1
|
Su Y, Kuang F, Guo H, Chen Q, Lai Y, Jing R, Huang L. Long non-coding RNA HOXC-AS1 promotes the malignancy by sponging miR-195-5p with ANLN in esophageal cancer. Cytotechnology 2025; 77:68. [PMID: 40012926 PMCID: PMC11850670 DOI: 10.1007/s10616-025-00711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/07/2025] [Indexed: 02/28/2025] Open
Abstract
Long non-coding RNA HOXC cluster antisense RNA 1 (HOXC-AS1) exhibits elevated expression in gastric and prostate cancers, yet its involvement in esophageal cancer (EC) remains unexplored. This investigation assessed the expression patterns and functional implications of HOXC-AS1 in EC. Quantitative real-time PCR was employed to evaluate HOXC-AS1 expression in EC cell lines, while its impact on cell proliferation, migration, invasion, tumor growth, and metastasis was examined through MTT, EdU, transwell, wound healing assays, and animal models. Mechanistic insights into HOXC-AS1 were pursued using dual-luciferase reporter assays and RNA immunoprecipitation. Analysis of TCGA data demonstrated significant upregulation of HOXC-AS1 in EC tissues, consistent with its enriched expression in EC cell lines. Knockdown experiments revealed that suppressing HOXC-AS1 reduced proliferation, migration, and invasion of EC cells in vitro and inhibited tumor growth and metastasis in vivo. Mechanistically, HOXC-AS1 acted as a molecular sponge for miR-195-5p, with anillin actin-binding protein (ANLN) identified as a direct downstream target of miR-195-5p. Functional rescue experiments showed that inhibiting miR-195-5p or overexpressing ANLN counteracted the suppressive effects induced by HOXC-AS1 silencing on the aggressive phenotypes of EC cells. These findings establish HOXC-AS1 as a promoter of EC progression via regulation of the miR-195-5p/ANLN axis, suggesting its utility as a prospective therapeutic target for EC management.
Collapse
Affiliation(s)
- Yongchao Su
- Department of Cardiothoracic Surgery, The third people’s Hospital of Hainan Province, Sanyan, 572022 Hainan Province China
| | - Feng Kuang
- Department of Cardiac Surgery, Yuebei people’s Hospital of Guandong Province, Shaoguan, 512000 Guandong Province China
| | - Hongwei Guo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361000 Fujian Province China
| | - Qu Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361000 Fujian Province China
| | - Yiquan Lai
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, 361000 Fujian Province China
| | - Ran Jing
- Department of Cardiovascular Medicine, Xiangya Medical College, Central South University, Changsha, 410008 Hunan Province China
| | - Lei Huang
- Department of Cardiovascular Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036 Guanhgdong Province China
| |
Collapse
|
2
|
Mahmud M, Munjal A, Savani M, Win H, Rozell U, Arshad J. Biomarker Testing and Role of Tyrosine Kinase Inhibitors and Immunotherapy for Esophageal Squamous Cell Carcinoma. FOREGUT: THE JOURNAL OF THE AMERICAN FOREGUT SOCIETY 2024; 4:467-474. [DOI: 10.1177/26345161241238748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) constitutes an aggressive subset of esophageal cancers that portends a poor prognosis. Management of ESCC has been historically challenging due to the limited effective therapeutic options. Broadening our understanding of the molecular landscape and identifying reliable biomarkers are essential in early detection, monitoring disease response and advancing treatment strategies. Recently, immunotherapy and tyrosine kinase inhibitors have changed the treatment algorithm of ESCC. In this review, we explore the molecular landscape and biomarkers that can aid in the management of ESCC and discuss the role of immunotherapy and tyrosine kinase inhibitors in the treatment of ESCC.
Collapse
Affiliation(s)
| | | | - Malvi Savani
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Hninyee Win
- University of Arizona Cancer Center, Tucson, AZ, USA
| | | | - Junaid Arshad
- University of Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
3
|
Hassan MS, Johnson C, Ponna S, Scofield D, Awasthi N, von Holzen U. Inhibition of Insulin-like Growth Factor 1 Receptor/Insulin Receptor Signaling by Small-Molecule Inhibitor BMS-754807 Leads to Improved Survival in Experimental Esophageal Adenocarcinoma. Cancers (Basel) 2024; 16:3175. [PMID: 39335147 PMCID: PMC11430189 DOI: 10.3390/cancers16183175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The insulin-like growth factor-1 (IGF-1) and insulin axes are upregulated in obesity and obesity-associated esophageal adenocarcinoma (EAC). Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a contemporary nanotechnology-based paclitaxel (PT) bound to human albumin, ensuring its solubility in water rather than a toxic solvent. Here, we examined the benefits of inhibiting insulin-like growth factor-1 receptor/insulin receptor (IGF-1/IR) signaling and the enhancement of nab-paclitaxel effects by inclusion of the small-molecule inhibitor BMS-754807 using both in vitro and in vivo models of EAC. Using multiple EAC cell lines, BMS-754807 and nab-paclitaxel were evaluated as mono and combination therapies for in vitro effects on cell proliferation, cell death, and cell movement. We then analyzed the in vivo anticancer potency with survival improvement with BMS-754807 and nab-paclitaxel mono and combination therapies. BMS-754807 monotherapy suppressed in vitro cell proliferation and wound healing while increasing apoptosis. BMS-754807, when combined with nab-paclitaxel, enhanced those effects on the inhibition of cell proliferation, increment in cell apoptosis, and inhibition of wound healing. BMS-754807 with nab-paclitaxel produced substantially greater antitumor effects by increasing in vivo apoptosis, leading to increased mice survival compared to those of BMS-754807 or nab-paclitaxel monotherapy. Our outcomes support the use of BMS-754807, alone and in combination with nab-paclitaxel, as an efficient and innovative treatment choice for EAC.
Collapse
Affiliation(s)
- Md Sazzad Hassan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA; (N.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Chloe Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Saisantosh Ponna
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Dimitri Scofield
- Department of Biology, Indiana University, South Bend, IN 47405, USA
| | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA; (N.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA
| | - Urs von Holzen
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA; (N.A.)
- Harper Cancer Research Institute, South Bend, IN 46617, USA
- Goshen Center for Cancer Care, Goshen, IN 46526, USA
- School of Medicine, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Romanowicz A, Lukaszewicz-Zajac M, Mroczko B. Exploring Potential Biomarkers in Oesophageal Cancer: A Comprehensive Analysis. Int J Mol Sci 2024; 25:4253. [PMID: 38673838 PMCID: PMC11050399 DOI: 10.3390/ijms25084253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Oesophageal cancer (OC) is the sixth leading cause of cancer-related death worldwide. OC is highly aggressive, primarily due to its late stage of diagnosis and poor prognosis for patients' survival. Therefore, the establishment of new biomarkers that will be measured with non-invasive techniques at low cost is a critical issue in improving the diagnosis of OC. In this review, we summarize several original studies concerning the potential significance of selected chemokines and their receptors, including inflammatory proteins such as interleukin-6 (IL-6) and C-reactive protein (CRP), hematopoietic growth factors (HGFs), claudins (CLDNs), matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), adamalysines (ADAMs), as well as DNA- and RNA-based biomarkers, in OC. The presented results indicate the significant correlation between the CXCL12, CXCR4, CXCL8/CXCR2, M-CSF, MMP-2, MMP-9 ADAM17, ADAMTS-6, and CLDN7 levels and tumor stage, as well as the clinicopathological parameters of OC, such as the presence of lymph node and/or distant metastases. CXCL12, CXCL8/CXCR2, IL-6, TIMP-2, ADAM9, and ADAMTS-6 were prognostic factors for the overall survival of OC patients. Furthermore, IL-6, CXCR4, CXCL8, and MMP-9 indicate higher diagnostic utility based on the area under the ROC curve (AUC) than well-established OC tumor markers, whereas CLDN18.2 can be used in novel targeted therapies for OC patients.
Collapse
Affiliation(s)
- Adrianna Romanowicz
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Marta Lukaszewicz-Zajac
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland; (A.R.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, ul. Waszyngtona 15a, 15-269 Bialystok, Poland
| |
Collapse
|
5
|
Co EL, Hameed M, Sebastian SA, Garg T, Sudan S, Bheemisetty N, Mohan B. Narrative Review of Probiotic Use on the Recovery of Postoperative Patients with Esophageal Cancer. Curr Nutr Rep 2023; 12:635-642. [PMID: 37605086 DOI: 10.1007/s13668-023-00490-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 08/23/2023]
Abstract
PURPOSE OF REVIEW This narrative review discusses the significance of probiotic therapy in the postoperative care of patients with esophageal cancer and its role as an adjunct therapy to other treatment modalities for esophageal cancer. RECENT FINDINGS As such, there is an emerging need to address any malnutrition and gastrointestinal problems occurring in these patients which tend to have a strong negative impact on their prognosis. Probiotic effects on esophageal cancer biomarkers suggest that there is a positive correlation between these two factors. However, the beneficial effects remain controversial and warrant further investigation. Probiotics, now being widely utilized as postoperative therapy in some carcinomas of the gastrointestinal tract such as gastric cancer and colorectal cancer, have been shown in some clinical studies to positively impact the nutritional status of patients with esophageal cancer. Postoperative care among patients suffering from esophageal cancer is a very crucial aspect in the survival of these patients.
Collapse
Affiliation(s)
- Edzel Lorraine Co
- University of Santo Tomas Faculty of Medicine and Surgery, Manila, Philippines
| | - Maha Hameed
- Department of Internal Medicine, Florida State University/Sarasota Memorial Hospital, 1700 S Tamiami Trial, Sarasota, FL, 34239, USA.
| | | | - Tulika Garg
- Government Medical College and Hospital, Chandigarh, India
| | | | | | - Babu Mohan
- Department of Gastroenterology, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Chiang H, Hughes M, Chang W. The role of microbiota in esophageal squamous cell carcinoma: A review of the literature. Thorac Cancer 2023; 14:2821-2829. [PMID: 37675608 PMCID: PMC10542467 DOI: 10.1111/1759-7714.15096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) exhibits high incidence with poor prognosis. Alcohol drinking, cigarette smoking, and betel nut chewing are well-known risk factors. Dysbiosis, an imbalance of the microbiota residing in a local environment, is known to be associated with human diseases, especially cancer. This article reviews the current evidence of esophageal microbiota in ESCC carcinogenesis, including initiation, progression, and drug resistance. Articles involving the esophageal microbiota, diagnosis, treatment, and the progression of esophageal cancer were acquired using a comprehensive literature search in PubMed in recent 10 years. Based on 16S rRNA sequencing of human samples, cell, and animal studies, current evidence suggests dysbiosis of the esophagus promotes ESCC progression and chemotherapy resistance, leading to a poor prognosis. Smoking and drinking are associated with esophageal dysbiosis. Specific bacteria have been reported to promote carcinogenesis, involving either progression or drug resistance in ESCC, for example Porphyromonas gingivalis and Fusobacterium nucleatum. These bacteria promote ESCC cell proliferation and migration via the TLR4/NF-κB and IL-6/STAT3 pathways. F. nucleatum induces cisplatin resistance via the enrichment of immunosuppressive myeloid-derived suppressor cells (MDSCs). Correcting the dysbiosis and reducing the abundance of specific esophageal pathogens may help in suppressing cancer progression. In conclusion, esophageal dysbiosis is associated with ESCC progression and chemoresistance. Screening the oral and esophageal microbiota is a potential diagnostic tool for predicting ESCC development or drug-resistance. Repairing esophageal dysbiosis is a novel treatment for ESCC. Clinical trials with probiotics in addition to current chemotherapy are warranted to study the therapeutic effects.
Collapse
Affiliation(s)
- Hsueh‐Chien Chiang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Michael Hughes
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- International Center for Wound Repair and Regeneration (iWRR), College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Wei‐Lun Chang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
7
|
Mahmoudian RA, Farshchian M, Golyan FF, Mahmoudian P, Alasti A, Moghimi V, Maftooh M, Khazaei M, Hassanian SM, Ferns GA, Mahaki H, Shahidsales S, Avan A. Preclinical tumor mouse models for studying esophageal cancer. Crit Rev Oncol Hematol 2023; 189:104068. [PMID: 37468084 DOI: 10.1016/j.critrevonc.2023.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Preclinical models are extensively employed in cancer research because they can be manipulated in terms of their environment, genome, molecular biology, organ systems, and physical activity to mimic human behavior and conditions. The progress made in in vivo cancer research has resulted in significant advancements, enabling the creation of spontaneous, metastatic, and humanized mouse models. Most recently, the remarkable and extensive developments in genetic engineering, particularly the utilization of CRISPR/Cas9, transposable elements, epigenome modifications, and liquid biopsies, have further facilitated the design and development of numerous mouse models for studying cancer. In this review, we have elucidated the production and usage of current mouse models, such as xenografts, chemical-induced models, and genetically engineered mouse models (GEMMs), for studying esophageal cancer. Additionally, we have briefly discussed various gene-editing tools that could potentially be employed in the future to create mouse models specifically for esophageal cancer research.
Collapse
Affiliation(s)
- Reihaneh Alsadat Mahmoudian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Moein Farshchian
- Division of Oncology, Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children and Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Fatemeh Fardi Golyan
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Mahmoudian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Alasti
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Moghimi
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Hanie Mahaki
- Vascular & Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq; Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
8
|
Sheikh M, Roshandel G, McCormack V, Malekzadeh R. Current Status and Future Prospects for Esophageal Cancer. Cancers (Basel) 2023; 15:765. [PMID: 36765722 PMCID: PMC9913274 DOI: 10.3390/cancers15030765] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Esophageal cancer (EC) is the ninth most common cancer and the sixth leading cause of cancer deaths worldwide. Esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) are the two main histological subtypes with distinct epidemiological and clinical features. While the global incidence of ESCC is declining, the incidence of EAC is increasing in many countries. Decades of epidemiologic research have identified distinct environmental exposures for ESCC and EAC subtypes. Recent advances in understanding the genomic aspects of EC have advanced our understanding of EC causes and led to using specific genomic alterations in EC tumors as biomarkers for early diagnosis, treatment, and prognosis of this cancer. Nevertheless, the prognosis of EC is still poor, with a five-year survival rate of less than 20%. Currently, there are significant challenges for early detection and secondary prevention for both ESCC and EAC subtypes, but Cytosponge™ is shifting this position for EAC. Primary prevention remains the preferred strategy for reducing the global burden of EC. In this review, we will summarize recent advances, current status, and future prospects of the studies related to epidemiology, time trends, environmental risk factors, prevention, early diagnosis, and treatment for both EC subtypes.
Collapse
Affiliation(s)
- Mahdi Sheikh
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan 49341-74515, Iran
| | - Valerie McCormack
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC/WHO), 69007 Lyon, France
| | - Reza Malekzadeh
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran 14117-13135, Iran
| |
Collapse
|
9
|
Han J, Hayashi S, Takahashi RU, Hirohata R, Kurokawa T, Tashiro M, Yamamoto Y, Okada M, Tahara H. Leukocyte Telomeric G-Tail Length Shortening Is Associated with Esophageal Cancer Recurrence. J Clin Med 2022; 11:jcm11247385. [PMID: 36556001 PMCID: PMC9784295 DOI: 10.3390/jcm11247385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Despite significant advances in therapeutics for esophageal cancer (ESC) in the past decade, it remains the sixth most fatal malignancy, with a poor 5-year survival rate (approximately 10%). There is an urgent need to improve the timely diagnosis to aid the prediction of the therapeutic response and prognosis of patients with ESC. The telomeric G-tail plays an important role in the chromosome protection. However, aging and age-related diseases lead to its shortening. Therefore, the G-tail length has been proposed as a novel potential biomarker. In the present study, to examine the possibility of G-tail shortening in patients with ESC, we measured the leukocyte telomere length (LTL) and the G-tail length using a hybridization protection assay in 147 patients with ESC and 170 age-matched healthy controls. We found that the G-tail length in patients with ESC was shorter than that in the healthy controls (p = 0.02), while the LTL shortening was not correlated with the ESC incidence and recurrence. Our results suggest that the G-tail length reflects the physiological status of patients with ESC and is a promising biomarker for the diagnosis and prognosis of ESC.
Collapse
Affiliation(s)
- Jiayan Han
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Soichiro Hayashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryou-u Takahashi
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ryosuke Hirohata
- Department of Surgical Oncology, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Tomoaki Kurokawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Mizuki Tashiro
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yuki Yamamoto
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
- Correspondence: ; Tel.: +81-08-2257-5290 (ext. 5290)
| |
Collapse
|
10
|
Tseng YJ, Wang YC, Hsueh PC, Wu CC. Development and validation of machine learning-based risk prediction models of oral squamous cell carcinoma using salivary autoantibody biomarkers. BMC Oral Health 2022; 22:534. [PMID: 36424594 PMCID: PMC9685866 DOI: 10.1186/s12903-022-02607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The incidence of oral cavity squamous cell carcinoma (OSCC) continues to rise. OSCC is associated with a low average survival rate, and most patients have a poor disease prognosis because of delayed diagnosis. We used machine learning techniques to predict high-risk cases of OSCC by using salivary autoantibody levels and demographic and behavioral data. METHODS We collected the salivary samples of patients recruited from a teaching hospital between September 2008 and December 2012. Ten salivary autoantibodies, sex, age, smoking, alcohol consumption, and betel nut chewing were used to build prediction models for identifying patients with a high risk of OSCC. The machine learning algorithms applied in the study were logistic regression, random forest, support vector machine with the radial basis function kernel, eXtreme Gradient Boosting (XGBoost), and a stacking model. We evaluated the performance of the models by using the area under the receiver operating characteristic curve (AUC), with simulations conducted 100 times. RESULTS A total of 337 participants were enrolled in this study. The best predictive model was constructed using a stacking algorithm with original forms of age and logarithmic levels of autoantibodies (AUC = 0.795 ± 0.055). Adding autoantibody levels as a data source significantly improved the prediction capability (from 0.698 ± 0.06 to 0.795 ± 0.055, p < 0.001). CONCLUSIONS We successfully established a prediction model for high-risk cases of OSCC. This model can be applied clinically through an online calculator to provide additional personalized information for OSCC diagnosis, thereby reducing the disease morbidity and mortality rates.
Collapse
Affiliation(s)
- Yi-Ju Tseng
- grid.260539.b0000 0001 2059 7017Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan ,grid.2515.30000 0004 0378 8438Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA USA
| | - Yi-Cheng Wang
- grid.145695.a0000 0004 1798 0922Department of Information Management, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Chun Hsueh
- grid.9851.50000 0001 2165 4204Department of Fundamental Oncology, University of Lausanne, Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Chih-Ching Wu
- grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, No. 259, Wenhua 1St Rd., Guishan Dist., Taoyuan City, 33302 Taiwan ,grid.413801.f0000 0001 0711 0593Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan ,grid.145695.a0000 0004 1798 0922Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
11
|
The Effect of Endoscopy on Patients with Malignant Esophageal Cancer after Medical Treatment and Chemotherapy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7906302. [PMID: 35437449 PMCID: PMC9013305 DOI: 10.1155/2022/7906302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
The esophagus is one of the most commonly used parts in a person’s life, and its importance is self-evident. With the unhealthy food diet, people are more and more likely to suffer from esophageal cancer, and there is an urgent need for breakthroughs in the treatment of esophageal cancer. This article is aimed at studying the effects of medical treatment and chemotherapy for patients with malignant esophageal cancer. To this end, this article proposes a treatment method based on endoscopy and improves the image imaging of the endoscopy and the image quality of the image and the edge processing of the image. At the same time, this article designs an experiment to conduct statistical analysis of the situation during the treatment process. The experimental results in this article show that the improved treatment method has a 21% increase in success rate compared with the existing treatment method. And the optimized image quality has increased by 27%. It can very well help the attending doctor to improve the efficiency of treatment in the actual treatment process. Its most important contribution is that through the edge optimization and image enhancement processing technology, the success rate of endoscopic treatment has been better improved, and the treatment efficiency has also been improved.
Collapse
|
12
|
Usman M, Okla MK, Asif HM, AbdElgayed G, Muccee F, Ghazanfar S, Ahmad M, Iqbal MJ, Sahar AM, Khaliq G, Shoaib R, Zaheer H, Hameed Y. A pan-cancer analysis of GINS complex subunit 4 to identify its potential role as a biomarker in multiple human cancers. Am J Cancer Res 2022; 12:986-1008. [PMID: 35411239 PMCID: PMC8984884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023] Open
Abstract
This study was initiated to explore the expression variation, clinical significance, and biological importance of the GINS complex subunit 4 (GINS4) in different human cancers as a shared biomarker via pan-cancer analysis through different platforms including UALCAN, Kaplan Meier (KM) plotter, TNMplot, GENT2, GEPIA, DriverDBv3, Human Protein Atlas (HPA), MEXPRESS, cBioportal, STRING, DAVID, MuTarge, Enrichr, TIMER, and CTD. Our findings have verified the up-regulation of GINS4 in 24 major subtypes of human cancers, and its overexpression was found to be substantially associated with poor overall survival (OS), relapse-free survival (RFs), and metastasis in ESCA, KIRC, LIHC, LUAD, and UCEC. This suggested that GINS4 plays a significant role in the development and progression of these five cancers. Furthermore, we noticed that GINS4 is also overexpressed in ESCA, KIRC, LIHC, LUAD, and UCEC patients with different clinicopathological characteristics. Enrichment analysis revealed the involvement of GINS4 associated genes in a variety of diverse GO and KEGG terms. We also explored few significant correlations between GINS4 expression and promoter methylation, genetic alterations, CNVs, other mutant genes, tumor purity, and immune cells infiltration. In conclusion, our results elucidated that GINS4 can serve as a shared diagnostic, prognostic biomarker, and a potential therapeutic target in ESCA, KIRC, LIHC, LUAD, and UCEC patients with different clinicopathological characteristics.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Biochemistry and Biotechnology, The Islamia University of BahawalpurBahawalpur 63100, Pakistan, Pakistan
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud UniversityRiyadh 11451, Saudi Arabia
| | - Hafiz Muhammad Asif
- University College of Conventional Medicine, Faculty of Pharmacy and Alternative Medicine, The Islamia University of BahawalpurBahawalpur 63100, Pakistan
| | - Gehad AbdElgayed
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp2020 Antwerp, Belgium
| | - Fatima Muccee
- Department of Biotechnology, Virtual University of PakistanLahore 54000, Pakistan
| | - Shakira Ghazanfar
- Functional Genomics and Bioinformatics, National Agricultural Research CentreIslamabad 45500, Pakistan
| | - Mukhtiar Ahmad
- Department of Biochemistry and Biotechnology, The Islamia University of BahawalpurBahawalpur 63100, Pakistan, Pakistan
| | | | - Aamina Murad Sahar
- Department of Biosciences, COMSATS University IslamabadIslamabad 4400, Pakistan
| | - Ghania Khaliq
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences BahawalpurBahawalpur 63100, Pakistan
| | - Rabbia Shoaib
- Department of Chemistry, Government College University FaisalabadFaisalabad 3800, Pakistan
| | - Hira Zaheer
- Department of Biochemistry and Biotechnology, The Islamia University of BahawalpurBahawalpur 63100, Pakistan, Pakistan
| | - Yasir Hameed
- Department of Biochemistry and Biotechnology, The Islamia University of BahawalpurBahawalpur 63100, Pakistan, Pakistan
| |
Collapse
|
13
|
Chidambaram S, Markar SR. Clinical utility and applicability of circulating tumor DNA testing in esophageal cancer: a systematic review and meta-analysis. Dis Esophagus 2022; 35:doab046. [PMID: 34286823 PMCID: PMC8832526 DOI: 10.1093/dote/doab046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022]
Abstract
Esophageal cancer is an aggressive malignancy with a relatively poor prognosis even after multimodality therapy. Currently, patients undergo a series of investigations that can be invasive and costly or pose secondary risks to their health. In other malignancies, liquid biopsies of circulating tumor DNA (ctDNA) are used in clinical practice for diagnostic and surveillance purposes. This systematic review summarizes the latest evidence for the clinical applicability of ctDNA technology in esophageal cancer. A systematic review of the literature was performed using MEDLINE, EMBASE, the Cochrane Review and Scopus databases. Articles were evaluated for the use of ctDNA for diagnosis and monitoring of patients with esophageal cancer. Quality assessment of studies was performed using the QUADAS-2 tool. A meta-analysis was performed to assess the diagnostic accuracy of sequencing methodologies. We included 15 studies that described the use of ctDNA technology in the qualitative synthesis and eight studies involving 414 patients in the quantitative analysis. Of these, four studies assessed its utility in cancer diagnosis, while four studies evaluated its use for prognosis and monitoring. The pooled sensitivity and specificity for diagnostic studies were 71.0% (55.7-82.6%) and 98.6% (33.9-99.9%), while the pooled sensitivity and specificity for surveillance purposes were 48.9% (29.4-68.8%) and 95.5% (90.6-97.9%). ctDNA technology is an acceptable method for diagnosis and monitoring with a moderate sensitivity and high specificity that is enhanced in combination with current imaging methods. Further work should demonstrate the practical integration of ctDNA in the diagnostic and surveillance clinical pathway.
Collapse
Affiliation(s)
| | - Sheraz R Markar
- Department of Surgery and Cancer, Imperial College London, London, UK
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Islam MR, Alam MK, Paul BK, Koundal D, Zaguia A, Ahmed K. Identification of Molecular Biomarkers and Key Pathways for Esophageal Carcinoma (EsC): A Bioinformatics Approach. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5908402. [PMID: 35071597 PMCID: PMC8769846 DOI: 10.1155/2022/5908402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Esophageal carcinoma (EsC) is a member of the cancer group that occurs in the esophagus; globally, it is known as one of the fatal malignancies. In this study, we used gene expression analysis to identify molecular biomarkers to propose therapeutic targets for the development of novel drugs. We consider EsC associated four different microarray datasets from the gene expression omnibus database. Statistical analysis is performed using R language and identified a total of 1083 differentially expressed genes (DEGs) in which 380 are overexpressed and 703 are underexpressed. The functional study is performed with the identified DEGs to screen significant Gene Ontology (GO) terms and associated pathways using the Database for Annotation, Visualization, and Integrated Discovery repository (DAVID). The analysis revealed that the overexpressed DEGs are principally connected with the protein export, axon guidance pathway, and the downexpressed DEGs are principally connected with the L13a-mediated translational silencing of ceruloplasmin expression, formation of a pool of free 40S subunits pathway. The STRING database used to collect protein-protein interaction (PPI) network information and visualize it with the Cytoscape software. We found 10 hub genes from the PPI network considering three methods in which the interleukin 6 (IL6) gene is the top in all methods. From the PPI, we found that identified clusters are associated with the complex I biogenesis, ubiquitination and proteasome degradation, signaling by interleukins, and Notch-HLH transcription pathway. The identified biomarkers and pathways may play an important role in the future for developing drugs for the EsC.
Collapse
Affiliation(s)
- Md. Rakibul Islam
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka 1342, Bangladesh
| | - Mohammad Khursheed Alam
- Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
- Center for Transdisciplinary Research (CFTR), Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Department of Public Health, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Bikash Kumar Paul
- Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka 1342, Bangladesh
- Group of Bio-Photomatix, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
| | - Deepika Koundal
- Department of Systemics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Atef Zaguia
- Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Kawsar Ahmed
- Group of Bio-Photomatix, Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902, Bangladesh
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9
| |
Collapse
|
15
|
Chidambaram S, Sounderajah V, Maynard N, Markar SR. Diagnostic Performance of Artificial Intelligence-Centred Systems in the Diagnosis and Postoperative Surveillance of Upper Gastrointestinal Malignancies Using Computed Tomography Imaging: A Systematic Review and Meta-Analysis of Diagnostic Accuracy. Ann Surg Oncol 2021; 29:1977-1990. [PMID: 34762214 PMCID: PMC8810479 DOI: 10.1245/s10434-021-10882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022]
Abstract
Background Upper gastrointestinal cancers are aggressive malignancies with poor prognosis, even following multimodality therapy. As such, they require timely and accurate diagnostic and surveillance strategies; however, such radiological workflows necessitate considerable expertise and resource to maintain. In order to lessen the workload upon already stretched health systems, there has been increasing focus on the development and use of artificial intelligence (AI)-centred diagnostic systems. This systematic review summarizes the clinical applicability and diagnostic performance of AI-centred systems in the diagnosis and surveillance of esophagogastric cancers. Methods A systematic review was performed using the MEDLINE, EMBASE, Cochrane Review, and Scopus databases. Articles on the use of AI and radiomics for the diagnosis and surveillance of patients with esophageal cancer were evaluated, and quality assessment of studies was performed using the QUADAS-2 tool. A meta-analysis was performed to assess the diagnostic accuracy of sequencing methodologies. Results Thirty-six studies that described the use of AI were included in the qualitative synthesis and six studies involving 1352 patients were included in the quantitative analysis. Of these six studies, four studies assessed the utility of AI in gastric cancer diagnosis, one study assessed its utility for diagnosing esophageal cancer, and one study assessed its utility for surveillance. The pooled sensitivity and specificity were 73.4% (64.6–80.7) and 89.7% (82.7–94.1), respectively. Conclusions AI systems have shown promise in diagnosing and monitoring esophageal and gastric cancer, particularly when combined with existing diagnostic methods. Further work is needed to further develop systems of greater accuracy and greater consideration of the clinical workflows that they aim to integrate within.
Collapse
Affiliation(s)
| | - Viknesh Sounderajah
- Department of Surgery and Cancer, Imperial College London, London, UK.,Institute of Global Health Innovation, Imperial College London, London, UK
| | - Nick Maynard
- Department of Surgery, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Sheraz R Markar
- Department of Surgery and Cancer, Imperial College London, London, UK. .,Department of Surgery, Churchill Hospital, Oxford University Hospitals NHS Trust, Oxford, UK. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
16
|
Mahmoudian RA, Farshchian M, Abbaszadegan MR. Genetically engineered mouse models of esophageal cancer. Exp Cell Res 2021; 406:112757. [PMID: 34331909 DOI: 10.1016/j.yexcr.2021.112757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
Esophageal cancer is the most common cause of cancer-related death worldwide with a diverse geographical distribution, poor prognosis, and diagnosis in advanced stages of the disease. Identification of the mechanisms involved in esophageal cancer development is evaluative to improve outcomes for patients. Genetically engineered mouse models (GEMMs) of cancer provide the physiologic, molecular, and histologic features of the human tumors to determine the pathogenesis and treatments for cancer, hence exhibiting a source of tremendous potential for oncology research. The advancement of cancer modeling in mice has improved to the extent that researchers can observe and manipulate the disease process in a specific manner. Despite the significant differences between mice and humans, mice can be great models for human oncology researches due to similarities between them at the molecular and physiological levels. Due to most of the existing esophageal cancer GEMMs do not propose an ideal system for pathogenesis of the disease, genetic risks, and microenvironment exposure, so identification of challenges in GEM modeling and well-developed technologies are required to obtain the most value for patients. In this review, we describe the biology of human and mouse, followed by the exciting esophageal cancer mouse models with a discussion of applicability and challenges of these models for generating new GEMMs in future studies.
Collapse
Affiliation(s)
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi, Mashhad, Iran.
| | | |
Collapse
|
17
|
Jin X, Liu L, Wu J, Jin X, Yu G, Jia L, Wang F, Shi M, Lu H, Liu J, Liu D, Yang J, Li H, Ni Y, Luo Q, Jia W, Wang W, Chen W. A multi-omics study delineates new molecular features and therapeutic targets for esophageal squamous cell carcinoma. Clin Transl Med 2021; 11:e538. [PMID: 34586744 PMCID: PMC8473482 DOI: 10.1002/ctm2.538] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a major histological subtype of esophageal cancer with inferior prognosis. Here, we conducted comprehensive transcriptomic, proteomic, phosphoproteomic, and metabolomic characterization of human, treatment-naive ESCC and paired normal adjacent tissues (cohort 1, n = 24) in an effort to identify new molecular vulnerabilities for ESCC and potential therapeutic targets. Integrative analysis revealed a small group of genes that were related to the active posttranscriptional and posttranslational regulation of ESCC. By using proteomic, phosphoproteomic, and metabolomic data, networks of ESCC-related signaling and metabolic pathways that were closely linked to cancer etiology were unraveled. Notably, integrative analysis of proteomic and phosphoproteomic data pinpointed that certain pathways involved in RNA transcription, processing, and metabolism were stimulated in ESCC. Importantly, proteins with close linkage to ESCC prognosis were identified. By enrolling an ESCC patient cohort 2 (n = 41), three top-ranked prognostic proteins X-prolyl aminopeptidase 3 (XPNPEP3), bromodomain PHD finger transcription factor (BPTF), and fibrillarin (FBL) were verified to have increased expression in ESCC. Among these prognostic proteins, only FBL, a well-known nucleolar methyltransferase, was essential for ESCC cell growth in vitro and in vivo. Furthermore, a validation study using an ESCC patient cohort 3 (n = 100) demonstrated that high FBL expression predicted unfavorable patient survival. Finally, common cancer/testis antigens and established cancer drivers and kinases, all of which could direct therapeutic decisions, were characterized. Collectively, our multi-omics analyses delineated new molecular features associated with ESCC pathobiology involving epigenetic, posttranscriptional, posttranslational, and metabolic characteristics, and unveiled new molecular vulnerabilities with therapeutic potential for ESCC.
Collapse
Affiliation(s)
- Xing Jin
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lei Liu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Jia Wu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiaoxia Jin
- Department of PathologyThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Guanzhen Yu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lijun Jia
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Fengying Wang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Minxin Shi
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Haimin Lu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Jibin Liu
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Dan Liu
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jing Yang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hua Li
- Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Yan Ni
- The Children's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhouChina
| | - Qin Luo
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wei Jia
- Hong Kong Traditional Chinese Medicine Phenome Research CenterSchool of Chinese MedicineHong Kong Baptist UniversityKowloon TongHong KongChina
| | - Wei Wang
- Department of Thoracic SurgeryThe Affiliated Tumor Hospital of Nantong UniversityNantongChina
| | - Wen‐Lian Chen
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
18
|
Wolfson P, Ho KMA, Bassett P, Haidry R, Olivo A, Lovat L, Sami SS. Accuracy of clinical staging for T2N0 oesophageal cancer: systematic review and meta-analysis. Dis Esophagus 2021; 34:6146603. [PMID: 33618359 DOI: 10.1093/dote/doab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 01/03/2021] [Indexed: 12/24/2022]
Abstract
Oesophageal cancer is the sixth commonest cause of overall cancer mortality. Clinical staging utilizes multiple imaging modalities to guide treatment and prognostication. T2N0 oesophageal cancer is a treatment threshold for neoadjuvant therapy. Data on accuracy of current clinical staging tests for this disease subgroup are conflicting. We performed a meta-analysis of all primary studies comparing clinical staging accuracy using multiple imaging modalities (index test) to histopathological staging following oesophagectomy (reference standard) in T2N0 oesophageal cancer. Patients that underwent neoadjuvant therapy were excluded. Electronic databases (MEDLINE, Embase, Cochrane Library) were searched up to September 2019. The primary outcome was diagnostic accuracy of combined T&N clinical staging. Publication date, first recruitment date, number of centers, sample size and geographical location main histological subtype were evaluated as potential sources of heterogeneity. The search strategy identified 1,199 studies. Twenty studies containing 5,213 patients met the inclusion criteria. Combined T&N staging accuracy was 19% (95% CI, 15-24); T staging accuracy was 29% (95% CI, 24-35); percentage of patients with T downstaging was 41% (95% CI, 33-50); percentage of patients with T upstaging was 28% (95% CI, 24-32) and percentage of patients with N upstaging was 34% (95% CI, 30-39). Significant sources of heterogeneity included the number of centers, sample size and study region. T2N0 oesophageal cancer staging remains inaccurate. A significant proportion of patients were downstaged (could have received endotherapy) or upstaged (should have received neoadjuvant chemotherapy). These findings were largely unchanged over the past two decades highlighting an urgent need for more accurate staging tests for this subgroup of patients.
Collapse
Affiliation(s)
- Paul Wolfson
- Division of Surgery and Interventional Science, University College London, London, UK.,Department of Gastroenterology, University College Hospital NHS Foundation Trust, London, UK
| | - Kai Man Alexander Ho
- Division of Surgery and Interventional Science, University College London, London, UK.,Department of Gastroenterology, University College Hospital NHS Foundation Trust, London, UK
| | | | - Rehan Haidry
- Division of Surgery and Interventional Science, University College London, London, UK.,Department of Gastroenterology, University College Hospital NHS Foundation Trust, London, UK
| | - Alessandro Olivo
- Department of Medical Physics and Bioengineering, University College London, London, UK
| | - Laurence Lovat
- Division of Surgery and Interventional Science, University College London, London, UK.,Department of Gastroenterology, University College Hospital NHS Foundation Trust, London, UK
| | - Sarmed S Sami
- Division of Surgery and Interventional Science, University College London, London, UK.,Department of Gastroenterology, University College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
19
|
Izadi F, Sharpe BP, Breininger SP, Secrier M, Gibson J, Walker RC, Rahman S, Devonshire G, Lloyd MA, Walters ZS, Fitzgerald RC, Rose-Zerilli MJJ, Underwood TJ. Genomic Analysis of Response to Neoadjuvant Chemotherapy in Esophageal Adenocarcinoma. Cancers (Basel) 2021; 13:3394. [PMID: 34298611 PMCID: PMC8308111 DOI: 10.3390/cancers13143394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
Neoadjuvant therapy followed by surgery is the standard of care for locally advanced esophageal adenocarcinoma (EAC). Unfortunately, response to neoadjuvant chemotherapy (NAC) is poor (20-37%), as is the overall survival benefit at five years (9%). The EAC genome is complex and heterogeneous between patients, and it is not yet understood whether specific mutational patterns may result in chemotherapy sensitivity or resistance. To identify associations between genomic events and response to NAC in EAC, a comparative genomic analysis was performed in 65 patients with extensive clinical and pathological annotation using whole-genome sequencing (WGS). We defined response using Mandard Tumor Regression Grade (TRG), with responders classified as TRG1-2 (n = 27) and non-responders classified as TRG4-5 (n =38). We report a higher non-synonymous mutation burden in responders (median 2.08/Mb vs. 1.70/Mb, p = 0.036) and elevated copy number variation in non-responders (282 vs. 136/patient, p < 0.001). We identified copy number variants unique to each group in our cohort, with cell cycle (CDKN2A, CCND1), c-Myc (MYC), RTK/PIK3 (KRAS, EGFR) and gastrointestinal differentiation (GATA6) pathway genes being specifically altered in non-responders. Of note, NAV3 mutations were exclusively present in the non-responder group with a frequency of 22%. Thus, lower mutation burden, higher chromosomal instability and specific copy number alterations are associated with resistance to NAC.
Collapse
Affiliation(s)
- Fereshteh Izadi
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
- Centre for NanoHealth, Swansea University Medical School, Singleton Campus, Swansea SA2 8PP, UK
| | - Benjamin P. Sharpe
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stella P. Breininger
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
| | - Maria Secrier
- UCL Genetics Institute, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK;
| | - Jane Gibson
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Robert C. Walker
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
| | - Saqib Rahman
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK;
| | - Megan A. Lloyd
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
| | - Zoë S. Walters
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Rebecca C. Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge CB2 OXZ, UK;
| | - Matthew J. J. Rose-Zerilli
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Tim J. Underwood
- School of Cancer Sciences, Cancer Research UK Centre, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (F.I.); (B.P.S.); (S.P.B.); (J.G.); (R.C.W.); (S.R.); (M.A.L.); (Z.S.W.); (M.J.J.R.-Z.)
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | |
Collapse
|
20
|
Liu X, Wu W, Zhang S, Tan W, Qiu Y, Liao K, Yang K. Effect of miR-630 expression on esophageal cancer cell invasion and migration. J Clin Lab Anal 2021; 35:e23815. [PMID: 34018619 PMCID: PMC8183945 DOI: 10.1002/jcla.23815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background Esophageal cancer (EC) is a common malignancy of the digestive tract, with high incidence. The objective of this study was to investigate the effect of miR‐630 expression on esophageal cancer (EC) cell invasion and migration. Methods The study group comprised 58 EC patients admitted to our hospital from April 2014 to 2016, and the control group comprised 60 healthy people visiting the hospital during the same period. miR‐630 levels in the peripheral blood of the two groups were compared, and the diagnostic value of miR‐630 for EC was analyzed. EC cell lines were used to evaluate the influence of miR‐630 expression on EC cell invasion and migration. Results miR‐630 expression was low in EC (p < 0.050). A receiver operating characteristic curve analysis showed that miR‐630 expression had a good diagnostic value for EC (p < 0.050) and was associated with disease course, pathological stage, differentiation degree, tumor metastasis, and patient prognosis and survival (p < 0.05). The ROC curve analysis showed that when cutoff value was 5.38, the diagnostic sensitivity and specificity of miR‐630 for EC were 73.33% and 76.67%, respectively; area under the ROC curve was 0.778 (95%CI 0.695–0.861). Transfection of miR‐630 into EC cells indicated that miR‐630 overexpression can reduce EC cell invasion and migration (p < 0.05). miR‐630 expression is low in EC and has good diagnostic value for EC. Conclusion miR‐630 overexpression can reduce EC cell invasion and migration, showing a possible key role of miR‐630 in EC diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Xi Liu
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Wei Wu
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Shixin Zhang
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Wenfeng Tan
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Yang Qiu
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Kelong Liao
- The First Hospital Affiliated to AMU, Chongqing, China
| | - Kang Yang
- The First Hospital Affiliated to AMU, Chongqing, China
| |
Collapse
|
21
|
Construction of a ternary nano-architecture based graphene oxide sheets, toward electrocatalytic determination of tumor-associated anti-p53 autoantibodies in human serum. Talanta 2021; 230:122276. [PMID: 33934760 DOI: 10.1016/j.talanta.2021.122276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 11/20/2022]
Abstract
Almost 13% of all death in the world is related to cancer. One of the major reasons for failing cancer treatment is the late diagnosis of the tumors. Thus, diagnosis at the early stages could be vital for the treatment. Serum autoantibodies, as tumor markers, are becoming interesting targets due to their medical and biological relevance. Among them, anti-p53 autoantibody in human sera is found to be involved in a variety of cancers. Regarding this issue, a novel and sensitive electrochemical biosensor for detection of anti-p53 autoantibody has been developed. For this purpose, a nanocomposite including thionine (as an electron transfer mediator)/chitosan/nickel hydroxide nanoparticles/electrochemically reduced graphene oxide (Th-CS-Ni(OH)2NPs-ERGO) as a support platform was fabricated on the surface of glassy carbon electrode via a layer-by-layer manner and characterized through common electrochemical and imaging techniques. Then, p53-antigen was immobilized on the nanocomposite and used in an indirect immunoassay with horseradish peroxidase (HRP)-conjugated secondary antibody and H2O2 as the substrate, following the typical Michaelis-Menten kinetics. Under optimized condition, two techniques, including differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) as a label free technique, applied for the biomarker detection. The linear ranges and LODs were obtained 0.1-500 pg mL-1 and 0.001 pg mL-1 using DPV and 5-150 pg mL-1 and 0.007 pg mL-1 using EIS, respectively. Furthermore, the proposed biosensor displayed satisfying stability, selectivity, and reproducibility. According to the results, the presented protocol is promising to develop other electrochemical biosensors.
Collapse
|
22
|
Gowthami J, Gururaj N, Mahalakshmi V, Sathya R, Sabarinath TR, Doss DM. Genetic predisposition and prediction protocol for epithelial neoplasms in disease-free individuals: A systematic review. J Oral Maxillofac Pathol 2020; 24:293-307. [PMID: 33456239 PMCID: PMC7802851 DOI: 10.4103/jomfp.jomfp_348_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/13/2023] Open
Abstract
Background Epithelial neoplasm is an important global health-care problem, with high morbidity and mortality rates. Early diagnosis and appropriate treatment are essential for increased life survival. Prediction of occurrence of malignancy in a disease-free individual by any means will be a great breakthrough for healthy living. Aims and Objectives The aims and objectives were to predict the genetic predisposition and propose a prediction protocol for epithelial malignancy of various systems in our body, in a disease-free individual. Methods We have searched databases both manually and electronically, published in English language in Cochrane group, Google search, MEDLINE and PubMed from 2000 to 2019. We have included all the published, peer-reviewed, narrative reviews; randomized controlled trials; case-control studies; and cohort studies and excluded the abstract-only articles and duplicates. Specific words such as "etiological factors," "pathology and mutations," "signs and symptoms," "genetics and IHC marker," and "treatment outcome" were used for the search. A total of 1032 citations were taken, and only 141 citations met the inclusion criteria and were analyzed. Results After analyzing various articles, the etiological factors, clinical signs and symptoms, genes and the pathology involved and the commonly used blood and tissue markers were analyzed. A basic investigation strategy using immunohistochemistry markers was established. Conclusion The set of proposed biomarkers should be studied in future to predict genetic predisposition in disease-free individuals.
Collapse
Affiliation(s)
- J Gowthami
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - N Gururaj
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - V Mahalakshmi
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - R Sathya
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - T R Sabarinath
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Daffney Mano Doss
- Department of Oral and Maxillofacial Pathology and Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| |
Collapse
|
23
|
Yang S, Li X, Shen W, Hu H, Li C, Han G. MicroRNA-140 Represses Esophageal Cancer Progression via Targeting ZEB2 to Regulate Wnt/β-Catenin Pathway. J Surg Res 2020; 257:267-277. [PMID: 32862055 DOI: 10.1016/j.jss.2020.07.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/11/2020] [Accepted: 07/11/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND MicroRNAs have been reported to play regulatory functions in various cancers, including esophageal cancer. The aim of this study was to investigate the effects of miR-140 on the progression of esophageal cancer and the underlying regulatory mechanism. METHODS The levels of miR-140 and zinc finger E-box-binding homeobox 2 (ZEB2) messenger RNA in esophageal cancer tissues and cell lines were measured by quantitative real-time polymerase chain reaction. The protein levels of ZEB2, β-catenin, c-Myc, and cyclinD1 were determined by Western blot. Cell proliferation and apoptosis were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay and flow cytometry, respectively. Cell migration and invasion were assessed by transwell assay. In addition, the relationship between miR-140 and ZEB2 was predicted by TargetScan online database and confirmed by dual-luciferase reporter assay. The tumor xenograft model was used to verify the role of miR-140 in esophageal cancer progression in vivo. RESULTS The expression of miR-140 was downregulated whereas ZEB2 expression was upregulated in esophageal cancer tissues compared with paracancerous normal tissues. Functionally, both miR-140 overexpression and ZEB2 knockdown inhibited proliferation, migration, and invasion and induced apoptosis in esophageal cancer cells. ZEB2 overexpression reversed the effects of miR-140 on proliferation, apoptosis, migration, and invasion of esophageal cancer cells. Mechanistically, ZEB2 was identified as a target of miR-140. Furthermore, miR-140 suppressed Wnt/β-catenin pathway by regulating ZEB2 expression in esophageal cancer cells. MiR-140 inhibited tumor growth of esophageal cancer through repressing ZEB2 expression in vivo. CONCLUSIONS Our results demonstrated that miR-140 inhibited esophageal cancer development by targeting ZEB2 through inactivating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Song Yang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Xiangyi Li
- Department of Endocrinology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Haitao Hu
- Clinical Laboratory, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Chen Li
- Department of Stomatology, Taizhou People's Hospital, Taizhou, Jiangsu, China
| | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, China.
| |
Collapse
|
24
|
Talukdar J, Kataki K, Ali E, Choudhury BN, Baruah MN, Bhattacharyya M, Bhattacharjee S, Medhi S. Altered expression of TGF-β1 and TGF-βR2 in tissue samples compared to blood is associated with food habits and survival in esophageal squamous cell carcinoma. Curr Probl Cancer 2020; 45:100617. [PMID: 32660703 DOI: 10.1016/j.currproblcancer.2020.100617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/01/2020] [Accepted: 06/17/2020] [Indexed: 01/10/2023]
Abstract
In the transforming growth factor β (TGF-β) signaling pathway, TGF-β1 and TGF-β receptor 2 (TGF-βR2) are essential regulatory components which play an important role in different type of cancer. Expressions of TGF-β1 and TGF-βR2 were done by real-time qPCR in both biopsy and blood samples collected from esophageal squamous cell carcinoma (ESCC) patients (n = 76). The expression profiles were correlated with different lifestyle factors and clinicopathological parameters. Kaplan-Meier survival analysis and Cox regression analysis were performed to estimate survival and hazard outcomes of different parameters. TGF-β1 showed upregulation in 91% tissue samples (2.84 ± 1.34*) and 55% blood samples (2.43 ± 1.24*) whereas expression of TGF-βR2 showed downregulation in 89% tissue samples (0.27 ± 0.23*) and 75% blood samples (0.30 ± 0.26*). Among all the parameters, TGF-β1 expression is significant with histopathology grade, consumption of betel nut and smoked food whereas TGF-βR2 expression is significant only with dysphagia grade in both blood and tissue samples and while analyzing both male and female patients separately. Consuming alcohol and hot food, difference in tumor stage and metastasis were found to have statistically significant (P < 0.05) impact on survival and mortality of male patients while consuming hot food, tobacco, metastasis and TGF-βR2 expression in tissue level were found to associate with survival and mortality of female patients. Expression of both TGF-β1 and TGF-βR2 in tissue samples may be prospective biomarkers for screening of ESCC among the Northeast population. Survival outcomes and hazard analysis supports the importance of some clinicopathological and lifestyle factors on ESCC development, whereas expression study depicts association of change in expression of the studied genes in ESCC patients. *Mean fold change.
Collapse
Affiliation(s)
- Jayasree Talukdar
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, India; Department of Gastroenterology, Gauhati Medical College Hospital, Guwahati, India
| | - Kangkana Kataki
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, India
| | - Eyashin Ali
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, India; Department of Gastroenterology, Gauhati Medical College Hospital, Guwahati, India
| | | | - Munindra Narayan Baruah
- Department of Head and Neck Oncology, North East Cancer Hospital and Research Institute, Jorabat, India
| | | | | | - Subhash Medhi
- Department of Bioengineering and Technology, Laboratory of Molecular Virology and Oncology, GUIST, Gauhati University, Guwahati, India.
| |
Collapse
|
25
|
Alabi N, Sheka D, Siddiqui A, Wang E. Methylation-Based Signatures for Gastroesophageal Tumor Classification. Cancers (Basel) 2020; 12:E1208. [PMID: 32403416 PMCID: PMC7281220 DOI: 10.3390/cancers12051208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/12/2022] Open
Abstract
Contention exists within the field of oncology with regards to gastroesophageal junction (GEJ) tumors, as in the past, they have been classified as gastric cancer, esophageal cancer, or a combination of both. Misclassifications of GEJ tumors ultimately influence treatment options, which may be rendered ineffective if treating for the wrong cancer attributes. It has been suggested that misclassification rates were as high as 45%, which is greater than reported for junctional cancer occurrences. Here, we aimed to use the methylation profiles of GEJ tumors to improve classifications of GEJ tumors. Four cohorts of DNA methylation profiles, containing ~27,000 (27k) methylation sites per sample, were collected from the Gene Expression Omnibus and The Cancer Genome Atlas. Tumor samples were assigned into discovery (nEC = 185, nGC = 395; EC, esophageal cancer; GC gastric cancer) and validation (nEC = 179, nGC = 369) sets. The optimized Multi-Survival Screening (MSS) algorithm was used to identify methylation biomarkers capable of distinguishing GEJ tumors. Three methylation signatures were identified: They were associated with protein binding, gene expression, and cellular component organization cellular processes, and achieved precision and recall rates of 94.7% and 99.2%, 97.6% and 96.8%, and 96.8% and 97.6%, respectively, in the validation dataset. Interestingly, the methylation sites of the signatures were very close (i.e., 170-270 base pairs) to their downstream transcription start sites (TSSs), suggesting that the methylations near TSSs play much more important roles in tumorigenesis. Here we presented the first set of methylation signatures with a higher predictive power for characterizing gastroesophageal tumors. Thus, they could improve the diagnosis and treatment of gastroesophageal tumors.
Collapse
Affiliation(s)
- Nikolay Alabi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada;
| | - Dropen Sheka
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada;
| | - Ashar Siddiqui
- Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada;
| | - Edwin Wang
- Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada;
| |
Collapse
|
26
|
Wang C, Li S, Liu J, Cheng M, Wang D, Wang Y, Lu B. Silencing of S-phase kinase-associated protein 2 enhances radiosensitivity of esophageal cancer cells through inhibition of PI3K/AKT signaling pathway. Genomics 2020; 112:3504-3510. [PMID: 32360515 DOI: 10.1016/j.ygeno.2020.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 01/14/2023]
Abstract
We investigated the effect of S-phase kinase-associated protein 2 (SKP2) on radiosensitivity of esophageal cancer (EC) cells. Expression of SKP2, PI3K, AKT, Bcl-2 and Bax were assayed in EC. EC cells were transfected with SKP2-siRNA/IGF-1 to detect expression of SKP2, PI3K, AKT, Bcl-2 and Bax. At last, the radiosensitivity of cells in different doses of X (0, 2, 4, 6, 8 Gy) irradiation and cell apoptosis were also detected. EC cells displayed a higher positive expression rate of SKP2, elevated mRNA and protein expression of SKP2, PI3K, AKT, Bcl-2 and Bax, as well as higher extent of PI3K and AKT phosphorylation. SKP2 silencing downregulated mRNA and protein expression of PI3K, AKT and Bcl-2 but increased p27 protein expression, and inhibited the cell survival rate while promoting cell apoptosis. Taken together, silencing SKP2 can inhibit the PI3K/AKT signaling pathway, thereby increasing the radiosensitivity of EC cells.
Collapse
Affiliation(s)
- Chunying Wang
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang 214500, China.
| | - Shimeng Li
- Department of Oncology, Suqian First Hospital, Suqian 223800, China
| | - Jin Liu
- Department of Oncology, Suqian First Hospital, Suqian 223800, China
| | - Ming Cheng
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang 214500, China
| | - Dewen Wang
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang 214500, China
| | - Yuxin Wang
- Department of Traditional Chinese Medicine, Jingjiang People's Hospital, Jingjiang 214500, China
| | - Bin Lu
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang 214500, China
| |
Collapse
|
27
|
A Novel Three-miRNA Signature Identified Using Bioinformatics Predicts Survival in Esophageal Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5973082. [PMID: 32104700 PMCID: PMC7035545 DOI: 10.1155/2020/5973082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 08/07/2019] [Accepted: 12/20/2019] [Indexed: 12/25/2022]
Abstract
Objective We identified differentially expressed microRNAs (DEMs) between esophageal carcinoma (ESCA) tissues and normal esophageal tissues. We then constructed a novel three-miRNA signature to predict the prognosis of ESCA patients using bioinformatics analysis. Materials and Methods. We combined two microarray profiling datasets from the Gene Expression Omnibus (GEO) database and RNA-seq datasets from the Cancer Genome Atlas (TCGA) database to analyze DEMs in ESCA. The clinical data from 168 ESCA patients were selected from the TCGA database to assess the prognostic role of the DEMs. The TargetScan, miRDB, miRWalk, and DIANA websites were used to predict the miRNA target genes. Functional enrichment analysis was conducted using the Database for Annotation, Visualization, and Integrated Discovery (David), and protein-protein interaction (PPI) networks were obtained using the Search Tool for the Retrieval of Interacting Genes database (STRING). Results With cut-off criteria of P < 0.05 and |log2FC| > 1.0, 33 overlapping DEMs, including 27 upregulated and 6 downregulated miRNAs, were identified from GEO microarray datasets and TCGA RNA-seq count datasets. The Kaplan–Meier survival analysis indicated that a three-miRNA signature (miR-1301-3p, miR-431-5p, and miR-769-5p) was significantly associated with the overall survival of ESCA patients. The results of univariate and multivariate Cox regression analysis showed that the three-miRNA signature was a potential prognostic factor in ESCA. Furthermore, the gene functional enrichment analysis revealed that the target genes of the three miRNAs participate in various cancer-related pathways, including viral carcinogenesis, forkhead box O (FoxO), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (ErbB2), and mammalian target of rapamycin (mTOR) signaling pathways. In the PPI network, three target genes (MAPK1, RB1, and CLTC) with a high degree of connectivity were selected as hub genes. Conclusions Our results revealed that a three-miRNA signature (miR-1301-3p, miR-431-5p, and miR-769-5p) is a potential novel prognostic biomarker for ESCA.
Collapse
|
28
|
Xie ZC, Wu HY, Ma FC, Dang YW, Peng ZG, Zhou HF, Chen G. Prognostic alternative splicing signatures and underlying regulatory network in esophageal carcinoma. Am J Transl Res 2019; 11:4010-4028. [PMID: 31396315 PMCID: PMC6684923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Alternative splicing (AS) has been widely reported to play an important role in cancers, including esophageal carcinoma (ESCA). However, no study has comprehensively investigated the clinical use of combination of prognostic AS events and clinicopathological parameters. Therefore, we collected 165 ESCA patients including 83 esophageal adenocarcinoma (EAC) and 82 esophageal squamous cell carcinoma (ESCC) patients from The Cancer Genome Atlas to explore the survival rate associated with seven types of AS events. Prognostic predictors for the clinical outcomes of ESCA patients were built. Predictive prognosis models of the alternative acceptor site in ESCA (area under the curve [AUC] = 0.83), alternative donor site in EAC (AUC = 0.99), and alternative terminator site in ESCC (AUC = 0.974) showed the best predictive efficacy. A novel combined prognostic model of AS events and clinicopathological parameters in ESCA was also constructed. Combined prognostic models of ESCA all showed better predictive efficacy than independent AS models or clinicopathological parameters model. Through constructing splicing regulatory network, the expression of AS factor was found to be negatively correlated with the most favorable AS events. Moreover, gene amplification, mutation, and copy number variation of AS genes were commonly observed, which may indicate the molecular mechanism of how the AS events influence survival. Conclusively, the constructed prognostic models based on AS events, especially the combined prognostic models of AS signatures and clinicopathological parameters could be used to predict the outcome of ESCA patients. Moreover, the splicing regulatory network and genomic alteration in ESCA could be used for illuminating the potential molecular mechanism.
Collapse
Affiliation(s)
- Zu-Cheng Xie
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Pre-Clinical Medicine, Guangxi Medical University22 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhi-Gang Peng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
29
|
Zhu Y, Qi X, Yu C, Yu S, Zhang C, Zhang Y, Liu X, Xu Y, Yang C, Jiang W, Tian G, Li X, Bergquist J, Zhang J, Wang L, Mi J. Identification of prothymosin alpha (PTMA) as a biomarker for esophageal squamous cell carcinoma (ESCC) by label-free quantitative proteomics and Quantitative Dot Blot (QDB). Clin Proteomics 2019; 16:12. [PMID: 30988666 PMCID: PMC6449931 DOI: 10.1186/s12014-019-9232-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background Esophageal cancer (EC) is one of the malignant tumors with a poor prognosis. The early stage of EC is asymptomatic, so identification of cancer biomarkers is important for early detection and clinical practice. Methods In this study, we compared the protein expression profiles in esophageal squamous cell carcinoma (ESCC) tissues and adjacent normal esophageal tissues from five patients through high-resolution label-free mass spectrometry. Through bioinformatics analysis, we found the differentially expressed proteins of ESCC. To perform the rapid identification of biomarkers, we adopted a high-throughput protein identification technique of Quantitative Dot Blot (QDB). Meanwhile, the QDB results were verified by classical immunohistochemistry. Results In total 2297 proteins were identified, out of which 308 proteins were differentially expressed between ESCC tissues and normal tissues. By bioinformatics analysis, the four up-regulated proteins (PTMA, PAK2, PPP1CA, HMGB2) and the five down-regulated proteins (Caveolin, Integrin beta-1, Collagen alpha-2(VI), Leiomodin-1 and Vinculin) were selected and validated in ESCC by Western Blot. Furthermore, we performed the QDB and IHC analysis in 64 patients and 117 patients, respectively. The PTMA expression was up-regulated gradually along the progression of ESCC, and the PTMA expression ratio between tumor and adjacent normal tissue was significantly increased along with the progression. Therefore, we suggest that PTMA might be a potential candidate biomarker for ESCC. Conclusion In this study, label-free quantitative proteomics combined with QDB revealed that PTMA expression was up-regulated in ESCC tissues, and PTMA might be a potential candidate for ESCC. Since Western Blot cannot achieve rapid and high-throughput screening of mass spectrometry results, the emergence of QDB meets this demand and provides an effective method for the identification of biomarkers.
Collapse
Affiliation(s)
- Yanping Zhu
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| | - Xiaoying Qi
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| | - Cuicui Yu
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qing Dao University, No. 20 Yudong Rd., Zhifu District, Yantai, S264009 Shandong People's Republic of China
| | - Shoujun Yu
- 3Department of Ultrasound, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinfu Rd., Muping District, Binzhou, 264100 Shandong Province People's Republic of China
| | - Chao Zhang
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| | - Yuan Zhang
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| | - Xiuxiu Liu
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| | - Yuxue Xu
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| | - Chunhua Yang
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| | - Wenguo Jiang
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| | - Geng Tian
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| | - Xuri Li
- 4State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060 People's Republic of China
| | - Jonas Bergquist
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China.,5Department of Chemistry, BMC, Uppsala University, PO Box 599, Husargatan 3, 75124 Uppsala, Sweden
| | - Jiandi Zhang
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China.,Yantai Zestern Biotechnique Co. LTD, 39 Keji Ave. Bioasis, Yantai, People's Republic of China
| | - Lei Wang
- 7Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150000 Heilongjiang Province People's Republic of China
| | - Jia Mi
- 1Precision Medicine Research Center, Binzhou Medical University, No. 346 Guanhai Rd., Laishan District, Yantai, 264003 Shandong Province People's Republic of China
| |
Collapse
|
30
|
Chen Z, Hu X, Wu Y, Cong L, He X, Lu J, Feng J, Liu D. Long non-coding RNA XIST promotes the development of esophageal cancer by sponging miR-494 to regulate CDK6 expression. Biomed Pharmacother 2019; 109:2228-2236. [DOI: 10.1016/j.biopha.2018.11.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/07/2023] Open
|
31
|
|
32
|
Xie B, Lin J, Sui K, Huang Z, Chen Z, Hang W. Differential diagnosis of multielements in cancerous and non-cancerous esophageal tissues. Talanta 2018; 196:585-591. [PMID: 30683409 DOI: 10.1016/j.talanta.2018.12.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
It is known that variations in the concentrations of certain elements in humans may be an indication of cancers. In this work, a method for the quantitative analysis of 22 elements in non-tumor and esophageal squamous cell carcinoma (ESCC) tissues from the same individual is reported. Based on the optimized platform combined with multivariate analysis, diagnostic models of ESCC were established using principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA), showing excellent classification of cancerous and non-cancerous group by metallomic profiling. Elemental concentrations of 10 elements (Mn, Se, Cu, Ti, Mg, Fe, Co, Zn, Sr, Ca) showed significant difference (p < 0.001) in tumor and non-tumor tissues, in which Mn, Se, Cu and Ti are the top 4 elements of statistical significance and a shift towards higher concentration levels has also been observed in the tumor samples. These results confirm the considerable potential of elemental studies for biomedical purposes. To our knowledge, previous studies on elemental concentration in esophageal cancer were performed in serum or plasma levels; and this is the first study to evaluate the association of tissue elemental concentrations with ESCC.
Collapse
Affiliation(s)
- Binbin Xie
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China
| | - Jianqing Lin
- Department of Surgical Oncology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Ke Sui
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China
| | - Zhijun Huang
- Department of Surgical Oncology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China
| | - Zhiyao Chen
- Department of Surgical Oncology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, Fujian, China.
| | - Wei Hang
- Department of Chemistry and the MOE Key Lab of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, Fujian, China.
| |
Collapse
|
33
|
Sun NN, Liu C, Ge XL, Wang J. Dynamic contrast-enhanced MRI for advanced esophageal cancer response assessment after concurrent chemoradiotherapy. ACTA ACUST UNITED AC 2018; 24:195-202. [PMID: 30091709 DOI: 10.5152/dir.2018.17369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We aimed to evaluate the treatment response of patients with esophageal cancer after concurrent chemoradiation therapy (CRT) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). METHODS This retrospective study included 59 patients with histologically confirmed esophageal squamous cell carcinoma. The patients underwent DCE-MRI before and 4 weeks after CRT. Patients with complete response were defined as the CR group; partial response, stable disease, and progressive disease patients were defined as the non-CR group. DCE-MRI parameters (Ktrans, Ve, and Kep) were measured and compared between pre- and post-CRT in the CR and non-CR groups, respectively. Pre-CRT and post-CRT parameters were used to calculate the absolute change and the ratio of change. DCE-MRI parameters were compared between the CR and non-CR groups. Receiver operating characteristic (ROC) curves were used to verify diagnostic performance. RESULTS Patients with higher T-stage esophageal cancer might present with poorer response. After CRT, the Ktrans and Kep values significantly decreased in the CR group, whereas only Kep value decreased in the non-CR group. The post-Ktrans and post-Kep values were observed to be significantly lower in the CR group than in the non-CR group. The absolute change and ratio of change of both Ktrans and Kep were higher in the CR group than in the non-CR group. Based on ROC analysis, the ratio of change in Ktrans was the best parameter to assess treatment response (AUC= 0.840). CONCLUSION DCE-MRI parameters are valuable in predicting and assessing concurrent CRT response for advanced esophageal cancer.
Collapse
Affiliation(s)
- Na-Na Sun
- Departments of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Liu
- Departments of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Lin Ge
- Departments of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Wang
- Departments of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Sugimoto K, Ito T, Woo J, Tully E, Sato K, Orita H, Brock MV, Gabrielson E. Prognostic Impact of Phosphorylated Discoidin Domain Receptor-1 in Esophageal Cancer. J Surg Res 2018; 235:479-486. [PMID: 30691832 DOI: 10.1016/j.jss.2018.10.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/17/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is common in East Asia and also is often deadly. We sought to determine whether measuring the discoidin domain receptor-1 (DDR1)-both total and phosphorylated proteins-could improve our ability to predict recurrence in ESCC. MATERIALS AND METHODS Total DDR1 and phosphorylated DDR1 (pDDR1) were measured using semiquantitative immunohistochemistry in a cohort of 60 patients with ESCC. Association between these immunohistochemical measurements and standard clinical-pathological variables such as patient recurrence-free survival was examined using univariate and multivariate analyses. RESULTS Six patients (10.0%) had regional recurrence and eight patients (13.3%) had distant recurrence. In univariate analysis, early disease recurrence correlated with intense staining of total DDR1 (P = 0.03) as well as intense staining of pDDR1 (P < 0.001). On multivariate analysis, only regional lymph node metastasis (P = 0.04, HR = 4.20) and intensity of pDDR1 immunohistochemistry (P = 0.03, HR = 4.27) emerged as significant independent prognostic factors for recurrence. CONCLUSIONS This study suggests that immunohistochemical measurements of both the DDR1 protein and pDDR1 can provide prognostic value in ESCC, even when other clinical and pathological factors are also being considered.
Collapse
Affiliation(s)
- Kiichi Sugimoto
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Coloproctological Surgery, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Tomoaki Ito
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Surgery, Juntendo University Shizuoka Hospital, Izunokuni-shi, Shizuoka, Japan
| | - Juhyung Woo
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ellen Tully
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Koichi Sato
- Department of Surgery, Juntendo University Shizuoka Hospital, Izunokuni-shi, Shizuoka, Japan
| | - Hajime Orita
- Department of Surgery, Juntendo University Shizuoka Hospital, Izunokuni-shi, Shizuoka, Japan
| | - Malcolm V Brock
- Department of Surgery, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Edward Gabrielson
- Department of Pathology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
35
|
Dong Z, Wang J, Zhan T, Xu S. Identification of prognostic risk factors for esophageal adenocarcinoma using bioinformatics analysis. Onco Targets Ther 2018; 11:4327-4337. [PMID: 30100738 PMCID: PMC6065599 DOI: 10.2147/ott.s156716] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose Esophageal adenocarcinoma (EAC) is the most common type of esophageal cancer in Western countries. It is usually detected at an advanced stage and has a poor prognosis. The aim of this study was to identify key genes and miRNAs in EAC. Methods The mRNA microarray data sets GSE1420, GSE26886, and GSE92396 and miRNA data set GSE16456 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and differentially expressed miRNAs (DEMs) were obtained using R software. Functional enrichment analysis was performed using the DAVID database. A protein-protein interaction (PPI) network and functional modules were established using the STRING database and visualized by Cytoscape. The targets of the DEMs were predicted using the miRecords database, and overlapping genes between DEGs and targets were identified. The prognosis-related overlapping genes were identified using Kaplan-Meier analysis and Cox proportional hazard analysis based on The Cancer Genome Atlas (TCGA) database. The differential expression of these prognosis-related genes was validated using the expression matrix in the TCGA database. Results Seven hundred and fifteen DEGs were obtained, consisting of 313 upregulated and 402 downregulated genes. The PPI network consisted of 281 nodes; 683 edges were constructed and 3 functional modules were established. Forty-four overlapping genes and 56 miRNA- mRNA pairs were identified. Five genes, FAM46A, RAB15, SLC20A1, IL1A, and ACSL1, were associated with overall survival or relapse-free survival. FAM46A and IL1A were found to be independent prognostic indicators for overall survival, and FAM46A, RAB15, and SLC20A1 were considered independent prognostic indicators for relapse-free survival. Among them, the overexpression of RAB15 and SLC20A1 and lower expression of ACSL1 were also identified in EAC tissues based on the expression matrix in the TCGA database. Conclusion These prognosis-related genes and differentially expressed miRNA have provided potential biomarkers for EAC diagnosis and treatment.
Collapse
Affiliation(s)
- Zhiyu Dong
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Junwen Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Tingting Zhan
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,
| | - Shuchang Xu
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China,
| |
Collapse
|
36
|
Battaglin F, Naseem M, Puccini A, Lenz HJ. Molecular biomarkers in gastro-esophageal cancer: recent developments, current trends and future directions. Cancer Cell Int 2018; 18:99. [PMID: 30008616 PMCID: PMC6042434 DOI: 10.1186/s12935-018-0594-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Gastro-esophageal adenocarcinomas (GEA) represent a severe global health burden and despite improvements in the multimodality treatment of these malignancies the prognosis of patients remains poor. HER2 overexpression/amplification has been the first predictive biomarker approved in clinical practice to guide patient selection for targeted treatment with trastuzumab in advanced gastric and gastro-esophageal junction cancers. More recently, immunotherapy has been approved for the treatment of GEA and PD-L1 expression is now a biomarker required for the administration of pembrolizumab in these diseases. Significant progress has been made in recent years in dissecting the genomic makeup of GEA in order to identify distinct molecular subtypes linked to distinct patterns of molecular alterations. GEA have been found to be highly heterogeneous malignances, representing a challenge for biomarkers discovery and targeted treatment development. The current review focuses on an overview of established and novel promising biomarkers in GEA, covering recent molecular classifications from TCGA and ACRG. Main elements of molecular heterogeneity are discussed, as well as emerging mechanisms of primary and secondary resistance to HER2 targeted treatment and recent biomarker-driven trials. Future perspectives on the role of epigenetics, miRNA/lncRNA and liquid biopsy, and patient-derived xenograft models as a new platform for molecular-targeted drug discovery in GEA are presented. Our knowledge on the genomic landscape of GEA continues to evolve, uncovering the high heterogeneity and deep complexity of these tumors. The availability of new technologies and the identification of promising novel biomarker will be critical to optimize targeted treatment development in a setting where therapeutic options are currently lacking. Nevertheless, clinical validation of novel biomarkers and treatment strategies still represents an issue.
Collapse
Affiliation(s)
- Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy
| | - Madiha Naseem
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
| | - Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
- Oncologia Medica 1, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA 90033 USA
| |
Collapse
|
37
|
Jamali L, Tofigh R, Tutunchi S, Panahi G, Borhani F, Akhavan S, Nourmohammadi P, Ghaderian SM, Rasouli M, Mirzaei H. Circulating microRNAs as diagnostic and therapeutic biomarkers in gastric and esophageal cancers. J Cell Physiol 2018; 233:8538-8550. [DOI: 10.1002/jcp.26850] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Leila Jamali
- Department of Medical Genetics School of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | | | - Sara Tutunchi
- Department of Medical Genetics Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Ghodratollah Panahi
- Department of Biochemistry Faculty of Medicine, Tehran University of Medical Sciences Tehran Iran
| | - Fatemeh Borhani
- Department of Basic Sciences Faculty of Medicine, Gonabad University of Medical Sciences Gonabad Iran
- Department of Basic Sciences Faculty of Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Saeedeh Akhavan
- Department of Biology School of Basic Sciences, Science and Research Branch, Islamic Azad University Tehran Iran
| | - Parisa Nourmohammadi
- Department of Medical Genetics Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Sayyed M.H. Ghaderian
- Urogenital Stem Cell Research Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Milad Rasouli
- Department of Immunology Faculty of Medical Sciences, Tarbiat Modares University Tehran Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
38
|
Hou X, Wen J, Ren Z, Zhang G. Non-coding RNAs: new biomarkers and therapeutic targets for esophageal cancer. Oncotarget 2018; 8:43571-43578. [PMID: 28388588 PMCID: PMC5522170 DOI: 10.18632/oncotarget.16721] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
Esophageal cancer is one of the most common gastrointestinal malignant diseases and there is still no effective treatment. The incidence of esophageal cancer in the world is relatively high and on the increase year by year. Thus, the elaboration on the carcinogenesis of esophageal cancer and the identification of new biomarkers and therapeutic targets is quite beneficial to optimizing the current therapeutic regimen for treating such deadly disease. More and more evidence has shown that non-coding RNAs play an important role in the development and progression of multiple human cancers, including esophageal cancer. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two functional kinds of non-coding RNAs that have been well investigated. They exert tumor suppressive or promoting effect by specifically regulating the expression of certain downstream target genes, which is tumor specific. It is also proved that miRNAs and lncRNAs level in tissue and plasma from esophageal cancer patients are closely correlated with the survival and disease progression, which could be used as a prognostic factor and therapeutic target for esophageal cancer.
Collapse
Affiliation(s)
- Xiaobin Hou
- Department of Thoracic Surgery, PLA General Hospital, Beijing, China
| | - Jiaxin Wen
- Department of Thoracic Surgery, PLA General Hospital, Beijing, China
| | - Zhipeng Ren
- Department of Thoracic Surgery, PLA General Hospital, Beijing, China
| | | |
Collapse
|
39
|
Kunzmann AT, McMenamin ÚC, Spence AD, Gray RT, Murray LJ, Turkington RC, Coleman HG. Blood biomarkers for early diagnosis of oesophageal cancer: a systematic review. Eur J Gastroenterol Hepatol 2018; 30:263-273. [PMID: 29189391 DOI: 10.1097/meg.0000000000001029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Oesophageal cancer prognosis remains poor owing to the inability to detect the disease at an early stage. Nontissue (serum, urinary or salivary) biomarkers potentially offer less invasive methods to aid early detection of oesophageal cancer. We aimed to systematically review studies assessing the relationship between nontissue biomarkers and subsequent development of oesophageal cancer. METHODS Using terms for biomarkers and oesophageal cancer, Medline, EMBASE and Web of Science were systematically searched for longitudinal studies, published until April 2016, which assessed the association between nontissue biomarkers and subsequent oesophageal cancer risk. Random effects meta-analyses were used to calculate pooled relative risk (RR) and 95% confidence intervals (CIs), where possible. RESULTS A total of 39 studies were included. Lower serum pepsinogen I concentrations were associated with an increased risk of oesophageal squamous cell carcinoma (n=3 studies, pooled RR=2.20, 95% CI: 1.31-3.70). However, the association for the pepsinogen I : II ratio was not statistically significant (n=3 studies, pooled RR=2.22, 95% CI: 0.77-6.40), with a large degree of heterogeneity observed (I=68.0%). Higher serum glucose concentrations were associated with a modestly increased risk of total oesophageal cancer (n=3 studies, pooled RR=1.27, 95% CI: 1.02-1.57). No association was observed for total cholesterol and total oesophageal cancer risk (n=3 studies, pooled RR=0.95, 95% CI: 0.58-1.54). Very few studies have assessed other biomarkers for meta-analyses. CONCLUSION Serum pepsinogen I concentrations could aid early detection of oesophageal squamous cell carcinoma. More prospective studies are needed to determine the use of other nontissue biomarkers in the early detection of oesophageal cancer.
Collapse
Affiliation(s)
- Andrew T Kunzmann
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Úna C McMenamin
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Andrew D Spence
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Ronan T Gray
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Liam J Murray
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| | - Richard C Turkington
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Helen G Coleman
- Cancer Epidemiology and Health Services Research Group, Centre for Public Health
| |
Collapse
|
40
|
Wu X, Zhang H, Chen C, Gong L, Wang Y, Zhu X, Wang H, Yu Z. High expression of Capn4 is associated with metastasis and poor prognosis in esophageal squamous cell carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:765-772. [PMID: 31938163 PMCID: PMC6957994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 12/02/2017] [Indexed: 06/10/2023]
Abstract
Calpain small subunit1 (Capn4) is present in various cancer types and is implicated in tumor metastasis. However, the role of Capn4 in esophageal squamous cell cancer (ESCC) has not been elucidated. In this study, immunohistochemistry was conducted to detect Capn4 expression and localization in 155 ESCC tissues and in 35 adjacent normal esophageal mucosal tissues. Following knockdown of Capn4 in esophageal cancer cells using RNA interference, we detected the migration and invasion ability of cells. The role of Capn4 on prognosis was evaluated using univariate and multivariate analysis in 155 ESCC patients. The immunohistochemistry results showed that Capn4 was highly expressed in ESCC tissues compared with normal peritumor esophageal tissues, and Capn4 overexpression was significantly related to tumor size (P = 0.027), tumor invasion depth (P = 0.019), and lymph node metastasis (P = 0.011). Knockdown of Capn4 drastically reduced migration and invasion of ESCC cells. Based on the results of the univariate analysis, patients with higher Capn4 had a poor prognosis. Through multivariate analysis, we found that Capn4 was an independent prognostic factor for overall survival in ESCC. These findings suggest that Capn4 overexpression contributes to the aggressive progression of ESCC and functions as a prognostic marker for patients with ESCC.
Collapse
Affiliation(s)
- Xianxian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Chuangui Chen
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Lei Gong
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Xiaolei Zhu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Haitong Wang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for CancerTianjin, China
| |
Collapse
|
41
|
Pan P, Peiffer DS, Huang YW, Oshima K, Stoner GD, Wang LS. Inhibition of the development of N-nitrosomethylbenzylamine-induced esophageal tumors in rats by strawberries and aspirin, alone and in combination. JOURNAL OF BERRY RESEARCH 2018; 8:137-146. [PMID: 29977412 PMCID: PMC6029707 DOI: 10.3233/jbr-170291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of two subtypes of esophageal cancer, with high incidence and mortality rates in developing countries. OBJECTIVE The current study investigated the potential chemoprotective effects of strawberries and aspirin against the development of rat esophageal papillomas, the precursors to ESCC. METHODS Using a prevention model, we administered study diets to rats before, during, and after N-nitrosomethylbenzylamine (NMBA) treatment. The effects of the four diets were evaluated: the control diet, 5% strawberry powder in the control diet, 0.01% aspirin in the drinking water, and the combination of strawberries and aspirin. At week 25, we euthanized all the rats and collected their esophagi to quantify tumor incidence, multiplicity, and burden, as well as for molecular analysis. RESULTS Both strawberries and aspirin significantly decreased esophageal tumor multiplicity, with the combination causing the most robust suppression. Aspirin alone and the combination decreased the total tumor burden in the esophagus. None of the diets had a significant effect on tumor incidence or the expression of COX-1 and COX-2. Strawberries and aspirin, alone and in combination, significantly suppressed squamous epithelial cell proliferation (PCNA). CONCLUSIONS Strawberries, aspirin, and their combination exhibit chemoprotective effects against NMBA-induced esophageal tumors in rats.
Collapse
Affiliation(s)
- Pan Pan
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel S. Peiffer
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Current: Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kiyoko Oshima
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Current: Department of Pathology, John Hopkins University, Baltimore, MD, USA
| | - Gary D. Stoner
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Corresponding authors. Gary D. Stoner, Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA. and Li-Shu Wang, Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, RM C4930, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA. Tel.: +1 414 955 2827; Fax: +1 414 955 6059;
| | - Li-Shu Wang
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Corresponding authors. Gary D. Stoner, Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA. and Li-Shu Wang, Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, RM C4930, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA. Tel.: +1 414 955 2827; Fax: +1 414 955 6059;
| |
Collapse
|
42
|
Zhang B, Fan X, Wang Z, Zhu W, Li J. Alpinumisoflavone radiosensitizes esophageal squamous cell carcinoma through inducing apoptosis and cell cycle arrest. Biomed Pharmacother 2017; 95:199-206. [PMID: 28843908 DOI: 10.1016/j.biopha.2017.08.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
Radiotherapy remains a mainstream treatment for patients with unresectable and locally advanced esophageal squamous cell carcinoma (ESCC). However, intrinsic radioresistance of ESCC tumors has largely compromised the efficacy of radiotherapy. The following study investigates the potential radiosensitizing effect of alpinumisoflavone (AIF) and explores its underlying mechanisms in ESCC. Briefly, our results showed that AIF could significantly increase radiosensitivity of ESCC cells both in vitro and in vivo, by increasing the effect of AIF on irradiation-induced DNA damage, apoptosis and cell cycle arrest. Mechanically, AIF aggravated irradiation-induced ROS generation in ESCC cells, which occurred via suppressing the expression of nuclear transcription factor Nrf2 and Nrf2-driven antioxidant molecule NQO-1 and HO-1. Collectively, we concluded that AIF functions as a potent radiosensitizer in human ESCC.
Collapse
Affiliation(s)
- Bin Zhang
- Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Xinglong Fan
- Qilu Hospital of Shandong University (Qingdao), Qingdao, China.
| | - Zhen Wang
- The 107th Hospital of People's Liberation Army, Yantai, China
| | - Wenyong Zhu
- Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| | - Jingbo Li
- Qilu Hospital of Shandong University (Qingdao), Qingdao, China
| |
Collapse
|
43
|
Mirzaei H, Goudarzi H, Eslami G, Faghihloo E. Role of viruses in gastrointestinal cancer. J Cell Physiol 2017; 233:4000-4014. [PMID: 28926109 DOI: 10.1002/jcp.26194] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022]
Abstract
Gastrointestinal cancers are a global public health problem, which represent a vast majority of all cancer-caused deaths in both men and women. On the other hand, viral pathogens have been long implicated as etiological factors in the onset of certain human cancers, including gastrointestinal tumors. In this regard, Human Papilloma Virus (HPV), Epstein-Barr Virus (EBV), and John Cunningham Virus (JCV) have been more strongly suggested to be involved in gastrointestinal carcinogenesis; so that, the association of HPV with oropharyngeal and anal cancers and also the association of EBV with gastric cancer have been etiologically confirmed by epidemiological and experimental investigations. Although, the association of other viruses is less evident, but may rely on co-factors for their oncogenic roles. Therefore, to improve the prevention and treatment of these classes of cancer, their association with viral agents as potential risk factors should be investigated with care. In this respect, the present review has focused on the existing literature on the subject of viral involvement in gastrointestinal tumorgenesis, by covering and discussing various gastrointestinal cancers, corresponding viral agents and their oncogenic aspects and then summarizing evidences either supporting or rejecting a causal role of these pathogens in gastrointestinal malignancies.
Collapse
Affiliation(s)
- Habibollah Mirzaei
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Qian X, Tan C, Yang B, Wang F, Ge Y, Guan Z, Cai J. Astaxanthin increases radiosensitivity in esophageal squamous cell carcinoma through inducing apoptosis and G2/M arrest. Dis Esophagus 2017; 30:1-7. [PMID: 28475750 DOI: 10.1093/dote/dox027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
Abstract
Nowadays esophageal squamous cell carcinoma (ESCC) is primarily treated by a comprehensive approach combining surgical resection and neoadjuvant chemo- or radiotherapy. However, ESCC is resistant to radiation therapy, resulting in its invasion, infiltration, and metastasis. It usually has rapidly progressed and has a poor outcome clinically. The purpose of this study is to determine the potential radiosensitizing effect of astaxanthin (ATX) and explore the underlying mechanisms in ESCC cells in vitro. ESCC cell lines were exposure to irradiation, in the presence or absence of ATX treatment. Cell viability and radiosensitization were tested by CCK8 assay and clonogenic survival assay, respectively. Cell apoptosis and the changes of cell cycle distribution were observed by flow cytometry. The protein expression of Bcl2, Bax, CyclinB1, and Cdc2 was examined by western blot analysis. It was shown that ATX improved radiosensitivity of ESCC cells and induced apoptosis and G2/M arrest via inhibiting Bcl2, CyclinB1, Cdc2, and promoting Bax expression. In conclusion, ATX might function as a promising radiosensitizer in ESCC cells by leading to apoptosis and G2/M arrest.
Collapse
|
45
|
Zhang Y, Liu J, Zhang W, Deng W, Yue J. Treatment of esophageal cancer with radiation therapy -a pan-Chinese survey of radiation oncologists. Oncotarget 2017; 8:34946-34953. [PMID: 28430590 PMCID: PMC5471024 DOI: 10.18632/oncotarget.16858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/28/2017] [Indexed: 01/04/2023] Open
Abstract
Lots of controversies were found about the treatment in relation to radiation therapy (RT) for esophageal squamous cell carcinoma (ESCC). We designed a questionnaire of these controversies to do a pan-Chinese survey of radiation oncologists (ROs). For operable ESCC, 53% ROs chose surgery plus postoperative chemoradiotherapy (CRT), while 40% chose preoperative CRT plus surgery. For target volume of postoperative RT, most ROs (92%) would delineate tumor bed plus involved lymph nodes region before surgery. For definitive RT, most ROs (81%) would give patients higher RT dose to 60-65Gy. For radiation target volume, most ROs would give patients prophylactic irradiation of the bilateral superclavicular-lymph nodes region for cervical ESCC (93%), and the left gastric lymph nodes region for lower thoracic ESCC (72%). For the treatment of mediastinal lymph nodes, 72% ROs preferred elective nodal irradiation, while 28% did the involved nodal irradiation. For concurrent chemotherapy regimen, PF (5-Fu + cisplatin) and TP (cisplatin + paclitaxel) were used widely (49% and 46%, respectively). During simulation, four-dimensional computer tomography (4D CT) was not widely used (48%), even for cervical or lower thoracic ESCC (52%). For daily RT delivery, only 66% ROs would perform imaging guidance RT daily. In summary, more controversies existed in the treatment of ESCC with RT in China, including treatment strategy, radiation dose and target contour. Future goals include standardization of treatment strategy, radiation dose, and target contour, and application of 4D CT and daily imaging guidance, and pursuit of randomized trials in Chinese population.
Collapse
Affiliation(s)
- Yun Zhang
- School of Medicine and Life Sciences, University of Jinan Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jing Liu
- Graduate Education Center, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | | | - Weiye Deng
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Division of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas School of Public Health at Houston, Houston, Texas, USA
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
46
|
Raghu Subramanian C, Triadafilopoulos G. Diagnosis and therapy of esophageal squamous cell dysplasia and early esophageal squamous cell cancer. Gastroenterol Rep (Oxf) 2017. [DOI: 10.1093/gastro/gox022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
47
|
Xie R, Wu SN, Gao CC, Yang XZ, Wang HG, Zhang JL, Yan W, Ma TH. MicroRNA-30d inhibits the migration and invasion of human esophageal squamous cell carcinoma cells via the post‑transcriptional regulation of enhancer of zeste homolog 2. Oncol Rep 2017; 37:1682-1690. [PMID: 28184915 DOI: 10.3892/or.2017.5405] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/06/2016] [Indexed: 11/09/2022] Open
Abstract
The present study was carried out to investigate the expression pattern, clinical significance and biological functions of microRNA-30d (miR-30d) in esophageal carcinogenesis. Quantitative real-time PCR was performed to detect the expression levels of miR-30d in esophageal squamous cell carcinoma (ESCC) tissues and cell lines. Then, associations between miR-30d expression and various clinicopathological features of patients with ESCC were statistically evaluated. In addition, the effects of miR-30d on the migration and invasion of two human ESCC cell lines transfected with miRNA or co-transfected with miRNA mimics and the expression vector of its target gene were determined. The results revealed that the expression levels of miR-30d were markedly decreased in ESCC tissues and cell lines, comparing with the corresponding normal controls. Notably, reduced expression of miR-30d occurred more frequently in ESCC patients with positive lymph node metastasis, moderate-poor differentiation and advanced tumor-node-metastasis stage than those with negative features. Functionally, enforced expression of miR-30d was found to inhibit cell invasion and migration of the ESCC cell lines. Luciferase reporter assay identified enhancer of zeste homolog 2 (EZH2) as a direct target gene of miR-30d. The expression level of EZH2 mRNA was negatively correlated with the expression of miR-30d in the ESCC tissues. Moreover, the inhibitory effect of miR-30d on ESCC cell motility was reversed by EZH2 overexpression. Collectively, these findings provide convincing evidence that decreased expression of miR-30d may be implicated in esophageal carcinogenesis and progression. We also confirmed miR-30d as a tumor-suppressor which may inhibit cancer cell motility by targeting EZH2, a potential therapeutic target for ESCC.
Collapse
Affiliation(s)
- Rui Xie
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Shang-Nong Wu
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Cheng-Cheng Gao
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiao-Zhong Yang
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hong-Gang Wang
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jia-Ling Zhang
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Tian-Heng Ma
- Department of Gastroenterology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
48
|
Wang L, Mou Y, Meng D, Sun Y, Chen X, Yang X, Jia C, Song X, Li X. MicroRNA-203 inhibits tumour growth and metastasis through PDPN. Clin Otolaryngol 2016; 42:620-628. [PMID: 27775879 DOI: 10.1111/coa.12785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVE MicroRNAs play an important role in regulating hypopharyngeal cancer development. miR-203 has been previously shown to possess antitumour capabilities in many cancers, but not in hypopharyngeal cancer. DESIGN Using human normal and hypopharyngeal cancer specimens, we explored the expression levels of miR-203 in the two groups and further correlated them with different stages of cancer and lymph node metastasis. SETTING AND PARTICIPANTS Applying human pharynx FaDu cancer cells and lentiviral transduction technique, we investigated the effects of miR-203 on cancer cell viability, migration and invasion. Moreover, we studied the novel relationship between miR-203 and podoplanin (PDPN) in hypopharyngeal cancer. RESULTS The downregulated levels of miR-203 in human hypopharyngeal cancer tissues were associated with advanced cancer stages and lymph node metastasis. High levels of miR-203 inhibited cell viability, migration and invasion of hypopharyngeal cancer cells. Further studies suggested miR-203 directly targeted and inhibited PDPN expression. PDPN silencing suppresses hypopharyngeal cancer cell abilities. In addition, PDPN overexpression was able to reverse miR-203 inhibitory effects on cell viability, migration and invasion. CONCLUSION PDPN acts as an oncogene to promote hypopharyngeal cancer cell viability, migration and invasion. miR-203 directly targets PDPN to suppress its expression, thus exerting inhibitory effects on cancer metastasis.
Collapse
Affiliation(s)
- L Wang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - Y Mou
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - D Meng
- Intensive Care Unit, Yuhuangding Hospital, Yantai, Shandong, China
| | - Y Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - X Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - X Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - C Jia
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - X Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital, Yantai, Shandong, China
| | - X Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
49
|
Abstract
The mammalian transcriptome includes a large number of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Some studies have reported that numerous kinds of miRNAs and lncRNAs have been implicated in playing key regulatory roles in the occurrence and development of digestive system malignances. Therefore, they are closely related to the clinical diagnosis, treatment and prognosis of digestive system malignances. This review focuses on the recent progress in research of miRNAs and lncRNAs in in digestive system malignancies and discusses their epigenetics roles as oncogenes or tumor suppressors. The current and future potential clinical applications of miRNAs and lncRNAs in digestive system malignancies are also discussed, with an aim to provide new ideas and means for the diagnosis, treatment and prognosis of digestive system malignancies.
Collapse
|