1
|
Dos Santos Breda JC, Santos LGC, Filho EJF, da Costa Flaiban KKM, Lisbôa JAN. Metabolic profile of Holstein × Gyr cows: effects of parity and body condition score at calving. Trop Anim Health Prod 2025; 57:224. [PMID: 40381111 DOI: 10.1007/s11250-025-04467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/30/2025] [Indexed: 05/19/2025]
Abstract
This study aimed to evaluate the effects of parity and body condition score at calving on the metabolic profile of high-producing Holstein × Gyr cows during the transition period. Cows were divided into groups according to the parity: primiparous (n = 20), biparous (n = 20), multiparous (n = 20); and according to the BCS at calving: high (HBCS; > 3.5; n = 20), normal (NBCS; 3.0 - 3.5; n = 21), and low (LBCS; < 3.0; n = 15). BCS, serum non- esterified fatty acids (NEFA), beta-hydroxybutirate (BHB), cholesterol, total protein (TP), albumin, blood urea nitrogen (BUN), total calcium (Ca), phosphorus (P), magnesium (Mg), aspartateaminotransferase (AST), gamma-glutamyltransferase (GGT), and plasma glucose levels were measured on -21, -7, 0, 7, 21, and 42 days relative to parturition. Differences between parity groups were observed for most metabolites; however, these differences occurred at a few time points and were more frequent at 7 and 21 days in milk (DIM). At 21 DIM, primiparous cows had lower BCS, BHB, cholesterol, and TP values and intermediate NEFA and Mg values. Multiparous cows exhibited lower Ca values at calving than primiparous cows. Differences between groups according to BCS at calving were observed mainly at parturition and during early lactation. HBCS cows had significantly differences in NEFA values than LBCS cows at calving and in BHB values than LBCS cows at calving and at 7 and 21 DIM. Subclinical hypocalcemia at calving was the main imbalance (53.1%) mainly affecting multiparous cows. It can be concluded that well-nourished high-producing Holstein × Gyr cows are metabolically balanced, and that parity and BCS at calving do not significantly impact the metabolic profile of Holstein x Gyr cows.
Collapse
Affiliation(s)
- José Carlos Dos Santos Breda
- Universidade Estadual de Londrina Universidade Estadual de Londrina (UEL), Campus Universitário, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, PR, 86057-970, Brazil.
| | - Luis Gabriel Cucunubo Santos
- Universidade Estadual de Londrina Universidade Estadual de Londrina (UEL), Campus Universitário, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, PR, 86057-970, Brazil
| | - Elias Jorge Facury Filho
- Escola de Veterinária, Universidade Federal de Minas Gerais, Campus da Pampulha, Av. Pres. Antônio Carlos, Belo Horizonte, MG, 6627, Brazil
| | - Karina Keller Marques da Costa Flaiban
- Universidade Estadual de Londrina Universidade Estadual de Londrina (UEL), Campus Universitário, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, PR, 86057-970, Brazil
| | - Júlio Augusto Naylor Lisbôa
- Universidade Estadual de Londrina Universidade Estadual de Londrina (UEL), Campus Universitário, Rodovia Celso Garcia Cid, PR 445, Km 380, Londrina, PR, 86057-970, Brazil
| |
Collapse
|
2
|
Sun R, Jiang X, Hao Y, Li Y, Bai Y, Xia C, Song Y. Effect of body condition score loss during the transition period on metabolism, milk yield and health in Holstein cows. J Vet Res 2025; 69:91-99. [PMID: 40144053 PMCID: PMC11936095 DOI: 10.2478/jvetres-2025-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/30/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction This study aimed to investigate the impact of perinatal body condition score (BCS) and its subsequent loss on postpartum performance and health outcomes in dairy cattle. Material and Methods A total of 156 cows were randomly selected, and blood samples were collected at -21, 0, 7, 14, 21, 28 and 50 days relative to calving. Milk yield and disease incidence in dairy cows were recorded after calving. These cows were subsequently categorised into three groups based on BCS loss during the transition period: a no-BCS-loss (maintained BCS) group (M, 0 < BCS loss ≤ 0.25), low-BCS-loss group (L, 0.25 < BCS loss ≤ 0.5), and high-BCS-loss group (H, BCS loss > 0.5). Results All groups experienced a decline in BCS from 21 days prepartum through 50 days postpartum (P-value < 0.01). Cows in the H group had the highest levels of non-esterified fatty acids, beta-hydroxybutyrate, total cholesterol, aspartate aminotransferase, albumin, malondialdehyde and leptin (P-value < 0.05). Concomitantly, total antioxidant capacity, as well as the levels of insulin and glucose, were the lowest in group H (P-value < 0.05). Plasma concentrations of Ca, P, Mg and K, urea nitrogen and total bilirubin were not significantly influenced by BCS loss (P-value > 0.05). Cows in the M group were less likely to develop ketosis, mastitis, retained placenta, displaced abomasum and metritis than those in the H group, and cows in the H group produced the lowest milk yields (P-value < 0.05). Conclusion These observations collectively indicate that BCS loss is associated with measurable changes in energy balance, liver function, oxidative stress, daily milk production and disease incidence during the transition period.
Collapse
Affiliation(s)
- Rui Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, China
| | - Xuejie Jiang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, China
| | - Yu Hao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, China
| | - Ying Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, China
| | - Yunlong Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, China
| | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, China
| | - Yuxi Song
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing163319, China
| |
Collapse
|
3
|
Zhou S, Ma N, Meng M, Chang G, Shen X. Lentinan Ameliorates β-Hydroxybutyrate-Induced Lipid Metabolism Disorder in Bovine Hepatocytes by Upregulating the Expression of Acetyl-coenzyme A Acetyltransferase 2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17392-17404. [PMID: 39056217 DOI: 10.1021/acs.jafc.4c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ketosis in dairy cows is often accompanied by the dysregulation of lipid homeostasis in the liver. Acetyl-coenzyme A acetyltransferase 2 (ACAT2) is specifically expressed in the liver and is important for regulating lipid homeostasis in ketotic cows. Lentinan (LNT) has a wide range of pharmacological activities, and this study investigates the protective effects of LNT on β-hydroxybutyrate (BHBA)-induced lipid metabolism disorder in bovine hepatocytes (BHECs) and elucidates the underlying mechanisms. BHECs were first pretreated with LNT to investigate the effect of LNT on BHBA-induced lipid metabolism disorder in BHECs. ACAT2 was then silenced or overexpressed to investigate whether this mediated the protective action of LNT against BHBA-induced lipid metabolism disorder in BHECs. Finally, BHECs were treated with LNT after silencing ACAT2 to investigate the interaction between LNT and ACAT2. LNT pretreatment effectively enhanced the synthesis and absorption of cholesterol, inhibited the synthesis of triglycerides, increased the expression of ACAT2, and elevated the contents of very low-density lipoprotein and low-density lipoprotein cholesterol, thereby ameliorating BHBA-induced lipid metabolism disorder in BHECs. The overexpression of ACAT2 achieved a comparable effect to LNT pretreatment, whereas the silencing of ACAT2 aggravated the effect of BHBA on inducing disorder in lipid metabolism in BHECs. Moreover, the protective effect of LNT against lipid metabolism disorder in BHBA-induced BHECs was abrogated upon silencing of ACAT2. Thus, LNT, as a natural protective agent, can enhance the regulatory capacity of BHECs in maintaining lipid homeostasis by upregulating ACAT2 expression, thereby ameliorating the BHBA-induced lipid metabolism disorder.
Collapse
Affiliation(s)
- Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P. R. China
| |
Collapse
|
4
|
Qiao K, Jiang R, Contreras GA, Xie L, Pascottini OB, Opsomer G, Dong Q. The Complex Interplay of Insulin Resistance and Metabolic Inflammation in Transition Dairy Cows. Animals (Basel) 2024; 14:832. [PMID: 38539930 PMCID: PMC10967290 DOI: 10.3390/ani14060832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 11/11/2024] Open
Abstract
During the transition period, dairy cows exhibit heightened energy requirements to sustain fetal growth and lactogenesis. The mammary gland and the growing fetus increase their demand for glucose, leading to the mobilization of lipids to support the function of tissues that can use fatty acids as energy substrates. These physiological adaptations lead to negative energy balance, metabolic inflammation, and transient insulin resistance (IR), processes that are part of the normal homeorhetic adaptations related to parturition and subsequent lactation. Insulin resistance is characterized by a reduced biological response of insulin-sensitive tissues to normal physiological concentrations of insulin. Metabolic inflammation is characterized by a chronic, low-level inflammatory state that is strongly associated with metabolic disorders. The relationship between IR and metabolic inflammation in transitioning cows is intricate and mutually influential. On one hand, IR may play a role in the initiation of metabolic inflammation by promoting lipolysis in adipose tissue and increasing the release of free fatty acids. Metabolic inflammation, conversely, triggers inflammatory signaling pathways by pro-inflammatory cytokines, thereby leading to impaired insulin signaling. The interaction of these factors results in a harmful cycle in which IR and metabolic inflammation mutually reinforce each other. This article offers a comprehensive review of recent advancements in the research on IR, metabolic inflammation, and their intricate interrelationship. The text delves into multiple facets of physiological regulation, pathogenesis, and their consequent impacts.
Collapse
Affiliation(s)
- Kaixi Qiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Renjiao Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| | - Genaro Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA;
| | - Lei Xie
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Osvaldo Bogado Pascottini
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Geert Opsomer
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium; (L.X.); (O.B.P.); (G.O.)
| | - Qiang Dong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Xianyang 712100, China; (K.Q.); (R.J.)
| |
Collapse
|
5
|
Zhou S, Chen M, Meng M, Ma N, Xie W, Shen X, Li Z, Chang G. Subclinical ketosis leads to lipid metabolism disorder by downregulating the expression of acetyl-coenzyme A acetyltransferase 2 in dairy cows. J Dairy Sci 2023; 106:9892-9909. [PMID: 37690731 DOI: 10.3168/jds.2023-23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Ketosis is a metabolic disease that often occurs in dairy cows postpartum and is a result of disordered lipid metabolism. Acetyl-coenzyme A (CoA) acetyltransferase 2 (ACAT2) is important for balancing cholesterol and triglyceride (TG) metabolism; however, its role in subclinical ketotic dairy cows is unclear. This study aimed to explore the potential correlation between ACAT2 and lipid metabolism disorders in subclinical ketotic cows through in vitro and in vivo experiments. In the in vivo experiment, liver tissue and blood samples were collected from healthy cows (CON, n = 6, β-hydroxybutyric acid [BHBA] concentration <1.0 mM) and subclinical ketotic cows (subclinical ketosis [SCK], n = 6, BHBA concentration = 1.2-3.0 mM) to explore the effect of ACAT2 on lipid metabolism disorders in SCK cows. For the in vitro experiment, bovine hepatocytes (BHEC) were used as the model. The effects of BHBA on ACAT2 and lipid metabolism were investigated via BHBA concentration gradient experiments. Subsequently, the relation between ACAT2 and lipid metabolism disorder was explored by transfection with siRNA of ACAT2. Transcriptomics showed an upregulation of differentially expression genes during lipid metabolism and significantly lower ACAT2 mRNA levels in the SCK group. Compared with the CON group in vivo, the SCK group showed significantly higher expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulator element binding protein 1c (SREBP1c) and significantly lower expression levels of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl-transferase 1A (CPT1A), sterol regulatory element binding transcription factor 2 (SREBP2), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Moreover, the SCK group had a significantly higher liver TG content and significantly lower plasma total cholesterol (TC) and free cholesterol content. These results were indicative of TG and cholesterol metabolism disorders in the liver of dairy cows with SCK. Additionally, the SCK group showed an increased expression of perilipin-2 (PLIN2), decreased expression of apolipoprotein B, and decreased plasma concentration of very low-density lipoproteins (VLDL) and low-density lipoproteins cholesterol (LDL-C) by downregulating ACAT2, which indicated an accumulation of TG in liver. In vitro experiments showed that BHBA induced an increase in the TG content of BHEC, decreased content TC, increased expression of PPARγ and SREBP1c, and decreased expression of PPARα, CPT1A, SREBP2, and HMGCR. Additionally, BHBA increased the expression of PLIN2 in BHEC, decreased the expression and fluorescence intensity of ACAT2, and decreased the VLDL and LDL-C contents. Furthermore, silencing ACAT2 expression increased the TG content; decreased the TC, VLDL, and LDL-C contents; decreased the expression of HMGCR and SREBP2; and increased the expression of SREBP1c; but had no effect on the expression of PLIN2. These results suggest that ACAT2 downregulation in BHEC promotes TG accumulation and inhibits cholesterol synthesis, leading to TG and cholesterol metabolic disorders. In conclusion, ACAT2 downregulation in the SCK group inhibited cholesterol synthesis, increased TG synthesis, and reduced the contents of VLDL and LDL-C, eventually leading to disordered TG and cholesterol metabolism.
Collapse
Affiliation(s)
- Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Mengru Chen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Zhixin Li
- Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China.
| |
Collapse
|
6
|
Breda JCDS, Facury Filho EJ, Flaiban KKDC, Lisboa JAN. Effect of Parity, Body Condition Score at Calving, and Milk Yield on the Metabolic Profile of Gyr Cows in the Transition Period. Animals (Basel) 2023; 13:2509. [PMID: 37570316 PMCID: PMC10417048 DOI: 10.3390/ani13152509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to evaluate the effects of parity, body condition score (BCS) at calving, and milk yield on the metabolic profile of Gyr (Zebu) cows. Healthy cows in late pregnancy were grouped according to parity (primiparous, biparous, and multiparous); to BCS scale at calving (high-HBCS and normal-NBCS); and to milk yield (high-HP and moderate-MP production). BCS was assessed, and blood samples were collected on -21, -7, 0, 7, 21, and 42 days relative to parturition. The concentrations of non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHB), cholesterol, glucose, total protein (TP), albumin, total calcium (Ca), phosphorus (P), and magnesium (Mg); and activities of aspartate aminotransferase and gamma-glutamyltransferase were measured. Data were analyzed by two-way repeated measures ANOVA. The frequencies of high lipomobilization, subclinical ketosis, subclinical hypocalcemia (SCH), and the occurrence of diseases during early lactation were established. Regardless of grouping, NEFA, BHB, and cholesterol increased during early lactation; glucose showed higher values at calving; TP and albumin were higher at 21 and 42 DIM; and Ca, P, and Mg were lower at calving. Parity had little effect on the metabolic profile, HBCS did not differ from NBCS cows, and HP did not differ from MP cows in most metabolites. High lipomobilization in early lactation and SCH at calving were the most common imbalances but were not related to postpartum diseases. High-yielding Gyr cows have a balanced metabolic profile during the transition period, with few biologically relevant effects of parity, BCS at parturition, or milk yielded.
Collapse
Affiliation(s)
- José Carlos dos Santos Breda
- Department of Veterinary Clinic, Veterinary School, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| | - Elias Jorge Facury Filho
- Department of Veterinary Clinic and Surgery, Veterinary School, Universidade Federal de Minas Gerais, Campus Pampulha, Belo Horizonte 31270-901, MG, Brazil;
| | | | - Julio Augusto Naylor Lisboa
- Department of Veterinary Clinic, Veterinary School, Universidade Estadual de Londrina, Londrina 86057-970, PR, Brazil
| |
Collapse
|
7
|
Ning M, Zhao Y, Dai D, Yao C, Liu H, Fang L, Wang B, Zhang Y, Cao J. Gene co-expression network and differential expression analyses of subcutaneous white adipose tissue reveal novel insights into the pathological mechanisms underlying ketosis in dairy cows. J Dairy Sci 2023:S0022-0302(23)00303-X. [PMID: 37268588 DOI: 10.3168/jds.2022-22941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/30/2023] [Indexed: 06/04/2023]
Abstract
Ketosis is a common nutritional metabolic disease during the perinatal period in dairy cows. Although various risk factors have been identified, the molecular mechanism underlying ketosis remains elusive. In this study, subcutaneous white adipose tissue (sWAT) was biopsied for transcriptome sequencing on 10 Holstein cows with type II ketosis [blood β-hydroxybutyric acid (BHB) >1.4 mmol/L; Ket group] and another 10 cows without type II ketosis (BHB ≤1.4 mmol/L; Nket group) at d 10 after calving. Serum concentrations of nonesterified fatty acids (NEFA) and BHB, as indicators of excessive fat mobilization and circulating ketone bodies, respectively, were significantly higher in the Ket group than in the Nket group. Aspartate transaminase (AST) and total bilirubin (TBIL), as indicators of liver damage, were higher in the Ket group than in the Nket group. Weighted gene co-expression network analysis (WGCNA) of the sWAT transcriptome revealed modules significantly correlated with serum BHB, NEFA, AST, TBIL, and total cholesterol. The genes in these modules were enriched in the regulation of the lipid biosynthesis process. Neurotrophic tyrosine kinase receptor type 2 (NTRK2) was identified as the key hub gene by intramodular connectivity, gene significance, and module membership. Quantitative reverse transcription PCR analyses for these samples, as well as a set of independent samples, validated the downregulation of NTRK2 expression in the sWAT of dairy cows with type II ketosis. NTRK2 encodes tyrosine protein kinase receptor B (TrkB), which is a high-affinity receptor for brain-derived neurotrophic factor, suggesting that abnormal lipid mobilization in cows with type II ketosis might be associated with impaired central nervous system regulation of adipose tissue metabolism, providing a novel insight into the pathogenesis underlying type II ketosis in dairy cows.
Collapse
Affiliation(s)
- Mao Ning
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yihan Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Dongmei Dai
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chang Yao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huatao Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lingzhao Fang
- The Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus 8000, Denmark; MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Bo Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Jie Cao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Abstract
The 6-week period encompassing parturition, termed the transition period, is recognized as the most fragile period in the life cycle of the ruminant animal. The period accounts for the greatest risk of health events that can adversely affect animal health, lactational performance, and future reproductive success. Critical endocrine and metabolic adaptations take place in allowing the animal to change nutrient priorities from supporting pregnancy to sustaining lactation. A reductionist perspective of underlying pathogenesis provided minimal metabolic disease prevalence improvement. Recent research has recognized metabolic regulatory complexity and role for activated inflammatory response underpinning dysregulation of homeorhesis during transition.
Collapse
Affiliation(s)
- Robert J Van Saun
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, Pennsylvania State University, 108 C Animal, Veterinary and Biomedical Sciences Building, University Park, PA 16802-3500, USA.
| |
Collapse
|
9
|
Ketosis Alters Transcriptional Adaptations of Subcutaneous White Adipose Tissue in Holstein Cows during the Transition Period. Animals (Basel) 2022; 12:ani12172238. [PMID: 36077956 PMCID: PMC9454750 DOI: 10.3390/ani12172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ketosis is a common nutritional, metabolic disease during the perinatal period in dairy cows characterized by elevated blood β-hydroxybutyrate (BHBA). In this study, RNA sequencing (RNA-seq) was performed to investigate adaptive changes in adipose tissue during the perinatal period of dairy cows. Blood and tailhead subcutaneous white adipose tissue (sWAT) were obtained from ketotic cows (Ket = 8, BHBA ≥ 1.4 mmol/L) and non-ketotic cows (Nket = 6, BHBA < 1.4 mmol/L) 21 d pre-partum and 10 d post-partum. Compared with pre-partum, decreased lipid synthesis due to down-regulation of PCK1 may be in a strong association with clinical ketosis. Simultaneously, PCK2 was downregulated in the Ket postnatally compared to its expression prenatally, and the expression of PCK2 was 2.7~4.2 times higher than that of PCK1, implying a more severe lipid storage impairment in the Ket. Moreover, compared to pre-partum, the upregulated differentially expressed genes post-partum in the Ket were enriched in the inflammatory response biological process. The higher expression of TNC (tenascin C) in the post-partum Ket relative to the Nket suggested that the adipose tissue of ketotic cows might also be accompanied by tissue fibrosis. Notably, pre-partum CD209 was higher in the Ket than in the Nket, which might be used as a candidate marker for the pre-partum prediction of ketosis. Combined with published gene expression traits, these results suggested that inflammation leads to a more widespread downregulation of the lipid synthesis gene network in adipose tissue in ketotic cows. Additionally, sWAT in post-partum cows with ketosis might also be accompanied by tissue fibrosis which could make the treatment of ketosis more difficult.
Collapse
|
10
|
Daudon M, Ramé C, Estienne A, Price C, Dupont J. Impact of fibronectin type III domain-containing family in the changes in metabolic and hormonal profiles during peripartum period in dairy cows. Front Vet Sci 2022; 9:960778. [PMID: 35968020 PMCID: PMC9363589 DOI: 10.3389/fvets.2022.960778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/07/2022] [Indexed: 12/29/2022] Open
Abstract
The peripartum period in dairy cows is frequently associated with excessive lipolysis due to Negative Energy Balance (NEB). These metabolic disorders are the cause of various pathologies. Some metabolites such as β-hydroxybutyrate (BHBA) and Non-Esterified Fatty Acids (NEFA) are known to be biomarkers of NEB in dairy cows. The involvement of adipokines, including adiponectin and leptin, during fat mobilization in the peripartum period is well described, but little is known about the impact of myokines at this time. Fibronectin type III domain-containing proteins (FNDC) are myokines and adipokines recently discovered to play a role in metabolic dysfunctions. This study aimed to evaluate some FNDCs (FNDC5, 4, 3A and B) as potential plasma and adipose tissue indicators of NEB in cattle. We measured plasma FNDC concentrations and adipose tissue FNDC gene expression during the peripartum period, 4 weeks before the estimated calving day (4WAP), one (1WPP) and 16 (16WPP) weeks postpartum in two groups of dairy cows with low NEB (LNEB, n = 8) and high NEB (HNEB, n = 13) at 1WPP. Using specific bovine ELISAs, only plasma FNDC5 concentrations varied during the peripartum period in both LNEB and HNEB animals; concentrations were higher at 1WPP as compared to 4WAP and 16 WPP. FNDC5 plasma concentrations was negatively correlated with dry matter intake, live body weight, variation of empty body weight and glucose concentrations, and positively correlated with plasma non-esterified fatty acids and BHBA concentrations. Subcutaneous adipose tissue contained abundant FNDC5 mRNA and protein, as measured by RT-qPCR and immunoblotting, respectively. We also observed that FNDC5 mRNA abundance in subcutaneous adipose tissue was higher at 1 WPP as compared to 4WAP and 16WPP in HNEB cows and higher at 1 WPP as compared to 4 WAP in LNEB cows, and was higher in HNEB than in LNEB animals during early lactation. Finally, we showed that recombinant human irisin (a fragmented product of FNDC5) increased the release of glycerol and abundance of mRNA encoding adipose triglyceride lipase and hormone-sensitive-lipase in bovine and human adipose tissue explants. In conclusion, FNDC5 is expressed in bovine adipose tissue and may be involved in lipid mobilization and regulation of NEB in cattle.
Collapse
Affiliation(s)
- Mathilde Daudon
- CNRS, IFCE, INRAE, Université de Tours, PRC, Breeding system and Animal Physiology Department, Nouzilly, France
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Christelle Ramé
- CNRS, IFCE, INRAE, Université de Tours, PRC, Breeding system and Animal Physiology Department, Nouzilly, France
| | - Anthony Estienne
- CNRS, IFCE, INRAE, Université de Tours, PRC, Breeding system and Animal Physiology Department, Nouzilly, France
| | - Christopher Price
- Centre de Recherche en Reproduction et Fertilité, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, QC, Canada
- Christopher Price
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, Breeding system and Animal Physiology Department, Nouzilly, France
- *Correspondence: Joëlle Dupont
| |
Collapse
|
11
|
Zachut M, Contreras GA. Symposium review: Mechanistic insights into adipose tissue inflammation and oxidative stress in periparturient dairy cows. J Dairy Sci 2022; 105:3670-3686. [DOI: 10.3168/jds.2021-21225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
|
12
|
WANKHADE PRATIKRAMESH, MANIMARAN AYYASAMY, KUMARESAN ARUMUGAM, PATBANDHA TAPASK, SIVARAM MUNIANDY, JEYAKUMAR SAKTHIVEL, RAJENDRAN DURAISAMY. Prediction of postpartum performances of transition Zebu (Bos indicus) cows using receiver operating characteristics analysis. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i3.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Receiver Operating Characteristics (ROC) analysis is a popular method to discriminate between the two conditions of tested animals. In this study, we estimated accuracy and threshold values of metabolic (Dry matter Intake; DMI and Body Condition Score: BCS, NEFA and BHBA) and immune indicators (Haptoglobin: Hp, Serum Amyloid A: SAA, IL-6, TNF-a, IL-1b, and IL-8) during transition period (–21, –14, –7, 0, +3, +7, +14 and +21 days) to predict the high yielding (HY) and pregnant Deoni cows. ROC analysis revealed that SAA (–21 d), IL-6 (–21 and –7 d), BCS (–7 d) and BHBA (–7 d) during pre-partum period, differentiated HY from low or medium yielder (LY/MY) cows with moderate to excellent accuracy (AUC >0.8). During postpartum period, IL-6 (+7 d), TNF-a (+21 d), DMI (+21 d), NEFA (+14 d and +21 d) and BHBA (+21 d) levels had moderate to excellent accuracy to differentiate HY from LY or MY cows. IL-6 (–14 d and –7 d), TNF-a (–14 d) and DMI (–21 d; above 2 kg/100 kg BW) during pre-partum period while, SAA (+3 d and +7 d), IL-6 (+3 and +21 d) and TNF-a (+7 and +21 d) during postpartum period were significantly predicted the pregnant cows with moderate to excellent accuracy. Altogether, it is concluded that SAA, IL-6 and TNF-a levels had higher accuracy in discrimination of HY and pregnant cows from LY or MY and non-pregnant cows, respectively. Therefore, their corresponding threshold values could be used for predicting HY and pregnant Zebu (Deoni) cows.
Collapse
|
13
|
Milanesi M, Passamonti MM, Cappelli K, Minuti A, Palombo V, Sgorlon S, Capomaccio S, D’Andrea M, Trevisi E, Stefanon B, Williams JL, Ajmone-Marsan P. Genetic Regulation of Biomarkers as Stress Proxies in Dairy Cows. Genes (Basel) 2021; 12:genes12040534. [PMID: 33917627 PMCID: PMC8067459 DOI: 10.3390/genes12040534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023] Open
Abstract
Stress in livestock reduces productivity and is a welfare concern. At a physiological level, stress is associated with the activation of inflammatory responses and increased levels of harmful reactive oxygen species. Biomarkers that are indicative of stress could facilitate the identification of more stress-resilient animals. We examined twenty-one metabolic, immune response, and liver function biomarkers that have been associated with stress in 416 Italian Simmental and 436 Italian Holstein cows which were genotyped for 150K SNPs. Single-SNP and haplotype-based genome-wide association studies were carried out to assess whether the variation in the levels in these biomarkers is under genetic control and to identify the genomic loci involved. Significant associations were found for the plasma levels of ceruloplasmin (Bos taurus chromosome 1-BTA1), paraoxonase (BTA4) and γ-glutamyl transferase (BTA17) in the individual breed analysis that coincided with the position of the genes coding for these proteins, suggesting that their expression is under cis-regulation. A meta-analysis of both breeds identified additional significant associations with paraoxonase on BTA 16 and 26. Finding genetic associations with variations in the levels of these biomarkers suggests that the selection for high or low levels of expression could be achieved rapidly. Whether the level of expression of the biomarkers correlates with the response to stressful situations has yet to be determined.
Collapse
Affiliation(s)
- Marco Milanesi
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (A.M.); (E.T.); (J.L.W.)
- Department for Innovation in Biological, Agro-Food and Forest Systems—DIBAF, Università della Tuscia, 01100 Viterbo, Italy
| | - Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (A.M.); (E.T.); (J.L.W.)
| | - Katia Cappelli
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (K.C.); (S.C.)
| | - Andrea Minuti
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (A.M.); (E.T.); (J.L.W.)
| | - Valentino Palombo
- Dipartimento Agricoltura Ambiente e Alimenti, Università del Molise, 86100 Campobasso, Italy; (V.P.); (M.D.)
| | - Sandy Sgorlon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali. Università degli Studi di Udine, 33100 Udine, Italy; (S.S.); (B.S.)
| | - Stefano Capomaccio
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy; (K.C.); (S.C.)
| | - Mariasilvia D’Andrea
- Dipartimento Agricoltura Ambiente e Alimenti, Università del Molise, 86100 Campobasso, Italy; (V.P.); (M.D.)
| | - Erminio Trevisi
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (A.M.); (E.T.); (J.L.W.)
| | - Bruno Stefanon
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali. Università degli Studi di Udine, 33100 Udine, Italy; (S.S.); (B.S.)
| | - John Lewis Williams
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (A.M.); (E.T.); (J.L.W.)
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5371, Australia
| | - Paolo Ajmone-Marsan
- Department of Animal Science, Food and Nutrition—DIANA, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (M.M.); (M.M.P.); (A.M.); (E.T.); (J.L.W.)
- Nutrigenomics and Proteomics Research Center-PRONUTRIGEN, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
- Correspondence:
| |
Collapse
|
14
|
Changes in Saliva Analytes in Dairy Cows during Peripartum: A Pilot Study. Animals (Basel) 2021; 11:ani11030749. [PMID: 33803247 PMCID: PMC8000156 DOI: 10.3390/ani11030749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary The use of saliva as a biological fluid to assess welfare and health status is gaining interest nowadays since it can be collected by non-invasive methods without specialized staff. The possibility of measuring analytes in saliva by techniques adapted to automated analyzers is cost-effective, reliable, and replicable. These analytes can provide information useful for the evaluation of welfare and health in dairy cows. In this pilot study, a total of 26 salivary analytes were measured in healthy dairy cows along their peripartum period to assess possible changes and associations with their inflammatory, energy, and milk yield status. Salivary analytes related to stress (cortisol, salivary alpha-amylase, butyrylcholinesterase, and total esterase), immunity (adenosine deaminase), oxidative status (Trolox equivalent antioxidant capacity and the advanced oxidation protein products), and general metabolism (creatine kinase, γ-glutamyl transferase, urea, triglycerides, glucose, and lactate) had significant changes throughout this period. This study indicated that the saliva of dairy cows shows changes in its composition during the transition period and potentially can be a source of biomarkers for monitoring health and welfare. Abstract This pilot study aimed to study the possible changes in a profile of 26 salivary analytes in thirteen healthy dairy cows along their peripartum period. Analytes associated with the stress (salivary cortisol, salivary alpha-amylase, butyrylcholinesterase, and total esterase), inflammation (adenosine deaminase), oxidative status (total antioxidant capacity and the advanced oxidation protein products), and general metabolism (creatine kinase, γ-glutamyl transferase, urea, triglycerides, glucose, and lactate) varied along the sampling times. A positive correlation between the white blood cells counts, and the lipase, Trolox equivalent antioxidant capacity, advanced oxidation protein products, and lactate levels in saliva were observed at the delivery. A linear association between selected salivary analytes at different sampling times and the milk yield after calving was observed. In conclusion, in our experimental conditions, it was observed that the peripartum period in dairy cows can induce changes in salivary analytes. Some of them were associated with inflammatory status and the capacity of milk production after calving.
Collapse
|
15
|
Effects of dietary conjugated linoleic acid on metabolic status, BW and expression of genes related to lipid metabolism in adipose tissue of dairy cows during peripartum. Animal 2021; 15:100105. [PMID: 33579649 DOI: 10.1016/j.animal.2020.100105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/24/2022] Open
Abstract
Conjugated linoleic acid (CLA) dietary supplementation reduces milk fat content and yield, but its effects on lipid metabolism and energy status remain controversial. The objective of this study was to investigate the effects of dietary CLA on adipose tissue (AT) mRNA abundance of genes related to lipid metabolism, plasma indicators of metabolic status, body condition score (BCS) and BW changes in dairy cows. Sixteen multiparous Holstein cows (3.2 ± 1.4 lactations, 615 ± 15 kg BW) were randomly assigned to treatments: 1) CLA; rumen-protected CLA (75 g/d) or 2) Control; equivalent amount of rumen inert fatty acid (FA) as the previous diet (78 g/d), from -20.2 ± 3.2 (mean ± SEM) to 21d relative to calving (d 0). Subcutaneous AT was biopsied from the tail-head region at d 21 to determine the mRNA abundance of genes related to lipid metabolism. Blood samples were collected at -20.2 ± 3.2, 0, 7, 14 and 21d relative to calving to determine plasma non-esterified fatty acids (NEFA), beta-hydroxybutyrate (BHBA), insulin and glucose. Conjugated linoleic acid decreased milk fat yield and milk fat content by 15 and 16%, respectively. Cows fed CLA had lower plasma NEFA and BHBA and greater glucose and insulin concentrations (P < 0.05). Mean BCS at 21d postpartum was greater (P < 0.01; 2.89 vs 2.25), and BCS loss from the day of enrollment to 21d postpartum was reduced (P < 0.01; -0.13 vs -0.64) in the CLA group. The expression of acylcoenzyme A oxidase, carnitine palmitoyltransferase 1A, hormone-sensitive lipase, β2 adrenergic receptor and acetyl-CoA carboxylase was downregulated by CLA supplementation, whereas the expression of sterol regulatory element binding protein, lipoprotein lipase and peroxisome proliferator-activated receptor gamma was upregulated (P < 0.01). In summary, CLA-supplemented cows showed signs of better metabolic status and less severe fat mobilization. Moreover, CLA increased mRNA abundance of genes related to lipogenesis and decreased mRNA abundance of genes related to FA oxidation and lipolysis in the AT of dairy cows during early lactation.
Collapse
|
16
|
Lopes MG, Alharthi AS, Lopreiato V, Abdel-Hamied E, Liang Y, Coleman DN, Dai H, Corrêa MN, Fernandez C, Loor JJ. Maternal body condition influences neonatal calf whole-blood innate immune molecular responses to ex vivo lipopolysaccharide challenge. J Dairy Sci 2020; 104:2266-2279. [PMID: 33246612 DOI: 10.3168/jds.2020-18948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/29/2020] [Indexed: 12/21/2022]
Abstract
Managing body condition in dairy cows during the close-up period could alter the availability of nutrients to the fetus during the final growth stages in utero. We investigated how maternal body condition score (BCS) in late pregnancy affected calf whole-blood mRNA abundance and IL-1β concentrations after ex vivo lipopolysaccharide (LPS) challenge. Thirty-eight multiparous Holstein cows and their calves from a larger cohort were retrospectively grouped by prepartal BCS as normal BCS (≤3.25; n = 22; NormBCS) and high BCS (≥3.75; n = 16; HighBCS). Calf blood samples collected at birth (before receiving colostrum, d 0) and at ages 21 and 42 d (at weaning) were used for ex vivo whole-blood challenge with 3 µg/mL of LPS before mRNA isolation. Target genes evaluated by real-time quantitative PCR were associated with immune response, antioxidant function, and 1-carbon metabolism. Plasma IL-1β concentrations were also measured. Responses in plasma IL-1β and mRNA abundance were compared between LPS-challenged and nonchallenged samples. Statistical analyses were performed at all time points using a MIXED model in SAS 9.4. Neither birth body weight (NormBCS = 43.8 ± 1.01 kg; HighBCS = 43.9 ± 1.2 kg) nor colostrum IgG concentration (NormBCS = 70 ± 5.4 mg/mL; HighBCS = 62 ± 6.5 mg/mL) differed between groups. At birth, whole blood from calves born to HighBCS cows had greater mRNA abundance of IL1B, NFKB1, and GSR and lower GPX1 and CBS abundance after LPS challenge. The longitudinal analysis of d 0, 21, and 42 data revealed a BCS × age effect for SOD2 and NOS2 due to lower mRNA abundance at 42 d in the HighBCS calves. Regardless of maternal BCS, mRNA abundance decreased over time for genes encoding cytokines (IL1B, IL6, IL10, TNF), cytokine receptors (IRAK1, CXCR1), toll-like receptor pathway (TLR4, NFKB1), adhesion and migration (CADM1, ICAM1, ITGAM), and antimicrobial function (MPO). Concentration of IL-1β after LPS challenge was also markedly lower at 21 d regardless of maternal BCS. Overall, results suggested that maternal BCS in late prepartum influences the calf immune system response to an inflammation challenge after birth. Although few genes among those studied were altered due to maternal BCS, the fact that genes related to oxidative stress and 1-carbon metabolism responded to LPS challenge in HighBCS calves underscores the potential role of methyl donors (e.g., methionine, choline, and folic acid) in the early-life innate immune response.
Collapse
Affiliation(s)
- M G Lopes
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - A S Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Abdel-Hamied
- Department of Animal Medicine, Faculty of Veterinary Medicine, Beni-Suef University, Beni- Suef 62511, Egypt
| | - Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - D N Coleman
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - H Dai
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - M N Corrêa
- NUPEEC (Núcleo de Pesquisa, Ensino e Extensão em Pecuária), Departamento de Clínicas Veterinária, Programa de Pós-Graduação em Biotecnologia, Universidade Federal de Pelotas, 96010-610, Pelotas, RS, Brazil
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
17
|
Salcedo-Tacuma D, Parales-Giron J, Prom C, Chirivi M, Laguna J, Lock AL, Contreras GA. Transcriptomic profiling of adipose tissue inflammation, remodeling, and lipid metabolism in periparturient dairy cows (Bos taurus). BMC Genomics 2020; 21:824. [PMID: 33228532 PMCID: PMC7686742 DOI: 10.1186/s12864-020-07235-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
Background Periparturient cows release fatty acid reserves from adipose tissue (AT) through lipolysis in response to the negative energy balance induced by physiological changes related to parturition and the onset of lactation. However, lipolysis causes inflammation and structural remodeling in AT that in excess predisposes cows to disease. The objective of this study was to determine the effects of the periparturient period on the transcriptomic profile of AT using NGS RNAseq. Results Subcutaneous AT samples were collected from Holstein cows (n = 12) at 11 ± 3.6 d before calving date (PreP) and at 6 ± 1d (PP1) and 13 ± 1.4d (PP2) after parturition. Differential expression analyses showed 1946 and 1524 DEG at PP1 and PP2, respectively, compared to PreP. Functional Enrichment Analysis revealed functions grouped in categories such as lipid metabolism, molecular transport, energy production, inflammation, and free radical scavenging to be affected by parturition and the onset of lactation (FDR < 0.05). Inflammation related genes such as TLR4 and IL6 were categorized as upstream lipolysis triggers. In contrast, FASN, ELOVL6, ACLS1, and THRSP were identified as upstream inhibitors of lipid synthesis. Complement (C3), CXCL2, and HMOX1 were defined as links between inflammatory pathways and those involved in the generation of reactive oxygen species. Conclusions Results offer a comprehensive characterization of gene expression dynamics in periparturient AT, identify upstream regulators of AT function, and demonstrate complex interactions between lipid mobilization, inflammation, extracellular matrix remodeling, and redox signaling in the adipose organ. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07235-0.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Physiology, College of Natural Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Crystal Prom
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Juliana Laguna
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA.,Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, 48824, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
18
|
Wang J, Zhang C, Zhao Q, Li C, Jin S, Gu X. Metabolic Profiling of Plasma in Different Calving Body Condition Score Cows Using an Untargeted Liquid Chromatography-Mass Spectrometry Metabolomics Approach. Animals (Basel) 2020; 10:E1709. [PMID: 32967218 PMCID: PMC7552654 DOI: 10.3390/ani10091709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/03/2022] Open
Abstract
This study was undertaken to identify metabolite differences in plasma of dairy cows with a normal or high calving body condition score (CBCS), using untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomics. Sixteen multiparous dairy cows were assigned to one of two groups based on CBCS (0 to 5 scale): Normal group (NBCS, 3.25 ≤ BCS ≤ 3.5, n = 8), and high BCS group (HBCS, BCS ≥ 4, n = 8). Plasma samples were collected for metabolomics analysis and evaluation of biomarkers of lipid metabolism (nonesterified fatty acid (NEFA) and β-hydroxybutyrate (BHB)), and cytokines (leptin, adiponectin, tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6)). A total of 23 differential metabolites were identified, and functional analyses were performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these metabolites, the concentrations of six lysophosphatidylcholines and one phosphatidylethanolamine, were lower in the HBCS group than in the NBCS group (p < 0.01). Furthermore, these metabolites were involved in these four pathways, among others: glycerophospholipid metabolism, retrograde endocannabinoid signaling, autophagy, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis (p < 0.05). In addition, plasma concentrations of leptin (p = 0.06) and TNF-α (p = 0.08) tended to be greater while adiponectin (p = 0.09) lower in HBCS cows than in NBCS cows. The concentrations of NEFA, BHB, or IL-6 did not differ between NBCS and HBCS groups. More importantly, based on the results of the Spearman's correlation analysis, the seven important metabolites were negatively correlated with indices of lipid metabolisms, proinflammatory cytokines, and leptin, but positively correlated with adiponectin. These results demonstrate that CBCS has a measurable impact on the plasma metabolic profile, even when NEFA and BHB are not different. In addition, the identified differential metabolites were significantly correlated to lipid metabolism and inflammation in the over-conditioned fresh cows, which are expected to render a metabolic basis for the diseases associated with over-conditioned dry cows.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.W.); (C.Z.); (Q.Z.); (C.L.); (S.J.)
| |
Collapse
|
19
|
Liang Y, Alharthi AS, Elolimy AA, Bucktrout R, Lopreiato V, Martinez-Cortés I, Xu C, Fernandez C, Trevisi E, Loor JJ. Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows. J Dairy Sci 2020; 103:10459-10476. [PMID: 32921465 DOI: 10.3168/jds.2020-18612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022]
Abstract
Peripartal cows mobilize not only body fat but also body protein to satisfy their energy requirements. The objective of this study was to determine the effect of prepartum BCS on blood biomarkers related to energy and nitrogen metabolism, and mRNA and protein abundance associated with AA metabolism and insulin signaling in subcutaneous adipose tissue (SAT) in peripartal cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ≥ 3.5) or normal BCS (NBCS; n = 11, BCS ≤ 3.17) group at d 28 before expected parturition. Cows were fed the same diet as a total mixed ration before parturition and were fed the same lactation diet postpartum. Blood samples collected at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with energy and nitrogen metabolism. Biopsies of SAT harvested at -15, 7, and 30 d relative to parturition were used for mRNA (real time-PCR) and protein abundance (Western blotting) assays. Data were subjected to ANOVA using the MIXED procedure of SAS (v. 9.4; SAS Institute Inc., Cary, NC), with P ≤ 0.05 being the threshold for significance. Cows in HBCS had greater overall plasma nonesterified fatty acid concentrations, due to marked increases at 7 and 15 d postpartum. This response was similar (BCS × Day effect) to protein abundance of phosphorylated (p) protein kinase B (p-AKT), the insulin-induced glucose transporter (SLC2A4), and the sodium-coupled neutral AA transporter (SLC38A1). Abundance of these proteins was lower at -15 d compared with NBCS cows, and either increased (SLC2A4, SLC38A1) or did not change (p-AKT) at 7 d postpartum in HBCS. Unlike protein abundance, however, overall mRNA abundances of the high-affinity cationic (SLC7A1), proton-coupled (SLC36A1), and sodium-coupled amino acid transporters (SLC38A2) were greater in HBCS than NBCS cows, due to upregulation in the postpartum phase. Those responses were similar to protein abundance of p-mTOR, which increased (BCS × Day effect) at 7 d in HBCS compared with NBCS cows. mRNA abundance of argininosuccinate lyase (ASL) and arginase 1 (ARG1) also was greater overall in HBCS cows. Together, these responses suggested impaired insulin signaling, coupled with greater postpartum AA transport rate and urea cycle activity in SAT of HBCS cows. An in vitro study using adipocyte and macrophage cocultures stimulated with various concentrations of fatty acids could provide some insights into the role of immune cells in modulating adipose tissue immunometabolic status, including insulin resistance and AA metabolism.
Collapse
Affiliation(s)
- Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - A A Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock 72205; Arkansas Children's Nutrition Center, Little Rock 72205; Department of Animal Production, National Research Centre, Giza, 12611, Egypt
| | - R Bucktrout
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City 04960, Mexico
| | - C Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
20
|
Bronzo V, Lopreiato V, Riva F, Amadori M, Curone G, Addis MF, Cremonesi P, Moroni P, Trevisi E, Castiglioni B. The Role of Innate Immune Response and Microbiome in Resilience of Dairy Cattle to Disease: The Mastitis Model. Animals (Basel) 2020; 10:E1397. [PMID: 32796642 PMCID: PMC7459693 DOI: 10.3390/ani10081397] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023] Open
Abstract
Animal health is affected by many factors such as metabolic stress, the immune system, and epidemiological features that interconnect. The immune system has evolved along with the phylogenetic evolution as a highly refined sensing and response system, poised to react against diverse infectious and non-infectious stressors for better survival and adaptation. It is now known that high genetic merit for milk yield is correlated with a defective control of the inflammatory response, underlying the occurrence of several production diseases. This is evident in the mastitis model where high-yielding dairy cows show high disease prevalence of the mammary gland with reduced effectiveness of the innate immune system and poor control over the inflammatory response to microbial agents. There is growing evidence of epigenetic effects on innate immunity genes underlying the response to common microbial agents. The aforementioned agents, along with other non-infectious stressors, can give rise to abnormal activation of the innate immune system, underlying serious disease conditions, and affecting milk yield. Furthermore, the microbiome also plays a role in shaping immune functions and disease resistance as a whole. Accordingly, proper modulation of the microbiome can be pivotal to successful disease control strategies. These strategies can benefit from a fundamental re-appraisal of native cattle breeds as models of disease resistance based on successful coping of both infectious and non-infectious stressors.
Collapse
Affiliation(s)
- Valerio Bronzo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Vincenzo Lopreiato
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Federica Riva
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Massimo Amadori
- Rete Nazionale di Immunologia Veterinaria, 25125 Brescia, Italy
| | - Giulio Curone
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Maria Filippa Addis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
| | - Paola Cremonesi
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| | - Paolo Moroni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 26900 Lodi, Italy; (V.B.); (F.R.); (G.C.); (M.F.A.); (P.M.)
- Quality Milk Production Services, Animal Health Diagnostic Center, Cornell University, 240 Farrier Road, Ithaca, NY 14850, USA
| | - Erminio Trevisi
- Dipartimento di Scienze animali, Alimentazione e Nutrizione, Facoltà di Agraria, Scienze Alimentari e Ambientali, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy; (V.L.); (E.T.)
| | - Bianca Castiglioni
- Institute of Biology and Biotechnology in Agriculture, National Research Council (CNR), 26900 Lodi, Italy; (P.C.); (B.C.)
| |
Collapse
|
21
|
Liang Y, Alharthi AS, Bucktrout R, Elolimy AA, Lopreiato V, Martinez-Cortés I, Xu C, Fernandez C, Trevisi E, Loor JJ. Body condition alters glutathione and nuclear factor erythroid 2-like 2 (NFE2L2)-related antioxidant network abundance in subcutaneous adipose tissue of periparturient Holstein cows. J Dairy Sci 2020; 103:6439-6453. [PMID: 32359988 DOI: 10.3168/jds.2019-17813] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/29/2020] [Indexed: 12/11/2022]
Abstract
Dairy cows with high body condition score (BCS) in late prepartum are more susceptible to oxidative stress (OS). Nuclear factor erythroid 2-like 2 (NFE2L2) is a major antioxidant transcription factor. We investigated the effect of precalving BCS on blood biomarkers associated with OS, inflammation, and liver function, along with mRNA and protein abundance of targets related to NFE2L2 and glutathione (GSH) metabolism in s.c. adipose tissue (SAT) of periparturient dairy cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ≥3.5) or normal BCS (NBCS; n = 11, BCS ≤3.17) on d 28 before parturition. Cows were fed a corn silage- and wheat straw-based total mixed ration during late prepartum, and a corn silage- and alfalfa hay-based total mixed ration postpartum. Blood samples obtained at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with inflammation, including albumin, ceruloplasmin, haptoglobin, and myeloperoxidase, as well as OS, including ferric reducing ability of plasma (FRAP), reactive oxygen species (ROS), and β-carotene. Adipose biopsies harvested at -15, 7, and 30 d relative to parturition were analyzed for mRNA (real-time quantitative PCR) and protein abundance (Western blotting) of targets associated with the antioxidant transcription regulator nuclear factor, NFE2L2, and GSH metabolism pathway. In addition, concentrations of GSH, ROS and malondialdehyde were measured. High BCS cows had lower prepartum dry matter intake expressed as a percentage of body weight along with greater BCS loss between -4 and 4 wk relative to parturition. Plasma concentrations of ROS and FRAP increased after parturition regardless of treatment. Compared with NBCS, HBCS cows had greater concentrations of FRAP at d 7 postpartum, which coincided with peak values in those cows. In addition, NBCS cows experienced a marked decrease in plasma ROS after d 7 postpartum, while HBCS cows maintained a constant concentration by d 30 postpartum. Overall, ROS concentrations in SAT were greater in HBCS cows. However, overall mRNA abundance of NFE2L2 was lower and cullin 3 (CUL3), a negative regulator of NFE2L2, was greater in HBCS cows. Although HBCS cows had greater overall total protein abundance of NFE2L2 in SAT, ratio of phosphorylated NFE2L2 to total NFE2L2 was lower, suggesting a decrease in the activity of this antioxidant system. Overall, mRNA abundance of the GSH metabolism-related genes glutathione reductase (GSR), glutathione peroxidase 1 (GPX1), and transaldolase 1 (TALDO1), along with protein abundance of glutathione S-transferase mu 1 (GSTM1), were greater in HBCS cows. Data suggest that HBCS cows might experience greater systemic OS after parturition, while increased abundance of mRNA and protein components of the GSH metabolism pathway in SAT might help alleviate tissue oxidant status. Data underscored the importance of antioxidant mechanisms at the tissue level. Thus, targeting these pathways in SAT during the periparturient period via nutrition might help control tissue remodeling while allowing optimal performance.
Collapse
Affiliation(s)
- Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A S Alharthi
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - R Bucktrout
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A A Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock 72205; Arkansas Children's Nutrition Center, Little Rock 72205; Department of Animal Production, National Research Centre, Giza 12611, Egypt
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City 04960, Mexico
| | - C Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Xinyang Rd. 5, Daqing, 163319, Heilongjiang, China
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
22
|
Wu J, Liu J, Wang D. Effects of body condition on the insulin resistance, lipid metabolism and oxidative stress of lactating dairy cows. Lipids Health Dis 2020; 19:56. [PMID: 32228618 PMCID: PMC7106888 DOI: 10.1186/s12944-020-01233-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Overconditioned dairy cows are prone to greater insulin resistance in transition to successfully adapt to negative energy balance. The associations among body condition score (BCS), insulin resistance, lipid metabolism and oxidative stress in cows during late lactation with positive energy balance remain to be elucidated. METHODS The objectives of this study were to investigate insulin sensitivity and oxidative status in late lactating dairy cows with different BCS but similar milk production, parity and days in milk. Forty-two multiparous Holstein cows were fed the same diet under the same management and divided into three groups based on BCS: low BCS (LBCS; BCS ≤ 2.75; n = 12), medium BCS (MBCS; 3.0 ≤ BCS ≤ 3.5; n = 15) or high BCS (HBCS; BCS ≥ 3.75; n = 15). Blood samples used for analysis of biochemical and hematological parameters were collected from the coccygeal vein at the end of experiment. RESULTS The concentrations of insulin and nonesterified fatty acid were higher and the revised quantitative insulin sensitivity check index (RQUICKI) was lower in HBCS cows than in LBCS and MBCS cows. These results suggest that insulin resistance exacerbates lipolysis in HBCS cows. Serum concentrations of very low-density lipoprotein, apolipoprotein A-I, and apolipoprotein B were lower in HBCS cows than in LBCS or MBCS cows. Although LBCS and MBCS cows had higher reactive oxygen species levels than did HBCS cows, the malondialdehyde concentration was not different among cows with different BCS. Ceruloplasmin activity was higher in MBCS and HBCS cows than in LBCS cows, but superoxide dismutase, glutathione peroxidase, and paraoxonase activities were not different among cows with different BCS. Despite the higher percentage of granulocytes in MBCS cows than in HBCS cows, no differences were found in leukocyte counts, red blood cell profiles and platelet profiles among the cows in the three groups. CONCLUSIONS Results of this study showed that compared with MBCS and LBCS cows, HBCS cows at late lactation stage may have accumulated more hepatic triacylglycerol and lower antioxidant potential due to greater insulin resistance.
Collapse
Affiliation(s)
- Jiajin Wu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jianxin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Diming Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
23
|
Abstract
AbstractMilk production intensification has led to several unwanted aspects, such as sustainability issues and environmental pollution. Among these, increased milk outputs that have been achieved over the last 70 years have led to several health and pathophysiological conditions in high yielding dairy animals, including metabolic diseases that were uncommon in the past. Increased occurrence of diverse metabolic diseases in cattle and other domestic animals is a key feature of domestication that not only affects the animals' health and productivity, but also may have important and adverse health impacts on human consumers through the elevated use of drugs and antibiotics. These aspects will influence economical and ethical aspects in the near future. Therefore, finding and establishing proper biomarkers for early detection of metabolic diseases is of great interest. In the present review, recent work on the discovery of fitness, stress and welfare biomarkers in dairy cows is presented, focusing in particular on possible biomarkers of energy balance and oxidative stress in plasma and milk, and biomarkers of production-related diseases and decreased fertility.
Collapse
|
24
|
Karis P, Jaakson H, Ling K, Bruckmaier RM, Gross JJ, Pärn P, Kaart T, Ots M. Body condition and insulin resistance interactions with periparturient gene expression in adipose tissue and lipid metabolism in dairy cows. J Dairy Sci 2020; 103:3708-3718. [PMID: 32008773 DOI: 10.3168/jds.2019-17373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/02/2019] [Indexed: 12/19/2022]
Abstract
Adipose tissue plays an important role in a cow's ability to adapt to the metabolic demands of lactation, because of its central involvement in energy metabolism and immunity. High adiposity and adipose tissue resistance to insulin are associated with excessive lipid mobilization. We hypothesized that the response to a glucose challenge differs between cows of different body condition 21 d before and after calving and that the responses are explainable by gene expression in subcutaneous adipose tissue (SAT). In addition, we aimed to investigate insulin resistance with gene expression in SAT and lipid mobilization around parturition. Multiparous Holstein cows were grouped according to body conditions score (BCS) 4 wk before calving, as follows: BCS ≤ 3.0 = thin (T, n = 14); BCS 3.25 to 3.5 = optimal (O, n = 14); BCS ≥ 3.75 = over-conditioned (OC, n = 14). We collected SAT on d -21 and d 21 relative to calving. A reverse-transcriptase quantitative (RT-q)PCR was used to measure gene expression related to lipid metabolism. One hour after the collection of adipose tissue, an intravenous glucose tolerance test was carried out, with administration of 0.15 g of glucose per kg of body weight (with a 40% glucose solution). Once weekly from the first week before calving to the third week after calving, a blood sample was taken. The transition to lactation was associated with intensified release of energy stored in adipose tissue, a decrease in the lipogenic genes lipoprotein lipase (LPL) and diacylglycerol O-acyltransferase 2 (DGAT2), and an increase in the lipolytic gene hormone-sensitive lipase (LIPE). On d -21, compared with T cows, OC cows had lower mRNA abundance of LPL and DGAT2, and the latency of fatty acid response after glucose infusion was also longer (8.5 vs. 23.3 min) in OC cows. Cows with higher insulin area under the curve on d -21 had concurrently lower LPL and DGAT2 gene expression and greater concentration of fatty acids on d -7, d 7, and d 14. In conclusion, high adiposity prepartum lowers the whole-body lipid metabolism response to insulin and causes reduced expression of lipogenic genes in SAT 3 weeks before calving. In addition, more pronounced insulin release after glucose infusion on d -21 is related to higher lipid mobilization around calving, indicating an insulin-resistant state, and is associated with lower expression of lipogenic genes in SAT.
Collapse
Affiliation(s)
- P Karis
- Chair of Animal Nutrition, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia.
| | - H Jaakson
- Chair of Animal Nutrition, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - K Ling
- Chair of Animal Nutrition, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001, Switzerland
| | - J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001, Switzerland
| | - P Pärn
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - T Kaart
- Chair of Animal Breeding and Biotechnology, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51014 Tartu, Estonia
| | - M Ots
- Chair of Animal Nutrition, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| |
Collapse
|
25
|
Impact of the severity of negative energy balance on gene expression in the subcutaneous adipose tissue of periparturient primiparous Holstein dairy cows: Identification of potential novel metabolic signals for the reproductive system. PLoS One 2019; 14:e0222954. [PMID: 31557215 PMCID: PMC6763198 DOI: 10.1371/journal.pone.0222954] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/10/2019] [Indexed: 12/02/2022] Open
Abstract
The severity of negative energy balance (NEB) in high-producing dairy cows has a high incidence among health diseases. The cow’s energy status during early lactation critically affects metabolic and reproductive parameters. The first objective of this study was to investigate by RNA-seq analysis and RT-qPCR the gene expression profile in white adipose tissue and by gene ontology and upstream regulation tools the relationships with energy metabolism and reproduction in two groups of primiparous dairy cows with extreme NEB statuses (NEB < -9 Mcal/day vs. NEB > -9 Mcal/day) around parturition. The second objective was to determine the potential involvement of a new adipokine identified as a candidate for the regulation of ovarian function in our RNA-seq analysis by using bovine primary granulosa culture, thymidine incorporation to determine cell proliferation and ELISA assays to measure progesterone secretion. The RNA-seq analysis revealed that 514 genes were over-expressed and 695 were under-expressed in the adipose tissue of cows with severe NEB (SNEB) and cows with moderate NEB (MNEB) during the -4 and 16 wkpp period. In addition, 491 genes were over-expressed and 705 genes were under-expressed in the adipose tissue of SNEB cows compared to MNEB cows. Among these differently expressed genes (DEGs), 298 were related to metabolic functions and 264 to reproductive traits. A set of 19 DEGs were validated by RT-qPCR, including CCL21 (C-C motif chemokine ligand 21). Moreover, CCL21, a gene known to be secreted by adipose tissue, was chosen for further analysis in plasma and ovaries. The use of next-generation sequencing technologies allowed us to characterise the transcriptome of white adipose tissue from primiparous cows with different levels of NEB during lactation. This study highlighted the alteration of the expression of genes related to lipid metabolism, including CCL21, which is released in the bloodstream and associated with the in vitro regulation of ovarian functions.
Collapse
|
26
|
Doncel B, Capelesso A, Giannitti F, Cajarville C, Macías-Rioseco M, Silveira C, Costa RA, Riet-Correa F. Hypomagnesemia in dairy cattle in Uruguay. PESQUISA VETERINÁRIA BRASILEIRA 2019. [DOI: 10.1590/1678-5150-pvb-6215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
ABSTRACT: An outbreak of hypomagnesemia is reported in Holstein dairy cattle grazing lush oat (Avena sativa) pasture in Uruguay. Nine of 270 (3.3%) cows died in May-July (autumn-winter) 2017. These nine cows were from 2 to 9-years-old (1st-6th lactation), with 22 to 194 days of lactation and 15.8 to 31.4L of daily milk production. Two cows with acute sialorrhea, muscle spasms, lateral recumbency, weakness, opisthotonos, and coma, were euthanized and necropsied. No significant macroscopic or histological lesions were found. One untreated clinically-affected cow and eight out of 14 clinically healthy cows of the same group under similar management and production conditions had low serum levels of Mg (lower than 0.7mmol/L). Secondarily, both clinically affected cows and six out of 14 healthy cows had low serum Ca levels. The K/(Ca+Mg) ratio of two oat forages, corn silage, and ration was 5.10, 7.73, 2.45, and 0.85, respectively. A K/(Ca+Mg) ratio lower than 2.2 represents a risk for hypomagnesemia. The difference between the contribution-requirement of minerals in the diet was established and a daily deficiency of Mg (-0.36g/day), Na (-25.2g/day) and Ca (-9.27g/day) was found, while K (184.42g/day) and P (12.81g/day) were in excess. The diet was reformulated to correct the deficiencies and the disease was controlled by the daily administration of 80g of magnesium oxide, 80g of calcium carbonate and 30g sodium chloride per cow. It is concluded that hypomagnesemia is a cause of mortality in dairy cattle in Uruguay, and that the condition can be prevented by appropriate diet formulation.
Collapse
Affiliation(s)
- Benjamín Doncel
- Universidad Nacional de Colombia, Colombia; Instituto Nacional de Investigación Agropecuaria, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhang F, Li D, Wu Q, Sun J, Guan W, Hou Y, Zhu Y, Wang J. Prepartum body conditions affect insulin signaling pathways in postpartum adipose tissues in transition dairy cows. J Anim Sci Biotechnol 2019; 10:38. [PMID: 31114678 PMCID: PMC6518689 DOI: 10.1186/s40104-019-0347-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023] Open
Abstract
Background Overconditioned dairy cows are susceptible to excessive lipolysis and increased insulin resistance during the transition period. The associations among body fat reserve, insulin resistance, and lipolysis in adipose tissues (AT) remain to be elucidated. Therefore, this study aimed to investigate whether excessive fat reserves influence the insulin signaling pathway in AT postpartum. Results Twenty multiparous dairy cows were selected and assigned to one of two groups, according to prepartum body condition score (BCS): Control group (BCS = 3.0-3.5; n = 10) and Overconditioned group (BCS ≥ 4.0; n = 10). Blood samples were collected on days -14, -7, -4, -2, -1, 0, 1, 2, 4, 7, and 14 relative to parturition. Subcutaneous AT were collected on day 2 following parturition for quantitative real-time polymerase chain reaction and western blot analyses. No differences were observed between the two groups in serum glucose, non-esterified fatty acids, β-hydroxybutyric acid, tumor necrosis factor (TNF) α, insulin, or leptin concentrations during the experimental period. Compared with the control cows, the overconditioned cows had lower serum triglyceride levels and higher adiponectin concentrations. In the AT postpartum, insulin receptor mRNA and protein levels were lower in the overconditioned cows than in the control cows, and no differences were found in glucose transporter 4 mRNA. Compared with the control cows, the overconditioned cows had lower mRNA levels of TNFα and higher mRNA levels of peroxisome proliferator-activated receptor gamma (PPARγ) in AT postpartum. The phosphorylated protein kinase B (AKT) content and phosphorylation rate of AKT were increased in the overconditioned cows compared with the control cows, which suggested that the downstream insulin signaling in AT was affected. Conclusions In the present study, transition dairy cows with higher BCS did not show more fat mobilization. The changes of insulin signaling pathway in AT postpartum of overconditioned cows may be partly related to the expression of PPARγ and TNFα, and the secretion of adiponectin.
Collapse
Affiliation(s)
- Fanjian Zhang
- Beijing Vocational College of Agriculture, Beijing, 102442 People's Republic of China
| | - Dan Li
- 2College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Qiong Wu
- 3Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206 People's Republic of China
| | - Jian Sun
- Beijing Vocational College of Agriculture, Beijing, 102442 People's Republic of China
| | - Wenyi Guan
- Beijing Vocational College of Agriculture, Beijing, 102442 People's Republic of China
| | - Yinxu Hou
- Beijing Vocational College of Agriculture, Beijing, 102442 People's Republic of China
| | - Yaohong Zhu
- 2College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Jiufeng Wang
- 2College of Veterinary Medicine, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
28
|
Zhao W, Chen X, Xiao J, Chen XH, Zhang XF, Wang T, Zhen YG, Qin GX. Prepartum body condition score affects milk yield, lipid metabolism, and oxidation status of Holstein cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1889-1896. [PMID: 31010972 PMCID: PMC6819678 DOI: 10.5713/ajas.18.0817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/22/2019] [Indexed: 12/18/2022]
Abstract
Objective This study aimed to investigate the effects of prepartum body condition score (BCS) on the milk yield, lipid metabolism, and oxidative status of Holstein cows. Methods A total of 112 multiparous Holstein cows were divided into 4 groups according to the BCS at 21 days before calving: medium BCS (3.0~3.25, MBCS), high BCS (3.5~3.75, HBCS), higher BCS (4.0~4.25, HerBCS), and highest BCS (4.5~5.0, HestBCS). Blood samples were collected on 21, 14, and 7 days before calving (precalving), on the calving day (calving), and on 7, 14, and 21 days after calving (postcalving). The indices of lipid metabolism and oxidative status were analyzed using bovine-specific ELISA kit. Colostrum were taken after calving and analyzed by a refractometer and milk analyzer. The individual milk yield was recorded every 3 days. Results The density and levels of immune globulin and lactoprotein of colostrum from Holstein cows in the HestBCS group were the highest (p<0.05). These animals not only had the highest (p<0.05) levels of serum non-esterified fatty acids and beta-hydroxybutyrate, but also had the highest (p<0.05) levels of malondialdehyde, superoxide dismutase, catalase, vitamin A, and vitamin E. In addition, greater (p<0.05) BCS loss was observed in the HestBCS cows. Conclusion This study demonstrates that the milk yield, lipid metabolism, and oxidative status of Holstein cows are related to prepartum BCS and BCS loss during the transition period. HestBCS cows are more sensitive to oxidative stress and suffer greater loss of BCS after calving, whereas the MBCS animals had better milk yield performance.
Collapse
Affiliation(s)
- Wei Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China
| | - Xue Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China
| | - Jun Xiao
- JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China
| | - Xiao Hui Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xue Feng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Tao Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Yu Guo Zhen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,JLAU-Borui Dairy Science and Technology R&D Centre of Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| | - Gui Xin Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.,Key Laboratory of Animal Nutrition and Feed Science of Jilin Province, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
29
|
Huang W, Wang L, Li S, Cao Z. Effect of reduced energy density of close-up diets on metabolites, lipolysis and gluconeogenesis in Holstein cows. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:648-656. [PMID: 30744350 PMCID: PMC6502716 DOI: 10.5713/ajas.18.0624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023]
Abstract
Objective An experiment was conducted to determine the effect of reduced energy density of close-up diets on metabolites, lipolysis and gluconeogenesis in cows during the transition period. Methods Thirty-nine Holstein dry cows were blocked and assigned randomly to three groups, fed a high energy density diet (HD, 1.62 Mcal of net energy for lactation [NEL]/kg dry matter [DM]), a medium energy density diet (MD, 1.47 Mcal NEL/kg DM), or a low energy density diet (LD, 1.30 Mcal NEL/kg DM) prepartum; they were fed the same lactation diet to 28 days in milk (DIM). All the cows were housed in a free-stall barn and fed ad libitum. Results The reduced energy density diets decreased the blood insulin concentration and increased nonesterified fatty acids (NEFA) concentration in the prepartum period (p<0.05). They also increased the concentrations of glucose, insulin and glucagon, and decreased the concentrations of NEFA and β-hydroxybutyrate during the first 2 weeks of lactation (p<0.05). The plasma urea nitrogen concentration of both prepartum and postpartum was not affected by dietary energy density (p>0.05). The dietary energy density had no effect on mRNA abundance of insulin receptors, leptin and peroxisome proliferator-activated receptor-γ in adipose tissue, and phosphoenolpyruvate carboxykinase, carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-α in liver during the transition period (p>0.05). The HD cows had higher mRNA abundance of hormone-sensitive lipase at 3 DIM compared with the MD cows and LD cows (p = 0.001). The mRNA abundance of hepatic pyruvate carboxykinase at 3 DIM tended to be increased by the reduced energy density of the close-up diets (p = 0.08). Conclusion The reduced energy density diet prepartum was effective in controlling adipose tissue mobilization and improving the capacity of hepatic gluconeogenesis postpartum.
Collapse
Affiliation(s)
- Wenming Huang
- Department of Animal Science, College of Animal Science, Southwest University, Chongqing 402460, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Libin Wang
- Department of Animal Science, College of Animal Science, Southwest University, Chongqing 402460, China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|