1
|
Fiallo Diez JF, Tegeler AP, Flesher CG, Michelotti TC, Ford H, Hoque MN, Bhattarai B, Benitez OJ, Christopher GF, Strieder-Barboza C. Extracellular matrix modulates depot-specific adipogenic capacity in adipose tissue of dairy cattle. J Dairy Sci 2024; 107:9978-9996. [PMID: 38969002 DOI: 10.3168/jds.2024-25040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/10/2024] [Indexed: 07/07/2024]
Abstract
Adipose tissue (AT) expands through both hyperplasia and hypertrophy. During adipogenesis, adipose stromal and progenitor cells (ASPC) proliferate and then accumulate lipids, influenced by the local AT microenvironment. Increased adipogenic capacity is desirable as it relates to metabolic health, especially in transition dairy cows where excess free fatty acids in circulation can compromise metabolic and immune health. Our aim was to elucidate the depot-specific adipogenic capacity and extracellular matrix (EMX) properties of subcutaneous (SAT) and visceral (VAT) AT of dairy cows and define how the EMX affects adipogenesis. Flank SAT and omental VAT samples were collected from dairy cows in a local abattoir. Tissue samples were used for transcriptome analysis, targeted real-time quantitative PCR (RT-qPCR) for adipogenic markers, adipocyte sizing, assessment of viscoelastic properties and collagen accumulation, and then decellularized for native EMX isolation. For in vitro analyses, SAT and VAT samples were digested via collagenase, and ASPC cultured for metabolic analysis. Adipogenic capacity was assessed by adipocyte size, quantification of ASPC in stromal vascular fraction (SVF) via flow cytometry, and gene expression of adipogenic markers. In addition, functional assays including lipolysis and glucose uptake were performed to further characterize SAT and VAT adipocyte metabolic function. Data were analyzed using SAS (version 9.4; SAS Institute Inc., Cary, NC) and GraphPad Prism 9. Subcutaneous AT adipogenic capacity was greater than VAT's, as indicated by increased ASPC abundance, increased magnitude of adipocyte ADIPOQ and FASN expression during differentiation, and higher adipocyte lipid accumulation as shown by an increased proportion of larger adipocytes and abundance of lipid droplets. Rheologic analysis revealed that VAT is stiffer than SAT, which led us to hypothesize that differences between SAT and VAT adipogenic capacity were partly mediated by depot-specific EMX microenvironment. Thus, we studied depot-specific EMX-adipocyte crosstalk using a 3-dimensional model with native EMX (decellularized AT). Subcutaneous AT and VAT ASPC were cultured and differentiated into adipocytes within depot-matched and mismatched EMX for 14 d, followed by ADIPOQ expression analysis. Visceral AT EMX impaired ADIPOQ expression in SAT cells. Our results demonstrate that SAT is more adipogenic than VAT and suggest that divergences between SAT and VAT adipogenesis are partially mediated by the depot-specific EMX microenvironment.
Collapse
Affiliation(s)
- J F Fiallo Diez
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409
| | - A P Tegeler
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409
| | - C G Flesher
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - T C Michelotti
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409
| | - H Ford
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409
| | - M N Hoque
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409
| | - B Bhattarai
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409
| | - O J Benitez
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409; School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106
| | - G F Christopher
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409
| | - C Strieder-Barboza
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX 79409; School of Veterinary Medicine, Texas Tech University, Amarillo, TX 79106.
| |
Collapse
|
2
|
Tan J, Zhao H, Li L, Wang Y, Pan Y, Fang L, Zhao Y, Jiang L. Propylene Glycol Alleviates Oxidative Stress and Enhances Immunity in Ketotic Cows through Modulating Amino Acid and Lipid Metabolism. Antioxidants (Basel) 2024; 13:1146. [PMID: 39334805 PMCID: PMC11428896 DOI: 10.3390/antiox13091146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
This study investigates the impact of propylene glycol (PRG) on ketotic cows, focusing on alleviating oxidative stress and enhancing immunity through modulating amino acid and lipid metabolism. Ketosis, a prevalent metabolic disease in dairy cows, negatively affects productivity and health. PRG, known for its gluconeogenic properties, was administered to cows with ketosis daily for three days and compared to an untreated group. Serum samples were taken to measure the biochemical parameters, and metabolomic and lipidomic analyses were performed with ultra-high-performance liquid chromatography-mass spectrometry. The results showed significant reductions in serum non-esterified fatty acids, beta-hydroxybutyrate, and C-reactive protein levels, alongside increased glucose, anti-inflammatory factor interleukin-10, superoxide dismutase, and glutathione peroxidase activities. Metabolomic and lipidomic analyses revealed significant alterations, including increased levels of glucogenic amino acids like glutamate and proline, and decreased levels of ceramide species. A pathway analysis indicated that PRG affects multiple metabolic pathways, including alanine, aspartate, glutamate metabolism, and sphingolipid metabolism. These findings suggest that PRG not only mitigates oxidative stress, but also enhances immune function by restoring metabolic homeostasis. This study provides valuable insights into the biochemical mechanisms underlying PRG's therapeutic effects, offering potential strategies for the effective management and treatment of ketosis in dairy cows.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.T.); (H.Z.); (L.L.); (Y.W.); (Y.P.); (L.F.)
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China; (J.T.); (H.Z.); (L.L.); (Y.W.); (Y.P.); (L.F.)
| |
Collapse
|
3
|
Chirivi M, Contreras GA. Endotoxin-induced alterations of adipose tissue function: a pathway to bovine metabolic stress. J Anim Sci Biotechnol 2024; 15:53. [PMID: 38581064 PMCID: PMC10998405 DOI: 10.1186/s40104-024-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 04/07/2024] Open
Abstract
During the periparturient period, dairy cows exhibit negative energy balance due to limited appetite and increased energy requirements for lactogenesis. The delicate equilibrium between energy availability and expenditure puts cows in a state of metabolic stress characterized by excessive lipolysis in white adipose tissues (AT), increased production of reactive oxygen species, and immune cell dysfunction. Metabolic stress, especially in AT, increases the risk for metabolic and inflammatory diseases. Around parturition, cows are also susceptible to endotoxemia. Bacterial-derived toxins cause endotoxemia by promoting inflammatory processes and immune cell infiltration in different organs and systems while impacting metabolic function by altering lipolysis, mitochondrial activity, and insulin sensitivity. In dairy cows, endotoxins enter the bloodstream after overcoming the defense mechanisms of the epithelial barriers, particularly during common periparturient conditions such as mastitis, metritis, and pneumonia, or after abrupt changes in the gut microbiome. In the bovine AT, endotoxins induce a pro-inflammatory response and stimulate lipolysis in AT, leading to the release of free fatty acids into the bloodstream. When excessive and protracted, endotoxin-induced lipolysis can impair adipocyte's insulin signaling pathways and lipid synthesis. Endotoxin exposure can also induce oxidative stress in AT through the production of reactive oxygen species by inflammatory cells and other cellular components. This review provides insights into endotoxins' impact on AT function, highlighting the gaps in our knowledge of the mechanisms underlying AT dysfunction, its connection with periparturient cows' disease risk, and the need to develop effective interventions to prevent and treat endotoxemia-related inflammatory conditions in dairy cattle.
Collapse
Affiliation(s)
- Miguel Chirivi
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Stefanska B, Sobolewska P, Fievez V, Pruszynska-Oszmałek E, Purwin C, Nowak W. The effect of heat stress on performance, fertility, and adipokines involved in regulating systemic immune response during lipolysis of early lactating dairy cows. J Dairy Sci 2024; 107:2111-2128. [PMID: 37923214 DOI: 10.3168/jds.2023-23804] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
The aim of this study was to assess the potential effect of heat stress on dairy cow productivity, fertility, and biochemical blood indices during the early lactation stage in a temperate climate. Additionally, the study aimed to determine the role of leptin and adiponectin in regulating the immune response accompanying lipolysis after calving in dairy cows. The study included 100 clinically healthy Polish Holstein-Friesian dairy cows selected based on parity and 305 d of milk yield from 5 commercial farms with similar herd management and housing systems. Prospective cohort data were recorded from calving day until 150 d in milk, and microclimate loggers installed inside the barns were used to record temperature and relative humidity data to calculate daily temperature-humidity index (THI) on the calving day, through +7, +14, and +21 d during early lactation. Additionally, monthly productive performance parameters such as milk yield, chemical composition, fatty acids composition, and fertility indices were analyzed. Results showed that the THI from calving day through +7, +14, and +21 d during early lactation was negatively associated with fertility parameters such as delayed first estrus postpartum and an elongated calving interval, respectively, by 29, 27, 25, and 16 d. Furthermore, an increase in THI value during early lactation was associated with an elongated artificially inseminated service period, days open, and intercalving period. Increasing THI from calving day (0 d) through +7, +14, and up to +21 d during early lactation was also linked to decreased milk yield by 3.20, 4.10, 5.60, and 5.60 kg, respectively. The study also found that heat stress during early lactation was associated with a lower body condition score in dairy cows and higher concentrations of leptin, nonesterified fatty acids, and β-hydroxybutyrate, accompanied by a drastic reduction in adipose tissue-secreted adiponectin levels after calving. Additionally, heat stress-induced lipolysis in adipose tissue caused an inflammatory response that increased biochemical blood indices associated with immune responses such as cytokines, acute phase proteins, and heat shock protein. These findings suggest that exposing dairy cows to heat stress during early lactation can negatively affect their productive performance, fertility, and biochemical blood indices in subsequent lactations. Thus, farm management changes should be implemented during early lactation to mitigate the negative consequences of heat stress occurrence.
Collapse
Affiliation(s)
- B Stefanska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland.
| | - P Sobolewska
- Department of Grassland and Natural Landscape Sciences, Poznań University of Life Sciences, 60-632 Poznań, Poland
| | - V Fievez
- Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000 Gent, Belgium
| | - E Pruszynska-Oszmałek
- Department of Animal Physiology, Biochemistry, and Biostructure, Poznań University of Life Science, 60-637 Poznań, Poland
| | - C Purwin
- Department of Animal Nutrition, Feed Science, and Cattle Breeding, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - W Nowak
- Department of Animal Nutrition, Poznań University of Life Sciences, 60-637 Poznań, Poland
| |
Collapse
|
5
|
Zhou S, Chen M, Meng M, Ma N, Xie W, Shen X, Li Z, Chang G. Subclinical ketosis leads to lipid metabolism disorder by downregulating the expression of acetyl-coenzyme A acetyltransferase 2 in dairy cows. J Dairy Sci 2023; 106:9892-9909. [PMID: 37690731 DOI: 10.3168/jds.2023-23602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 09/12/2023]
Abstract
Ketosis is a metabolic disease that often occurs in dairy cows postpartum and is a result of disordered lipid metabolism. Acetyl-coenzyme A (CoA) acetyltransferase 2 (ACAT2) is important for balancing cholesterol and triglyceride (TG) metabolism; however, its role in subclinical ketotic dairy cows is unclear. This study aimed to explore the potential correlation between ACAT2 and lipid metabolism disorders in subclinical ketotic cows through in vitro and in vivo experiments. In the in vivo experiment, liver tissue and blood samples were collected from healthy cows (CON, n = 6, β-hydroxybutyric acid [BHBA] concentration <1.0 mM) and subclinical ketotic cows (subclinical ketosis [SCK], n = 6, BHBA concentration = 1.2-3.0 mM) to explore the effect of ACAT2 on lipid metabolism disorders in SCK cows. For the in vitro experiment, bovine hepatocytes (BHEC) were used as the model. The effects of BHBA on ACAT2 and lipid metabolism were investigated via BHBA concentration gradient experiments. Subsequently, the relation between ACAT2 and lipid metabolism disorder was explored by transfection with siRNA of ACAT2. Transcriptomics showed an upregulation of differentially expression genes during lipid metabolism and significantly lower ACAT2 mRNA levels in the SCK group. Compared with the CON group in vivo, the SCK group showed significantly higher expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulator element binding protein 1c (SREBP1c) and significantly lower expression levels of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl-transferase 1A (CPT1A), sterol regulatory element binding transcription factor 2 (SREBP2), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Moreover, the SCK group had a significantly higher liver TG content and significantly lower plasma total cholesterol (TC) and free cholesterol content. These results were indicative of TG and cholesterol metabolism disorders in the liver of dairy cows with SCK. Additionally, the SCK group showed an increased expression of perilipin-2 (PLIN2), decreased expression of apolipoprotein B, and decreased plasma concentration of very low-density lipoproteins (VLDL) and low-density lipoproteins cholesterol (LDL-C) by downregulating ACAT2, which indicated an accumulation of TG in liver. In vitro experiments showed that BHBA induced an increase in the TG content of BHEC, decreased content TC, increased expression of PPARγ and SREBP1c, and decreased expression of PPARα, CPT1A, SREBP2, and HMGCR. Additionally, BHBA increased the expression of PLIN2 in BHEC, decreased the expression and fluorescence intensity of ACAT2, and decreased the VLDL and LDL-C contents. Furthermore, silencing ACAT2 expression increased the TG content; decreased the TC, VLDL, and LDL-C contents; decreased the expression of HMGCR and SREBP2; and increased the expression of SREBP1c; but had no effect on the expression of PLIN2. These results suggest that ACAT2 downregulation in BHEC promotes TG accumulation and inhibits cholesterol synthesis, leading to TG and cholesterol metabolic disorders. In conclusion, ACAT2 downregulation in the SCK group inhibited cholesterol synthesis, increased TG synthesis, and reduced the contents of VLDL and LDL-C, eventually leading to disordered TG and cholesterol metabolism.
Collapse
Affiliation(s)
- Shendong Zhou
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Mengru Chen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Meijuan Meng
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Zhixin Li
- Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, P. R. China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan 750001, Ningxia, P. R. China.
| |
Collapse
|
6
|
Pang Z, Chen S, Cui S, Zhai W, Huang Y, Gao X, Wang Y, Jiang F, Guo X, Hao Y, Li W, Wang L, Zhu H, Wu J, Jia H. Identification of Potential miRNA-mRNA Regulatory Network Associated with Regulating Immunity and Metabolism in Pigs Induced by ASFV Infection. Animals (Basel) 2023; 13:ani13071246. [PMID: 37048502 PMCID: PMC10093425 DOI: 10.3390/ani13071246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
African swine fever (ASF) is a devastating infectious disease in domestic pigs caused by African swine fever virus (ASFV) with a mortality rate of about 100%. However, the understanding of the interaction between ASFV and host is still not clear. In this study, the expression differences and functional analysis of microRNA (miRNA) in porcine peripheral blood lymphocytes of ASFV infected pigs and healthy pigs were compared based on Illumina high-throughput sequencing, then the GO and KEGG signal pathways were analyzed. The miRNA related to immunity and inflammation were screened, and the regulatory network of miRNA-mRNA was drawn. A total of 70 differentially expressed miRNAs were found (p ≤ 0.05). Of these, 45 were upregulated and 25 were downregulated in ASFV-infected pigs vs. healthy pigs. A total of 8179 mRNA genes targeted by these 70 differentially expressed miRNA were predicted, of which 1447 mRNA genes were targeted by ssc-miR-2320-5p. Five differentially expressed miRNA were validated by RT-qPCR, which were consistent with the RNA-Seq results. The GO analysis revealed that a total of 30 gene functions were significantly enriched, including 7 molecular functions (MF), 13 cellular components (CC), and 10 biological processes (BP). The KEGG enrichment analysis revealed that the differentially expressed genes were significantly enriched in pathways related to immunity, inflammation, and various metabolic processes, in which a total of two downregulated miRNAs after infection and eight upregulated miRNAs related to immunity and inflammation were screened in ASFV-infected pigs vs. healthy pigs. The network of miRNA-mRNA showed that the mRNA target genes were strongly regulated by ssc-miR-214, ssc-miR-199b-3p, and ssc-miR-199a-3p. The mRNA target genes were enriched into the MAPK signaling pathway, Toll-like receptor signaling pathway, TNF signaling pathway, and IL-17 signaling pathway by using a KEGG enrichment analysis. Therefore, ASFV could regulate immunity and metabolism-related pathways in infected pigs by inducing differential expression of miRNAs. These results provided a new basis for further elucidating the interactions between ASFV and the host as well as the immunity regulation mechanisms of ASFV, which will be conducive to better controlling ASF.
Collapse
Affiliation(s)
- Zhongbao Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shiyu Chen
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Cui
- College of Animal Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang 261061, China
| | - Wenzhu Zhai
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Huang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fei Jiang
- China Animal Disease Control Center, Beijing 100026, China
| | - Xiaoyu Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxin Hao
- China Animal Disease Control Center, Beijing 100026, China
| | - Wencai Li
- China Animal Disease Control Center, Beijing 100026, China
| | - Lei Wang
- China Animal Disease Control Center, Beijing 100026, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiajun Wu
- China Animal Disease Control Center, Beijing 100026, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
7
|
Kra G, Daddam JR, Moallem U, Kamer H, Mualem B, Levin Y, Kočvarová R, Nemirovski A, Contreras AG, Tam J, Zachut M. Alpha-linolenic acid modulates systemic and adipose tissue-specific insulin sensitivity, inflammation, and the endocannabinoid system in dairy cows. Sci Rep 2023; 13:5280. [PMID: 37002295 PMCID: PMC10066235 DOI: 10.1038/s41598-023-32433-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Metabolic disorders are often linked to alterations in insulin signaling. Omega-3 (n-3) fatty acids modulate immunometabolic responses; thus, we examined the effects of peripartum n-3 on systemic and adipose tissue (AT)-specific insulin sensitivity, immune function, and the endocannabinoid system (ECS) in dairy cows. Cows were supplemented peripartum with saturated fat (CTL) or flaxseed supplement rich in alpha-linolenic acid (ALA). Blood immunometabolic biomarkers were examined, and at 5-8 d postpartum (PP), an intravenous glucose-tolerance-test (GTT) and AT biopsies were performed. Insulin sensitivity in AT was assessed by phosphoproteomics and proteomics. Peripartum n-3 reduced the plasma concentrations of Interleukin-6 (IL-6) and IL-17α, lowered the percentage of white blood cells PP, and reduced inflammatory proteins in AT. Systemic insulin sensitivity was higher in ALA than in CTL. In AT, the top canonical pathways, according to the differential phosphoproteome in ALA, were protein-kinase-A signaling and insulin-receptor signaling; network analysis and immunoblots validated the lower phosphorylation of protein kinase B (Akt), and lower abundance of insulin receptor, together suggesting reduced insulin sensitivity in ALA AT. The n-3 reduced the plasma concentrations of ECS-associated ligands, and lowered the abundances of cannabinoid-1-receptor and monoglycerol-lipase in peripheral blood mononuclear cells PP. Peripartum ALA supplementation in dairy cows improved systemic insulin sensitivity and immune function, reduced ECS components, and had tissue-specific effects on insulin-sensitivity in AT, possibly counter-balancing the systemic responses.
Collapse
Affiliation(s)
- Gitit Kra
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
- Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jayasimha Rayalu Daddam
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
| | - Uzi Moallem
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
| | - Hadar Kamer
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
| | - Batel Mualem
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Radka Kočvarová
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Andres G Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, USA
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Faculty of Medicine, School of Pharmacy, The Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, ARO Volcani Institute, Rishon LeZiyon, Israel.
| |
Collapse
|
8
|
Zhang J, Gaowa N, Wang Y, Li H, Cao Z, Yang H, Zhang X, Li S. Complementary hepatic metabolomics and proteomics reveal the adaptive mechanisms of dairy cows to the transition period. J Dairy Sci 2023; 106:2071-2088. [PMID: 36567250 DOI: 10.3168/jds.2022-22224] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/06/2022] [Indexed: 12/24/2022]
Abstract
The transition period from late pregnancy to early lactation is a vital time of the lifecycle of dairy cows due to the marked metabolic challenges. Besides, the liver is the pivot point of metabolism in cattle. Nevertheless, the hepatic physiological molecular adaptation during the transition period has not been elucidated, especially from the metabolomics and proteomics view. Therefore, the present study aims to investigate the hepatic metabolic alterations in transition cows by using integrative metabolomics and proteomics methods. Gas chromatography quadrupole-time-of-flight mass spectrometry-based metabolomics and data-independent acquisition-based quantitative proteomics methods were used to analyze liver tissues collected from 8 healthy multiparous Holstein dairy cows 21 d before and after calving. In total, 44 metabolites and 250 proteins were identified as differentially expressed from 233 metabolites and 3,539 proteins detected from the liver biopsies during the transition period. Complementary functional analysis of different metabolites and proteins indicated the upregulated gluconeogenesis, tricarboxylic acid cycles, AA degradation, fatty acid oxidation, AMP-activated protein kinase signaling pathway, peroxisome proliferator-activated receptor signaling pathway, and ribosome proteins in postpartum dairy cows. In terms of the metabolites and proteins, glucose-6-phosphate, fructose-6-phosphate, carnitine palmitoyltransferase 1A, and phosphoenolpyruvate carboxykinase played a significant role in these pathways. The upregulated oxidative status may be accompanied by the pathways mentioned above. In addition, the upregulated glucagon and insulin signaling pathways also indicated the significant requirement for glucose in postpartum dairy cows. These outcomes, from the view of global metabolites and proteins, may present a better comprehension of the biology of the transition period, which can be helpful in further developing nutritional regulation strategies targeting the liver to help cows overcome this metabolically challenging time.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 China; State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Naren Gaowa
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Huanxu Li
- Beijing Oriental Kingherd Biotechnology Company, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Xiaoming Zhang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193 China.
| |
Collapse
|
9
|
Fehlberg LK, Guadagnin AR, Thomas BL, Ballou M, Loor JJ, Sugimoto Y, Shinzato I, Cardoso FC. Feeding rumen-protected lysine altered immune and metabolic biomarkers in dairy cows during the transition period. J Dairy Sci 2023; 106:2989-3007. [PMID: 36797190 DOI: 10.3168/jds.2022-22349] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/13/2022] [Indexed: 02/16/2023]
Abstract
This experiment was conducted to determine the effects of feeding rumen-protected lysine (RPL; AjiPro-L Generation 3, Ajinomoto Health and Nutrition North America Inc.) from -26 ± 4.6 d prepartum (0.54% RPL of dietary dry matter intake) to 28 d postpartum (0.39% RPL of dietary dry matter intake) on immunometabolic status and liver composition in dairy cows. Seventy-five multiparous Holstein cows, blocked by parity, previous 305-d mature-equivalent milk production, expected calving date, and body condition score during the far-off dry period were assigned to 1 of 4 dietary treatments in a randomized, complete block design with a 2 × 2 factorial arrangement of treatments. Treatments prepartum consisted of total mixed ration top dressed with RPL (PRE-L) or without RPL (PRE-C), and postpartum treatments consisted of total mixed ration top dressed PRE-L prepartum and postpartum, PRE-L prepartum and PRE-C postpartum, PRE-C prepartum and PRE-L postpartum, and PRE-C prepartum and postpartum in 300 g of molasses. Blood samples were taken on -7 ± 0.5, 0 ± 0.5, 7 ± 0.9, 14 ± 0.9, and 28 ± 0.5 d relative to calving. Whole blood samples were taken on -14 ± 0.5, -7 ± 0.5, 7 ± 0.9, and 14 ± 0.9 d relative to calving for oxidative burst and phagocytic capacity of monocytes and neutrophils. Liver samples were collected via a biopsy on -12 ± 4.95 and 13 ± 2.62 d relative to calving and analyzed for liver composition (triacylglyceride and carnitine concentrations), mRNA expression of hepatic genes, and protein abundance. Protein abundance was calculated by normalizing intensity bands for a specific protein with glyceraldehyde-3-phosphate dehydrogenase. Concentrations of haptoglobin and glutathione peroxidase activity in plasma were lower at d 0 for cows in PRE-L (102 µg/mL and 339 nmol/min per mL, respectively) compared with cows in PRE-C (165 µg/mL and 405 nmol/min per mL, respectively). Oxidative burst capacity in monocytes tended to be greater on d 7 postpartum for cows in PRE-L (65.6%) than cows in PRE-C (57.5%). Additionally, feeding RPL altered the mRNA expression in liver tissue prepartum [decreased INSR (insulin receptor), CPT1A (carnitine palmitoyltransferase 1A), and IL1B (interleukin 1 β)] and postpartum [increased IL8 (interleukin 8), EHMT2 (euchromatic histone lysine methyltransferase 2), TSPO (translocator protein), and SLC3A2 (solute carrier family 3 member 2); and decreased SLC7A1 (solute carrier family 7 member 1), SOD1 (superoxide dismutase 1), and SAA3 (serum amyloid A 3)] compared with cows not consuming RPL]. Additionally, cows in the PRE-C prepartum and PRE-L postpartum treatment tended to have greater protein abundance of mTOR postpartum compared with the PRE-C prepartum and postpartum treatment. Protein abundance of SLC7A7 (solute carrier family 7 member 7) pre- and postpartum tended to be greater and BBOX1 (gamma-butyrobetaine dioxygenase 1) tended to be less when RPL was consumed prepartum. In conclusion, cows that consumed RPL during the transition period had molecular changes related to liver composition, enhanced liver function indicated by greater total protein and albumin concentrations in plasma, and improved immune status indicated by decreased haptoglobin, glutathione peroxidase activity, and immune related mRNA expression.
Collapse
Affiliation(s)
- L K Fehlberg
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - A R Guadagnin
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - B L Thomas
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - M Ballou
- Department of Animal Science and Food Science, Texas Tech University, Lubbock 79409
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - Y Sugimoto
- Ajinomoto Co. Inc., Tokyo 104-8315, Japan
| | - I Shinzato
- Ajinomoto Co. Inc., Tokyo 104-8315, Japan
| | - F C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
10
|
Ghaffari MH, Sadri H, Sauerwein H. Invited review: Assessment of body condition score and body fat reserves in relation to insulin sensitivity and metabolic phenotyping in dairy cows. J Dairy Sci 2023; 106:807-821. [PMID: 36460514 DOI: 10.3168/jds.2022-22549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022]
Abstract
The purpose of this article is to review body condition scoring and the role of body fat reserves in relation to insulin sensitivity and metabolic phenotyping. This article summarizes body condition scoring assessment methods and the differences between subcutaneous and visceral fat depots in dairy cows. The mass of subcutaneous and visceral adipose tissue (AT) changes significantly during the transition period; however, metabolism and intensity of lipolysis differ between subcutaneous and visceral AT depots of dairy cows. The majority of studies on AT have focused on subcutaneous AT, and few have explored visceral AT using noninvasive methods. In this systematic review, we summarize the relationship between body fat reserves and insulin sensitivity and integrate omics research (e.g., metabolomics, proteomics, lipidomics) for metabolic phenotyping of cows, particularly overconditioned cows. Several studies have shown that AT insulin resistance develops during the prepartum period, especially in overconditioned cows. We discuss the role of AT lipolysis, fatty acid oxidation, mitochondrial function, acylcarnitines, and lipid insulin antagonists, including ceramide and glycerophospholipids, in cows with different body condition scoring. Nonoptimal body conditions (under- or overconditioned cows) exhibit marked abnormalities in metabolic and endocrine function. Overall, reducing the number of cows with nonoptimal body conditions in herds seems to be the most practical solution to improve profitability, and dairy farmers should adjust their management practices accordingly.
Collapse
Affiliation(s)
- M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany.
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 5166616471 Tabriz, Iran
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53111 Bonn, Germany
| |
Collapse
|
11
|
Hare KS, Penner GB, Steele MA, Wood KM. Oversupplying metabolizable protein during late gestation to beef cattle does not influence ante- or postpartum glucose-insulin kinetics but does affect prepartum insulin resistance indices and colostrum insulin content. J Anim Sci 2022; 100:6556069. [PMID: 35353892 PMCID: PMC9113283 DOI: 10.1093/jas/skac101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate whether oversupplying metabolizable protein (MP) during late gestation influences glucose and insulin concentrations, and insulin resistance (IR) in late gestation and early lactation. Crossbred Hereford, first-lactation heifers were individually fed diets to supply 133% (HMP, n = 11) or 100% (CON, n = 10) of their predicted MP requirements for 55 ± 4 d (mean ± SD) prior to calving. All heifers received a common lactation ration formulated to meet postpartum requirements (103% MP and 126% ME). After feed was withheld for 12 h, cattle underwent an intravenous glucose tolerance test (IVGTT) on d -6.7 ± 0.9 and 14.3 ± 0.4 by infusing a 50% dextrose solution (1.36 g glucose/kg BW 0.75) through a jugular catheter with plasma collected at -10, 0 (immediately after infusion), 5, 10, 15, 20, 25, 30, 45, 60, 75, 90, and 120 min, respective to the infusion. Glucose and insulin concentrations were assessed. Insulin resistance indices (homeostasis model of insulin resistance [HOMA-IR], quantitative insulin sensitivity check index [QUICKI], revised quantitative insulin sensitivity check index [RQUICK], and RQUICKI incorporating serum beta-hydroxybutyrate concentrations [RQUICKIBHB]) were calculated from measurements of serum non-esterified fatty acids and beta-hydroxybutyrate and plasma glucose and insulin concentrations on d -34 ± 4, -15 ± 4, 7 ± 1, 28 ± 3, 70 ± 3, and 112 ± 3. Colostrum samples were collected within an hour of calving (prior to suckling) and analyzed for insulin concentration. Data were analyzed as a randomized block design using the PROC GLIMMIX of SAS, accounting for repeated measurements when necessary. Baseline (-10 min) plasma glucose and insulin concentrations were elevated (P ≤ 0.038) for HMP heifers during the antepartum IVGTT, but not (P ≥ 0.25) during the postpartum IVGTT. Plasma glucose and insulin concentrations throughout the antepartum or postpartum IVGTT did not differ (P ≥ 0.18) by prepartum treatment, nor did other glucose and insulin IVGTT parameters (i.e., max concentration and time to reach max concentration, nadir values, clearance rates and half-lives, area-under-the-curve, and insulin sensitivity index; P ≥ 0.20). Antepartum IVGTT IR indices indicated that HMP heifers were more (P ≤ 0.011) IR than their counterparts. Similarly, the prepartum HOMA-IR was greater (P = 0.033) for HMP heifers, suggesting increased IR. Postpartum IR indices did not (P ≥ 0.25) indicate that prepartum MP consumption impacted postpartum IR. Colostrum insulin concentration was increased (P = 0.004) by nearly 2-fold for HMP relative to CON heifers. These data demonstrate that prepartum MP overfeeding alters baseline glucose-insulin concentrations in late-pregnant beef heifers and increases colostrum insulin content without having carry-over effects on postpartum glucose-insulin concentrations and IR.
Collapse
Affiliation(s)
- Koryn S Hare
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada
| | - Gregory B Penner
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael A Steele
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada
| | - Katharine M Wood
- Department of Animal Biosciences, Animal Science and Nutrition, Ontario Agricultural College University of Guelph, Guelph, ON, Canada
| |
Collapse
|
12
|
Chen H, Wang C, Huasai S, Chen A. Effect of prepartum dietary energy density on beef cow energy metabolites, and birth weight and antioxidative capabilities of neonatal calves. Sci Rep 2022; 12:4828. [PMID: 35318381 PMCID: PMC8941139 DOI: 10.1038/s41598-022-08809-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to investigate the effect of prepartum diets that differ in energy density on beef cow energy metabolites and birth weight, immunity and antioxidative capabilities of neonatal calves. On d 0 (approximately 45 d before calving), 90 multiparous Angus cows (BW = 510 ± 16 kg) were randomly allocated into 1 of 9 drylot pens (10 cows/pen). Each pen was randomly assigned to a treatment condition (three pens/treatment), the cows in each treatment were assigned randomly to receive a high-energy (HE) density diet (NEm = 1.67 Mcal/kg of DM), medium-energy (ME) density diet (NEm = 1.53 Mcal/kg of DM), or low-energy (LE) density diet (NEm = 1.36 Mcal/kg of DM). Blood samples were collected - 45, - 21, - 14, and - 7 d from calving, and plasma concentrations of cortisol, glucose, total protein, β-hydroxybutyrate (BHBA), and nonesterified fatty acids (NEFAs) were measured. After calving, the birth weights, body height, body length, thoracic girth and umbilical girth of the calves in each group were recorded, and blood samples were collected for analysis of IgG, IL-2, IL-4, IL-6, total antioxidant capacity, superoxide dismutase, glutathione peroxidase, and maleic dialdehyde levels. The amounts of feed offered and orts were recorded for individual cows 4 d/wk. The results indicated that although dry matter intake (DMI) levels did not differ among the LE, ME, and or HE groups before parturition, the group that received the HE diet had higher plasma glucose concentrations and lower prepartum blood NEFA concentrations than the other groups. Birth weight, body height, thoracic girth, and levels of IL-2, cortisol, total antioxidant capacity, and superoxide dismutase were increased in calves of the HE group compared with those of the LE group. The plasma IL-4 and serum IgG concentrations tended to be decreased in the ME group compared with the HE group, and the ME group had lower maleic dialdehyde concentrations; maleic dialdehyde levels were significantly increased in the LE group compared with the HE group. Overall, these results indicate that feeding of a low-energy diet during the last 45 d before parturition has negative effects on the growth, immunity, and antioxidative capabilities of neonatal calves. Increasing maternal energy density during late gestation may be useful to improve the energy status of cows.
Collapse
Affiliation(s)
- Hao Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Chunjie Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Simujide Huasai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Aorigele Chen
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
13
|
Zachut M, Contreras GA. Symposium review: Mechanistic insights into adipose tissue inflammation and oxidative stress in periparturient dairy cows. J Dairy Sci 2022; 105:3670-3686. [DOI: 10.3168/jds.2021-21225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022]
|
14
|
Major Nutritional Metabolic Alterations Influencing the Reproductive System of Postpartum Dairy Cows. Metabolites 2022; 12:metabo12010060. [PMID: 35050182 PMCID: PMC8781654 DOI: 10.3390/metabo12010060] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/25/2022] Open
Abstract
Early successful conception of postpartum dairy cows is crucial in determining the optimum reproductive efficiency and profitability in modern dairy farming. Due to the inherent high production potential of modern dairy cows, the extra stress burden of peri-parturient events, and associated endocrine and metabolic changes causes negative energy balance (NEBAL) in postpartum cows. The occurrence of NEBAL is associated with excessive fat mobilization in the form of non-esterified fatty acids (NEFAs). The phenomenon of NEFA mobilization furthers with occurrence of ketosis and fatty liver in postpartum dairy cows. High NEFAs and ketones are negatively associated with health and reproductive processes. An additional burden of hypocalcemia, ruminal acidosis, and high protein metabolism in postpartum cows presents further consequences for health and reproductive performance of postpartum dairy cows. This review intends to comprehend these major nutritional metabolic alterations, their mechanisms of influence on the reproduction process, and relevant mitigation strategies.
Collapse
|
15
|
Lammoglia MÁ, Avalos I, Cabrera A, Rojas MR, Garcez N, Tabarez A. Indicators of immunosuppression peripartum in dual purpose cows in the tropics affected health, productive and reproductive parameters. Anim Reprod 2021; 18:e20210040. [PMID: 35096150 PMCID: PMC8786274 DOI: 10.1590/1984-3143-ar2021-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
|
16
|
Liang Y, Alharthi AS, Elolimy AA, Bucktrout R, Lopreiato V, Martinez-Cortés I, Xu C, Fernandez C, Trevisi E, Loor JJ. Molecular networks of insulin signaling and amino acid metabolism in subcutaneous adipose tissue are altered by body condition in periparturient Holstein cows. J Dairy Sci 2020; 103:10459-10476. [PMID: 32921465 DOI: 10.3168/jds.2020-18612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 07/05/2020] [Indexed: 12/28/2022]
Abstract
Peripartal cows mobilize not only body fat but also body protein to satisfy their energy requirements. The objective of this study was to determine the effect of prepartum BCS on blood biomarkers related to energy and nitrogen metabolism, and mRNA and protein abundance associated with AA metabolism and insulin signaling in subcutaneous adipose tissue (SAT) in peripartal cows. Twenty-two multiparous Holstein cows were retrospectively classified into a high BCS (HBCS; n = 11, BCS ≥ 3.5) or normal BCS (NBCS; n = 11, BCS ≤ 3.17) group at d 28 before expected parturition. Cows were fed the same diet as a total mixed ration before parturition and were fed the same lactation diet postpartum. Blood samples collected at -10, 7, 15, and 30 d relative to parturition were used for analyses of biomarkers associated with energy and nitrogen metabolism. Biopsies of SAT harvested at -15, 7, and 30 d relative to parturition were used for mRNA (real time-PCR) and protein abundance (Western blotting) assays. Data were subjected to ANOVA using the MIXED procedure of SAS (v. 9.4; SAS Institute Inc., Cary, NC), with P ≤ 0.05 being the threshold for significance. Cows in HBCS had greater overall plasma nonesterified fatty acid concentrations, due to marked increases at 7 and 15 d postpartum. This response was similar (BCS × Day effect) to protein abundance of phosphorylated (p) protein kinase B (p-AKT), the insulin-induced glucose transporter (SLC2A4), and the sodium-coupled neutral AA transporter (SLC38A1). Abundance of these proteins was lower at -15 d compared with NBCS cows, and either increased (SLC2A4, SLC38A1) or did not change (p-AKT) at 7 d postpartum in HBCS. Unlike protein abundance, however, overall mRNA abundances of the high-affinity cationic (SLC7A1), proton-coupled (SLC36A1), and sodium-coupled amino acid transporters (SLC38A2) were greater in HBCS than NBCS cows, due to upregulation in the postpartum phase. Those responses were similar to protein abundance of p-mTOR, which increased (BCS × Day effect) at 7 d in HBCS compared with NBCS cows. mRNA abundance of argininosuccinate lyase (ASL) and arginase 1 (ARG1) also was greater overall in HBCS cows. Together, these responses suggested impaired insulin signaling, coupled with greater postpartum AA transport rate and urea cycle activity in SAT of HBCS cows. An in vitro study using adipocyte and macrophage cocultures stimulated with various concentrations of fatty acids could provide some insights into the role of immune cells in modulating adipose tissue immunometabolic status, including insulin resistance and AA metabolism.
Collapse
Affiliation(s)
- Y Liang
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - A S Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - A A Elolimy
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock 72205; Arkansas Children's Nutrition Center, Little Rock 72205; Department of Animal Production, National Research Centre, Giza, 12611, Egypt
| | - R Bucktrout
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - V Lopreiato
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - I Martinez-Cortés
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801; Agricultural and Animal Production Department, UAM-Xochimilco, Mexico City 04960, Mexico
| | - C Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - C Fernandez
- Animal Science Department, Universitàt Politècnica de Valencia, 46022 Valencia, Spain
| | - E Trevisi
- Department of Animal Sciences, Food and Nutrition, Faculty of Agriculture, Food and Environmental Science, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
17
|
Fleming A, Garrett K, Froehlich K, Beck M, Bryant RH, Edwards G, Gregorini P. Supplementation of Spring Pasture with Harvested Fodder Beet Bulb Alters Rumen Fermentation and Increases Risk of Subacute Ruminal Acidosis during Early Lactation. Animals (Basel) 2020; 10:ani10081307. [PMID: 32751524 PMCID: PMC7460450 DOI: 10.3390/ani10081307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Fodder beet (FB) is widely used in grazing dairy systems of New Zealand to support early- and late-lactation milk production, however, the large fraction of water-soluble carbohydrate present in FB bulbs presents a risk of subacute and acute ruminal acidosis. Despite widespread use of FB across New Zealand, the incidence of ruminal acidosis using industry-recommended methods of feeding FB has not been investigated. This study analyzed the time-dependent changes to rumen fermentation, apparent dry matter intake, milk production, milk composition and plasma amino acid concentration of grazing dairy cows supplemented with moderate amounts (40% of dry matter intake) of FB during early lactation. Our findings indicate that incidence of subacute ruminal acidosis due to FB is greater than currently realized, as 25% of cows developed severe subacute ruminal acidosis following transition to target FB allocation (40% of daily intake). Across all cows, FB reduced rumen pH, feed conversion efficiency and was not advantageous to milk production. These results suggest methods for adapting cows to a diet containing FB require further evaluation to reduce the risk of subacute ruminal acidosis (SARA) experienced by individuals within the herd. Abstract In a cross-over design, eight rumen cannulated dairy cows were used to explore the industry-recommended method for dietary transition to fodder beet (FB: Beta vulgaris L.) on changes to rumen fermentation and pH, milk production, dry matter intake (DMI) and the risk of subacute ruminal acidosis (SARA) during early lactation. Cows were split into two groups and individually allocated a ryegrass (Lolium Perenne L.) and white clover (Trifolium repens L.) diet (HO) or the same herbage supplemented with 6 kg DM/cow of harvested fodder beet bulbs (FBH). Dietary adaptation occurred over 20 days consisting of: stage 1: gradual transition to target FB intake (days 1–12, +0.5 kg DM of FB/d); stage 2: acclimatization (days 13–17) and stage 3: post-adaption sampling (days 18–20). Response variables were analyzed as a factorial arrangement of diet and stage of adaption using a combination of ANOVA and generalized linear mixed modelling. Dietary proportion of FB represented 22, (stage 1), 32 (stage 2) and 38% (stage 3) of daily DMI. One cow during each period developed SARA from FB and the duration of low pH increased with FBH compared to the HO treatment (p < 0.01). Rumen concentrations of lactic and butyric acid increased with FBH but concentrations of acetate, propionate and total volatile fatty acids (VFA) declined by 9.3% at day 20, compared to the HO treatment (p < 0.01). Treatments did not affect milk production but total DMI with supplemented cows increased during the final stage of adaptation and feed conversion efficiency (FCE kg milk/kg DM) declined with the FBH treatment. The occurrence of SARA in 25% of animals fed FB suggest it is a high-risk supplement to animal health and further evaluation of industry-recommended methods for feeding FB at the individual- and herd-scale are needed.
Collapse
|
18
|
Wu J, Liu J, Wang D. Effects of body condition on the insulin resistance, lipid metabolism and oxidative stress of lactating dairy cows. Lipids Health Dis 2020; 19:56. [PMID: 32228618 PMCID: PMC7106888 DOI: 10.1186/s12944-020-01233-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Overconditioned dairy cows are prone to greater insulin resistance in transition to successfully adapt to negative energy balance. The associations among body condition score (BCS), insulin resistance, lipid metabolism and oxidative stress in cows during late lactation with positive energy balance remain to be elucidated. METHODS The objectives of this study were to investigate insulin sensitivity and oxidative status in late lactating dairy cows with different BCS but similar milk production, parity and days in milk. Forty-two multiparous Holstein cows were fed the same diet under the same management and divided into three groups based on BCS: low BCS (LBCS; BCS ≤ 2.75; n = 12), medium BCS (MBCS; 3.0 ≤ BCS ≤ 3.5; n = 15) or high BCS (HBCS; BCS ≥ 3.75; n = 15). Blood samples used for analysis of biochemical and hematological parameters were collected from the coccygeal vein at the end of experiment. RESULTS The concentrations of insulin and nonesterified fatty acid were higher and the revised quantitative insulin sensitivity check index (RQUICKI) was lower in HBCS cows than in LBCS and MBCS cows. These results suggest that insulin resistance exacerbates lipolysis in HBCS cows. Serum concentrations of very low-density lipoprotein, apolipoprotein A-I, and apolipoprotein B were lower in HBCS cows than in LBCS or MBCS cows. Although LBCS and MBCS cows had higher reactive oxygen species levels than did HBCS cows, the malondialdehyde concentration was not different among cows with different BCS. Ceruloplasmin activity was higher in MBCS and HBCS cows than in LBCS cows, but superoxide dismutase, glutathione peroxidase, and paraoxonase activities were not different among cows with different BCS. Despite the higher percentage of granulocytes in MBCS cows than in HBCS cows, no differences were found in leukocyte counts, red blood cell profiles and platelet profiles among the cows in the three groups. CONCLUSIONS Results of this study showed that compared with MBCS and LBCS cows, HBCS cows at late lactation stage may have accumulated more hepatic triacylglycerol and lower antioxidant potential due to greater insulin resistance.
Collapse
Affiliation(s)
- Jiajin Wu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jianxin Liu
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Diming Wang
- Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|