1
|
Antony JS, Herranz AM, Mohammadian Gol T, Mailand S, Monnier P, Rottenberger J, Roig-Merino A, Keller B, Gowin C, Milla M, Beyer TA, Mezger M. Accelerated generation of gene-engineered monoclonal CHO cell lines using FluidFM nanoinjection and CRISPR/Cas9. Biotechnol J 2024; 19:e2300505. [PMID: 38651269 DOI: 10.1002/biot.202300505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.
Collapse
Affiliation(s)
- Justin S Antony
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | | | - Tahereh Mohammadian Gol
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | | | | | - Jennifer Rottenberger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | - Markus Mezger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Zhu D, Wang Z, Xu Y, Lin J, Qiu M, Liu J, Li X. Novel application of anti-human Fc nanobody for screening high-producing CHO cells for monoclonal antibody. Eng Life Sci 2022; 22:608-618. [PMID: 36247827 PMCID: PMC9550735 DOI: 10.1002/elsc.202200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/08/2022] Open
Abstract
Animal-derived anti-IgG secondary antibodies are currently employed to stain and screen of human monoclonal antibody(mAb)-producing cells, but using animal-derived antibodies may raise the concerns of high cost, complicated operations and biological safety issues in biopharmaceutical manufacturing. Nanobodies(VHHs) are attractive forms of antibodies for their straightforward engineering and expression in both eukaryotic and prokaryotic systems. Using phage-displayed immune llama VHH library, we identified new anti-Fc VHHs that could bind to human Fc with high affinity. In GFP fusion format, the anti-Fc VHH-GFP generated dramatically stronger FACS signals than AF488 conjugated anti-IgG antibodies when used for staining mAb-producing CHO cells. Furthermore, preparative sorting of CHO cells based on anti-Fc VHH-GFP staining resulted in the enrichment of cell lines capable of synthesizing mAb at high productivity. This safe and cost-efficient anti-Fc VHH-GFP may optimize the process of generating highly productive cell lines for therapeutic mAb production compared to conventional animal-derived fluorescent antibodies.
Collapse
Affiliation(s)
- Di Zhu
- ChengduMedical CollegeSichuan ProvinceChina
| | - Zheng Wang
- Shanghai Bao Pharmaceuticals Co.Ltd.ShanghaiChina
| | - Yunxia Xu
- Shanghai Bao Pharmaceuticals Co.Ltd.ShanghaiChina
| | - Jing Lin
- ABLINK Biotech Co.Ltd.ChengduChina
| | - Mei Qiu
- ABLINK Biotech Co.Ltd.ChengduChina
| | - Jianghai Liu
- ChengduMedical CollegeSichuan ProvinceChina
- ABLINK Biotech Co.Ltd.ChengduChina
| | - Xinlei Li
- ChengduMedical CollegeSichuan ProvinceChina
| |
Collapse
|
3
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
4
|
Abolghasemi-Dehaghani S, Gharanfoli M, Habibi-Rezaei M, Khavari-Nejad RA. Enhanced recovery yield by utilizing an improved purification method for recombinant human follicle-stimulating hormone expressed in CHO cells: Applying CaptureSelect™-FSH affinity matrix. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2021.1960857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Mohsen Gharanfoli
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mehran Habibi-Rezaei
- Protein Biotechnology Research Lab (PBRL), School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
5
|
A Stable CHO K1 Cell Line for Producing Recombinant Monoclonal Antibody Against TNF-α. Mol Biotechnol 2021; 63:828-839. [PMID: 34089481 DOI: 10.1007/s12033-021-00329-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Monoclonal antibodies (mAbs) are one of the most significant molecules in protein therapeutics. They are employed in the field of immunology, oncology and organ transplant. They have been also been employed for alleviating several bacterial and viral infections. Moreover, they have revolutionized the area of targeted therapy and improved the quality of treatments, as compared to other cytotoxic drugs and therapies. mAbs bind to specific molecules on the antigen and exhibit specificity towards that molecule, i.e. epitope. Thus, mAbs have immense opportunity to be explored for personalized therapy. The introduction of targeted mAb-based therapeutics has promoted many important scientific achievements in rheumatology. This has warranted additional investigations for developing newer mAb producing clones, to supplement the limited industrial production of certain mAb therapeutics. In this investigation, an integrative approach comprising optimized expression, selection and expansion was adopted to develop a mammalian cell line expressing mAb against TNF-α.The resulting stable clone is anticipated to serve as an economic alternative to the industrial clones, especially for research purposes. The clone was constructed for development of biosimilar of the highly valued therapeutic antibody, Humira.
Collapse
|
6
|
Abstract
Large-scale recombinant expression of G protein-coupled receptors (GPCRs) is required for structure and function studies where there is a need for milligram amounts of protein in pure form. Here we describe a procedure for the construction of human embryonic kidney 293S (HEK293S) stable cell lines for inducible expression of the gene encoding bovine rhodopsin. The HEK293S cell line is particularly suitable for this application because of several favorable properties as a recombinant host including: its ease of transfection, its capacity for handling large amounts of protein cargo, and its ability to perform the necessary co- and post-translational modifications required for correct folding and processing of complex membrane proteins such as GPCRs. The procedures described here will focus on the HEK293S GnTI- cell line, an HEK293S derivative that is widely used for the production of glycoproteins modified homogeneously with truncated N-glycans.
Collapse
|
7
|
Mobasheri A, Choi H, Martín-Vasallo P. Over-Production of Therapeutic Growth Factors for Articular Cartilage Regeneration by Protein Production Platforms and Protein Packaging Cell Lines. BIOLOGY 2020; 9:biology9100330. [PMID: 33050357 PMCID: PMC7599991 DOI: 10.3390/biology9100330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/28/2022]
Abstract
Simple Summary Osteoarthritis (OA) is the most common form of arthritis across the world. Most of the existing drugs for OA treat the symptoms of pain and inflammation. There are no drugs that can dure the disease. There are a number of new treatments for OA including cell therapy and gene therapy. This articles outlines the concept behind TissueGene-C, a new biological drug for OA. This new treatment includes cartilage cells mixed with a genetically modified cell line called GP2-293, which is effectively a “drug factory”, over-producing the growth factors that are important for cartilage regeneration and changing the environment inside joints. The mixture is injected into the affected knee joint. These cells are designed to be short-lived and cannot reproduce. Therefore, after they have done their job, they die and are cleared by immune cells. This is a new and modern approach to treating OA and TissueGene-C is the prototype cell therapy for OA. In the future, it is entirely possible to combine different clones of genetically engineered cells like GP2-293 that have been designed to over-produce a growth factor or biological drug with cells from the cartilage endplate of the intervertebral disc to treat degeneration in the spine. Abstract This review article focuses on the current state-of-the-art cellular and molecular biotechnology for the over-production of clinically relevant therapeutic and anabolic growth factors. We discuss how the currently available tools and emerging technologies can be used for the regenerative treatment of osteoarthritis (OA). Transfected protein packaging cell lines such as GP-293 cells may be used as “cellular factories” for large-scale production of therapeutic proteins and pro-anabolic growth factors, particularly in the context of cartilage regeneration. However, when irradiated with gamma or x-rays, these cells lose their capacity for replication, which makes them safe for use as a live cell component of intra-articular injections. This innovation is already here, in the form of TissueGene-C, a new biological drug that consists of normal allogeneic primary chondrocytes combined with transduced GP2-293 cells that overexpress the growth factor transforming growth factor β1 (TGF-β1). TissueGene-C has revolutionized the concept of cell therapy, allowing drug companies to develop live cells as biological drug delivery systems for direct intra-articular injection of growth factors whose half-lives are in the order of minutes. Therefore, in this paper, we discuss the potential for new innovations in regenerative medicine for degenerative diseases of synovial joints using mammalian protein production platforms, specifically protein packaging cell lines, for over-producing growth factors for cartilage tissue regeneration and give recent examples. Mammalian protein production platforms that incorporate protein packaging eukaryotic cell lines are superior to prokaryotic bacterial expression systems and are likely to have a significant impact on the development of new humanized biological growth factor therapies for treating focal cartilage defects and more generally for the treatment of degenerative joint diseases such as OA, especially when injected directly into the joint.
Collapse
Affiliation(s)
- Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
- Versus Arthritis Centre for Sport, Exercise and Osteoarthritis Research, Queen’s Medical Centre, Nottingham NG7 2UH, UK
- Correspondence: or
| | - Heonsik Choi
- Kolon TissueGene, Inc., Rockville, MD 20850, USA;
- Healthcare Research Institute, Kolon Advanced Research Center, Kolon Industries, Inc., Magok-dong, Gangseo-gu, Seoul 07793, Korea
| | - Pablo Martín-Vasallo
- UD of Biochemistry and Molecular Biology, Instituto de Tecnologías Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, 38071 Tenerife, Spain;
| |
Collapse
|
8
|
Gupta K, Parasnis M, Jain R, Dandekar P. Vector-related stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol Adv 2019; 37:107415. [DOI: 10.1016/j.biotechadv.2019.107415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
|
9
|
Hassan LA, Al‐Ghobashy MA, Abbas SS. Evaluation of the pattern and kinetics of degradation of adalimumab using a stability‐indicating orthogonal testing protocol. Biomed Chromatogr 2019; 33:e4676. [DOI: 10.1002/bmc.4676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/28/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Lamiaa A. Hassan
- National Organization for Research and Control of Biologicals Egypt
| | - Medhat A. Al‐Ghobashy
- Analytical Chemistry Department, Faculty of PharmacyCairo University Egypt
- Bioanalysis Research Group, School of PharmacyNewgiza University Egypt
| | - Samah S. Abbas
- Analytical Chemistry Department, Faculty of PharmacyCairo University Egypt
| |
Collapse
|