1
|
Vedani T, Pot M, Garrigos T, Sababadichetty L, Daniel M, Wilkinson D, Benoit-Cattin T, Belmonte O, Mavingui P, Dortet L, Miltgen G. Emergence and polyclonal dissemination of NDM-5/OXA-181 carbapenemase-producing Escherichia coli in the French Indian Ocean territories. Ann Clin Microbiol Antimicrob 2025; 24:8. [PMID: 39881330 PMCID: PMC11780878 DOI: 10.1186/s12941-025-00778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
AIM Located in the Southwest Indian Ocean area (SIOA), the two French overseas territories (FOTs) of Reunion and Mayotte islands are heavily impacted by antimicrobial resistance. The aim of this study was to investigate all cases of NDM-5 and OXA-181 carbapenemase-producing Escherichia coli (CPEc) in these two FOTs between 2015 and 2020, to better understand the regional spread of these last-line treatment resistant bacteria. METHODS All E. coli isolates not susceptible to ertapenem from various public and private hospitals on Reunion and Mayotte islands were screened for carbapenemase production. Clinical and microbiological data were collected for each case. Genotypic analysis of the isolates was carried out using WGS to determine the clonality relationship between the isolates and the genetic support of the carbapenemase-encoding genes. RESULTS A total of 92 isolates of NDM-5 (n = 67) and OXA-181 (n = 25) CPEc was collected from Reunion (n = 55) and Mayotte (n = 37) islands. Whole-genome sequencing identified 4 majors STs (ST58, ST167, ST405 and ST410). Genotypic analysis demonstrated numerous intra-ST possible cross transmission events, including strains isolated in both islands. Finally, all isolates (100%) carried the blaNDM-5 or blaOXA-181 genes on plasmids (IncF2, IncX3), most of which were conserved and identified in various STs. CONCLUSION We highlighted the dual dissemination of successful plasmids and the worrying circulation of high-risk clones via patients transfer between these two FOTs. It is therefore essential to effectively screen these patients for CPEc carriage on admission and to take these plasmids into account when investigating intra- or inter-hospital CPEc outbreaks.
Collapse
Affiliation(s)
- Thibaut Vedani
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France
| | - Matthieu Pot
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - Thomas Garrigos
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - Loïk Sababadichetty
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - Marion Daniel
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - David Wilkinson
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | | | - Olivier Belmonte
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France
| | - Patrick Mavingui
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France
| | - Laurent Dortet
- Laboratoire de Bactériologie, CHU de Bicêtre, Assistance Publique des Hôpitaux de Paris, Centre national de référence de la Résistance aux antibiotiques, laboratoire associé "Entérobactéries productrices de carbapénèmases", Le Kremlin-Bicêtre, France
| | - Guillaume Miltgen
- Laboratoire de Bactériologie, CHU Félix Guyon, Allée des Topazes, 97400, Saint-Denis, La Réunion, France.
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, La Réunion, France.
- Centre Régional en Antibiothérapie (CRAtb) de La Réunion, Saint-Pierre, La Réunion, France.
- Department of Biology, National University of Ireland, Maynooth (Dublin), Ireland.
| |
Collapse
|
2
|
Maguire M, Serna C, Montero Serra N, Kovarova A, O’Connor L, Cahill N, Hooban B, DeLappe N, Brennan W, Devane G, Cormican M, Morris D, Coughlan SC, Miliotis G, Gonzalez-Zorn B, Burke LP. Spatiotemporal and genomic analysis of carbapenem resistance elements in Enterobacterales from hospital inpatients and natural water ecosystems of an Irish city. Microbiol Spectr 2025; 13:e0090424. [PMID: 39601575 PMCID: PMC11705828 DOI: 10.1128/spectrum.00904-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/10/2024] [Indexed: 11/29/2024] Open
Abstract
Carbapenemase-producing Enterobacterales (CPE) is a diverse group of often multidrug-resistant organisms. Surveillance and control of infections are complicated due to the inter-species spread of carbapenemase-encoding genes (CEGs) on mobile genetic elements (MGEs), including plasmids and transposons. Due to wastewater discharges, urban water ecosystems represent a known reservoir of CPE. However, the dynamics of carbapenemase-bearing MGE dissemination between Enterobacterales in humans and environmental waters are poorly understood. We carried out whole-genome sequencing, combining short- and long-sequencing reads to enable complete characterization of CPE isolated from patients, wastewaters, and natural waters between 2018 and 2020 in Galway, Ireland. Isolates were selected based on their carriage of Class A blaKPC-2 (n = 6), Class B blaNDM-5 (n = 12), and Class D blaOXA-48 (n = 21) CEGs. CEGs were plasmid-borne in all but two isolates. OXA-48 dissemination was associated with a 64 kb IncL plasmid (62%), in a broad range of Enterobacterales isolates from both niches. Conversely, blaKPC-2 and blaNDM-5 genes were usually carried on larger and more variable multireplicon IncF plasmids in Klebsiella pneumoniae and Escherichia coli, respectively. In every isolate, each CEG was surrounded by a gene-specific common genetic environment which constituted part, or all, of a transposable element that was present in both plasmids and the bacterial chromosome. Transposons Tn1999 and Tn4401 were associated with blaOXA-48 and blaKPC-2, respectively, while blaNDM-5 was associated with variable IS26 bound composite transposons, usually containing a class 1 integron.IMPORTANCESince 2018, the Irish National Carbapenemase-Producing Enterobacterales (CPE) Reference Laboratory Service at University Hospital Galway has performed whole-genome sequencing on suspected and confirmed CPE from clinical specimens as well as patient and environmental screening isolates. Understanding the dynamics of CPE and carbapenemase-encoding gene encoding mobile genetic element (MGE) flux between human and environmental reservoirs is important for One Health surveillance of these priority organisms. We employed hybrid assembly approaches for improved resolution of CPE genomic surveillance, typing, and plasmid characterization. We analyzed a diverse collection of human (n = 17) and environmental isolates (n = 22) and found common MGE across multiple species and in different ecological niches. The conjugation ability and frequency of a subset of these plasmids were demonstrated to be affected by the presence or absence of necessary conjugation genes and by plasmid size. We characterize several MGE at play in the local dissemination of carbapenemase genes. This may facilitate their future detection in the clinical laboratory.
Collapse
Affiliation(s)
- Mark Maguire
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
- SFI Center for Research Training in Genomics Data Science, Dublin, Ireland
| | - Carlos Serna
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Natalia Montero Serra
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Aneta Kovarova
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Louise O’Connor
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Niamh Cahill
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Brigid Hooban
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Niall DeLappe
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Wendy Brennan
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Genevieve Devane
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Martin Cormican
- National Carbapenemase Producing Enterobacterales Reference Laboratory Service, University Hospital Galway, Galway, Ireland
| | - Dearbháile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Simone C. Coughlan
- SFI Center for Research Training in Genomics Data Science, Dublin, Ireland
| | - Georgios Miliotis
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Liam P. Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, University of Galway, Galway, Ireland
- Center for One Health, Ryan Institute, University of Galway, Galway, Ireland
| |
Collapse
|
3
|
Ma Z, Zeng W, Liu H, Chen H, Ye L, Liu S, Qian C, Zhou T, Cao J. Characterization of novel sequence type 12531 and O8:H7 serotype carbapenem-resistant Escherichia coli with strong swimming and intestinal epithelial cell barrier migration abilities. Antimicrob Agents Chemother 2024; 68:e0080524. [PMID: 39440955 PMCID: PMC11619422 DOI: 10.1128/aac.00805-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Carbapenem-resistant Enterobacteriaceae have become widely prevalent globally because of antibiotic misuse and the spread of drug-resistant plasmids, where carbapenem-resistant Escherichia coli (CREC) is one of the most common and prevalent pathogens. Furthermore, E. coli has been identified as a member of normal gut flora and does not cause disease under normal circumstances. However, certain strains of E. coli, due to the expression of virulence genes, can cause severe intestinal and extra-intestinal infections. Therefore, clinically, drug resistance and pathogenic E. coli strains are significantly challenging to treat. In this study, a novel CREC strain DC8855 was isolated from the ascites of a patient with intestinal perforation, identified as a novel sequence type 12531 (ST12531) and an unreported serotype O8:H7. It was revealed that the resistance of ST12531 CREC was predominantly conferred by an IncFII(K) plasmid carrying blaNDM-4. Furthermore, phylogenetic analysis indicated that this is the first discovery of such plasmids in China and the first identification in E. coli. Moreover, regarding virulence, the swimming assays, qRT-PCR, and in vitro intestinal barrier model indicated that DC8855 had significantly higher motility, flagella gene expression, and intestinal epithelial cell barrier migration ability than the other sequence types CREC strains (ST167 and ST410). In conclusion, this study identified novel CREC which was multidrug resistant as well as enteropathogenic and therefore requires continuous monitoring.
Collapse
Affiliation(s)
- Zhexiao Ma
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Huanchang Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Lulu Ye
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Sichen Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Changrui Qian
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
4
|
Lin X, Lin Z, Chen D, Huang R, Liang H. Emergence of a bla NDM-5 Carrying IncHI2/IncHI2A Plasmid in a Multidrug Resistant Clinical ST1431 Escherichia coli Strain. Infect Drug Resist 2024; 17:5355-5361. [PMID: 39649430 PMCID: PMC11624684 DOI: 10.2147/idr.s477093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/19/2024] [Indexed: 12/10/2024] Open
Abstract
Carbapenems are the last-resort antibiotics used to treat infections caused by bacterial pathogens. Many bacterial pathogens have evolved to produce NDM carbapenemases to hydrolyze carbapenems, posing a great challenge to public health. In this study, we report a multidrug resistant clinical E. coli strain 673. Strain 673 belongs to sequence type (ST) 1431 and carries several plasmids, p673-blaTEM-1B, p673-blaCTX-M-55, p673-blaNDM-5, p673-13272, and p673-6468. p673-blaNDM-5 is an IncHI2/IncHI2A-type plasmid harboring several antibiotic resistance genes, including bla NDM-5, strA, strB, and dfrA. The bla NDM-5 gene was surrounded by two IS26 elements in p673-blaNDM-5, indicating that IS26 could mediate the integration of bla NDM-5 into p673-blaNDM-5. p673-blaCTX-M-55 is an IncFII-type plasmid harboring fosA, aadA1, and bla CTX-M-55. p673-blaTEM-1B is an IncFIB-type plasmid harboring bla TEM-1B and dfrA5. p673-13272 is a ColRNAI-type plasmid that does not carry any drug resistance genes. This is the first report that a bla NDM-5-bearing IncHI2/IncHI2A-type plasmid has emerged in a clinical E. coli strain in China. Our findings suggest that IS26 mediates the integration of bla NDM-5 into p673-blaNDM-5. The spread of bla NDM-5-bearing plasmids is a clinical challenge and endangers public health.
Collapse
Affiliation(s)
- Xu Lin
- First Department of General Surgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated to Jinan University), Zhuhai City, Guangdong Province, People’s Republic of China
| | - Zhiwen Lin
- First Department of General Surgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated to Jinan University), Zhuhai City, Guangdong Province, People’s Republic of China
| | - Da Chen
- First Department of General Surgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated to Jinan University), Zhuhai City, Guangdong Province, People’s Republic of China
| | - Renhuai Huang
- First Department of General Surgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated to Jinan University), Zhuhai City, Guangdong Province, People’s Republic of China
| | - Hui Liang
- First Department of General Surgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated to Jinan University), Zhuhai City, Guangdong Province, People’s Republic of China
| |
Collapse
|
5
|
Xiang G, Zhao Z, Zhang S, Cai Y, He Y, Zeng J, Chen C, Huang B. Porin deficiency or plasmid copy number increase mediated carbapenem-resistant Escherichia coli resistance evolution. Emerg Microbes Infect 2024; 13:2352432. [PMID: 38712634 PMCID: PMC11107853 DOI: 10.1080/22221751.2024.2352432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 μg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 μg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.
Collapse
Affiliation(s)
- Guoxiu Xiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhiwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shebin Zhang
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yimei Cai
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yuting He
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jianming Zeng
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Cha Chen
- Department of Laboratory Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
6
|
Hu JC, Han M, Yan RY, Hua MM, Li J, Shen H, Cao XL. Mobile genetic elements contributing to horizontal gene transfer of blaNDM among Escherichia coli in the community setting. Microb Pathog 2024; 196:106996. [PMID: 39368562 DOI: 10.1016/j.micpath.2024.106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE To investigate the distribution of carbapenem-resistant Enterobacterales (CRE) in the community and to describe the genomic characteristics. METHODS CRE screened from fecal samples in healthy people at the health examination center of a tertiary hospital in China underwent Whole genome sequencing (WGS) to analyze genotypic characteristics of CRE. The flanking DNA sequence of blaNDM-5 and mcr1.1 genes were analyzed by Gcluster software. RESULTS A total of 7187 fecal samples were screened, and CRE carriage was detected in 0.4 % of the sampled population. In total, 30 Escherichia coli, one Citrobacter freundii and one Klebsiella aerogene were screened. The 30 carbapenem-resistant Escherichia coli (CREC) isolates displayed slight resistance to amikacin (13.3 %) and aztreonam (20.0 %). All the CRE isolates contained blaNDM, and blaNDM-5 (84.4 %) was the most common one. B1 (n = 11) and A (n = 7) were predominant phylogroups. Furthermore, 34 distinct plasmid replicons, 67 different VFs, 22 distinct STs, 17 different FimH types, 26 O:H serotypes as well as 74 MGEs including 61 insertion sequences and 13 transposons were identified. The flanking DNA sequence analysis of blaNDM-5 and mcr1.1 genes indicates the key role of horizontal transfer of blaNDM-5 in the CRE development evidenced by diverse STs and phylogenetic tree. CONCLUSION E. coli was the most predominant CRE isolates in community setting, and blaNDM (blaNDM-5) was the main CHβL encoding genes. The high prevalence of ARGs was associated with high resistance to commonly used antimicrobials. Besides, the genetic diversity of these isolates suggested the key role of blaNDM horizontal transfer in the CRE development. Thus, active screening of blaNDM in communities is particularly important for the prevention and control of CRE.
Collapse
Affiliation(s)
- Jin-Cao Hu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Mei Han
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China; Nanjing Field Epidemiology Training Program, Nanjing Municipal Center for Disease Control and Prevention, China
| | - Ru-Yu Yan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese Medicine, China
| | - Miao-Miao Hua
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| | - Xiao-Li Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China.
| |
Collapse
|
7
|
Yuan Y, Lu Y, Cao L, Fu Y, Li Y, Zhang L. Genetic characteristics of clinical carbapenem-resistant Klebsiella pneumoniae: epidemic ST11 KPC-2-producing strains and non-negligible NDM-5-producing strains with diverse STs. Sci Rep 2024; 14:24296. [PMID: 39414846 PMCID: PMC11484748 DOI: 10.1038/s41598-024-74307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Klebsiella pneumoniae is among the most important Gram-negative pathogens that can cause serious nosocomial infections. The emergence and prevalence of hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP) pose a significant challenge to public health. In this study, we characterized thirty carbapenem-resistant K. pneumoniae (CRKP) strains from a tertiary care hospital in Sichuan province, China, by whole-genome sequencing and genome analysis. These strains were all highly resistant to carbapenem but remained susceptible to tigecycline. Of the 30 tested CRKP strains, 23 were positive for blaKPC-2 and seven for blaNDM-5. These blaKPC-2-positive strains all belonged to ST11, while blaNDM-5-positive strains belonged to five distinct STs. Phylogenetic analysis revealed a predominant intra-hospital transmission of ST11-KL64 in KPC-2-producing CRKP, and that both clonal and horizontal transmission of blaNDM-5 have occurred among NDM-5-producing CRKP strains in this hospital. Hypervirulence genes were commonly detected in the CRKP. The prevalent pLVKP-like plasmid and ICEKp seem to have contributed largely to the transmission of virulence genes in them. blaNDM-5 was located on highly similar IncX3 plasmids in the collected strains, and its truncated vision was highlighted. blaKPC-2 was primarily carried by IncFII/IncR plasmids in our collection. At least two IncFII/IncR plasmid subtypes were identified, exhibiting high similarity to many previously reported blaKPC-2-bearing plasmids from different parts of China. The findings provide an expanded knowledge of the genetic characteristics of CRKP, the transmission pattern of carbapenem-resistance genes, and also the convergence of Hv-CRKP.
Collapse
Affiliation(s)
- Yi Yuan
- Department of Clinical Laboratory, The First People's Hospital of Neijiang, Neijiang, Sichuan, China
| | - Yanjun Lu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Li Cao
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Fu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Ying Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Luhua Zhang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
8
|
Ranieri SC, Fabbrizi V, D' Amario AM, Frascella MG, Di Biase V, Di Francesco C, Di Sante S, De Berardis L, De Martinis M, Partenza M, Chiaverini A, Centorotola G, Cammà C, Pomilio F, Cornacchia A. First report of a bla NDM-producing extensively drug resistant Klebsiella pneumoniae ST437 in Italy. Front Cell Infect Microbiol 2024; 14:1426817. [PMID: 39324055 PMCID: PMC11422349 DOI: 10.3389/fcimb.2024.1426817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae strains (CP-Kps) have recently been observed to spread rapidly worldwide. New Delhi metallo-β-lactamase (NDM) producing clones of Klebsiella pneumoniae (K. pneumoniae) cause a significant healthcare burden, particularly in Indian sub-continent, where this clone is circulating widely. However, in Italy, data on the incidence of these new clones is limited, and an ST437 NDM-producing K. pneumoniae strain has not been reported to date. A sacral ulcer infection caused by a K. pneumoniae strain was identified in an 85-year-old Italian male patient with several comorbidities. Antimicrobial susceptibility testing revealed an extensive resistance to a wide range of antimicrobials, including novel agents such as cefiderocol and ceftazidime/avibactam. Genomic analysis identified the pathogen as an ST437 K. pneumoniae strain harboring bla NDM-5, bla OXA-232 and bla CTX-M-15 genes. Following the identification of this first case, several infection control measures were implemented in healthcare settings, including direct precautions and reinforcement of standard cross-transmission control measures. The emergence of pathogenic microbial clones carrying new genetic determinants, particularly in a little city, requires prompt diagnosis and therapeutic protocols. An effective infection control system for the early detection and/or control of the transmission of NDM-producing Enterobacteriaceae is also needed. Further investigations are required to better understand the potential transmission routes and evolution of these clones.
Collapse
Affiliation(s)
- Sofia Chiatamone Ranieri
- Operative Unit of Clinical Pathology and Microbiology, Department of Services, "G. Mazzini" Hospital, ASL of Teramo, Teramo, Italy
| | - Vittoria Fabbrizi
- Operative Unit of Clinical Pathology and Microbiology, Department of Services, "G. Mazzini" Hospital, ASL of Teramo, Teramo, Italy
| | - Ada Maria D' Amario
- Operative Unit of Clinical Pathology and Microbiology, Department of Services, "G. Mazzini" Hospital, ASL of Teramo, Teramo, Italy
| | - Maria Giuseppina Frascella
- Operative Unit of Clinical Pathology and Microbiology, Department of Services, "G. Mazzini" Hospital, ASL of Teramo, Teramo, Italy
| | - Valeria Di Biase
- Infectious Disease Unit, "G. Mazzini" Hospital, ASL of Teramo, Teramo, Italy
| | - Cinzia Di Francesco
- Clinical Risk Management and Medico-Legal Unit, "G. Mazzini" Hospital, ASL of Teramo, Teramo, Italy
| | - Stefania Di Sante
- General Internal Medicine Unit, "Maria SS. dello Splendore" Hospital, Giulianova, ASL of Teramo, Teramo, Italy
| | - Luigino De Berardis
- General Internal Medicine Unit, "Maria SS. dello Splendore" Hospital, Giulianova, ASL of Teramo, Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Long-Term Care Unit, "G. Mazzini" Hospital, ASL of Teramo, Teramo, Italy
| | - Massimo Partenza
- Orthopedics and Trauma Unit, "Maria SS. dello Splendore" Hospital, Giulianova, ASL of Teramo, Teramo, Italy
| | - Alexandra Chiaverini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Alessandra Cornacchia
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| |
Collapse
|
9
|
Elgayar FA, Gouda MK, Badran AA, El Halfawy NM. Pathogenomics analysis of high-risk clone ST147 multidrug-resistant Klebsiella pneumoniae isolated from a patient in Egypt. BMC Microbiol 2024; 24:256. [PMID: 38987681 PMCID: PMC11234735 DOI: 10.1186/s12866-024-03389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS In the current study, one hundred extended spectrum β-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several β-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.
Collapse
Affiliation(s)
- Fatma A Elgayar
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt
| | - Mona K Gouda
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt
| | - Alaa Aboelnour Badran
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nancy M El Halfawy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt.
| |
Collapse
|
10
|
Li X, Li C, Zhou L, Wang Q, Yao J, Zhang X, Yu Y, Li R, Zhou H, Tu Y. Global phylogeography and genomic characterization of bla KPC and bla NDM-positive clinical Klebsiella aerogenes isolates from China, 2016-2022. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171560. [PMID: 38458455 DOI: 10.1016/j.scitotenv.2024.171560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Carbapenem-resistant Klebsiella aerogenes (CRKA), being one of the members of carbapenem-resistant Enterobacteriaceae (CRE), has caused great public health concern, but with fewer studies compared to other CRE members. Furthermore, studies on phylogenetic analysis based on whole genome Single-Nucleotide Polymorphism (SNP) of CRKA were limited. Here, 20 CRKA isolates (11 blaKPC-2-bearing and 9 blaNDM-1/5-harboring) were characterized by antimicrobial susceptibility testing, conjugation assay, whole genome sequencing (WGS) and bioinformatics analysis. Additionally, the phylogeographic relationships of K. aerogenes were further investigated from public databases. All isolates were multidrug-resistant (MDR) bacteria, and they demonstrated susceptibility to colistin. Most blaKPC-2 or blaNDM-1/5-carrying plasmids were found to be conjugative. Phylogenetic analysis revealed the clonal dissemination of K. aerogenes primarily occurred within clinical settings. Notably, some strains in this study showed the potential for clonal transmission, sharing few SNPs between K. aerogenes and KPC- and/or NDM-positive K. aerogenes isolated from various countries. The STs of K. aerogenes strains had significant diversity. WGS analysis showed that the IncFIIK plasmid was the most prevalent carrier of blaKPC-2, and, blaNDM-1/5 were detected on the IncX3 plasmids. The Tn6296 and Tn3000 transposons were most common vehicles for facilitating the transmission of blaKPC-2 and blaNDM-1/5, respectively. This study highlights the importance of continuous screening and surveillance by WGS for analysis of drug-resistant strains in hospital settings, and provide clinical information that supports epidemiological and public health research on human pathogens.
Collapse
Affiliation(s)
- Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Changan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Longjie Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Qiaojun Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jiayao Yao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaofan Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yunsong Yu
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Yuexing Tu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, #234 Gucui Road, Hangzhou, Zhejiang 310012, China.
| |
Collapse
|
11
|
Chen R, Li C, Ge H, Qiao J, Fang L, Liu C, Gou J, Guo X. Difference analysis and characteristics of incompatibility group plasmid replicons in gram-negative bacteria with different antimicrobial phenotypes in Henan, China. BMC Microbiol 2024; 24:64. [PMID: 38373913 PMCID: PMC10875880 DOI: 10.1186/s12866-024-03212-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Multi-drug-resistant organisms (MDROs) in gram-negative bacteria have caused a global epidemic, especially the bacterial resistance to carbapenem agents. Plasmid is the common vehicle for carrying antimicrobial resistance genes (ARGs), and the transmission of plasmids is also one of the important reasons for the emergence of MDROs. Different incompatibility group plasmid replicons are highly correlated with the acquisition, dissemination, and evolution of resistance genes. Based on this, the study aims to identify relevant characteristics of various plasmids and provide a theoretical foundation for clinical anti-infection treatment. METHODS 330 gram-negative strains with different antimicrobial phenotypes from a tertiary hospital in Henan Province were included in this study to clarify the difference in incompatibility group plasmid replicons. Additionally, we combined the information from the PLSDB database to elaborate on the potential association between different plasmid replicons and ARGs. The VITEK mass spectrometer was used for species identification, and the VITEK-compact 2 automatic microbial system was used for the antimicrobial susceptibility test (AST). PCR-based replicon typing (PBRT) detected the plasmid profiles, and thirty-three different plasmid replicons were determined. All the carbapenem-resistant organisms (CROs) were tested for the carbapenemase genes. RESULTS 21 plasmid replicon types were detected in this experiment, with the highest prevalence of IncFII, IncFIB, IncR, and IncFIA. Notably, the detection rate of IncX3 plasmids in CROs is higher, which is different in strains with other antimicrobial phenotypes. The number of plasmid replicons they carried increased with the strain resistance increase. Enterobacterales took a higher number of plasmid replicons than other gram-negative bacteria. The same strain tends to have more than one plasmid replicon type. IncF-type plasmids tend to be associated with MDROs. Combined with PLSDB database analysis, IncFII and IncX3 are critical platforms for taking blaKPC-2 and blaNDM. CONCLUSIONS MDROs tend to carry more complex plasmid replicons compared with non-MDROs. The plasmid replicons that are predominantly prevalent and associated with ARGs differ in various species. The wide distribution of IncF-type plasmids and their close association with MDROs should deserve our attention. Further investigation into the critical role of plasmids in the carriage, evolution, and transmission of ARGs is needed.
Collapse
Affiliation(s)
- Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lei Fang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cailin Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Gou
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
12
|
Fang J, Wang G, Kang X, Pan Z, Mei Y, Chen H, Liu Y, Xiang T. Analysis of the hypovirulent Klebsiella pneumoniae with the NDM-5 gene on IncN plasmids. Microbiol Spectr 2024; 12:e0344323. [PMID: 38019003 PMCID: PMC10783101 DOI: 10.1128/spectrum.03443-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE It is crucial to strengthen the ongoing clinical surveillance of non-highly virulent, multi-resistant Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Jianhua Fang
- Department of Infectious disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Infectious disease, Nanchang University, Nanchang, China
| | - Guoyu Wang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuhua Kang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhui Pan
- Department of Pediatrics, Nanchang University, Nanchang, China
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yanfang Mei
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huade Chen
- Department of Infectious disease, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Infectious disease, Nanchang University, Nanchang, China
| | - Yang Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, China
- Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
13
|
Xu Q, Lin H, Liu W, Zhong Y, Zhou Y, Xu Z, Chen D. Genomic Characterization of Escherichia coli Co-Producing KPC-2 and NDM-5 Carbapenemases Isolated from Intensive Care Unit in a Chinese Hospital. Microb Drug Resist 2024; 30:27-36. [PMID: 38150122 DOI: 10.1089/mdr.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Background: Around the world, carbapenemase-producing Escherichia coli is becoming more prevalent. The purpose of this research was to analyze the whole plasmid sequences from YL03 isolates of the E. coli strain that produce both KPC-2 and NDM-5 carbapenemases. Materials and Methods: Whole-genome sequencing (WGS) and analysis of E. coli strain YL03, which was isolated from a wound sample, was performed by Illumina Novaseq 6000 and Pacific Biosciences Sequel (PacBio, Menlo Park, CA) sequencers. Following that, the WGS results were used to predict and analyze the YL03 genome composition and function. A complete gene sequence for YL03 with the accession number CP093551 has been uploaded to GenBank. Results: The results showed that YL03 co-carried five resistance genes, which included blaKPC-2, blaNDM-5, blaTEM-1B, blaCTX-M-14, and mdf(A). Furthermore, three resistance plasmids were found in YL03: pYL03-KPC, pYL03-NDM, and pYL03-CTX. Among them, the 53 kb-long pYL03-KPC plasmid belonging to the IncP, carried the replicase gene (repA) and the carbapenemase gene (blaKPC-2). The blaKPC-2 gene was flanked by a composite transposon-like element (Tn3-[Tn3] tnpR-ISKpn27 blaKPC--ISKpn6). Conclusions: The YL03 strain co-carried blaKPC-2 and blaNDM-5 and had a unique multidrug resistance plasmid containing blaKPC-2.
Collapse
Affiliation(s)
- Qian Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Haoyi Lin
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wanting Liu
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuxia Zhong
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yingchun Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Zhenbo Xu
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, People's Republic of China
- Department of Laboratory Medicine, The Second Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
14
|
Zeng S, Huang Y, Zhang X, Fu L, Sun Z, Li X. Molecular characterization of IncFII plasmid carrying blaNDM-5 in a Salmonella enterica serovar Typhimurium ST34 clinical isolate in China. mSphere 2023; 8:e0048023. [PMID: 37909767 PMCID: PMC10732066 DOI: 10.1128/msphere.00480-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE In this study, an IncFII plasmid pIncFII-NDM5 carrying blaNDM-5 was found in carbapenem-resistant Salmonella enterica serovar Typhimurium (S. enterica serovar Typhimurium), which has conjugative transferability and carried blaNDM-5, bleMBL, mph(A), and blaTEM-1 four resistance genes that can mediate resistance to multiple antibiotics including cephalosporins, beta-lactamase inhibitor combinations, carbapenems, and macrolides. Phylogenetic analysis showed that 1104-65 and 1104-75 were closely related to other S. enterica serovar Typhimurium in this area. The above-mentioned S. enterica serovar Typhimurium chromosome carries blaCTX-M-55, qnrS1, and tet(A) genes, so the antibiotic resistance of isolates will be further enhanced after obtaining the pIncFII_NDM5-like plasmid. Meanwhile, we discovered a novel genetic structure of blaNDM-5 mediated by the IS26 composite transposon, which will expand our understanding of the emergence and spread of carbapenem-resistance genes. Altogether, the presence of the IncFII plasmid pIncFII-NDM5 further underscores the need for vigilant surveillance and appropriate infection control measures to mitigate the impact of carbapenem-resistant S. enterica serovar Typhimurium in clinical settings.
Collapse
Affiliation(s)
- Shihan Zeng
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yulan Huang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiwei Zhang
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Liang Fu
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Zhaohui Sun
- Department of Laboratory Medicine, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xiaoyan Li
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Wang D, Berglund B, Li Q, Shangguan X, Li J, Liu F, Yao F, Li X. Transmission of clones of carbapenem-resistant Escherichia coli between a hospital and an urban wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122455. [PMID: 37633440 DOI: 10.1016/j.envpol.2023.122455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Carbapenem-resistant Enterobacterales (CRE) constitute an urgent threat to worldwide public health. The spread of CRE is facilitated by transmission via the environment. Wastewater treatment plants (WWTPs) are considered to be important sources of antibiotic resistance and hot spots of antibiotic-resistant bacteria (ARB) which can facilitate dissemination of antibiotic resistance genes. In this study, water samples were collected over one year from a WWTP in Jinan, Shandong province, China, from different functional sites in the wastewater treatment process. Carbapenem-resistant Escherichia coli (CREC) were isolated by selective cultivation and whole-genome sequenced to investigate the occurrence and characteristics of CREC in the WWTP. A total of 77 CREC isolates were included in the study and the detection rate of CREC in the WWTP water inlet was found to be 85%. An additional 10 CREC were isolated from a nearby teaching hospital during the sampling period and included for comparison to the environmental isolates. Susceptibility testing showed that all CREC were multidrug-resistant. 6 different carbapenem resistance genes (CRGs) were detected, including blaNDM-5 (n = 75), blaNDM-1 (n = 6), blaNDM-4 (n = 3), blaNDM-6 (n = 1), blaNDM-9 (n = 1), and blaKPC-2 (n = 4). 42 CREC isolates were whole-genome sequenced with Illumina short-read sequencing. 11 of these were also sequenced with Nanopore long-read sequencing. Plasmids carrying CRGs were found to belong to IncX3 (n = 35), IncFII (n = 12), IncFIA (n = 5), IncFIB (n = 2), IncC (n = 1), and IncP6 (n = 1). Clonal dissemination of CREC belonging to ST167, ST448, and ST746 was observed between different parts of the WWTP. Furthermore, isolates from the WWTP, including an isolate belonging to the high-risk ST167 strain, were found to be clonally related to CREC isolated at the hospital. The spread of CRGs is of considerable concern and strategies to prevent environmental dissemination of this contaminant urgently needs to be implemented.
Collapse
Affiliation(s)
- Di Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden
| | - Qi Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaorong Shangguan
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Liu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fanghui Yao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
16
|
Abdelbary ER, Elsaghier AM, Abd El-Baky RM, Waly NGFM, Ramadan M, Abd- Elsamea FS, Ali ME, Alzahrani HA, Salah M. First Emergence of NDM-5 and OqxAB Efflux Pumps Among Multidrug-Resistant Klebsiella pneumoniae Isolated from Pediatric Patients in Assiut, Egypt. Infect Drug Resist 2023; 16:5965-5976. [PMID: 37705515 PMCID: PMC10496925 DOI: 10.2147/idr.s421978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction New Delhi metallo-β-lactamase (NDM)-producing K. pneumoniae poses a high risk, especially among Egyptian pediatric patients who consume carbapenems antibiotics very widely and without adequate diagnostic sources. In addition, presence of efflux pump genes such as OqxAB increases resistance against many groups of antimicrobials which exacerbates the problem faced for human health. This study aimed to determine NDM variants among K. pneumoniae strains isolated from pediatric patients in Egypt, analyze the presence of OqxAB genes, and molecular characterization of blaNDM-5-positive K. pneumoniae. Methods Fifty-six K. pneumoniae isolates were recovered from pediatric patients, and tested for carbapenemase by modified carbapenem inactivation methods (mCIM) test. Minimum inhibitory concentrations of meropenem and colistin were determined by meropenem E-test strips and broth microdilution, respectively. PCR was used for the detection of the resistant genes (ESBL gene (blaCTX-M), carbapenemase genes (blaNDM, blaKPC) colistin resistant (mcr1, mcr2)) and genes for efflux pump (oqxA and oqxB). BlaNDM was sequenced. The effect of efflux pump in NDM-5-producing isolates was assessed by measuring MIC of ciprofloxacin and meropenem before and after exposure to the carbonyl cyanide 3-chlorophenylhydrazone (CCCP). The horizontal gene transfer ability of blaNDM-5 was determined using liquid mating assay and PCR-based replicon typing (PBRT) was done to determine the major plasmid incompatibility group. Results Twenty-nine isolates were positive for blaNDM-1, nine isolates were positive for blaNDM-5, and 15 isolates were positive for blaKPC. There is a significant increase of meropenem MIC of NDM-5-positive isolates compared with NDM-1-positive isolates. In addition, 38 isolates were positive for CTX-M, and 15 isolates were positive for mcr1. Both OqxA and OqxB were detected in 26 isolates and 13 isolates were positive for OqxA while 11 isolates were positive for OqxB only. All NDM-5-producing isolates except one isolate could transfer their plasmids by conjugation to their corresponding transconjugants (E. coli J53). Plasmid replicon typing showed that FII was predominant in NDM-5-producing K. pneumoniae. Similar strains were found between the three isolates and similarity was also detected between the two isolates. Conclusion The highly resistant K. pneumoniae producing blaNDM-5 type was firstly isolated from pediatric patients. The association of efflux pump genes such as OqxAB is involved in resistance to ciprofloxacin. This highlighted the severity risk of blaNDM-5-positive K. pneumonia as it could transfer blaNDM-5 to other bacteria and has more resistance against carbapenems. This underlines the importance of continuous monitoring of infection control guidelines, and the urgent need for a national antimicrobial stewardship plan in Egyptian hospitals.
Collapse
Affiliation(s)
- Eman R Abdelbary
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 11651, Egypt
| | - Ashraf M Elsaghier
- Gastroenterology and Hepatology Unit, University Children Hospital, Faculty of Medicine, Assiut University, Assiut, 11651, Egypt
| | - Rehab M Abd El-Baky
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Deraya University, Minia, 11566, Egypt
| | - Nancy G F M Waly
- Microbiology and Immunology Department, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Mohammed Ramadan
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 11651, Egypt
| | - Fatma S Abd- Elsamea
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, 11651, Egypt
| | - Mohamed E Ali
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Assiut, 11651, Egypt
| | - Hayat A Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Science, Northern Border University, Arar, 91431, Saudi Arabia
| | - Mohammed Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said City, 42526, Egypt
| |
Collapse
|
17
|
Tickler IA, Kawa D, Obradovich AE, Fang FC, Tenover FC. Characterization of Carbapenemase- and ESBL-Producing Gram-Negative Bacilli Isolated from Patients with Urinary Tract and Bloodstream Infections. Antibiotics (Basel) 2023; 12:1386. [PMID: 37760683 PMCID: PMC10525328 DOI: 10.3390/antibiotics12091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
A total of 199 Gram-negative bacterial isolates from urinary tract infections and 162 from bloodstream infections were collected from 12 healthcare systems throughout the United States between May 2021 and August 2022. The isolates, phenotypically non-susceptible to 2nd or 3rd generation cephalosporins or carbapenems, were characterized through antimicrobial susceptibility testing and whole genome sequence analysis to obtain a broad snapshot of beta-lactamase-mediated resistance among these two sample types. Overall, 23 different carbapenemase genes were detected among 13 species (20.5% of isolates). The blaKPC-3 and blaKPC-2 subtypes were the most common carbapenemase genes identified, followed by blaNDM and the co-carriage of two different blaOXA carbapenemases by Acinetobacter baumannii isolates. All carbapenemase-producing A. baumannii isolates were mCIM negative. Extended-spectrum beta-lactamase genes were identified in 66.2% of isolates; blaCTX-M-15 was the most common. AmpC genes, both plasmid and chromosomal, were detected in 33.2% of isolates. Importantly, 2.8%, 8.3%, and 22.2% of blaKPC-positive organisms were susceptible to ertapenem, imipenem, and meropenem, respectively. The correlation between broth microdilution and disk diffusion results was high for most drugs except cefepime, where the detection of resistance was statistically lower by disk diffusion. Thus, there were gaps in the accuracy of susceptibility testing for some mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - Anne E. Obradovich
- Department of Medical Microbiology and Immunology, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Ferric C. Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Fred C. Tenover
- College of Arts & Sciences, University of Dayton, Dayton, OH 45469, USA
| | | |
Collapse
|
18
|
Yang Y, Liu H, Chen L, Mao M, Zhang X, Zhou L, Duan D, Li X, Zhou H. Molecular characterization and comparison of bla NDM-1-carrying and bla NDM-5-harboring IncX3-type plasmids in carbapenem-resistant Klebsiella pneumoniae. Microbiol Spectr 2023; 11:e0102823. [PMID: 37623430 PMCID: PMC10581223 DOI: 10.1128/spectrum.01028-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/14/2023] [Indexed: 08/26/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP), which harbors the bla NDM plasmid, has been reported extensively and is considered a global threat clinically. However, characterization and comparisons of bla NDM-1-carrying and bla NDM-5-harboring IncX3-type plasmids in CRKP are lacking. Here, we systematically compared the differences in the characteristics, genetic backgrounds, transferability, and fitness costs between bla NDM-1-carrying and bla NDM-5-carrying plasmids in K. pneumoniae isolates. Fifteen NDM-producing CRKP isolates were recovered from 1376 CRKP isolates between 2019 and 2021, of which 4 were positive for bla NDM-1 and 11 were positive for bla NDM-5. All strains were highly resistant to carbapenem but remained susceptible to tigecycline and colistin. Core-genome-based phylogenetic analyses revealed that these strains were not clonally related. Whole-genome sequencing showed that bla NDM-1 and bla NDM-5 were located on ~54 kb and ~46 kb IncX3-type plasmids, respectively. The backbone, genetic context, and fitness cost of the bla NDM-1-bearing plasmid were highly similar to those of the bla NDM-5-carrying plasmid, but the transferability of the bla NDM-1-positive plasmid was greater than that of the bla NDM-5-positive plasmid. In conclusion, the transmission of bla NDM-1 or bla NDM-5 is mainly disseminated by plasmids rather than clonal spread. The high transfer frequency of the IncX3 plasmid facilitates the prevalence and dissemination of NDM-KP among Enterobacteriaceae. IMPORTANCE The emergence of NDM-producing Klebsiella pneumoniae is a severe challenge to public health. The widespread presence of bla NDM-1 and bla NDM-5 in Enterobacteriaceae has aroused broad concern. In this study, we performed molecular characterization of bla NDM-1-carrying and bla NDM-5-harboring IncX3-type plasmids in carbapenem-resistant Klebsiella pneumoniae (CRKP) and compared their phenotypes between strains with different bla NDM subtype. Our findings highlight the importance of IncX3-type plasmids in the transfer of the bla NDM-1 and bla NDM-5 genes and demonstrate that the bla NDM-1 plasmid possesses higher transfer ability. These data will provide important insights into carbapenem resistance gene transfer via plasmids and their further spread in clinical settings.
Collapse
Affiliation(s)
- Yunxing Yang
- Department of Clinical Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang School of Medicine, Hangzhou, China
| | - Haiyang Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Lingxia Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Minjie Mao
- Department of Clinical Laboratory, The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiaofan Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Longjie Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Darong Duan
- Department of Laboratory Medicine, Huangyan Hospital of Wenzhou Medical University, Taizhou First People’ s Hospital, Taizhou, Zhejiang, China
| | - Xi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
19
|
Sahoo S, Sahoo RK, Dixit S, Behera DU, Subudhi E. NDM-5-carrying Klebsiella pneumoniae ST437 belonging to high-risk clonal complex (CC11) from an urban river in eastern India. 3 Biotech 2023; 13:139. [PMID: 37124981 PMCID: PMC10133422 DOI: 10.1007/s13205-023-03556-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
In this study, we described the carbapenem bla NDM-5-carrying extensive drug-resistant (XDR) K. pneumoniae ST437 from an urban river water Kathajodi in Odisha, India. The presence of carbapenem and co-occurrence of other resistance determinants (bla NDM-5, bla CTX-M, bla SHV, and bla TEM), virulence factors (fimH, mrkD, entB, irp-1, and ybtS), and capsular serotype (K54) represent its pathogenic potential. The insertion sequence ISAba125 and the bleomycin resistance gene ble MBL at upstream and downstream, respectively, could play a significant role in the horizontal transmission of the bla NDM-5. Its biofilm formation ability contributes toward environmental protection and its survivability. MLST analysis assigned the isolate to ST437 and clonal lineage to ST11 (CC11) with a single locus variant. The ST437 K. pneumoniae, a global epidemic clone, has been reported in North America, Europe, and Asia. This work contributes in understanding of the mechanisms behind the spread of bla NDM-5 K. pneumoniae ST437 and demands extensive molecular surveillance of river and nearby hospitals for better community health. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03556-5.
Collapse
Affiliation(s)
- Saubhagini Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Rajesh Kumar Sahoo
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Sangita Dixit
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| | - Enketeswara Subudhi
- Centre for Biotechnology, Siksha O Anusandhan (Deemed to Be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751029 Odisha India
| |
Collapse
|
20
|
Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol 2023; 21:280-295. [PMID: 36411397 DOI: 10.1038/s41579-022-00820-y] [Citation(s) in RCA: 453] [Impact Index Per Article: 226.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Antibiotic resistance is a global health emergency, with resistance detected to all antibiotics currently in clinical use and only a few novel drugs in the pipeline. Understanding the molecular mechanisms that bacteria use to resist the action of antimicrobials is critical to recognize global patterns of resistance and to improve the use of current drugs, as well as for the design of new drugs less susceptible to resistance development and novel strategies to combat resistance. In this Review, we explore recent advances in understanding how resistance genes contribute to the biology of the host, new structural details of relevant molecular events underpinning resistance, the identification of new resistance gene families and the interactions between different resistance mechanisms. Finally, we discuss how we can use this information to develop the next generation of antimicrobial therapies.
Collapse
Affiliation(s)
- Elizabeth M Darby
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Pauline Siasat
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | | | - Ilyas Alav
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK.
- Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| | - Jessica M A Blair
- College of Medical and Dental Sciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.
| |
Collapse
|
21
|
Huang L, Hu H, Xu C, Zhou M, Li Y, Li Y, Wu S, Dong N. Characterization of NDM-5-Producing Escherichia coli Strains Isolated from Pediatric Patients with Bloodstream Infections in a Chinese Hospital. Genes (Basel) 2023; 14:520. [PMID: 36833447 PMCID: PMC9956912 DOI: 10.3390/genes14020520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Escherichia coli (E. coli) bloodstream infections (BSIs) are among the most predominant causes of death in infants and children worldwide. NDM-5 (New Delhi Metallo-lactamase-5) is responsible for one of the main mechanisms of carbapenem resistance in E. coli. To analyze the phenotypic and genomic characteristics of NDM-5-producing E. coli from bloodstream infections (BSIs), a total of 114 E. coli strains was collected from a children's hospital in Jiangsu province, China. Eight blaNDM-5-carrying E. coli strains were identified which were all carbapenem-resistant and carried diverse antimicrobial resistance genes apart from blaNDM-5. They belonged to six distinct sequence types (STs) and serotypes including one each for ST38/O7:H8, ST58/O?:H37, ST131/O25:H4, ST156/O11:H25 and ST361/O9:H30 and three strains are originating from a single clone belonging to ST410/O?:H9. Apart from blaNDM-5, the E. coli strains isolated from BSIs also carried other β-lactamase genes, including blaCMY-2 (n = 4), blaCTX-M-14 (n = 2), blaCTX-M-15 (n = 3), blaCTX-M-65 (n = 1), blaOXA-1 (n = 4) and blaTEM-1B (n = 5). The blaNDM-5 genes were located on three different types of plasmids, which were IncFII/I1 (n = 1), IncX3 (n = 4) and IncFIA/FIB/FII/Q1 (n = 3). The former two types were conjugatively transferable at frequencies of 10-3 and 10-6, respectively. The dissemination of NDM-producing strains, which exhibit resistance to the last-line antibiotics, carbapenems, may increase the muti-antimicrobial resistance burden among E. coli BSIs and further threaten public health.
Collapse
Affiliation(s)
- Lili Huang
- Laboratory Department, Children’s Hospital of Soochow University, Suzhou 215025, China
| | - Hongye Hu
- Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215127, China
| | - Chen Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Mi Zhou
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou 215025, China
| | - Yuanyuan Li
- Department of Medical Microbiology, Experimental Center, Medical College, Soochow University, Suzhou 215127, China
- Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215127, China
| | - Yunbing Li
- Department of Medical Microbiology, Experimental Center, Medical College, Soochow University, Suzhou 215127, China
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou 215127, China
| | - Ning Dong
- Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215127, China
| |
Collapse
|
22
|
Zhang R, Li Y, Chen J, Liu C, Sun Q, Shu L, Chen G, Wang Z, Wang S, Li R. Population genomic analysis reveals the emergence of high-risk carbapenem-resistant Escherichia coli among ICU patients in China. J Infect 2023; 86:316-328. [PMID: 36764393 DOI: 10.1016/j.jinf.2023.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES The increasing incidence of carbapenem-resistant Enterobacterales (CRE) mediated nosocomial infections has caused a significant public health burden globally. Currently, the prevalence and genomic characteristics of carbapenem-resistant Escherichia coli (CREC) in patients admitted to the intensive care unit (ICU) are unknown. METHODS Herein, we present a nationwide genomic investigation of CREC isolates among ICU patients in China in 2018 and 2020. In total, 113 CREC isolates were identified from 1105 samples in 25 hospitals, and investigated with phenotyping and genomics approaches. RESULTS Carbapenemases were produced in 94.69% (107/113) of CREC isolates, which comprise KPC-2 (n = 53, 49.53%), NDM (n = 51, 47.66%), IMP-4 (n = 2, 1.87%), and OXA-181 (n = 1, 0.93%). Notably, CREC isolates co-carrying mcr-9 and blaNDM-5 or tet(X4) and blaNDM-5 were first identified in clinical settings. The carbapenemase genes of most isolates were located on the plasmids. The blaKPC gene was mainly mediated by IncFII plasmids (n = 37, 69.81%), and blaNDM was located on the IncX3 plasmid (n = 36, 70.59%). CREC isolates belonged to diverse sequence types (STs) of which ST131 was the most prevalent blaKPC-positive CREC isolates (34/113, 30.09%), while blaNDM was associated with ST617 and ST410 isolates, thereby indicating that multiple CREC clones spread in Chinese ICU patients. CONCLUSIONS This study highlights the emerging threat of high-risk CREC isolates such as ST131 circulating in the ICU in China. Hence, stringent monitoring of such high-risk clones should be performed.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Yan Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Jiawei Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Congcong Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Qiaoling Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Lingbin Shu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Gongxiang Chen
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, PR China
| | - Zhiqiang Wang
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shaolin Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, PR China
| | - Ruichao Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China; Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
23
|
Li X, He J, Yu Y, Zhou H, Tu Y, Hua X. Dynamic evolution and inter-species transfer of bla NDM-5 plasmid in vivo in a single patient. Clin Microbiol Infect 2023; 29:265-268. [PMID: 36410646 DOI: 10.1016/j.cmi.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuexing Tu
- Department of Critical Care Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang Province, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
24
|
Emergence of coexistence of a novel bla NDM-5-harbouring IncI1-I plasmid and an mcr-1.1-harbouring IncHI2 plasmid in a clinical Escherichia coli isolate in China. J Infect Public Health 2022; 15:1363-1369. [PMID: 36334462 DOI: 10.1016/j.jiph.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Co-harbouring of carbapenem and colistin resistance genes in multidrug-resistant Enterobacterales strains poses a serious public health problem. In this study, an MCR-1.1 and NDM-5 coproducing Escherichia coli strain named EC6563 was isolated and characterized. OBJECTIVES This study aimed to characterize a clinical carbapenem-resistant E. coli isolate which co-harbours mcr-1.1 and blaNDM-5 on separate plasmids, and explored the phenotypic and genotypic characteristics of the mcr-1.1- and blaNDM-5-harbouring plasmids. METHODS E. coli isolate EC6563 was subjected to antimicrobial susceptibility testing, conjugation assay, stability of the plasmid and growth rate determination. In addition, the whole genome sequence of this strain was obtained and the genetic characteristics of the mcr-1.1- and blaNDM-5-harbouring plasmids were analyzed. RESULTS Carbapenem-resistant E. coli isolate EC6563 was resistant to all the tested antibiotics except tigecycline. Bioinformatic analysis confirmed that the IncHI2 plasmid carrying mcr-1.1 was highly similar to the previously reported mcr-1.1-harbouring plasmid pGDP37-4, and carried multiple drug resistance genes and the IncI1-I plasmid carrying blaNDM-5 had low similarity to the published blaNDM-5-carrying IncI1-I plasmid pEC-16-10-NDM-5. The pEC6563-NDM5 plasmid was capable of conjugation with an efficiency of 1.34 × 10-2 in a filter mating experiment. The transconjugant J53/pEC6563-NDM5 was able to be stably inherited after 12 days of passage. CONCLUSIONS To the best of our knowledge, this is the first time that an IncHI2 plasmid carrying mcr-1.1 and an IncI1-I plasmid carrying blaNDM-5 is found to coexist in an E. coli isolate. Our research expands the known diversity of plasmids in NDM-5-producing Enterobacterales strains. Meanwhile, effective measures should be taken to prevent the spread of these plasmids.
Collapse
|
25
|
Guo X, Chen R, Wang Q, Li C, Ge H, Qiao J, Li Y. Global prevalence, characteristics, and future prospects of IncX3 plasmids: A review. Front Microbiol 2022; 13:979558. [PMID: 36147856 PMCID: PMC9485871 DOI: 10.3389/fmicb.2022.979558] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
IncX3 plasmids are narrow host range plasmids mostly found in Enterobacteriaceae with great conjugation ability, high stability, no fitness cost, and the ability to improve biofilm formation in their bacterial hosts. IncX3 plasmids have spread swiftly, primarily in several nations and among different species over the last 10 years. blaNDM, blaKPC, and blaOXA-181 are the carbapenemase genes carried by IncX3 plasmids. Among them, blaNDM is often located on the IncX3 plasmid, which is deemed as the primary vehicle of blaNDM transmission. Isolates harboring IncX3 plasmids are found in nations all over the world from human, animal, and environmental sources. Cointegrate plasmids related to IncX3 have recently been discovered to increase the antibiotic resistance spectrum and potentially broaden the host range of plasmids, restricting the use of antibiotics in the clinic. There are, however, few reviews based on the physiological and epidemiological properties of IncX3 plasmid, as well as studies on the plasmid itself. Hence, we conducted a retrospective literature review to summarize the characteristics of IncX3 plasmids aiming to provide a theoretical basis for controlling the global prevalence of IncX3 plasmids and directions for further research on the functions of the related genes on the IncX3 plasmid.
Collapse
Affiliation(s)
- Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Xiaobing Guo,
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Haoyu Ge
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Qiao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Molecular Characterization of
bla
NDM
-Carrying IncX3 Plasmids:
bla
NDM-16b
Likely Emerged from a Mutation of
bla
NDM-5
on IncX3 Plasmid. Microbiol Spectr 2022; 10:e0144922. [PMID: 35867355 PMCID: PMC9430178 DOI: 10.1128/spectrum.01449-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dissemination of blaNDM, which is carried on the IncX3 plasmid, among Enterobacterales has been reported worldwide. In particular, blaNDM-5-carrying IncX3 plasmids can spread among several hosts, facilitating their dissemination. Other variants, such as blaNDM-17-, blaNDM-19-, blaNDM-20-, blaNDM-21-, and blaNDM-33-carrying IncX3 plasmids, have also been reported. Here, we characterized, using whole-genome sequencing (WGS), a blaNDM-16b-carrying IncX3 plasmid harbored by Escherichia coli strain TA8571, which was isolated from a urine specimen of a hospital inpatient in Tokyo, Japan. The blaNDM-16b differed in sequence from blaNDM-5 (C > T at site 698, resulting in an Ala233Val substitution). This blaNDM-16b-carrying IncX3 plasmid (pTMTA8571-1) is 46,161 bp in length and transferred via conjugation. Transconjugants showed high resistance to β-lactam antimicrobials (except for aztreonam). Because pTMTA8571-1, which carries the Tn125-related region containing blaNDM and conjugative transfer genes, was similar to the previously reported IncX3 plasmids, we performed phylogenetic analysis based on the sequence of 34 shared genes in 142 blaNDM-carrying IncX3 plasmids (22,846/46,923 bp). Comparative analysis of the shared genes revealed short branches on the phylogenetic tree (average of 1.08 nucleotide substitutions per shared genes), but each blaNDM variant was divided into separate groups, and the structure of the tree correlated with the flowchart of blaNDM nucleotide substitutions. The blaNDM-carrying IncX3 plasmids may thereby have evolved from the same ancestral plasmid with subsequent mutation of the blaNDM. Therefore, pTMTA8571-1 likely emerged from a blaNDM-5-carrying IncX3 plasmid. This study suggested that the spread of blaNDM-carrying IncX3 plasmids may be a hotbed for the emergence of novel variants of blaNDM. IMPORTANCEblaNDM-carrying IncX3 plasmids have been reported worldwide. Harbored blaNDM variants were mainly blaNDM-5, but there were also rare variants like blaNDM-17, blaNDM-19, blaNDM-20, blaNDM-21, and blaNDM-33, including blaNDM-16b detected in this study. For these plasmids, previous reports analyzed whole genomes or parts of sequences among a small number of samples, whereas, in this study, we performed an analysis of 142 blaNDM-carrying IncX3 plasmids detected around the world. The results showed that regardless of the blaNDM variants, blaNDM-carrying IncX3 plasmids harbored highly similar shared genes. Because these plasmids already spread worldwide may be a hotbed for the emergence of rare or novel variants of blaNDM, increased attention should be paid to blaNDM-carrying IncX3 plasmids in the future.
Collapse
|
27
|
Zhao J, Li Z, Zhang Y, Liu X, Lu B, Cao B. Convergence of MCR-8.2 and Chromosome-Mediated Resistance to Colistin and Tigecycline in an NDM-5-Producing ST656 Klebsiella pneumoniae Isolate From a Lung Transplant Patient in China. Front Cell Infect Microbiol 2022; 12:922031. [PMID: 35899054 PMCID: PMC9310643 DOI: 10.3389/fcimb.2022.922031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded blaNDM-5 and mcr-8.2 genes. The blaNDM-5 gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone.
Collapse
Affiliation(s)
- Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Ziyao Li
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yulin Zhang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xinmeng Liu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Binghuai Lu
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Binghuai Lu, ; Bin Cao,
| | - Bin Cao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, National Center for Respiratory Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
- Department of Respiratory Medicine, Capital Medical University, Beijing, China
- *Correspondence: Binghuai Lu, ; Bin Cao,
| |
Collapse
|
28
|
Hu X, Yang L, Dong N, Lin Y, Zhang L, Wang X, Guo X, Xiang Y, Jin L, Zhang C, Sun Y, Qiu S, Li P, Song H. Dissemination of blaNDM-5 in Escherichia coli through the IncX3 Plasmid from Different Regions in China. Microb Drug Resist 2022; 28:453-460. [PMID: 35451881 DOI: 10.1089/mdr.2021.0202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The spread of NDM-5-producing Escherichia coli has become a severe challenge in clinical therapy, which necessitates reliable detection and surveillance methods. However, limited information is available regarding the prevalence and dissemination of the blaNDM-5 gene in E. coli in China. Therefore, we investigated the dissemination of the blaNDM-5 gene in carbapenem-resistant E. coli isolates from different regions. A total of 1,180 carbapenem-resistant enterobacteriaceae strains were obtained from patients admitted to the 20 sentinel hospitals in 8 cities. Strains positive for blaNDM-5 were detected using the Vitek 2 compact system, 16S ribosomal RNA (rRNA) gene sequencing, polymerase chain reaction, the S1 pulsed-field gel electrophoresis assay, and Southern blot hybridization. The horizontal-transfer capability of the blaNDM gene was assessed by filter mating with a standard E. coli J53 azide-resistant strain as the recipient. Genotyping, susceptibility testing, and whole genome sequencing were performed. Seven strains of blaNDM-5-positive E. coli were detected in 1,180 clinical strains from different regions in China. The blaNDM-5-carrying strains showed resistance to multiple tested antibiotics and belonged to two widespread sequence types, sequence type (ST)167 and ST405. Antimicrobial resistance genes, including blaCTX-M, blaOXA, blaCMY, and two novel blaTEM variants (blaTEM-230 and blaTEM-231) were also identified. Southern blotting located the blaNDM-5 gene on 46 kb IncX3 plasmids in all isolates, which showed only two single nucleotide differences between EJN003 and the other strains. This study further confirms the increasing occurrence of blaNDM-5-carrying IncX3 plasmids and the dissemination of carbapenem resistance in E. coli isolates using the plasmid from different parts in China, which warrants stringent surveillance and control measures.
Collapse
Affiliation(s)
- Xiaofeng Hu
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Lang Yang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Nian Dong
- Xingcheng Special Service Recuperation Center of PLA Strategic Support Force, Xingcheng, China
| | - Yanfeng Lin
- Center for Disease Control and Prevention of PLA, Beijing, China.,Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China
| | | | - Xu Wang
- Center for Disease Control and Prevention in Northern Theater Command of PLA, Shenyang, China
| | - Xudong Guo
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Ying Xiang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Lianqun Jin
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Chuanfu Zhang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Yansong Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shaofu Qiu
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Peng Li
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Hongbin Song
- Center for Disease Control and Prevention of PLA, Beijing, China
| |
Collapse
|
29
|
Wei H, Kong L, Wang Y, Huang Z, Yang X, Zhou C, Li C, Ma B, Li C, Lei C, Wang H. Characterization and Public Health Insights of the New Delhi Metallo-β-Lactamase-Producing Enterobacterales from Laying Hens in China. Microorganisms 2022; 10:microorganisms10040800. [PMID: 35456850 PMCID: PMC9029685 DOI: 10.3390/microorganisms10040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
The New Delhi metallo-β-lactamase (NDM) is a major element for the rapid expansion of the carbapenem-resistant Enterobacterales, which poses a great challenge to public health security. NDM-producing Enterobacterales strains (50 Escherichia coli, 40 Klebsiella pneumoniae, and 5 Enterobacter cloacae) were isolated from laying hens in China for the surveillance of antibiotic-resistant pathogens, and all were found to be multi-drug resistant bacteria. The genomic analysis of these NDM-positive bacteria revealed the ST167, ST617, and ST410 of the fifteen ST-type E. coli clones and ST37 of the four ST-type K. pneumoniae clones to be the same types as the human-derived strains. Among them, some new clone types were also found. Most of the blaNDM genes (blaNDM-1 or blaNDM-5) were on the IncX3 plasmids (n = 80) and were distributed in E. coli, K. pneumoniae, and E. cloacae, while the remaining blaNDM-5 genes were harbored in the E. coli ST167 with IncFII plasmids (n = 15). The typeⅠ1 of the eight IncX3 plasmid subtypes was consistent with the human-derived pNDM5_020001 plasmid (accession no. CP032424). In addition, these two plasmids did not affect the growth of the host bacteria and could be reproduced stably without antibiotics. Our study revealed the high genetic propensity of the NDM-positive Enterobacterales from the laying hens and human commensal Enterobacterales, suggesting the potentially enormous risk of its transmission to humans.
Collapse
Affiliation(s)
- Hongcheng Wei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Linghan Kong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Yulong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Zheren Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Xue Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Changyu Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Chao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Boheng Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Cui Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Changwei Lei
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
| | - Hongning Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (H.W.); (L.K.); (Y.W.); (Z.H.); (X.Y.); (C.Z.); (C.L.); (B.M.); (C.L.); (C.L.)
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610065, China
- Correspondence: ; Tel.: +86-28-8547-1599
| |
Collapse
|
30
|
Peng Z, Hu Z, Li Z, Zhang X, Jia C, Li T, Dai M, Tan C, Xu Z, Wu B, Chen H, Wang X. Antimicrobial resistance and population genomics of multidrug-resistant Escherichia coli in pig farms in mainland China. Nat Commun 2022; 13:1116. [PMID: 35236849 PMCID: PMC8891348 DOI: 10.1038/s41467-022-28750-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
The expanding use of antimicrobials in livestock is an important contributor to the worldwide rapid increase in antimicrobial resistance (AMR). However, large-scale studies on AMR in livestock remain scarce. Here, we report findings from surveillance of E. coli AMR in pig farms in China in 2018-2019. We isolated E. coli in 1,871 samples from pigs and their breeding environments, and found AMR in E. coli in all provinces in mainland China. We detected multidrug-resistance in 91% isolates and found resistance to last-resort drugs including colistin, carbapenems and tigecycline. We also identified a heterogeneous group of O-serogroups and sequence types among the multidrug-resistant isolates. These isolates harbored multiple resistance genes, virulence factor-encoding genes, and putative plasmids. Our data will help to understand the current AMR profiles of pigs and provide a reference for AMR control policy formulation for livestock in China.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Zizhe Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Zugang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Xiaoxue Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Chaoying Jia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Tianzhi Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Menghong Dai
- MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, 430070, Wuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Zhuofei Xu
- Shanghai MasScience Biotechnology Institute, Shanghai, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Centre for Sustainable Pig Production, 430070, Wuhan, China.
| |
Collapse
|
31
|
Hao J, Zeng Z, Xiao X, Ding Y, Deng J, Wei Y, Liu J. Genomic and Phenotypic Characterization of a Colistin-Resistant Escherichia coli Isolate Co-Harboring blaNDM-5, blaOXA-1, and blaCTX-M-55 Isolated from Urine. Infect Drug Resist 2022; 15:1329-1343. [PMID: 35378893 PMCID: PMC8976530 DOI: 10.2147/idr.s355010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
Background Materials and Methods Results Conclusion
Collapse
Affiliation(s)
- Jingchen Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Xue Xiao
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Yinhuan Ding
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Jiamin Deng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Yueshuai Wei
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People’s Republic of China
- Correspondence: Jinbo Liu, Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China, Tel/Fax +86 830 3165730, Email
| |
Collapse
|
32
|
Manyahi J, Moyo SJ, Kibwana U, Goodman RN, Allman E, Hubbard ATM, Blomberg B, Langeland N, Roberts AP. First identification of bla
NDM-5 producing Escherichia coli from neonates and a HIV infected adult in Tanzania. J Med Microbiol 2022; 71. [PMID: 35225760 PMCID: PMC8941953 DOI: 10.1099/jmm.0.001513] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Introduction. Carbapenem-resistant members of the family Enterobacteriaceae are emerging as a global public-health threat and cause substantial challenges in clinical practice. Gap Statement. There is a need for increased and continued genomic surveillance of antimicrobial resistance genes globally in order to detect outbreaks and dissemination of clinically important resistance genes and their associated mobile genetic elements in human pathogens. Aim. To describe the resistance mechanisms of carbapenem-resistant Escherichia coli. Methods. Rectal swabs from neonates and newly diagnosed human immunodeficiency virus (HIV) infected adults were collected between April 2017 and May 2018 and screened for faecal carriage of carbapenamases and OXA-48 producing members of the family Enterobacteriaceae. Bacterial isolates were identified using matrix assisted laser desorption ionization time of flight mass spectrometry. Antimicrobial susceptibility testing was performed by E-test. Whole genomes of carbapenem-resistant E. coli were investigated using a hybrid assembly of Illumina and Oxford Nanopore Technologies sequencing reads. Results. Three carbapenem-resistant E. coli were detected, two from neonates and one from an HIV infected adult. All three isolates carried blaNDM-5. Two E. coli from neonates belonged to ST167 and blaNDM-5 co-existed with blaCTX-M-15 and blaOXA-01, and all were carried on IncFIA type plasmids. The E. coli from the HIV infected adult belonged to ST2083, and carried blaNDM-5 on an IncX3 type plasmid and blaCMY-42 on an IncI type plasmid. All blaNDM-5 carrying plasmids contained conjugation related genes. In addition, E. coli from the HIV infected adult carried three more plasmid types; IncFIA, IncFIB and Col(BS512). One E. coli from a neonate also carried one extra plasmid Col(BS512). All three E. coli harboured resistance genes to fluoroquinolone, aminoglycosides, sulfamethoxazole, trimethoprim, macrolides and tetracycline, carried on the IncFIA type plasmid. Furthermore, E. coli from the neonates carried a chloramphenicol resistance gene (catB3), also on the IncFIA plasmid. All three isolates were susceptible to colistin. Conclusion. This is the first report, to our knowledge, from Tanzania detecting blaNDM-5 producing E. coli. The carbapenemase gene was carried on an IncFIA and IncX3 type plasmids. Our findings highlight the urgent need for a robust antimicrobial resistance (AMR) surveillance system to monitor and rapidly report on the incidence and spread of emerging resistant bacteria in Tanzania.
Collapse
Affiliation(s)
- Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, Dar es Salaam, Tanzania
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Norwegian National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Sabrina J. Moyo
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, Dar es Salaam, Tanzania
| | - Upendo Kibwana
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, MUHAS, Dar es Salaam, Tanzania
| | - Richard N. Goodman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Ellie Allman
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Alasdair T. M. Hubbard
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Bjørn Blomberg
- Norwegian National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Nina Langeland
- Norwegian National Advisory Unit for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Adam P. Roberts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
33
|
Hammer-Dedet F, Aujoulat F, Jumas-Bilak E, Licznar-Fajardo P. Persistence and Dissemination Capacities of a BlaNDM-5-Harboring IncX-3 Plasmid in Escherichia coli Isolated from an Urban River in Montpellier, France. Antibiotics (Basel) 2022; 11:antibiotics11020196. [PMID: 35203799 PMCID: PMC8868147 DOI: 10.3390/antibiotics11020196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
To investigate the capacities of persistence and dissemination of blaNDM-5 within Escherichia coli and in aquatic environment, we characterized E. coli (sequence type 636) strains B26 and B28 isolated one month apart from the same urban river in Montpellier, France. The two isolates carried a pTsB26 plasmid, which sized 45,495 Kb, harbored blaNDM-5 gene and belonged to IncX-3 incompatibility group. pTsB26 was conjugative in vitro at high frequency, it was highly stable after 400 generations and it exerted no fitness cost on its host. blaNDM-5harboring plasmids are widely dispersed in E. coli all around the world, with no lineage specialization. The genomic comparison between B26 and B28 stated that the two isolates probably originated from the same clone, suggesting the persistence of pTsB26 in an E. coli host in aquatic environment.
Collapse
Affiliation(s)
- Florence Hammer-Dedet
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Fabien Aujoulat
- HSM, University Montpellier, CNRS, IRD, 34090 Montpellier, France; (F.H.-D.); (F.A.)
| | - Estelle Jumas-Bilak
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
| | - Patricia Licznar-Fajardo
- HSM, University of Montpellier, CNRS, IRD, CHU Montpellier, 34090 Montpellier, France;
- Correspondence:
| |
Collapse
|
34
|
Kyung SM, Choi SW, Lim J, Shim S, Kim S, Im YB, Lee NE, Hwang CY, Kim D, Yoo HS. Comparative genomic analysis of plasmids encoding metallo-β-lactamase NDM-5 in Enterobacterales Korean isolates from companion dogs. Sci Rep 2022; 12:1569. [PMID: 35091689 PMCID: PMC8799648 DOI: 10.1038/s41598-022-05585-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
Carbapenems are broad-spectrum antibiotics widely used for the treatment of human infections caused by multidrug-resistant (MDR) Gram-negative bacteria. However, emerging carbapenemase-producing Enterobacterales (CPE) are rising as a public threat to human and animal health. We screened clinical bacterial isolates from 241 dogs and 18 cats hospitalized at Veterinary Medical Teaching Hospital, Seoul National University, from 2018 to 2020 for carbapenemase production. In our study, 5 strains of metallo-β-lactamase NDM-5-producing Escherichia coli and Klebsiella pneumoniae were isolated from 4 different dogs. Multilocus sequence typing (MLST) results showed that all E. coli strains were ST410 and all K. pneumoniae strains were ST378. Whole genome analysis of the plasmid showed that blaNDM-5 is carried on a IncX3 plasmid, showing a high concordance rate with plasmids detected worldwide in human and animal isolates. The blaNDM gene was associated with the bleMBL gene and the ISAba125 element, truncated with the IS5 element. The results of this study show that CPE has already become as a threat to both animals and humans in our society, posing the necessity to solve it in terms of "One Health". Therefore, preventive strategies should be developed to prevent the spread of CPE in animal and human societies.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sung-Woon Choi
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaewon Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Soojin Shim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical and Biofunctional Systems, Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan
| | - Suji Kim
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young Bin Im
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Na-Eun Lee
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Donghyuk Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Disease, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
35
|
Li Y, Peng K, Yin Y, Sun X, Zhang W, Li R, Wang Z. Occurrence and Molecular Characterization of Abundant tet(X) Variants Among Diverse Bacterial Species of Chicken Origin in Jiangsu, China. Front Microbiol 2022; 12:751006. [PMID: 34987485 PMCID: PMC8723793 DOI: 10.3389/fmicb.2021.751006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Many novel tigecycline-inactivating enzymes encoded by tet(X) variants from different bacteria were discovered since the plasmid-mediated tet(X3) and tet(X4) genes conferring high-level resistance to tigecycline in Enterobacterales and Acinetobacter were reported. However, there have been no comprehensive studies of the prevalence of different tet(X) variants in poultry farms. In this study, we collected 45 chicken fecal samples, isolated tet(X)-positive strains, and performed antimicrobial susceptibility testing, conjugation assay, whole-genome sequencing, and bioinformatics analysis. A total of 15 tet(X)-bearing strains were isolated from 13 samples. Species identification and tet(X) subtyping analysis found that the 15 strains belonged to eight different species and harbored four different tet(X) variants. Genomic investigation showed that transmission of tet(X) variants was associated with various mobile genetic elements, and tet(X4) was the most prevalent variant transferred by conjugative plasmids. Meanwhile, we characterized a plasmid co-harboring tet(X6) and blaOXA–58 in Acinetobacter baumannii. In summary, we demonstrated that different tet(X) variants were widely disseminated in the chicken farming environment and dominated by tet(X4). This finding expands the understanding of the prevalence of tet(X) among different animal sources, and it was advocated to reduce the usage of antibiotics to limit the emergence and transmission of novel tet(X) variants in the poultry industry.
Collapse
Affiliation(s)
- Yingshan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Kai Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Yi Yin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xinran Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Wenhui Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Ruichao Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
36
|
Ragheb SM, Govinden U, Osei Sekyere J. Genetic support of carbapenemases: a One Health systematic review and meta-analysis of current trends in Africa. Ann N Y Acad Sci 2021; 1509:50-73. [PMID: 34753206 DOI: 10.1111/nyas.14703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 11/28/2022]
Abstract
Antimicrobial resistance (AMR) is a public health threat globally. Carbapenems are β-lactam antibiotics used as last-resort agents for treating antibiotic-resistant infections. Mobile genetic elements (MGEs) play an important role in the dissemination and expression of antimicrobial resistance genes (ARGs), including the mobilization of ARGs within and between species. The presence of MGEs around carbapenem-hydrolyzing enzymes, called carbapenemases, in bacterial isolates in Africa is concerning. The association between MGEs and carbapenemases is described herein. Specific plasmid replicons, integrons, transposons, and insertion sequences were found flanking specific and different carbapenemases across the same and different clones and species isolated from humans, animals, and the environment. Notably, similar genetic contexts have been reported in non-African countries, supporting the importance of MGEs in driving the intra- and interclonal and species transmission of carbapenemases in Africa and globally. Technical and budgetary limitations remain challenges for epidemiological analysis of carbapenemases in Africa, as studies undertaken with whole-genome sequencing remained relatively few. Characterization of MGEs in antibiotic-resistant infections can deepen our understanding of carbapenemase epidemiology and facilitate the control of AMR in Africa. Investment in genomic epidemiology will facilitate faster clinical interventions and containment of outbreaks.
Collapse
Affiliation(s)
- Suzan Mohammed Ragheb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Usha Govinden
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - John Osei Sekyere
- Department of Microbiology & Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana.,Department of Dermatology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
37
|
Li Y, Tang M, Dai X, Zhou Y, Zhang Z, Qiu Y, Li C, Zhang L. Whole-Genomic Analysis of NDM-5-Producing Enterobacteriaceae Recovered from an Urban River in China. Infect Drug Resist 2021; 14:4427-4440. [PMID: 34737583 PMCID: PMC8559237 DOI: 10.2147/idr.s330787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/24/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Three NDM-5-producing Enterobacteriaceae (Escherichia coli, Klebsiella pneumoniae, and Citrobacter braakii, one each) were isolated during a screening study for the presence of carbapenemase-producing Enterobacteriaceae (CPE) strains in urban rivers in China. The aim of the present study was to characterize these NDM-5-producing isolates by using whole-genome analysis. Methods In vitro susceptibility testing was performed using the broth microdilution method. Conjugation assay was carried out to investigate the transferability of blaNDM-5-harboring plasmids. Whole-genome sequencing was performed using an Illumina HiSeq combined with the PacBio RSII system. The genetic characteristics of the blaNDM-5-harboring plasmids were analyzed. Antimicrobial resistance genes and virulence genes were identified from the genome sequences. Phylogenetic analysis was performed based on core genome. Results Antimicrobial susceptibility testing showed that all three isolates were resistant to carbapenems, cephalosporins, quinolones, and aminoglycosides, and susceptible to colistin. Whole-genome sequencing showed that each isolate carried multiple antibiotic resistance genes mediating multidrug resistance, and harbored numerous virulence genes, some of which were located on plasmids. In these isolates, blaNDM-5 was carried by an IncX3 plasmid in K. pneumoniae and C. braakii, and on an IncR/IncX1 plasmid in E. coli. Conjugation experiments showed that these blaNDM-5-haboring plasmids were successfully transferred to E. coli J53. Phylogenetic analysis revealed that E. coli SCLZR49 was present in a cluster with isolates of different origin, K. pneumoniae SCLZR50 was mainly clustered with clinical isolates, and C. braakii SCLZR53 had closely genetic relationship with environmental isolates. Conclusion This study revealed contamination of the urban river ecosystems by clinically significant carbapenemase gene blaNDM-5, raising the possibility of plasmid transmission into the environmental from humans and highlighting the need for a constant surveillance of CPE in the environment under the “One-Health” perspective.
Collapse
Affiliation(s)
- Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Immunological Technology Platform, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Min Tang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xiaoyi Dai
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Pathogen Biology Platform, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Pathogen Biology Platform, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Zhikun Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Pathogen Biology Platform, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yichuan Qiu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Pathogen Biology Platform, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Chengwen Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Immunological Technology Platform, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People's Republic of China.,Pathogen Biology Platform, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
38
|
Zhou Z, Berglund B, Liu J, Zhao L, Xia H, Zou H, Zhao Q, Li X. Emergence of IncX3 Plasmid-Harboring blaNDM-5 in a Citrobacter sedlakii Isolated from Outdoor Aerosol in Wastewater Treatment Plant. Microb Drug Resist 2021; 28:199-204. [PMID: 34520266 DOI: 10.1089/mdr.2021.0057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A carbapenem-resistant Citrobacter sedlakii strain AA2CS carrying blaNDM-5 was detected in outdoor aerosols of a wastewater treatment plant (WWTP) in China and the whole genome was sequenced subsequently. AA2CS was captured in an aerobic tank with aerosol particles of sizes ranging from 4.7 to 7.0 μm. Besides blaNDM-5, AA2CS also harbored 21 other antibiotic resistance genes and displayed a high level of resistance to ampicillin, cefotaxime, ceftazidime, tetracycline, and meropenem. BlaNDM-5 was located on the IncX3 plasmid (pCSNDM-5) with an IS3000-IS5-blaNDM-5-bleMBL-trpF-dsbD-IS26 structure. pCSNDM-5 was highly homologous to other blaNDM-5-carrying IncX3 plasmids in China and can be transferred to the Escherichia coli recipient J53. To our knowledge, this is the first report of carbapenem-resistant Enterobacteriaceae in outdoor aerosols in WWTPs.
Collapse
Affiliation(s)
- Ziyu Zhou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Björn Berglund
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Jiaqi Liu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiyu Xia
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
39
|
Yang Q, Zhang PP, Jiang Y, Zheng XJ, Zheng M, Qu TT. Successful Treatment of Severe Post-craniotomy Meningitis Caused by an Escherichia coli Sequence Type 410 Strain Coharboring bla NDM - 5 and bla CTX - M - 65. Front Microbiol 2021; 12:729915. [PMID: 34566935 PMCID: PMC8456032 DOI: 10.3389/fmicb.2021.729915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 12/03/2022] Open
Abstract
Intracranial infections caused by multidrug-resistant Gram-negative bacterium have led to considerable mortality due to extremely limited treatment options. Herein, we firstly reported a clinical carbapenem-resistant Escherichia coli isolate coharboring bla NDM - 5 and bla CTX - M - 65 from a patient with post-craniotomy meningitis. The carbapenem-resistant Escherichia coli strain CNEC001 belonging to Sequence Type 410 was only susceptible to amikacin and tigecycline, both of which have poor penetration through the blood-brain barrier (BBB). The bla CTX - M - 65 gene was expressed on a 135,794 bp IncY plasmid. The bla NDM - 5 gene was located on a genomic island region of an IncX3-type plasmid pNDM5-CNEC001. Based on the characteristics of the strain, we presented the successful treatment protocol of intravenous (IV) tigecycline and amikacin combined with intrathecal (ITH) amikacin in this study. Intracranial infection caused by Escherichia coli coharboring bla NDM - 5 and bla CTX - M - 65 is rare and fatal. Continuous surveillance and infection control measures for such strain need critical attention in clinical settings.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Laboratory Medicine, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Piao-piao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiu-jue Zheng
- Department of Neurological Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-ting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Synergistic Antibacterial Effects of Meropenem in Combination with Aminoglycosides against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 and blaNDM-5. Antibiotics (Basel) 2021; 10:antibiotics10081023. [PMID: 34439073 PMCID: PMC8388987 DOI: 10.3390/antibiotics10081023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Infections due to carbapenem-resistant Escherichia coli (CREC) are problematic due to limitation in treatment options. Combination therapies of existing antimicrobial agents have become a reliable strategy to control these infections. In this study, the synergistic effects of meropenem in combination with aminoglycosides were assessed by checkerboard and time-kill assays. Of the 35 isolates, 19 isolates (54.3%) were resistant to carbapenems (imipenem and meropenem) with the MIC ranges from 16 to 128 µg/mL. These isolates were resistant to almost all antibiotic classes. Molecular characteristics revealed co-harboring of carbapenemase (blaNDM-1, blaNDM-5 and blaOXA-48) and extended-spectrum β-lactamases (ESBL) genes (blaCTX-M, blaSHV and blaTEM). The checkerboard assay displayed synergistic effects of meropenem and several aminoglycosides against most CREC isolates. Time-kill assays further demonstrated strong synergistic effects of meropenem in combination with either amikacin, gentamicin, kanamycin, streptomycin, and tobramycin. The results suggested that meropenem in combination with aminoglycoside therapy might be an efficient optional treatment for infections cause by CREC.
Collapse
|
41
|
Saha SB, Gupta VK, Ramteke PW. uCARE Chem Suite and uCAREChemSuiteCLI: Tools for bacterial resistome prediction. Genes Dis 2021; 8:721-729. [PMID: 34291144 PMCID: PMC8278538 DOI: 10.1016/j.gendis.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/08/2020] [Accepted: 06/21/2020] [Indexed: 11/23/2022] Open
Abstract
In the era of antibiotic resistance, in silico prediction of bacterial resistome profiles, likely to be associated with inactivation of new potential antibiotics is of utmost importance. Despite this, to the best of our knowledge, no tool exists for such prediction. Therefore, under the rationale that drugs with similar structures have similar resistome profiles, we developed two models, a deterministic model and a stochastic model, to predict the bacterial resistome likely to neutralize uncharacterized but potential chemical structures. The current version of the tool involves the prediction of a resistome for Escherichia coli and Pseudomonas aeruginosa. The deterministic model on omitting two diverse but relatively less characterized drug classes, polyketides and polypeptides showed an accuracy of 87%, a sensitivity of 85%, and a precision of 89%, whereas the stochastic model predicted antibiotic classes of the test set compounds with an accuracy of 72%, a sensitivity of 75%, and a precision of 83%. The models have been implemented in both a standalone package and an online server, uCAREChemSuiteCLI and uCARE Chem Suite, respectively. In addition to resistome prediction, the online version of the suite enables the user to visualize the chemical structure, classify compounds in 19 predefined drug classes, perform pairwise alignment, and cluster with database compounds using a graphical user interface. Availability uCARE Chem Suite can be browsed at: https://sauravsaha.shinyapps.io/ucarechemsuite2/, and uCAREChemSuiteCLI can be installed from: 1. CRAN (https://cran.r-project.org/package=uCAREChemSuiteCLI) and 2. GitHub (https://github.com/sauravbsaha/uCAREChemSuiteCLI).
Collapse
Affiliation(s)
- Saurav Bhaskar Saha
- Department of Computational Biology and Bioinformatics, JIBB, SHUATS, Prayagraj, Uttar Pradesh, 211007, India
| | - Vijai Kumar Gupta
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | | |
Collapse
|
42
|
Feng Y, Xue G, Feng J, Yan C, Cui J, Gan L, Zhang R, Zhao H, Xu W, Li N, Liu S, Du S, Zhang W, Yao H, Tai J, Ma L, Zhang T, Qu D, Wei Y, Yuan J. Rapid Detection of New Delhi Metallo-β-Lactamase Gene Using Recombinase-Aided Amplification Directly on Clinical Samples From Children. Front Microbiol 2021; 12:691289. [PMID: 34367092 PMCID: PMC8339468 DOI: 10.3389/fmicb.2021.691289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 11/26/2022] Open
Abstract
New Delhi metallo-β-lactamase, a metallo-β-lactamase carbapenemase type, mediates resistance to most β-lactam antibiotics including penicillins, cephalosporins, and carbapenems. Therefore, it is important to detect blaNDM genes in children’s clinical samples as quickly as possible and analyze their characteristics. Here, a recombinase-aided amplification (RAA) assay, which operates in a single one-step reaction tube at 39°C in 5−15 min, was established to target blaNDM genes in children’s clinical samples. The analytical sensitivity of the RAA assay was 20 copies, and the various bacterial types without blaNDM genes did not amplify. This method was used to detect blaNDM genes in 112 children’s stool samples, 10 of which were tested positive by both RAA and standard PCR. To further investigate the characteristics of carbapenem-resistant bacteria carrying blaNDM in children, 15 carbapenem-resistant bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Citrobacter freundii, Klebsiella oxytoca, Acinetobacter junii, and Proteus mirabilis) were isolated from the 10 samples. Notably, more than one bacterial type was isolated from three samples. Most of these isolates were resistant to cephalosporins, cefoperazone-sulbactam, piperacillin-tazobactam, ticarcillin-clavulanic acid, aztreonam, co-trimoxazole, and carbapenems. blaNDM–1 and blaNDM–5 were the two main types in these samples. These data show that the RAA assay has potential to be a sensitive and rapid blaNDM gene screening test for clinical samples. The common existence of blaNDM and multi-drug resistance genes presents major challenges for pediatric treatment.
Collapse
Affiliation(s)
| | - Guanhua Xue
- Capital Institute of Pediatrics, Beijing, China
| | - Junxia Feng
- Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Capital Institute of Pediatrics, Beijing, China
| | - Jinghua Cui
- Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Capital Institute of Pediatrics, Beijing, China
| | - Hanqin Zhao
- Capital Institute of Pediatrics, Beijing, China
| | - Wenjian Xu
- Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Nannan Li
- Capital Institute of Pediatrics, Beijing, China
| | - Shiyu Liu
- Capital Institute of Pediatrics, Beijing, China
| | - Shuheng Du
- Capital Institute of Pediatrics, Beijing, China
| | | | - Hailan Yao
- Capital Institute of Pediatrics, Beijing, China
| | - Jun Tai
- Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Lijuan Ma
- Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Capital Institute of Pediatrics, Beijing, China
| | - Dong Qu
- Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Yongxiang Wei
- Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
43
|
Wu W, Lu L, Fan W, Chen C, Jin D, Pan H, Li X. Complete Genome Sequences of Two Novel KPC-2-Producing IncU Multidrug-Resistant Plasmids From International High-Risk Clones of Escherichia coli in China. Front Microbiol 2021; 12:698478. [PMID: 34367098 PMCID: PMC8335537 DOI: 10.3389/fmicb.2021.698478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022] Open
Abstract
The rapidly increasing prevalence of Klebsiella pneumoniae carbapenemase 2 (KPC-2)-producing bacteria has become a serious challenge to public health. Currently, the blaKPC–2 gene is mainly disseminated through plasmids of different sizes and replicon types. However, the plasmids carrying the blaKPC–2 gene have not been fully characterized. In this study, we report the complete genome sequences of two novel blaKPC–2-harboring incompatibility group U (IncU) plasmids, pEC2341-KPC and pEC2547-KPC, from international high-risk clones of Escherichia coli isolated from Zhejiang, China. Two KPC-2-producing E. coli isolates (EC2341 and EC2547) were collected from clinical samples. Whole-genome sequencing (WGS) analysis indicated that EC2341 and EC2547 belonged to the ST410 and ST131 clones, respectively. S1-nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blot and conjugation experiments confirmed the presence of the blaKPC–2 gene on the pEC2341-KPC plasmid and that this was a conjugative plasmid, while the blaKPC–2 gene on the pEC2547-KPC plasmid was a non-conjugative plasmid. In addition, plasmid analysis further revealed that the two blaKPC–2-harboring plasmids have a close evolutionary relationship. To the best of our knowledge, this is the first report of E. coli strains carrying the blaKPC–2 gene on IncU plasmids. The emergence of the IncU-type blaKPC–2-positive plasmid highlights further dissemination of blaKPC–2 in Enterobacteriaceae. Therefore, effective measures should be taken immediately to prevent the spread of these blaKPC–2–positive plasmids.
Collapse
Affiliation(s)
- Wenhao Wu
- Department of Infectious Diseases, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Medical College, Qingdao University, Qingdao, China
| | - Lingling Lu
- Adicon Clinical Laboratories, Hangzhou, China
| | - Wenjia Fan
- Medical College, Qingdao University, Qingdao, China
| | - Chun Chen
- Department of Pneumology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hongying Pan
- Medical College, Qingdao University, Qingdao, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
44
|
Sumbana JJ, Santona A, Fiamma M, Taviani E, Deligios M, Zimba T, Lucas G, Sacarlal J, Rubino S, Paglietti B. Extraintestinal Pathogenic Escherichia coli ST405 Isolate Coharboring blaNDM-5 and blaCTXM-15: A New Threat in Mozambique. Microb Drug Resist 2021; 27:1633-1640. [PMID: 34077257 DOI: 10.1089/mdr.2020.0334] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of carbapenem resistance in extraintestinal pathogenic Escherichia coli (ExPEC) has significant clinical implications, particularly in countries where second-line antimicrobials are not readily available, rendering treatments ineffective, and ExPEC infections untreatable. Thus, early detection of high-risk ExPEC lineages and raising awareness of the specific mechanisms underlying carbapenem resistance are mandatory for the selection of appropriate treatment options and the prevention of E. coli spread. This study aims to investigate the phenotypic and genotypic features of the first NDM-5 carbapenemase-producing ExPEC strain isolated from the blood of a patient admitted to the Maputo Central Hospital (MCH), in Mozambique. E. coli SSM100 isolate was identified by MALDI-TOF, it displayed high-level resistance to third generation cephalosporins, carbapenems, fluoroquinolones, and aminoglycosides, performing antimicrobial susceptibilities testing by VITEK 2 system. E. coli SSM100 isolate was classified through whole-genome sequencing as ST405-D-O102: H6, a globally distributed lineage associated with antimicrobial resistance, carrying the blaNDM-5 gene located on an F1:A1:B49 plasmid, coharboring blaCTX-M-15, blaTEM-1, aadA2, sul1, and dfrA12 genes. In addition, mutations in gyrA (S83L and D87N), parC (S80I and E84V), and parE (I529L) conferring fluoroquinolone resistance were also found. Moreover, SSM100 isolate carried 88 virulence genes, of which 28 are reported to be associated with UPEC. The emergence of NDM-5 carbapenemase in a pandemic ST405-D-O102:H6 clone in Mozambique is of great concern. Locations of extended-spectrum β-lactamase determinants and NDM-5 carbapenemase gene on IncF-plasmid can increase their spread reinforcing the need for antimicrobial surveillance and the urgent introduction of carbapenemase detection tests in diagnostic laboratories of the country.
Collapse
Affiliation(s)
- José João Sumbana
- Department of Biological Sciences, Eduardo Mondlane University, Maputo, Mozambique.,Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonella Santona
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Maura Fiamma
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisa Taviani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Center of Biotechnology, Eduardo Mondlane University, Maputo, Mozambique
| | - Massimo Deligios
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | - Jahit Sacarlal
- Department of Microbiology, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
| | - Salvatore Rubino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Bianca Paglietti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
45
|
Paul D, Babenko D, Toleman MA. Human carriage of cefotaxime-resistant Escherichia coli in North-East India: an analysis of STs and associated resistance mechanisms. J Antimicrob Chemother 2021; 75:72-76. [PMID: 31622465 DOI: 10.1093/jac/dkz416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/25/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To determine the prevalence of Escherichia coli STs and associated resistance mechanisms carried by the community in North-East India. METHODS E. coli (108) were isolated from sewage collected from 19 sites across the city of Silchar by plating on MacConkey agar with/without selection (50 mg/L cefotaxime). Species identification was confirmed by MALDI-TOF MS for 82 isolates. Common resistance mechanisms were determined by WGS of pooled E. coli isolates. PFGE combined with specific probes determined the presence of common resistance mechanisms in all isolates. Phylotypes, multilocus STs, core-genome multilocus STs, resistance genes and virulence genes were determined by in silico analysis of 38 genomes. RESULTS AND CONCLUSIONS Analysis of isolates collected without selection (n=33) indicated that cefotaxime resistance in E. coli was 42% (14/33) and estimated meropenem resistance at 9%. The remaining 58% (19/33) were additionally susceptible to ampicillin, trimethoprim, ciprofloxacin and aminoglycosides. The most common ST among the cefotaxime-resistant E. coli was ST167 (29%), followed by ST410 (17%) and ST648 (10%). E. coli ST131 was absent from the collection. Sixty-three isolates were resistant to cefotaxime and harboured blaCTX-M-15 [54% (34/63)] or blaCMY-42 [46% (29/63)], of which 10% (6/63) harboured both genes. Carbapenem resistance was due to blaNDM-5, found in 10/63 cefotaxime-resistant isolates, and/or blaOXA-181, found in 4/63 isolates. NDM-5 was encoded by IncX3 and/or IncFII plasmids and CMY-42 was mostly encoded by IncI plasmids. NDM-5 appears to have replaced NDM-1 in this region and CMY-42 appears to be in the process of replacing CTX-M-15.
Collapse
Affiliation(s)
- Deepjyoti Paul
- Department of Infection and Immunity, Cardiff University, Cardiff, UK
| | | | - Mark A Toleman
- Department of Infection and Immunity, Cardiff University, Cardiff, UK.,Karaganda Medical University, Karaganda, Kazakhstan
| |
Collapse
|
46
|
Pan F, Xu Q, Zhang H. Emergence of NDM-5 Producing Carbapenem-Resistant Klebsiella aerogenes in a Pediatric Hospital in Shanghai, China. Front Public Health 2021; 9:621527. [PMID: 33718321 PMCID: PMC7947282 DOI: 10.3389/fpubh.2021.621527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Carbapenem-resistant Klebsiella aerogenes (CRKA) has posed a serious threat for clinical anti-infective therapy. However, the molecular characteristics of CRKA in Shanghai are rarely reported. Objective: This study aimed to investigate the resistance profiles, dissemination mechanism, and molecular characteristics of CRKA strains isolated from children in a pediatric hospital, Shanghai. Method: Fifty CRKA isolates were collected in 2019. Antimicrobial susceptibility of the strains was determined by broth microdilution method. The β-lactamases and outer membrane porin genes were characterized by polymerase chain reaction (PCR). Conjugation experiments were performed to determine the transferability of the plasmids. The plasmids were typed based on their incompatibility group using the PCR-based replicon typing method. Multilocus sequence typing (MLST) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) were performed for the genetic relationship. Results: All CRKA strains showed high level of resistance to cephalosporins and carbapenems, but still susceptible to aminoglycosides, colistin, and tigecycline. Forty five of fifty isolates carried blaNDM−5 genes (45/50, 90%), alongside with other β-Lactamase genes including blaCTX−M−1, blaTEM−1, and blaSHV−11 being detected. Loss of ompK35 and ompK36 genes were observed in 14% (7/50) and 28% (14/50), respectively, with 5 isolates lacking both ompK35 and ompK36. MLST analysis demonstrated that the majority of isolates belonged to ST4 (47/50, 94%) and ERIC-PCR fingerprinting was performed to identify NDM-5-producing isolates with approximately or more than 80% similarity levels. Plasmids carrying blaNDM−5 were successfully transferred to the E. coli recipient and plasmid typing showed that IncX3 were the prevalent among CRKA isolates. Conclusions: Our finding revealed the emergence of NDM-5 producing CRKA belonging to ST4 among children in Shanghai. Further attention should be paid to control the horizontal spread of the Class B carbapenemases like NDM in children.
Collapse
Affiliation(s)
- Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qi Xu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
47
|
Cross-Border Emergence of Escherichia coli Producing the Carbapenemase NDM-5 in Switzerland and Germany. J Clin Microbiol 2021; 59:JCM.02238-20. [PMID: 33361340 DOI: 10.1128/jcm.02238-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023] Open
Abstract
A series of clinical NDM-5-producing Escherichia coli isolates obtained from two surveillance networks for carbapenem-producing Enterobacterales from 2018 to 2019, namely, Switzerland (NARA) and Germany (SurvCARE), were analyzed. The 33 NDM-5-producing E. coli isolates were highly resistant to β-lactams, including novel β-lactam/β-lactamase inhibitor combinations (ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam), and remained susceptible to fosfomycin, colistin, and tigecycline. These isolates were assigned to different sequence types (STs) and indicated a predominance of isolates exhibiting ST167 in Switzerland and Germany (n = 10) (phylogenetic group C), followed by ST405 (n = 4) (phylogenetic group E), ST1284 (n = 4) (phylogenetic group C), and ST361 (n = 4) (phylogenetic group C). The bla NDM-5 gene was predominantly present on an IncF-type plasmid (n = 29) and, to a lesser extent, on the narrow-host-range IncX3 plasmid (n = 4). Sequence analyses of eight NDM-5 plasmids indicated that NDM-5-encoding F-type plasmids varied in size between 86 and 132 kb. The two IncX3 plasmids pCH8NDM5 and pD12NDM5 were 46 and 45 kb in size, respectively. The highly conserved bla NDM-5 genetic surrounding structures (ΔISAba125-bla NDM-5-ble MBL-trpT-dsbD-IS26) of both the F-type and IncX3 plasmids suggested a common genetic origin. The emergence of the NDM-5 carbapenemase was evidenced in particular for the E. coli ST167 clone, which is a successful epidemic clone known to be associated with both multiresistance and virulence traits and is therefore of high public health concern. The occurrence of clonally related NDM-5-producing E. coli isolates in Switzerland and Germany further indicates the international spread of this multidrug-resistant superbug at least throughout Europe.
Collapse
|
48
|
Liu B, Shui L, Zhou K, Jiang Y, Li X, Guan J, Li Q, Zhuo C. Impact of Plasmid-Encoded H-NS-like Protein on blaNDM-1-Bearing IncX3 Plasmid in Escherichia coli. J Infect Dis 2021; 221:S229-S236. [PMID: 32176784 DOI: 10.1093/infdis/jiz567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND This study was performed to assess the role of the histone-like nucleoid-structuring (H-NS)-like protein, carried by blaNDM-1-encoding IncX3-type plasmids, in the dissemination of IncX3 plasmids. METHODS The blaNDM-1-encoding IncX3 plasmids were analyzed using southern blot, conjugation, and competition assays. Virulence was evaluated with a Galleria mellonella infection model. An hns-knockout IncX3 plasmid was also constructed to identify the functions of plasmid-borne H-NS-like protein in Escherichia coli. RESULTS The assasys detected blaNDM-1-encoding IncX3-type plasmids with similar fingerprint patterns in all New Delhi metallo-β-lactamase (NDM) 1-producing carbapenem-resistant Enterobacteriaceae. The IncX3 plasmid conferred a fitness advantage to E. coli J53 but had no effect on host virulence. Moreover, the transconjugation frequency of the hns-null IncX3 plasmid pHN330-△hns was increased by 2.5-fold compared with the wild type. This was caused by up-regulation of conjugation-related plasmid-borne genes and the partition-related gene, in the J330-pHN330-△hns strain. In addition, decreased virulence was detected with this variant. CONCLUSIONS Our results highlight the important role of IncX3 plasmids in the dissemination of blaNDM-1 in south China. Plasmid-encoded H-NS-like protein can inhibit plasmid conjugation, partition, and the expression of related genes, in addition to promoting virulence in the host.
Collapse
Affiliation(s)
- Baomo Liu
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lili Shui
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Ying Jiang
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyu Li
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Guan
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Li
- Pulmonary and Critical Care Medicine Center, Chinese PLA Respiratory Disease Institute, Xinqiao hospital, Army Medical University, Shapingba District, Chongqing, China
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
49
|
OXA-181-Like Carbapenemases in Klebsiella pneumoniae ST14, ST15, ST23, ST48, and ST231 from Septicemic Neonates: Coexistence with NDM-5, Resistome, Transmissibility, and Genome Diversity. mSphere 2021; 6:6/1/e01156-20. [PMID: 33441403 PMCID: PMC7845606 DOI: 10.1128/msphere.01156-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neonatal sepsis is a leading cause of neonatal mortality in low- and middle-income countries (LMICs). Treatment of sepsis in this vulnerable population is dependent on antimicrobials, and resistance to these life-saving antimicrobials is worrisome. Studies on the epidemiology and genomes of isolates harboring OXA-48-like genes in septicemic neonates are rare. Here, isolates producing these carbapenemases which emerged and persisted in an Indian neonatal unit were characterized in terms of their resistome, transmissibility, and genome diversity. Antibiotic susceptibility and whole-genome sequencing were carried out. The sequence types, resistome, virulome, mobile genetic elements, and transmissibility of carbapenem-resistant plasmids were evaluated. Core genome analysis of isolates was shown in a global context with other OXA-48-like carbapenemase-harboring genomes, including those from neonatal studies. Eleven OXA-48-like carbapenemase-producing Klebsiella pneumoniae (blaOXA-181, n = 7 and blaOXA-232, n = 4) isolates belonging to diverse sequence types (ST14, ST15, ST23, ST48, and ST231) were identified. blaOXA-181/OXA-232 and blaNDM-5 were found in a high-risk clone, ST14 (n = 4). blaOXA-181/OXA-232 were in small, nonconjugative ColKP3 plasmids located on truncated Tn2013, whereas blaNDM-5 was in self-transmissible, conjugative IncFII plasmids, within truncated Tn125. Conjugal transfer of blaOXA-181/OXA-232 was observed in the presence of blaNDM-5. The study strains were diverse among themselves and showed various levels of relatedness with non-neonatal strains from different parts of the world and similarity with neonatal strains from Tanzania and Ghana when compared with a representative collection of carbapenemase-positive K. pneumoniae strains. We found that blaOXA-181/OXA-232-harboring isolates from a single neonatal unit had remarkably diverse genomes, ruling out clonal spread and emphasizing the extent of plasmid spreading across different STs. This study is probably the first to report the coexistence of blaOXA-181/232 and blaNDM-5 in neonatal isolates. IMPORTANCE Neonatal sepsis is a leading cause of neonatal mortality in low- and middle-income countries (LMICs). Treatment of sepsis in this vulnerable population is dependent on antimicrobials, and resistance to these life-saving antimicrobials is worrisome. Carbapenemases, enzymes produced by bacteria, can make these antimicrobials useless. Our study describes how OXA-48-like carbapenemases in neonatal septicemic Klebsiella pneumoniae shows remarkable diversity in the genomes of the strains and relatedness with strains from other parts of world and also to some neonatal outbreak strains. It is also the first to describe such resistance due to coproduction of dual carbapenemases, (OXA)-48 and New Delhi metallo-β-lactamase-5, in Klebsiella pneumoniae from neonatal settings. Carbapenemase genes situated on plasmids within high-risk international clones, as seen here, increase the ease and transfer of resistant genetic material. With the WHO treatment protocols not adequately poised to handle such infections, prompt attention to neonatal health care is required.
Collapse
|
50
|
Safavi M, Bostanshirin N, Hajikhani B, Yaslianifard S, van Belkum A, Goudarzi M, Hashemi A, Darban-Sarokhalil D, Dadashi M. Global genotype distribution of human clinical isolates of New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae; A systematic review. J Glob Antimicrob Resist 2020; 23:420-429. [PMID: 33157280 DOI: 10.1016/j.jgar.2020.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND AIM The global rise of antimicrobial resistance among bacterial strains is a rapidly growing challenge and is becoming a major public health concern. This study documents the worldwide spread and genotype distribution of human clinical isolates of New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae (NPKP). METHODS Several international databases, including Web of Science, Embase and Medline were searched (2010 - 2019) to identify studies addressing the frequency of NPKP regionally or worldwide. RESULTS Of 4779 articles identified, 202 studies fulfilled the eligibility criteria and were included in our analysis. The frequency of NPKP in Asia, Europe, America, Africa and Oceania was 64.6%, 20.1%, 9.0%, 5.6% and 0.4%, respectively. The most prevalent sequence types (STs) among NPKP were ST11, ST290, ST147, ST340, ST15, ST278 and ST14 based on published studies. CONCLUSION The dissemination of blaNDM variants in different STs among NPKP in the various region of world is a serious concern to public health. The prevalence of NPKP should be controlled by comprehensive infection control measures and optimization of antibiotic therapy.
Collapse
Affiliation(s)
- Mahshid Safavi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nazila Bostanshirin
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Yaslianifard
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Alex van Belkum
- Open Innovation and Partnerships, bioMérieux 3, La Balme Les Grottes, France
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran; Non Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|