1
|
Kramer A, Lexow F, Bludau A, Köster AM, Misailovski M, Seifert U, Eggers M, Rutala W, Dancer SJ, Scheithauer S. How long do bacteria, fungi, protozoa, and viruses retain their replication capacity on inanimate surfaces? A systematic review examining environmental resilience versus healthcare-associated infection risk by "fomite-borne risk assessment". Clin Microbiol Rev 2024; 37:e0018623. [PMID: 39388143 PMCID: PMC11640306 DOI: 10.1128/cmr.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
SUMMARYIn healthcare settings, contaminated surfaces play an important role in the transmission of nosocomial pathogens potentially resulting in healthcare-associated infections (HAI). Pathogens can be transmitted directly from frequent hand-touch surfaces close to patients or indirectly by staff and visitors. HAI risk depends on exposure, extent of contamination, infectious dose (ID), virulence, hygiene practices, and patient vulnerability. This review attempts to close a gap in previous reviews on persistence/tenacity by only including articles (n = 171) providing quantitative data on re-cultivable pathogens from fomites for a better translation into clinical settings. We have therefore introduced the new term "replication capacity" (RC). The RC is affected by the degree of contamination, surface material, temperature, relative humidity, protein load, organic soil, UV-light (sunlight) exposure, and pH value. In general, investigations into surface RC are mainly performed in vitro using reference strains with high inocula. In vitro data from studies on 14 Gram-positive, 26 Gram-negative bacteria, 18 fungi, 4 protozoa, and 37 viruses. It should be regarded as a worst-case scenario indicating the upper bounds of risks when using such data for clinical decision-making. Information on RC after surface contamination could be seen as an opportunity to choose the most appropriate infection prevention and control (IPC) strategies. To help with decision-making, pathogens characterized by an increased nosocomial risk for transmission from inanimate surfaces ("fomite-borne") are presented and discussed in this systematic review. Thus, the review offers a theoretical basis to support local risk assessments and IPC recommendations.
Collapse
Affiliation(s)
- Axel Kramer
- Institute of Hygiene
and Environmental Medicine, University Medicine
Greifswald, Greifswald,
Germany
| | - Franziska Lexow
- Department for
Infectious Diseases, Unit 14: Hospital Hygiene, Infection Prevention and
Control, Robert Koch Institute,
Berlin, Germany
| | - Anna Bludau
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Antonia Milena Köster
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| | - Martin Misailovski
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
- Department of
Geriatrics, University of Göttingen Medical
Center, Göttingen,
Germany
| | - Ulrike Seifert
- Friedrich
Loeffler-Institute of Medical Microbiology – Virology, University
Medicine Greifswald,
Greifswald, Germany
| | - Maren Eggers
- Labor Prof. Dr. G.
Enders MVZ GbR, Stuttgart,
Germany
| | - William Rutala
- Division of Infectious
Diseases, University of North Carolina School of
Medicine, Chapel Hill,
North Carolina, USA
| | - Stephanie J. Dancer
- Department of
Microbiology, University Hospital
Hairmyres, Glasgow,
United Kingdom
- School of Applied
Sciences, Edinburgh Napier University,
Edinburgh, United Kingdom
| | - Simone Scheithauer
- Department of
Infection Control and Infectious Diseases, University Medical Center
Göttingen (UMG), Georg-August University
Göttingen,
Göttingen, Germany
| |
Collapse
|
2
|
Lim C, Hantrakun V, Klaytong P, Rangsiwutisak C, Tangwangvivat R, Phiancharoen C, Doung-ngern P, Kripattanapong S, Hinjoy S, Yingyong T, Rojanawiwat A, Unahalekhaka A, Kamjumphol W, Khobanan K, Leethongdee P, Lorchirachoonkul N, Khusuwan S, Siriboon S, Chamnan P, Vijitleela A, Fongthong T, Noiprapai K, Boonyarit P, Srisuphan V, Sartorius B, Stelling J, Turner P, Day NPJ, Limmathurotsakul D. Frequency and mortality rate following antimicrobial-resistant bloodstream infections in tertiary-care hospitals compared with secondary-care hospitals. PLoS One 2024; 19:e0303132. [PMID: 38768224 PMCID: PMC11104583 DOI: 10.1371/journal.pone.0303132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
There are few studies comparing proportion, frequency, mortality and mortality rate following antimicrobial-resistant (AMR) infections between tertiary-care hospitals (TCHs) and secondary-care hospitals (SCHs) in low and middle-income countries (LMICs) to inform intervention strategies. The aim of this study is to demonstrate the utility of an offline tool to generate AMR reports and data for a secondary data analysis. We conducted a secondary-data analysis on a retrospective, multicentre data of hospitalised patients in Thailand. Routinely collected microbiology and hospital admission data of 2012 to 2015, from 15 TCHs and 34 SCHs were analysed using the AMASS v2.0 (www.amass.website). We then compared the burden of AMR bloodstream infections (BSI) between those TCHs and SCHs. Of 19,665 patients with AMR BSI caused by pathogens under evaluation, 10,858 (55.2%) and 8,807 (44.8%) were classified as community-origin and hospital-origin BSI, respectively. The burden of AMR BSI was considerably different between TCHs and SCHs, particularly of hospital-origin AMR BSI. The frequencies of hospital-origin AMR BSI per 100,000 patient-days at risk in TCHs were about twice that in SCHs for most pathogens under evaluation (for carbapenem-resistant Acinetobacter baumannii [CRAB]: 18.6 vs. 7.0, incidence rate ratio 2.77; 95%CI 1.72-4.43, p<0.001; for carbapenem-resistant Pseudomonas aeruginosa [CRPA]: 3.8 vs. 2.0, p = 0.0073; third-generation cephalosporin resistant Escherichia coli [3GCREC]: 12.1 vs. 7.0, p<0.001; third-generation cephalosporin resistant Klebsiella pneumoniae [3GCRKP]: 12.2 vs. 5.4, p<0.001; carbapenem-resistant K. pneumoniae [CRKP]: 1.6 vs. 0.7, p = 0.045; and methicillin-resistant Staphylococcus aureus [MRSA]: 5.1 vs. 2.5, p = 0.0091). All-cause in-hospital mortality (%) following hospital-origin AMR BSI was not significantly different between TCHs and SCHs (all p>0.20). Due to the higher frequencies, all-cause in-hospital mortality rates following hospital-origin AMR BSI per 100,000 patient-days at risk were considerably higher in TCHs for most pathogens (for CRAB: 10.2 vs. 3.6,mortality rate ratio 2.77; 95%CI 1.71 to 4.48, p<0.001; CRPA: 1.6 vs. 0.8; p = 0.020; 3GCREC: 4.0 vs. 2.4, p = 0.009; 3GCRKP, 4.0 vs. 1.8, p<0.001; CRKP: 0.8 vs. 0.3, p = 0.042; and MRSA: 2.3 vs. 1.1, p = 0.023). In conclusion, the burden of AMR infections in some LMICs might differ by hospital type and size. In those countries, activities and resources for antimicrobial stewardship and infection control programs might need to be tailored based on hospital setting. The frequency and in-hospital mortality rate of hospital-origin AMR BSI are important indicators and should be routinely measured to monitor the burden of AMR in every hospital with microbiology laboratories in LMICs.
Collapse
Affiliation(s)
- Cherry Lim
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Viriya Hantrakun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Preeyarach Klaytong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chalida Rangsiwutisak
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | - Pawinee Doung-ngern
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Soawapak Hinjoy
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Thitipong Yingyong
- Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | | | | | | | - Kulsumpun Khobanan
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Pimrata Leethongdee
- Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Suwimon Khusuwan
- Department of Medicine, Chiangrai Prachanukroh Hospital, Chiang Rai, Thailand
| | - Suwatthiya Siriboon
- Department of Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Parinya Chamnan
- Department of Social Medicine, Sunpasitthiprasong Hospital, Ubon Ratchathani, Thailand
| | - Amornrat Vijitleela
- Department of Medical Services, Ministry of Public Health, Nonthaburi, Thailand
- National Health Security Office, Nakhonsawan, Thailand
| | - Traithep Fongthong
- The Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand
| | - Krittiya Noiprapai
- The Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand
| | - Phairam Boonyarit
- The Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand
| | - Voranadda Srisuphan
- The Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand
| | - Benn Sartorius
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Centre for Clinical Research (UQCCR), School of Medicine, University of Queensland, Brisbane, Australia
- Department of Health Metric Sciences, Faculty of Medicine, University of Washington, Seattle, WA, United States of America
| | - John Stelling
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States of America
| | - Paul Turner
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Cambodia-Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Commission for Hospital Hygiene and Infection Prevention (KRINKO). Hygiene requirements for cleaning and disinfection of surfaces: recommendation of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) at the Robert Koch Institute. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc13. [PMID: 38655122 PMCID: PMC11035912 DOI: 10.3205/dgkh000468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This recommendation of the Commission for Hospital Hygiene and Infection Prevention (KRINKO) addresses not only hospitals, but also outpatient health care facilities and compiles current evidence. The following criteria are the basis for the indications for cleaning and disinfection: Infectious bioburden and tenacity of potential pathogens on surfaces and their transmission routes, influence of disinfecting surface cleaning on the rate of nosocomial infections, interruption of cross infections due to multidrug-resistant organisms, and outbreak control by disinfecting cleaning within bundles. The criteria for the selection of disinfectants are determined by the requirements for effectiveness, the efficacy spectrum, the compatibility for humans and the environment, as well as the risk potential for the development of tolerance and resistance. Detailed instructions on the organization and implementation of cleaning and disinfection measures, including structural and equipment requirements, serve as the basis for their implementation. Since the agents for surface disinfection and disinfecting surface cleaning have been classified as biocides in Europe since 2013, the regulatory consequences are explained. As possible addition to surface disinfection, probiotic cleaning, is pointed out. In an informative appendix (only in German), the pathogen characteristics for their acquisition of surfaces, such as tenacity, infectious dose and biofilm formation, and the toxicological and ecotoxicological characteristics of microbicidal agents as the basis for their selection are explained, and methods for the evaluation of the resulting quality of cleaning or disinfecting surface cleaning are presented.
Collapse
|
4
|
Warren BG, Barrett A, Graves A, King C, Turner NA, Anderson DJ. An Enhanced Strategy for Daily Disinfection in Acute Care Hospital Rooms: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2242131. [PMID: 36378308 PMCID: PMC9667331 DOI: 10.1001/jamanetworkopen.2022.42131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
IMPORTANCE Environmental contamination is a source of transmission between patients, health care practitioners, and other stakeholders in the acute care setting. OBJECTIVE To compare the efficacy of an enhanced daily disinfection strategy vs standard disinfection in acute care hospital rooms. DESIGN, SETTING, AND PARTICIPANTS This randomized clinical trial (RCT) was conducted in acute care hospital rooms at Duke University Hospital in Durham, North Carolina, from November 2021 to March 2022. Rooms were occupied by patients with contact precautions. Room surfaces (bed rails, overbed table, and in-room sink) were divided into 2 sides (right vs left), allowing each room to serve as its own control. Each side was randomized 1:1 to the intervention group or control group. INTERVENTIONS The intervention was a quaternary ammonium, salt-based, 24-hour continuously active germicidal wipe. It was applied in addition to routine disinfection for the intervention group. The control group received no intervention beyond routine disinfection. MAIN OUTCOMES AND MEASURES The primary outcome was the total contamination, measured in colony-forming units (CFUs) on the bed rails, overbed table, and sink on study day 1. The secondary outcomes were the proportion of sample areas with positive test results for clinically important pathogens, including methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, and carbapenem-resistant Enterobacteriaceae; the similarity in baseline contamination between sample area sides on study day 0 before application of the intervention, and the proportion of sample areas with removed UV luminescent gel on study day 1. RESULTS A total of 50 study rooms occupied by 50 unique patients (median [IQR] age, 61 [45-69] years; 26 men [52%]) with contact precautions were enrolled. Of these patients, 41 (82%) were actively receiving antibiotics, 39 (78%) were bedridden, and 28 (56%) had active infections with study-defined clinically important pathogens. On study day 1, the median (IQR) total CFUs for the intervention group was lower than that for the control group (3561 [1292-7602] CFUs vs 5219 [1540-12 364] CFUs; P = .002). On study day 1, the intervention side was less frequently contaminated with patient-associated clinically important pathogens compared with the control side of the room (4 [14%] vs 11 [39%]; P = .04). CONCLUSIONS AND RELEVANCE Results of this RCT demonstrated that a quaternary ammonium, salt-based, 24-hour continuously active germicidal wipe decreased the environmental bioburden in acute care hospital rooms compared with routine disinfection. The findings warrant large-scale RCTs to determine whether enhanced daily disinfection strategies can decrease patient acquisition and adverse patient outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05560321.
Collapse
Affiliation(s)
- Bobby G. Warren
- Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
- Disinfection, Resistance and Transmission Epidemiology (DiRTE) Lab, Duke University School of Medicine, Durham, North Carolina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Aaron Barrett
- Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
- Disinfection, Resistance and Transmission Epidemiology (DiRTE) Lab, Duke University School of Medicine, Durham, North Carolina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Amanda Graves
- Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
- Disinfection, Resistance and Transmission Epidemiology (DiRTE) Lab, Duke University School of Medicine, Durham, North Carolina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Carly King
- Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Nicholas A. Turner
- Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
- Disinfection, Resistance and Transmission Epidemiology (DiRTE) Lab, Duke University School of Medicine, Durham, North Carolina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| | - Deverick J. Anderson
- Division of Infectious Diseases, Duke Center for Antimicrobial Stewardship and Infection Prevention, Durham, North Carolina
- Disinfection, Resistance and Transmission Epidemiology (DiRTE) Lab, Duke University School of Medicine, Durham, North Carolina
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
5
|
Anforderungen an die Hygiene bei der Reinigung und Desinfektion von Flächen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2022; 65:1074-1115. [PMID: 36173419 PMCID: PMC9521013 DOI: 10.1007/s00103-022-03576-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
McMillan S. Preventing healthcare-associated infections by decontaminating the clinical environment. Nurs Stand 2022; 37:e11935. [PMID: 35477994 DOI: 10.7748/ns.2022.e11935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Healthcare-associated infections (HAIs) continue to cause patient harm and at increasing rates. Factors contributing to this increase include suboptimal hand hygiene, antimicrobial resistance, and inadequate decontamination of the patient environment and shared patient equipment. To reduce the risk of HAIs and enhance patient safety, it is important that nurses and other healthcare professionals adhere to infection prevention and control guidance, including decontamination procedures. It is also important to identify and address the barriers that can affect adherence to this guidance. This article discusses effective decontamination of the patient environment and non-critical shared patient equipment, the barriers to adhering to guidance and strategies for improving decontamination procedures.
Collapse
Affiliation(s)
- Sacha McMillan
- Christchurch Hospital Campus, Canterbury District Health Board, Christchurch, Canterbury, New Zealand
| |
Collapse
|
7
|
Coia JE, Wilson JA, Bak A, Marsden GL, Shimonovich M, Loveday HP, Humphreys H, Wigglesworth N, Demirjian A, Brooks J, Butcher L, Price JR, Ritchie L, Newsholme W, Enoch DA, Bostock J, Cann M, Wilson APR. Joint Healthcare Infection Society (HIS) and Infection Prevention Society (IPS) guidelines for the prevention and control of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J Hosp Infect 2021; 118S:S1-S39. [PMID: 34757174 DOI: 10.1016/j.jhin.2021.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022]
Affiliation(s)
- J E Coia
- Department of Clinical Microbiology, Hospital South West Jutland, Esbjerg, Denmark; Department of Regional Health Research IRS, University of Southern Denmark, Denmark; Healthcare Infection Society, London, UK
| | - J A Wilson
- Richard Wells Research Centre, University of West London, London, UK; Infection Prevention Society, Seafield, UK
| | - A Bak
- Healthcare Infection Society, London, UK.
| | | | - M Shimonovich
- Healthcare Infection Society, London, UK; MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Glasgow, UK
| | - H P Loveday
- Richard Wells Research Centre, University of West London, London, UK; Infection Prevention Society, Seafield, UK
| | - H Humphreys
- Healthcare Infection Society, London, UK; Department of Clinical Microbiology, The Royal College of Surgeons, Ireland; Department of Microbiology, Beaumont Hospital, Dublin, Ireland
| | - N Wigglesworth
- Infection Prevention Society, Seafield, UK; East Kent Hospitals University, NHS Foundation Trust, Canterbury, UK
| | - A Demirjian
- Healthcare-associated Infection and Antimicrobial Resistance, Public Health England, London, UK; Paediatric Infectious Diseases and Immunology, Evelina London Children's Hospital, London, UK; Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - J Brooks
- Infection Prevention Society, Seafield, UK; University Hospital Southampton NHS Foundation Trust, UK
| | - L Butcher
- Infection Prevention Society, Seafield, UK; Oxford University Hospitals NHS Foundation Trust, UK
| | - J R Price
- Healthcare Infection Society, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - L Ritchie
- Healthcare Infection Society, London, UK; NHS England and NHS Improvement, London, UK
| | - W Newsholme
- Healthcare Infection Society, London, UK; Guy's and St Thomas' NHS Foundation Trust, UK
| | - D A Enoch
- Healthcare Infection Society, London, UK; Clinical Microbiology & Public Health Laboratory, Public Health England, Addenbrooke's Hospital, Cambridge, UK
| | | | - M Cann
- Lay Member, UK; MRSA Action UK, Preston, UK
| | - A P R Wilson
- Healthcare Infection Society, London, UK; University College London Hospitals NHS Foundation Trust, UK.
| |
Collapse
|
8
|
Christenson EC, Cronk R, Atkinson H, Bhatt A, Berdiel E, Cawley M, Cho G, Coleman CK, Harrington C, Heilferty K, Fejfar D, Grant EJ, Grigg K, Joshi T, Mohan S, Pelak G, Shu Y, Bartram J. Evidence Map and Systematic Review of Disinfection Efficacy on Environmental Surfaces in Healthcare Facilities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11100. [PMID: 34769620 PMCID: PMC8582915 DOI: 10.3390/ijerph182111100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 01/23/2023]
Abstract
Healthcare-associated infections (HAIs) contribute to patient morbidity and mortality with an estimated 1.7 million infections and 99,000 deaths costing USD $28-34 billion annually in the United States alone. There is little understanding as to if current environmental surface disinfection practices reduce pathogen load, and subsequently HAIs, in critical care settings. This evidence map includes a systematic review on the efficacy of disinfecting environmental surfaces in healthcare facilities. We screened 17,064 abstracts, 635 full texts, and included 181 articles for data extraction and study quality assessment. We reviewed ten disinfectant types and compared disinfectants with respect to study design, outcome organism, and fourteen indictors of study quality. We found important areas for improvement and gaps in the research related to study design, implementation, and analysis. Implementation of disinfection, a determinant of disinfection outcomes, was not measured in most studies and few studies assessed fungi or viruses. Assessing and comparing disinfection efficacy was impeded by study heterogeneity; however, we catalogued the outcomes and results for each disinfection type. We concluded that guidelines for disinfectant use are primarily based on laboratory data rather than a systematic review of in situ disinfection efficacy. It is critically important for practitioners and researchers to consider system-level efficacy and not just the efficacy of the disinfectant.
Collapse
Affiliation(s)
- Elizabeth C. Christenson
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Ryan Cronk
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
- ICF, Durham, NC 27713, USA
| | - Helen Atkinson
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Aayush Bhatt
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Emilio Berdiel
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Michelle Cawley
- Health Sciences Library, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.); (K.G.); (G.P.)
| | - Grace Cho
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Collin Knox Coleman
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Cailee Harrington
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Kylie Heilferty
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Don Fejfar
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Emily J. Grant
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Karen Grigg
- Health Sciences Library, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.); (K.G.); (G.P.)
| | - Tanmay Joshi
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Suniti Mohan
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Grace Pelak
- Health Sciences Library, University of North Carolina, Chapel Hill, NC 27599, USA; (M.C.); (K.G.); (G.P.)
| | - Yuhong Shu
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
| | - Jamie Bartram
- The Water Institute, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; (E.C.C.); (R.C.); (H.A.); (A.B.); (E.B.); (G.C.); (C.K.C.); (C.H.); (K.H.); (D.F.); (E.J.G.); (T.J.); (S.M.); (Y.S.)
- School of Civil Engineering, University of Leeds, Leeds LS2 9DY, UK
| |
Collapse
|
9
|
Assadian O, Harbarth S, Vos M, Knobloch JK, Asensio A, Widmer AF. Practical recommendations for routine cleaning and disinfection procedures in healthcare institutions: a narrative review. J Hosp Infect 2021; 113:104-114. [PMID: 33744383 DOI: 10.1016/j.jhin.2021.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Healthcare-associated infections (HAIs) are the most common adverse outcomes due to delivery of medical care. HAIs increase morbidity and mortality, prolong hospital stay, and are associated with additional healthcare costs. Contaminated surfaces, particularly those that are touched frequently, act as reservoirs for pathogens and contribute towards pathogen transmission. Therefore, healthcare hygiene requires a comprehensive approach whereby different strategies may be implemented together, next to targeted, risk-based approaches, in order to reduce the risk of HAIs for patients. This approach includes hand hygiene in conjunction with environmental cleaning and disinfection of surfaces and clinical equipment. This review focuses on routine environmental cleaning and disinfection including areas with a moderate risk of contamination, such as general wards. As scientific evidence has not yet resulted in universally accepted guidelines nor led to universally accepted practical recommendations pertaining to surface cleaning and disinfection, this review provides expert guidance for healthcare workers in their daily practice. It also covers outbreak situations and suggests practical guidance for clinically relevant pathogens. Key elements of environmental cleaning and disinfection, including a fundamental clinical risk assessment, choice of appropriate disinfectants and cleaning equipment, definitions for standardized cleaning processes and the relevance of structured training, are reviewed in detail with a focus on practical topics and implementation.
Collapse
Affiliation(s)
- O Assadian
- Regional Hospital Wiener Neustadt, Wiener Neustadt, Austria; Institute for Skin Integrity and Infection Prevention, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK.
| | - S Harbarth
- Infection Control Programme and Division of Infectious Diseases, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - M Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - J K Knobloch
- Institute for Medical Microbiology, Virology and Hygiene, Department for Infection Prevention and Control, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - A Asensio
- Preventive Medicine Department, University Hospital Puerta de Hierro-Majadahonda, Madrid, Spain
| | - A F Widmer
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
10
|
Kharroubi S, Saleh F. Are Lockdown Measures Effective Against COVID-19? Front Public Health 2020; 8:549692. [PMID: 33194950 PMCID: PMC7642264 DOI: 10.3389/fpubh.2020.549692] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/09/2020] [Indexed: 01/10/2023] Open
Abstract
As the Coronavirus Disease 2019 (COVID-19) pandemic progresses, countries around the world are increasingly implementing a range of responses that are intended to help prevent the transmission of this disease. In the absence of a COVID-19 vaccine, we assess the potential role of containment measures to suppress the virus transmission, thereby slowing down the growth rate of cases and rapidly reducing case incidence. The aim of this study is to show that country lockdown has a critical and significant impact on the pandemic. This is explored using real time incidence data in Lebanon. We analyze COVID-19 cases in Lebanon before and after lockdown measures have been implemented. The findings show that the nationwide lockdown was effective in reducing cases and has been successful in, so far, containing the virus. This study could be an evidence-based call to continue with the lockdown measures, based on real time incidence data. Further research is encouraged.
Collapse
Affiliation(s)
- Samer Kharroubi
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Fatima Saleh
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
11
|
Lai X, Wang M, Qin C, Tan L, Ran L, Chen D, Zhang H, Shang K, Xia C, Wang S, Xu S, Wang W. Coronavirus Disease 2019 (COVID-2019) Infection Among Health Care Workers and Implications for Prevention Measures in a Tertiary Hospital in Wuhan, China. JAMA Netw Open 2020; 3:e209666. [PMID: 32437575 PMCID: PMC7243089 DOI: 10.1001/jamanetworkopen.2020.9666] [Citation(s) in RCA: 291] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE Health care workers (HCWs) have high infection risk owing to treating patients with coronavirus disease 2019 (COVID-19). However, research on their infection risk and clinical characteristics is limited. OBJECTIVES To explore infection risk and clinical characteristics of HCWs with COVID-19 and to discuss possible prevention measures. DESIGN, SETTING, AND PARTICIPANTS This single-center case series included 9684 HCWs in Tongji Hospital, Wuhan, China. Data were collected from January 1 to February 9, 2020. EXPOSURES Confirmed COVID-19. MAIN OUTCOMES AND MEASURES Exposure, epidemiological, and demographic information was collected by a structured questionnaire. Clinical, laboratory, and radiologic information was collected from electronic medical records. A total of 335 medical staff were randomly sampled to estimate the prevalence of subclinical infection among a high-risk, asymptomatic population. Samples from surfaces in health care settings were also collected. RESULTS Overall, 110 of 9684 HCWs in Tongji Hospital tested positive for COVID-19, with an infection rate of 1.1%. Of them, 70 (71.8%) were women, and they had a median (interquartile range) age of 36.5 (30.0-47.0) years. Seventeen (15.5%) worked in fever clinics or wards, indicating an infection rate of 0.5% (17 of 3110) among first-line HCWs. A total of 93 of 6574 non-first-line HCWs (1.4%) were infected. Non-first-line nurses younger than 45 years were more likely to be infected compared with first-line physicians aged 45 years or older (incident rate ratio, 16.1; 95% CI, 7.1-36.3; P < .001). The prevalence of subclinical infection was 0.74% (1 of 135) among asymptomatic first-line HCWs and 1.0% (2 of 200) among non-first-line HCWs. No environmental surfaces tested positive. Overall, 93 of 110 HCWs (84.5%) with COVID-19 had nonsevere disease, while 1 (0.9%) died. The 5 most common symptoms were fever (67 [60.9%]), myalgia or fatigue (66 [60.0%]), cough (62 [56.4%]), sore throat (55 [50.0%]), and muscle ache (50 [45.5%]). Contact with indexed patients (65 [59.1%]) and colleagues with infection (12 [10.9%]) as well as community-acquired infection (14 [12.7%]) were the main routes of exposure for HCWs. CONCLUSIONS AND RELEVANCE In this case series, most infections among HCWs occurred during the early stage of disease outbreak. That non-first-line HCWs had a higher infection rate than first-line HCWs differed from observation of previous viral disease epidemics. Rapid identification of staff with potential infection and routine screening among asymptomatic staff could help protect HCWs.
Collapse
Affiliation(s)
- Xiaoquan Lai
- Department of Hospital Infection Management, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Minghuan Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Qin
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Li Tan
- Department of Hospital Infection Management, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Lusen Ran
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Daiqi Chen
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Shang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xia
- Beijing Infervision Technology, Beijing, China
| | | | - Shabei Xu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Jacobshagen A, Gemein S, Exner M, Gebel J. Test methods for surface disinfection: comparison of the Wiperator ASTM standard E2967-15 and the 4-field test EN 16615. GMS HYGIENE AND INFECTION CONTROL 2020; 15:Doc04. [PMID: 32547904 PMCID: PMC7273320 DOI: 10.3205/dgkh000339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aim: Two test methods for surface disinfection (phase 2, step 2) – the Wiperator method (ASTM standard E2967-15) and the 4-field test (EN 16615) – were compared using a disinfectant solution based on quaternary ammonium compounds and a ready-to-use alcohol-based wipe. As test organisms, Staphylococcusaureus and Pseudomonasaeruginosa were used. Results: While the 4-field test is a manual method and better reflects the process in practice, with the Wiperator, the wiping process is better controlled because it is an automated procedure. A comparison of the effects of both methods on the target log10-reduction of S. aureus and P. aeruginosa indicates a statistically significant difference between the two test methods (Mann-Whitney U-Test. S. aureus: 0 (Umin)<4 (Ucrit); n1=8, n2=8, p=0.001; 2-sided. P. aeruginosa: 24 (Umin)<26 (Ucrit); n1=11, n2=10, p=0.025, 2-sided). In addition, the results indicate that the wipe used has a major influence on the success of the disinfection process. Discussion: Both methods are suitable for efficacy studies of surface disinfectants, yet they differ in some aspects. Additionally our data indicate a statistically significant difference between the two test methods. Conclusion: Efficiency testing of surface disinfection is a complex process that depends on many different parameters. Since the 4-field test better reflects the practice, it makes sense to stick to this test procedure, taking into account that the EN 16615 was approved by CEN TC 216 in 2015 after method validation ring trials.
Collapse
Affiliation(s)
- Anja Jacobshagen
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Stefanie Gemein
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany.,VAH c/o Institute for Hygiene and Public Health, University Hospital Bonn AöR, Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany.,VAH c/o Institute for Hygiene and Public Health, University Hospital Bonn AöR, Bonn, Germany
| | - Jürgen Gebel
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany.,VAH c/o Institute for Hygiene and Public Health, University Hospital Bonn AöR, Bonn, Germany
| |
Collapse
|
13
|
Garvey MI, Bradley CW, Wilkinson MAC, Holden KL, Clewer V, Holden E. The value of the infection prevention and control nurse led MRSA ward round. Antimicrob Resist Infect Control 2019; 8:53. [PMID: 30911379 PMCID: PMC6417022 DOI: 10.1186/s13756-019-0506-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/04/2019] [Indexed: 11/12/2022] Open
Abstract
Meticillin-resistant S. aureus (MRSA) is prevalent in most parts of the world. The study took place at Queen Elizabeth Hospital Birmingham (QEHB) a UK tertiary referral hospital. At QEHB innovative nurse led daily ward rounds for patients that acquire hospital acquired MRSA during their hospital stay are undertaken. The aim is to optimise care delivered for these patients whilst at QEHB, thereby reducing the risk of infection in patients with healthcare-acquired MRSA. A segmented Poisson regression model suggests that the MRSA bacteraemia rate was affected where an 88.94% reduction (p = 0.0561) in bacteraemias was seen by the introduction of these ward rounds. We describe a nurse led MRSA ward round which was associated with a lower rate of MRSA bacteraemias.
Collapse
Affiliation(s)
- Mark I Garvey
- 1University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, B15 2WB UK.,2Institute of Microbiology and Infection, The University of Birmingham, Edgbaston, Birmingham, UK
| | - Craig W Bradley
- 3Gloucestershire Hospitals NHS Foundation Trust, Gloucestershire Royal Hospital, Gloucester, GL1 3NN UK
| | - Martyn A C Wilkinson
- 1University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, B15 2WB UK
| | - Kerry L Holden
- 3Gloucestershire Hospitals NHS Foundation Trust, Gloucestershire Royal Hospital, Gloucester, GL1 3NN UK
| | - Victoria Clewer
- 1University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, B15 2WB UK
| | - Elisabeth Holden
- 1University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Edgbaston, Birmingham, B15 2WB UK
| |
Collapse
|