH, Song LH. Molecular detection of bla CTX-M gene to predict phenotypic cephalosporin resistance and clinical outcome of Escherichia coli bloodstream infections in Vietnam. Ann Clin Microbiol Antimicrob 2021; 20:60. [PMID: 34481499 PMCID: PMC8418716 DOI: 10.1186/s12941-021-00466-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Blood stream infections (BSI) caused by Extended Spectrum Beta-Lactamases (ESBLs) producing Enterobacteriaceae is a clinical challenge leading to high mortality, especially in developing countries. In this study, we sought to describe the epidemiology of ESBL-producing Escherichia coli strains isolated from Vietnamese individuals with BSI, to investigate the concordance of genotypic-phenotypic resistance, and clinical outcome of ESBL E. coli BSI. METHODS A total of 459 hospitalized patients with BSI were screened between October 2014 and May 2016. 115 E. coli strains from 115 BSI patients were isolated and tested for antibiotic resistance using the VITEK®2 system. The ESBL phenotype was determined by double disk diffusion method following the guideline of Clinical and Laboratory Standards Institute. Screening for beta-lactamase (ESBL and carbapenemase) genes was performed using a multiplex-PCR assay. RESULTS 58% (67/115) of the E. coli strains were ESBL-producers and all were susceptible to both imipenem and meropenem. Resistance to third-generation cephalosporin was common, 70% (81/115) were cefotaxime-resistant and 45% (52/115) were ceftazidime-resistant. blaCTX-M was the most common ESBL gene detected (70%; 80/115) The sensitivity and specificity of blaCTX-M-detection to predict the ESBL phenotype was 87% (76-93% 95% CI) and 54% (39-48% 95% CI), respectively. 28%% (22/80) of blaCTX-M were classified as non-ESBL producers by phenotypic testing for ESBL production. The detection of blaCTX-M in ESBL-negative E. coli BSI was associated with fatal clinical outcome (27%; 6/22 versus 8%; 2/26, p = 0.07). CONCLUSION A high prevalence of ESBL-producing E. coli isolates harbouring blaCTX-M was observed in BSI patients in Vietnam. The genotypic detection of blaCTX-M may have added benefit in optimizing and guiding empirical antibiotic therapy of E. coli BSI to improve clinical outcome.
Collapse
Affiliation(s)
- Trinh Van Son
- 108 Institute of Clinical and Pharmaceutical Sciences, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Nguyen Dang Manh
- 108 Institute of Clinical and Pharmaceutical Sciences, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Ngo Tat Trung
- 108 Institute of Clinical and Pharmaceutical Sciences, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Dao Thanh Quyen
- 108 Institute of Clinical and Pharmaceutical Sciences, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Christian G Meyer
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Phan Quoc Hoan
- Central Laboratory, 108 Military Central Hospital, Hanoi, Vietnam
| | - Vu Viet Sang
- 108 Institute of Clinical and Pharmaceutical Sciences, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Dennis Nurjadi
- Department of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Thirumalaisamy P Velavan
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Mai Hong Bang
- 108 Institute of Clinical and Pharmaceutical Sciences, Hanoi, Vietnam
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Le Huu Song
- 108 Institute of Clinical and Pharmaceutical Sciences, Hanoi, Vietnam.
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam.
- 108 Military Central Hospital, Nr.1 Tran Hung Dao street, Hanoi, Vietnam.
| |
Collapse
|
33
|
KK S, Sewunet T, Wangchinda W, Tangkoskul T, Thamlikitkul V, Giske CG, Westerlund F. Optical DNA Mapping of Plasmids Reveals Clonal Spread of Carbapenem-Resistant Klebsiella pneumoniae in a Large Thai Hospital. Antibiotics (Basel) 2021; 10:antibiotics10091029. [PMID: 34572611 PMCID: PMC8466775 DOI: 10.3390/antibiotics10091029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-KP) in patients admitted to hospitals pose a great challenge to treatment. The genes causing resistance to carbapenems are mostly found in plasmids, mobile genetic elements that can spread easily to other bacterial strains, thus exacerbating the problem. Here, we studied 27 CR-KP isolates collected from different types of samples from 16 patients admitted to the medical ward at Siriraj Hospital in Bangkok, Thailand, using next generation sequencing (NGS) and optical DNA mapping (ODM). The majority of the isolates belonged to sequence type (ST) 16 and are described in detail herein. Using ODM, we identified the plasmid carrying the blaNDM-1 gene in the ST16 isolates and the plasmids were very similar, highlighting the possibility of using ODM of plasmids as a surrogate marker of nosocomial spread of bacteria. We also demonstrated that ODM could identify that the blaCTX-M-15 and blaOXA-232 genes in the ST16 isolates were encoded on separate plasmids from the blaNDM-1 gene and from each other. The other three isolates belonged to ST147 and each of them had distinct plasmids encoding blaNDM-1.
Collapse
Affiliation(s)
- Sriram KK
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Tsegaye Sewunet
- Department of Laboratory Medicine, Karolinska Institute, 141 52 Stockholm, Sweden; (T.S.); (C.G.G.)
| | - Walaiporn Wangchinda
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (W.W.); (T.T.); (V.T.)
| | - Teerawit Tangkoskul
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (W.W.); (T.T.); (V.T.)
| | - Visanu Thamlikitkul
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (W.W.); (T.T.); (V.T.)
| | - Christian G. Giske
- Department of Laboratory Medicine, Karolinska Institute, 141 52 Stockholm, Sweden; (T.S.); (C.G.G.)
- Department of Clinical Microbiology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
- Correspondence: ; Tel.: +46-31-772-3049
| |
Collapse
|
34
|
Menaldi SL, Dinakrisma AA, Thio HB, Rengganis I, Oktaria S. Unusual presentations of a severe type 2 leprosy reaction mimicking sepsis induced by helminth infection. PLoS Negl Trop Dis 2021; 15:e0009453. [PMID: 34314436 PMCID: PMC8315541 DOI: 10.1371/journal.pntd.0009453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe an unusual case of type 2 leprosy reaction (T2R) with septic shock–like features induced by helminth infection in a 31-year-old Moluccan male patient with a history of completed treatment of WHO multidrug therapy (MDT)–multibacillary (MB) regimen 2 years before admission. During the course of illness, the patient had numerous complications, including septic shock, anemia, and disseminated intravascular coagulation (DIC). Nevertheless, antibiotic therapies failed to give significant results, and the source of infection could not be identified. Helminth infection was subsequently revealed by endoscopic examination followed by parasitological culture. Resolution of symptoms and normal level of organ function–specific markers were resolved within 3 days following anthelmintic treatment. This report demonstrated the challenge in the diagnosis and treatment of severe T2R. Given that helminth infections may trigger severe T2R that mimics septic shock, health professionals need to be aware of this clinical presentation, especially in endemic regions of both diseases.
Collapse
Affiliation(s)
- Sri Linuwih Menaldi
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- * E-mail: (SLM); (IR)
| | | | - Hok Bing Thio
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Iris Rengganis
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- * E-mail: (SLM); (IR)
| | - Salma Oktaria
- Department of Dermatology and Venereology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
35
|
Frequency of and risk factors for beta-lactamase-producing Escherichia coli Isolates in hospitalized patients. DRUGS & THERAPY PERSPECTIVES 2021. [DOI: 10.1007/s40267-021-00829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Akeda Y. Current situation of carbapenem-resistant Enterobacteriaceae and Acinetobacter in Japan and Southeast Asia. Microbiol Immunol 2021; 65:229-237. [PMID: 33913535 DOI: 10.1111/1348-0421.12887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022]
Abstract
In the recent years, issues related to drug-resistant bacteria have evolved worldwide, and various countermeasures have been taken to control their spread. Among a wide variety of drug-resistant bacterial species, carbapenem-resistant Gram-negative bacteria, including carbapenem-resistant Enterobacteriaceae (CRE) and carbapenem-resistant Acinetobacter baumannii (CRAb), are those for which countermeasures are particularly important. Carbapenems are the last resort antibiotics for any bacterial infection; therefore, infectious diseases caused by these drug-resistant bacteria are difficult to treat. In the case of CRE, since carbapenemases responsible for carbapenem resistance are mostly encoded on transmissible plasmids, it is known that susceptible bacteria can easily become carbapenem-resistant by transfer of plasmids between Enterobacteriaceae. In addition, Enterobacteriaceae are common bacterial species found in the guts of animals, including humans. Acinetobacter is ubiquitously isolated in the environment. Due to these characteristics, it is quite difficult to prevent the intrusion of multi-drug resistant pathogens in hospitals. Therefore, effective countermeasures should be developed and utilized against such dangerous pathogens based on molecular epidemiological analyses. In this review, there are also some examples presented on how to manage to monitor and control those troublesome drug-resistant bacteria conducted in Japan and Southeast Asia.
Collapse
Affiliation(s)
- Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Osaka, Japan.,Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Osaka, Japan.,Japan-Thailand Research Collaboration Center on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Hirabayashi A, Yanagisawa H, Takahashi H, Yahara K, Boeing P, Wolfenden B, Nov V, Lorn V, Veng M, Ann V, Darapheak C, Shibayama K, Suzuki M. On-Site Genomic Epidemiological Analysis of Antimicrobial-Resistant Bacteria in Cambodia With Portable Laboratory Equipment. Front Microbiol 2021; 12:675463. [PMID: 34054783 PMCID: PMC8158813 DOI: 10.3389/fmicb.2021.675463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
The rapid emergence of carbapenemase-producing gram-negative bacteria (CPGNB) is a global threat due to the high mortality of infection and limited treatment options. Although there have been many reports of CPGNB isolated from Southeast Asian countries, to date there has been no genetic analysis of CPGNB isolated from Cambodia. Sequence-based molecular epidemiological analysis enables a better understanding of the genotypic characteristics and epidemiological significance of antimicrobial-resistant (AMR) bacteria in each country, and allows countries to enact measures related to AMR issues. In this study, we performed on-site genomic epidemiological analysis of CPGNB isolated in Cambodia using a portable laboratory equipment called Bento Lab, which combines a PCR thermal cycler, microcentrifuge, gel electrophoresis apparatus, and LED transilluminator, along with the MinION nanopore sequencer. PCR targeting of major carbapenemase genes using Bento Lab revealed that two Escherichia coli isolates and one Acinetobacter baumannii isolate harbored carbapenemase genes: blaNDM, blaOXA–48, and blaOXA–23, respectively. The results of phenotypic diagnostic tests for CPGNB, such as the carbapenem inactivation method and double-disk diffusion test using a specific inhibitor of metallo-β-lactamases, were consistent with their AMR genotypes. Whole-genome sequencing analysis using MinION revealed that blaNDM–5 gene was carried on a 93.9-kb plasmid with IncFIA/IncFIB/IncFII/IncQ1 replicons, and blaOXA–181 gene was carried on a 51.5-kb plasmid with the IncX3 replicon in E. coli isolates. blaOXA–23 was encoded in two locations on the chromosome of A. baumannii. Plasmids carrying blaNDM–5 or blaOXA–181 in E. coli were highly structurally identical to plasmids prevalent in Enterobacterales in China and other countries, suggesting that they disseminated from a common evolutionary origin. Our findings demonstrate the potential impact of portable laboratory equipment on AMR bacteria research in hospitals and research centers with limited research facilities, and provide the first glimpse into the genomic epidemiology of CPGNB in Cambodia.
Collapse
Affiliation(s)
- Aki Hirabayashi
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Hiromizu Takahashi
- Department of General Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Yahara
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Vandarith Nov
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Vichet Lorn
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Mom Veng
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Vuth Ann
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Chau Darapheak
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Suzuki
- AMR Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
38
|
Viet NT, Van Du V, Thuan ND, Van Tong H, Toan NL, Van Mao C, Van Tuan N, Pallerla SR, Nurjadi D, Velavan TP, Son HA. Maternal Vaginal Colonization and Extended-Spectrum Beta-Lactamase-Producing Bacteria in Vietnamese Pregnant Women. Antibiotics (Basel) 2021; 10:antibiotics10050572. [PMID: 34067975 PMCID: PMC8152252 DOI: 10.3390/antibiotics10050572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) resistance to commonly prescribed drugs is increasing in Vietnam. During pregnancy, ESBL-E may predispose women to reproductive tract infections and increases the risk for neonatal morbidity. Vaginal colonization and infections by Escherichia coli and Klebsiella pneumoniae are seldom studied in Vietnam. In this study, we investigated ESBL-producing Enterobacterales in the birth canal of pregnant women. Between 2016 and 2020, vaginal swabs were collected from 3104 pregnant women (mean gestational age of 31 weeks) and inoculated onto MacConkey agar plates. Colonies were subjected to direct identification and antimicrobial susceptibility testing using the VITEK®-2 automated compact system and disk diffusion. ESBL production was determined phenotypically. E. coli, Klebsiella species were identified in 30% (918/3104) of the vaginal swabs, with E. coli being the most common (73%; 667/918). ESBL-production was detected in 47% (432/918) of Enterobacterales, with frequent multidrug-resistant phenotype. The overall prevalence of carbapenem resistance was low (8%). Over 20% of Klebsiella spp. were carbapenem-resistant. Pregnant women had a high prevalence of colonization and may transmit ESBL-E to neonates at birth, an important risk factor to be considered. The high rate of ESBL-producers and carbapenem resistance in Enterobacterales in Vietnam emphasizes the need for consequent surveillance and access to molecular typing.
Collapse
Affiliation(s)
- Nguyen Thanh Viet
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 121-08, Vietnam; (N.T.V.); (H.V.T.)
| | - Vu Van Du
- National Hospital of Obstetrics and Gynecology, Hanoi 110-02, Vietnam;
| | - Nghiem Duc Thuan
- ENT Department, 103 Military Hospital, Vietnamese Military Medical University, Hanoi 121-08, Vietnam;
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 121-08, Vietnam; (N.T.V.); (H.V.T.)
| | - Nguyen Linh Toan
- Department Post-Graduate Training Management, Vietnamese Military Medical University, Hanoi 121-08, Vietnam;
- Department of Pathophysiology, Vietnamese Military Medical University, Hanoi 121-08, Vietnam;
| | - Can Van Mao
- Department of Pathophysiology, Vietnamese Military Medical University, Hanoi 121-08, Vietnam;
| | - Nguyen Van Tuan
- Department of Rehabilitation, Vietnamese Military Medical University, Hanoi 121-08, Vietnam;
| | - Srinivas Reddy Pallerla
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany;
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Wilhelmstrasse 27, 72074 Tübingen, Germany
- Vietnamese-German Centre for Medical Research (VG-CARE), Hanoi 116-10, Vietnam
- Correspondence: (T.P.V.); (H.A.S.); Tel.: +49-7071-2985981 (T.P.V.); +84-978-437-229 (H.A.S.)
| | - Ho Anh Son
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi 121-08, Vietnam; (N.T.V.); (H.V.T.)
- Correspondence: (T.P.V.); (H.A.S.); Tel.: +49-7071-2985981 (T.P.V.); +84-978-437-229 (H.A.S.)
| |
Collapse
|
39
|
WGS-Based Analysis of Carbapenem-Resistant Acinetobacter baumannii in Vietnam and Molecular Characterization of Antimicrobial Determinants and MLST in Southeast Asia. Antibiotics (Basel) 2021; 10:antibiotics10050563. [PMID: 34064958 PMCID: PMC8150915 DOI: 10.3390/antibiotics10050563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (A. baumannii, CRAb) is an emerging global threat for healthcare systems, particularly in Southeast Asia. Next-generation sequencing (NGS) technology was employed to map genes associated with antimicrobial resistance (AMR) and to identify multilocus sequence types (MLST). Eleven strains isolated from humans in Vietnam were sequenced, and their AMR genes and MLST were compared to published genomes of strains originating from Southeast Asia, i.e., Thailand (n = 49), Myanmar (n = 38), Malaysia (n = 11), Singapore (n = 4) and Taiwan (n = 1). Ten out of eleven Vietnamese strains were CRAb and were susceptible only to colistin. All strains harbored ant(3")-IIa, armA, aph(6)-Id and aph(3") genes conferring resistance to aminoglycosides, and blaOXA-51 variants and blaADC-25 conferring resistance to ß-lactams. More than half of the strains harbored genes that confer resistance to tetracyclines, sulfonamides and macrolides. The strains showed high diversity, where six were assigned to sequence type (ST)/2, and two were allocated to two new STs (ST/1411-1412). MLST analyses of 108 strains from Southeast Asia identified 19 sequence types (ST), and ST/2 was the most prevalent found in 62 strains. A broad range of AMR genes was identified mediating resistance to ß-lactams, including cephalosporins and carbapenems (e.g., blaOXA-51-like, blaOXA-23, blaADC-25, blaADC-73, blaTEM-1, blaNDM-1), aminoglycosides (e.g., ant(3")-IIa, aph(3")-Ib, aph(6)-Id, armA and aph(3')-Ia), phenicoles (e.g., catB8), tetracyclines (e.g., tet.B and tet.39), sulfonamides (e.g., sul.1 and sul.2), macrolides and lincosamide (e.g., mph.E, msr.E and abaF). MLST and core genome MLST (cgMLST) showed an extreme diversity among the strains. Several strains isolated from different countries clustered together by cgMLST; however, different clusters shared the same ST. Developing an action plan on AMR, increasing awareness and prohibiting the selling of antibiotics without prescription must be mandatory for this region. Such efforts are critical for enforcing targeted policies on the rational use of carbapenem compounds and controlling AMR dissemination and emergence in general.
Collapse
|
40
|
Elbadawi HS, Elhag KM, Mahgoub E, Altayb HN, Ntoumi F, Elton L, McHugh TD, Tembo J, Ippolito G, Osman AY, Zumla A, Hamid MMA. Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BMC Microbiol 2021; 21:136. [PMID: 33947325 PMCID: PMC8094518 DOI: 10.1186/s12866-021-02133-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Background Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. Recently, nosocomial infections with carbapenemase-producing Gram-negative bacilli (GNB) is increasing worldwide. We report the molecular characterization and detection of genes associated with carbapenemase producing Gram negative bacteria isolated from hospitalized patients at Soba University Hospital (SUH) in Khartoum State, Sudan. Results Between October 2016 and February 2017, a total of 206 GNB clinical specimens were collected from hospitalized patients in SUH. Of 206 carbapenem resistance isolates, 171 (83 %) were confirmed as phenotypically resistant and 121 (58.7 %) isolates harboured one or more carbapenemase genes. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(52 %), followed by blaIMP 7 (3.4 %), blaOXA-48 5(2.4 %) and blaVIM 2 (0.9 %). Co-resistance genes with NDM producing GNB were detected in 87 (81.3 %) of all blaNDM producing isolates. NDM-1 was the most frequent subtype observed in 75 (70 %) blaNDM producing isolates. The highest percentage of resistance was recorded in ampicillin (98 %), cephalexin (93.5 %) amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftazidime (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). A close correlation between phenotypic and carbapenemase genes detection in all GNB was observed. Conclusions The frequency of carbapenemase producing bacilli was found to be high in SUH. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined.
Collapse
Affiliation(s)
- Hana S Elbadawi
- Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan. .,Soba University Hospital, University of Khartoum, Khartoum, Sudan.
| | - Kamal M Elhag
- Soba University Hospital, University of Khartoum, Khartoum, Sudan.,Ahfad University for Women, Omdurman, Sudan
| | - Elsheikh Mahgoub
- Department of Microbiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hisham N Altayb
- Department of Biochemistry, College of Sciences, King Abdul-Aziz University, Jeddah, Kingdom of Saudi Arabia
| | - Francine Ntoumi
- Université Marien NGouabi, Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo.,Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Linzy Elton
- Center for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, United Kingdom
| | - Timothy D McHugh
- Center for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, United Kingdom
| | - John Tembo
- UNZA-UCLMS and HERPEZ Research and training programs, University teaching Hospital, Lusaka, Zambia
| | - Giuseppe Ippolito
- National Institute for Infectious Diseases, IRCCS, Via Portuense 292, 00149, Lazzaro Spallanzani, Rome, Italy
| | - Abdinasir Yusuf Osman
- The Royal Veterinary College, University of London, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, UK
| | - Alimuddin Zumla
- Center for Clinical Microbiology, University College London, Royal Free Campus, Rowland Hill Street, NW3 2PF, London, United Kingdom.,UCL Hospitals NIHR Biomedical Research Centre London, London, UK
| | | |
Collapse
|
41
|
Tan SH, Koomanan N, Chung SJ, Kwa ALH. Will ceftazidime-avibactam replace polymyxins in Asia? Clin Infect Dis 2021; 73:1743-1744. [PMID: 34009275 DOI: 10.1093/cid/ciab390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sock Hoon Tan
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Department of Pharmacy, Tan Tock Seng Hospital, Singapore, Singapore
| | - Narendran Koomanan
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Shimin Jasmine Chung
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore.,Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Singhealth Duke-NUS Medicine Academic Clinical Programme, Singapore, Singapore
| |
Collapse
|
42
|
Velasco JM, Valderama MT, Margulieux K, Diones PC, Peacock T, Navarro FC, Liao C, Chua D, Macareo L, Crawford J, Swierczewski B. Comparison of Carbapenem-Resistant Microbial Pathogens in Combat and Non-combat Wounds of Military and Civilian Patients Seen at a Tertiary Military Hospital, Philippines (2013-2017). Mil Med 2021; 185:e197-e202. [PMID: 31247085 DOI: 10.1093/milmed/usz148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/31/2019] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Bacterial wound infections are a danger to both military and civilian populations. The nature of injury and infection associated with combat related wounds are important in guiding antibiotic prophylaxis and empiric treatment guidelines. MATERIALS AND METHODS The isolates were screened for drug-resistance by the MicroScan Walkaway Plus System using either the Negative Breakpoint Combo Panel (NBCP) 30 or 34 or Positive Breakpoint Combo Panel (PBPC) 20 or 23. Isolates with a minimum inhibitory concentration (MIC) of ≥8 μg/mL to imipenem and/or meropenem were tested for both carbapenemase production using the CarbaNP test and real-time PCR to determine molecular resistance mechanisms. Plasmid conjugation analysis was performed to define potential for horizontal gene transfer. RESULTS We characterized 634 bacterial wound isolates collected from September 2013 to December 2017 from patients seen at a Philippine military tertiary hospital presenting with combat or non-combat injuries [354 (military) and 280 (civilians)]. Staphylococcus aureus was the most predominant bacterial species isolated from wounds in both populations (104/634, 16%). A variety of Gram-negative bacterial species comprised 442/634 (70%) of the isolates identified, with the most prevalent shown to be Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella pneumoniae, Escherichia coli, and Acinetobacter sp. Carbapenemase production was detected in 34/442 (8%) Gram-negative isolates. Testing for molecular resistance mechanisms showed 32/34 (17 military, 15 civilian) wound isolates were blaNDM positive and 2 were blaVIM positive, with the two blaVIM isolates found in the civilian population. Plasmid conjugation of 14 blaNDM and 2 blaVIM positive wound isolates representatives showed 2/16 (13%) produced E. coli J53 transconjugants (E. coli from a civilian; E. cloacae from a military). CONCLUSION We describe in this study the wound bacterial and antibiotic resistance profile in the military (combat vs non-combat associated) and civilian population. We observed that, with the exception of Acinetobacter sp., resistance of prevalent Gram-negative bacterial species to imipenem or meropenem were not significantly different between the military and civilian populations. We also presented data on the prevalent bacterial species isolated from both combat and non-combat wounds in a military tertiary care hospital setting as well as the carbapenemase-encoding gene primarily responsible for carbapenem resistance as well as evidence of horizontal transfer via mobile genetic elements. Clinicians may use this information to guide empiric antibiotic coverage for the predominant organisms if wound culture results are not readily available.A prospective, longitudinal evaluation of the wound bacterial profile documenting the changing bacterial flora using higher resolution molecular strategies can provide a more comprehensive understanding of the diversity, composition, and abundance of bacterial composition of the wound microbial community from the time of injury, during the course of evacuation from the field to higher level of care facilities, and up to wound resolution.
Collapse
Affiliation(s)
- John Mark Velasco
- Department of Virology, U.S. Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand 10400.,University of the Philippines Manila, Ermita, Manila, Philippines 1000
| | - Ma Theresa Valderama
- Department of Virology, U.S. Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand 10400
| | - Katie Margulieux
- Department of Bacterial and Parasitic Diseases, U.S. Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand 10400
| | - Paula Corazon Diones
- Department of Virology, U.S. Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand 10400
| | - Trent Peacock
- Department of Bacterial and Parasitic Diseases, U.S. Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand 10400
| | - Fatima Claire Navarro
- V Luna Medical Center, Armed Forces of the Philippines Health Service Command, V Luna Ave., Quezon City, Philippines 0840
| | - Cynthia Liao
- V Luna Medical Center, Armed Forces of the Philippines Health Service Command, V Luna Ave., Quezon City, Philippines 0840
| | - Domingo Chua
- V Luna Medical Center, Armed Forces of the Philippines Health Service Command, V Luna Ave., Quezon City, Philippines 0840
| | - Louis Macareo
- Department of Virology, U.S. Army Medical Directorate - Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand 10400
| | - John Crawford
- University of the Philippines Manila, Ermita, Manila, Philippines 1000
| | - Brett Swierczewski
- Bacterial Disease Branch, Walter Reed Army Institute of Research, MD 20910-7500
| |
Collapse
|
43
|
Candra IKB, Yanto F, Suranadi IW, Fatmawati NND. Characteristic of Extended Spectrum β-Lactamase-Producing Enterobacteriaceae from Fecal Carriage Isolates of Intensive Care Unit Patients at Sanglah Hospital, Bali, Indonesia. Open Microbiol J 2021. [DOI: 10.2174/1874285802115010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
The increasing Extended-Spectrum β-Lactamases-producing Enterobacteriaceae (ESBL-PE) infections in the Intensive Care Unit (ICU) needs an early warning system for the detection of these bacteria. The ESBL-PE fecal carriage analysis is a screening method that can be used to detect and characterize these bacteria. Furthermore, it aids in assessing an ICU patient’s risk of possible infection and prevent its transmission to the other patients within the period of hospitalization; therefore, enhancing the quality of patient care while alsoreducing morbidity and mortality due to ESBL-PE infection in ICU.
Objective:
The study aimed to determine the antibiogram and molecular characteristics of ESBL-PE fecal carriage from ICU patients at Sanglah Hospital, Denpasar, Bali.
Methods:
This cross-sectional retrospective study involved 30 stored-bacterial isolates of ESBL-PE from a rectal swab of ICU patients who had just been admitted to the ICU of Sanglah General Hospital from February to March 2019, consecutively. The identification and antimicrobial susceptibility test of the isolates were conducted using Vitek-2 Compact (bioMérieux®, Marcy-l'Etoile, France), while genotype identification was conducted using PCR for the detection of blaTEM, blaSHV, blaCTX-M genes.
Results:
Thirty bacterial isolates were identified as Escherichia coli (24/30) and Klebsiella spp. (6/30) and detected as ESBL-producing isolates by Vitek-2 Compact. All isolates were susceptible to piperacillin-tazobactam, meropenem, and amikacin. Twenty-two (73.3%) isolates harbored ESBLs blaTEM, blaSHV, blaCTX-M genes, either individually or in combination. Most of the isolates had the combination of ESBL genes. About 20% (6/30) of isolates had a combination of blaTEM and blaCTX-M, while 10% (3/30) of them possessed all of the three genes detected in this study. Only 3.3% (1/30) of the isolates had each combination of blaTEM and blaSHV as well as blaSHV and blaCTX-M. Meanwhile, 16.7% (5/30) of the isolates were detected to have each single gene of blaCTX-M or blaTEM, and only one isolate (3.3%) harbored blaSHV.
Conclusion:
High prevalence of blaTEM, blaSHV, and blaCTX-M ESBL genes harbored by fecal flora of patients who had just been admitted in ICU give rise to the risk for transmission among critically ill patients in ICU. Fecal screening of ESBL-PE besides infection control can be considered for those patients who have a risk factor of ESBL-PE colonization before they are being admitted to the ICU.
Collapse
|
44
|
Assawatheptawee K, Kiddee A, Na-Udom A, Wangteeraprasert A, Treebupachatsakul P, Niumsup PR. Acquisition of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in intensive care units in Thailand. J Infect Chemother 2020; 27:401-405. [PMID: 33132043 DOI: 10.1016/j.jiac.2020.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/27/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
This study aimed to assess the prevalence and associated risk factors for extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae (ESBL-EK) acquisition among patients staying in medical and surgical Intensive Care Units (ICU) in Northern Thailand. Rectal swabs were collected from 206 ICU patients upon admission and discharge. Overall, the ESBL-EK acquisition rate among patients during ICU stay was 29.6%. Acquisition rate was significantly higher for K. pneumoniae (20.9%) than that of E. coli (12.1%) (p = 0.024). Multivariate logistic regression analysis identified the use of third generation cephalosporin (p = 0.008) as a risk factor for ESBL-EK acquisition. Sixty-eight ESBL-EK isolates (25 E. coli and 43 K. pneumoniae) were recovered. The majority of ESBL-EK isolates (≥88%) were resistant to ceftazidime, cefepime and aztreonam. Fifty-two acquired ESBL-EK isolates (76.5%) were positive for blaCTX-M and 4 K. pneumoniae isolates simultaneously carried blaNDM-1. Our results reveal that ICU patients could acquire ESBL-EK during hospitalization and the use of third generation cephalosporin should be strictly controlled to prevent the acquisition of ESBL-EK among ICU patients.
Collapse
Affiliation(s)
- Kanit Assawatheptawee
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anong Kiddee
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Anamai Na-Udom
- Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand
| | | | | | - Pannika R Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
45
|
Punyadi P, Thongngen P, Kiddee A, Assawatheptawee K, Tansawai U, Bunchu N, Niumsup PR. Prevalence of blaCTX-M and Emergence of blaCTX-M-5-Carrying Escherichia coli in Chrysomya megacephala (Diptera: Calliphoridae), Northern Thailand. Microb Drug Resist 2020; 27:698-705. [PMID: 33085574 DOI: 10.1089/mdr.2020.0249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study was undertaken to assess the prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-EC) among blow fly (Chrysomya megacephala) populations in Northern Thailand. Of 600 blow flies collected from rural (n = 400) and urban (n = 200) areas, 334 blow flies carried ESBL-EC (55.7%). Prevalence of ESBL-EC in blow flies captured from rural areas was significantly higher than that from urban region (72.5% vs. 22.0%, p < 0.001). Susceptibility tests revealed that 68.6% of ESBL-EC possessed multidrug-resistant phenotypes. Coresistance to gentamicin (85%) was common, while resistance to ciprofloxacin was relatively low (18.0%). Of the 334 isolates, 253 isolates (75.7%) harbored blaCTX-M, in which blaCTX-M group 1 was predominant (56.5%), followed by blaCTX-M group 9 (39.1%). Interestingly, a single isolate was found to carry blaCTX-M-5, which resided on the IncA/C conjugative plasmid. This is the first report of blaCTX-M-5 from Thailand and its first identification in blow fly. Pulsed field gel electrophoresis (PFGE) demonstrated high genetic diversity among ESBL-EC isolates. Nevertheless, identical and closely related PFGE profiles were detected among isolates within the same regions and the regions which are several kilometers apart, suggesting that clonal transmission has occurred. Moreover, epidemiologically related isolates were observed between ESBL-EC from blow flies and human intestinal tract. This study provides evidences that blow flies, C. megacephala, are important reservoirs for ESBL-EC and could potentially act as vectors for the spread of ESBL-EC in a Thai community.
Collapse
Affiliation(s)
- Phirapat Punyadi
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Phetrada Thongngen
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Anong Kiddee
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Kanit Assawatheptawee
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Uttapoln Tansawai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Nophawan Bunchu
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pannika R Niumsup
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
46
|
Siritip N, Nongnuch A, Dajsakdipon T, Thongprayoon C, Cheungprasitporn W, Bruminhent J. Epidemiology, Risk Factors, and Outcome of Bloodstream Infection Within the First Year After Kidney Transplantation. Am J Med Sci 2020; 361:352-357. [PMID: 33309136 DOI: 10.1016/j.amjms.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Multi-drug resistant organisms have been emerging among kidney transplant (KT) recipients with bloodstream infections (BSI). The investigation for epidemiology, risk factors and outcome of these infections following KT was initiated. MATERIALS AND METHODS A retrospective study of all adult KT recipients who developed a BSI within the first year after KT in 2016 at a single transplant center was conducted. The cumulative incidence of BSI was estimated with Kaplan-Meier methodology. Clinical characteristics and outcome were extracted. Risk factors were analyzed with Cox proportional hazards models. RESULTS Among 171 KT recipients, there were 26 (15.2%) episodes of BSI. Fifty-nine percent were men and the mean ± SD age was 43 ± 12 years. The cumulative incidence of BSIs was 10.1% at 1 month, 13.5% at 6 months, and 15.2% at 12 months. Gram-negative bacteria were responsible for 92% of BSIs, Escherichia coli was the most common pathogen (65%) followed by Klebsiella pneumoniae (11%). Among those, 71% were resistant to extended-spectrum cephalosporins. The genitourinary tracts were the predominant source of BSIs (85%). The second kidney transplantation (HR, 4.55; 95% CI, 1.24-16.79 [P = 0.02]) and receiving induction therapy (HR, 3.05; 95% CI, 1.15-8.10 [P < 0.03]) were associated with BSI in a multivariate analysis. One patient (4%) developed allograft rejection, allograft failure and death from septic shock. CONCLUSIONS One out of six KT recipients could develop BSI from gram-negative bacteria within the first year after transplant, particularly in those that received the second transplantation or induction therapy.
Collapse
Affiliation(s)
- Napadol Siritip
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Arkom Nongnuch
- Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Excellence Center of Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanate Dajsakdipon
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Charat Thongprayoon
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Wisit Cheungprasitporn
- Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, MS, United States
| | - Jackrapong Bruminhent
- Excellence Center of Organ Transplantation, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
47
|
A Comparison of Colistin versus Colistin Plus Meropenem for the Treatment of Carbapenem-Resistant Acinetobacter baumannii in Critically Ill Patients: A Propensity Score-Matched Analysis. Antibiotics (Basel) 2020; 9:antibiotics9100647. [PMID: 32998187 PMCID: PMC7599589 DOI: 10.3390/antibiotics9100647] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/17/2022] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB), an important nosocomial pathogen, occurs particularly in the intensive care unit (ICU). Thus, the aim of this study was to compare the efficacy and safety of documented treatment with colistin monotherapy versus colistin plus meropenem in critically ill patients with CRAB infections at Chiang Mai University Hospital (CMUH). We conducted a retrospective cohort study of critically ill patients with CRAB infections in an ICU from 2015 to 2017, who received colistin monotherapy versus colistin plus meropenem. After propensity score matching, an adjusted odds ratio (aOR) of a 30-day mortality rate in patients who received colistin plus meropenem was 0.43 compared to those who received colistin monotherapy (95% CI, 0.23–0.82, p = 0.01). aORs of clinical response and microbiological response were also higher in patients who received colistin plus meropenem (1.81, 95% CI 1.01–3.26, p = 0.048 and 2.08, 95% CI 1.11–3.91, p = 0.023, respectively). There was no significant difference in nephrotoxicity (aOR, 0.76, 95% CI, 0.43–1.36, p = 0.363) between colistin monotherapy and colistin plus meropenem. In conclusion, the addition of meropenem to colistin caused a reduction in 30-day mortality, higher clinical and microbiological responses, and did not increase nephrotoxicity compared to colistin monotherapy. Furthermore, 30-day mortality was significantly related with age, receiving vasopressor, having malignancy, and the APACHE II score.
Collapse
|
48
|
Nordmann P, Poirel L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin Infect Dis 2020; 69:S521-S528. [PMID: 31724045 PMCID: PMC6853758 DOI: 10.1093/cid/ciz824] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Carbapenem resistance in gram-negative bacteria has caused a global epidemic that continues to grow. Although carbapenemase-producing Enterobacteriaceae have received the most attention because resistance was first reported in these pathogens in the early 1990s, there is increased awareness of the impact of carbapenem-resistant nonfermenting gram-negative bacteria, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia. Moreover, evaluating the problem of carbapenem resistance requires the consideration of both carbapenemase-producing bacteria as well as bacteria with other carbapenem resistance mechanisms. Advances in rapid diagnostic tests to improve the detection of carbapenem resistance and the use of large, population-based datasets to capture a greater proportion of carbapenem-resistant organisms can help us gain a better understanding of this urgent threat and enable physicians to select the most appropriate antibiotics.
Collapse
Affiliation(s)
- Patrice Nordmann
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Switzerland.,Institut National de la Santé et de la Recherche Médicale European Unit, University of Fribourg, Switzerland.,Swiss National Reference Center for Emerging Antibiotic Resistance, University of Fribourg, Switzerland.,Institute for Microbiology, University of Lausanne and University Hospital Centre, Lausanne, Switzerland
| | - Laurent Poirel
- Medical and Molecular Microbiology Unit, Department of Medicine, Faculty of Science and Medicine, University of Fribourg, Switzerland.,Institut National de la Santé et de la Recherche Médicale European Unit, University of Fribourg, Switzerland.,Swiss National Reference Center for Emerging Antibiotic Resistance, University of Fribourg, Switzerland
| |
Collapse
|
49
|
Chang K, Rattanavong S, Mayxay M, Keoluangkhot V, Davong V, Vongsouvath M, Luangraj M, Simpson AJH, Newton PN, Dance DAB. Bacteremia Caused by Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae in Vientiane, Lao PDR: A 5-Year Study. Am J Trop Med Hyg 2020; 102:1137-1143. [PMID: 32157990 PMCID: PMC7204562 DOI: 10.4269/ajtmh.19-0304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although there has been an increasing incidence of bacteremia caused by extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E) across South East Asia, there are sparse data from the Lao PDR, where laboratory capacity for antimicrobial resistance surveillance is limited. We, therefore, retrospectively reviewed bacteremia caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae between 2010 and 2014 at Mahosot Hospital, Vientiane, Lao PDR. Clinical and laboratory data relating to all episodes of ESBL-E bacteremia were reviewed over the 5-year period and compared with non-ESBL-E bacteremia. Blood cultures positive for E. coli or K. pneumoniae were identified retrospectively from laboratory records. Clinical and laboratory data were extracted from research databases and case notes and analyzed using STATA. Between 2010 and 2014, we identified 360 patients with E. coli (n = 249) or K. pneumoniae (n = 111) bacteremia, representing 34.8% of all patients with clinically significant bacteremia. Seventy-two (20%) isolates produced ESBL; E. coli accounted for 15.3% (55/360) and K. pneumoniae for 4.7% (17/360), respectively. The incidence of ESBL-producing E. coli bacteremia rose during the study period. By multiple logistic analysis, reported antibiotic use in the previous week was significantly associated with ESBL positivity (P < 0.001, odds ratio 3.89). Although multiresistant, most ESBL-producing E. coli and K. pneumoniae remained susceptible to meropenem (65/65; 100%) and amikacin (64/65; 98.5%). We demonstrated an alarming increase in the incidence of ESBL-E as a cause of bacteremia in Vientiane during the study period. This has implications for empiric therapy of sepsis in Laos, and ongoing surveillance is essential.
Collapse
Affiliation(s)
- Ko Chang
- Adult Infectious Diseases Ward, Mahosot Hospital, Vientiane, Laos
| | - Sayaphet Rattanavong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Mayfong Mayxay
- Institute of Research and Education Development (IRED), University of Health Sciences, Vientiane, Laos.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | | | - Viengmon Davong
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Manivanh Vongsouvath
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Manophab Luangraj
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Andrew J H Simpson
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - Paul N Newton
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom.,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Vientiane, Laos
| |
Collapse
|
50
|
Pholwat S, Pongpan T, Chinli R, Rogawski McQuade ET, Thaipisuttikul I, Ratanakorn P, Liu J, Taniuchi M, Houpt ER, Foongladda S. Antimicrobial Resistance in Swine Fecal Specimens Across Different Farm Management Systems. Front Microbiol 2020; 11:1238. [PMID: 32625181 PMCID: PMC7311580 DOI: 10.3389/fmicb.2020.01238] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 05/14/2020] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial use in agricultural animals is known to be associated with increases in antimicrobial resistance. Most prior studies have utilized culture and susceptibility testing of select organisms to document these phenomena. In this study we aimed to detect 66 antimicrobial resistance (AMR) genes for 10 antimicrobial agent classes directly in swine fecal samples using our previously developed antimicrobial resistance TaqMan array card (AMR-TAC) across three different swine farm management systems. This included 38 extensive antimicrobial use (both in treatment and feed), 30 limited antimicrobial use (treatment only), and 30 no antimicrobial use farms. The number of resistance genes detected in extensive antimicrobial use farms was higher than in limited and no antimicrobial use farms (28.2 genes ± 4.2 vs. 24.0 genes ± 4.1 and 22.8 genes ± 3.6, respectively, p < 0.05). A principal component analysis and hierarchical clustering of the AMR gene data showed the extensive use farm samples were disparate from the limited and no antimicrobial use farms. The prevalence of resistance genes in extensive use farms was significantly higher than the other farm categories for 18 resistance genes including bla SHV, bla CTX-M1 group, bla CTX-M9 group, bla VEB, bla CMY2-LAT, aac(6')-lb-cr, qnrB1, gyrA83L-E. coli, armA, rmtB, aac(3)-IIa, mphA, 23S rRNA 2075G-Campylobacter spp., mcr-1, catA1, floR, dfrA5-14, and dfrA17. These genotypic findings were supported by phenotypic susceptibility results on fecal E. coli isolates. To examine the timing of AMR gene abundance in swine farms, we also performed a longitudinal study in pigs. The results showed that AMR prevalence occurred both early, presumably from mothers, as well as after weaning, presumably from the environment. In summary, detection of AMR genes directly in fecal samples can be used to qualitatively and quantitatively monitor AMR in swine farms.
Collapse
Affiliation(s)
- Suporn Pholwat
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Tawat Pongpan
- Swine Veterinarian Service, Charoen Pokphand Foods PCL, Bangkok, Thailand
| | - Rattapha Chinli
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Elizabeth T. Rogawski McQuade
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Iyarit Thaipisuttikul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parntep Ratanakorn
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Jie Liu
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Mami Taniuchi
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Suporn Foongladda
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|