1
|
Herrera-Sánchez MP, Rodríguez-Hernández R, Rondón-Barragán IS. Comparative Transcriptome Analysis of Hens' Livers in Conventional Cage vs. Cage-Free Egg Production Systems. Vet Med Int 2025; 2025:3041254. [PMID: 40160973 PMCID: PMC11952924 DOI: 10.1155/vmi/3041254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/22/2025] [Indexed: 04/02/2025] Open
Abstract
Different conditions of production systems including stocking density, thermal conditions, and behavior restriction can have a significant detrimental effect on the health and performance of laying hens. The conventional cage system is one of the systems that have been reported to cause stress problems in birds, due to social and behavioral stress. Emerging technologies have facilitated a deeper understanding of animal responses to various scenarios and can be an additional tool to conventional ones to assess animal welfare, where transcriptomic analysis has the potential to show the genetic changes that occur in response to stress. According to this, the aim of this work was to characterize the liver transcriptome of hens housed under two egg production systems (conventional cage and cage-free). Liver tissue from Hy-Line Brown hens housed in conventional cage (n = 3) and cage-free (n = 3) production systems at week 80 of age was processed using the Illumina platform to identify differentially expressed genes with a padj < 0.05. Regarding the differentially expressed genes, 138 genes were found, of which 81 were upregulated and 57 downregulated. Some of the genes of interest were TENM2, GRIN2C, and ACACB, which would indicate greater fat synthesis in the liver of caged hens. The enriched KEGG pathways were DNA replication and the cell cycle. In conclusion, it was identified that the cage production system may influence DNA replication and the cell cycle since the genes related to these terms were found suppressed, which would indicate cellular instability.
Collapse
Affiliation(s)
- María Paula Herrera-Sánchez
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
| | - Roy Rodríguez-Hernández
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
| | - Iang Schroniltgen Rondón-Barragán
- Poultry Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
- Immunobiology and Pathogenesis Research Group, Laboratory of Immunology and Molecular Biology, Faculty of Veterinary Medicine and Zootechnics, Universidad del Tolima, Altos de Santa Helena, Ibagué 730006299, Tolima, Colombia
| |
Collapse
|
2
|
Schmidt CJ, Lamont SJ. Integrated Genomic Approaches to Characterize and Mitigate Heat Stress in Poultry. Annu Rev Anim Biosci 2025; 13:121-141. [PMID: 39476417 DOI: 10.1146/annurev-animal-111523-102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
With the burgeoning human population, climate change, and expansion of poultry production in hot climates, it is imperative to aid global food security by enhancing the resilience of thermally challenged poultry. As a complement to management approaches used to mitigate heat stress, we give selected examples of recent studies on heat stress in poultry using various omics technologies. An integrated analysis of positional and functional candidate genes is provided, highlighting the most prominent pathways involved in the heat stress response. We finish by discussing efficient strategies to enhance thermal tolerance of poultry by genomics approaches, advocating for preservation of biodiversity that may provide beneficial allelic variation, and identifying current and future challenges in producing climate-resilient poultry.
Collapse
Affiliation(s)
- Carl J Schmidt
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware, USA;
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa, USA;
| |
Collapse
|
3
|
Zhu Y, Kubota S, Pasri P, Rakngam S, Okrathok S, Pukkung C, Yang S, Khempaka S. Transcriptome analysis of jejunal mucosal tissue in breeder hens exposed to acute heat stress. Poult Sci 2025; 104:104532. [PMID: 39561558 PMCID: PMC11617225 DOI: 10.1016/j.psj.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Heat stress (HS) severely compromises intestinal barrier function in poultry, resulting in significant production losses. This study aimed to explore the molecular response of the small intestine to acute HS in breeder hens. Fifty 28-week-old breeder hens were raised individually in a cage and randomly assigned to control and heat-treated groups (25 hens each). Control group hens were maintained at thermoneutral conditions (23°C) and heat-treated group hens were subjected to acute HS (36°C for a 6-h). The heart rate and cloacal temperature were measured in all hens. The jejunal mucosa tissues were collected from 12 randomly selected hens per group for transcriptomic analysis. The acute HS induced significant physiological alterations, with a marked increase in the heart rate and cloacal temperature in hens (P = 0.001). Transcriptome analysis revealed 138 genes with altered expression patterns under acute HS conditions. Of these, 75 genes including heat shock proteins (HSPs) showed upregulated expression, while 63 genes including a key bile acid transport molecule (SLC10A2) exhibited downregulated expression. Functional analysis through gene ontology classification, pathway mapping via the Kyoto encyclopedia of genes and genomes, and protein interaction networks identified several important regulatory genes in thermal response (HSPA8 and HSPA2), energy homeostasis and fat metabolism (PDK4, PPARA, and CD36), glucose transport (SLC2A5), and cholesterol synthesis pathway (SQLE, CYP51A1, and HSD17B7). The findings suggest that acute HS might affect energy utilization, fat metabolism, and glucose transport mechanisms in the jejunal mucosa of breeder hens. The upregulation of HSPs appears to serve as a protective mechanism, potentially preserving intestinal nutrient processing capacity under acute HS. These findings provide foundational knowledge for further investigation into the molecular mechanisms governing HS responses in avian intestinal function and may inform strategies for maintaining gut health in commercial poultry operations exposed to environmental challenges.
Collapse
Affiliation(s)
- Yongcai Zhu
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Phocharapon Pasri
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Sitthipong Rakngam
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Supattra Okrathok
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Chayanan Pukkung
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Shenglin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Sutisa Khempaka
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
4
|
Kwon SH, Lee JH, Kim HW, Kim DY, Kil DY. Effect of increasing supplementation of dietary glycine on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress conditions. Poult Sci 2024; 103:104352. [PMID: 39383666 PMCID: PMC11490916 DOI: 10.1016/j.psj.2024.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024] Open
Abstract
The current study aimed to investigate the effect of increasing supplementation of dietary glycine (Gly) on growth performance, meat quality, liver characteristics, and intestinal health in broiler chickens raised under heat stress (HS) conditions. A total of one thousand six hundred 25-d-old broiler chickens were randomly allotted to 1 of 5 dietary treatments with 8 replicates. Each replicate comprised 20 male and 20 female birds. A negative control (NC) diet was prepared to meet or exceed energy and nutrient requirement estimates, whereas a positive control (PC) diet was formulated to contain increasing concentrations of AMEn by 50 kcal/kg as well as those of digestible amino acids, total Ca, and available P by 10% compared with the respective concentrations in the NC diet. Three additional diets were prepared by supplementing the NC diet with 0.4, 0.8, or 1.6% Gly. All chickens were raised under cyclic HS conditions at 29°C ± 0.89°C for 10 h/d and 23°C ± 1.45°C for the remaining time over an 18-d feeding trial. Results indicated that broiler chickens fed the NC diet had a greater (P < 0.05) FCR than those fed the PC diet under HS conditions. Increasing supplementation of up to 1.6% Gly in diets decreased (linear, P < 0.001) FCR in broiler chickens. Increasing supplementation of dietary Gly tended to increase (linear, P = 0.070) water holding capacity in the breast meat. Increasing supplementation of dietary Gly decreased (linear, P < 0.05) serum aspartate aminotransferase concentrations and tended to decrease blood heterophil:lymphocyte (linear, P = 0.083) and liver malondialdehyde concentrations (quadratic, P = 0.084). A tendency for increased villus height (linear, P = 0.086) and a significant increase in villus height:crypt depth ratio and goblet cell numbers (linear, P < 0.05) were identified following increasing Gly supplementation. In conclusion, increasing supplementation of dietary Gly improved feed efficiency, meat quality, liver health, and intestinal morphology possibly by mitigating oxidative stress and stress response in broiler chickens raised under HS conditions.
Collapse
Affiliation(s)
- Sung Hoon Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Ji Hye Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
5
|
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. BIOLOGY 2024; 13:926. [PMID: 39596881 PMCID: PMC11591812 DOI: 10.3390/biology13110926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
Heat stress (HS) due to high temperatures has adverse effects on poultry, including decreased feed intake, lower feed efficiency, decreased body weight, and higher mortality. There are complex mechanisms behind heat stress in poultry involving the neuroendocrine system, organ damage, and other physiological systems. HS activates endocrine glands, such as the pituitary, adrenal, thyroid, and gonadal, by the action of the hypothalamus and sympathetic nerves, ultimately causing changes in hormone levels: HS leads to increased corticosterone levels, changes in triiodothyronine and thyroxine levels, decreased gonadotropin levels, reduced ovarian function, and the promotion of catecholamine release, which ultimately affects the normal productive performance of poultry. Meanwhile, heat stress also causes damage to the liver, lungs, intestines, and various immune organs, severely impairing organ function in poultry. Nutrient additives to feed are important measures of prevention and treatment, including natural plants and extracts, probiotics, amino acids, and other nutrients, which are effective in alleviating heat stress in poultry. Future studies need to explore the specific mechanisms through which heat stress impacts the neuroendocrine system in poultry and the interrelationships between the axes and organ damage so as to provide an effective theoretical basis for the development of preventive and treatment measures.
Collapse
Affiliation(s)
| | | | | | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.H.); (H.C.); (Y.H.)
| |
Collapse
|
6
|
Wen H, Johnson JS, Mulim HA, Araujo AC, De Carvalho FE, Rocha AO, Huang Y, Tiezzi F, Maltecca C, Schinckel AP, Brito LF. Genomic regions and biological mechanisms underlying climatic resilience traits derived from automatically-recorded vaginal temperature in lactating sows under heat stress conditions. Front Genet 2024; 15:1498380. [PMID: 39574795 PMCID: PMC11578969 DOI: 10.3389/fgene.2024.1498380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024] Open
Abstract
Climate change poses a growing threat to the livestock industry, impacting animal productivity, animal welfare, and farm management practices. Thus, enhancing livestock climatic resilience (CR) is becoming a key priority in various breeding programs. CR can be defined as the ability of an animal to be minimally affected or rapidly return to euthermia under thermally stressful conditions. The primary study objectives were to perform genome-wide association studies for 12 CR indicators derived from variability in longitudinal vaginal temperature in lactating sows under heat stress conditions. A total of 31 single nucleotide polymorphisms (SNPs) located on nine chromosomes were considered as significantly associated with nine CR indicators based on different thresholds. Among them, only two SNPs were simultaneously identified for different CR indicators, SSC6:16,449,770 bp and SSC7:39,254,889 bp. These results highlighted the polygenic nature of CR indicators with small effects distributed across different chromosomes. Furthermore, we identified 434 positional genes associated with CR. Key candidate genes include SLC3A2, STX5, POLR2G, and GANAB, which were previously related to heat stress responses, protein folding, and cholesterol metabolism. Furthermore, the enriched KEGG pathways and Gene Ontology (GO) terms associated with these candidate genes are linked to stress responses, immune and inflammatory responses, neural system, and DNA damage and repair. The most enriched quantitative trait loci are related to "Meat and Carcass", followed by "Production", "Reproduction", "Health", and "Exterior (conformation and appearance)" traits. Multiple genomic regions were identified associated with different CR indicators, which reveals that CR is a highly polygenic trait with small effect sizes distributed across the genome. Many heat tolerance or HS related genes in our study, such as HSP90AB1, DMGDH, and HOMER1, have been identified. The complexity of CR encompasses a range of adaptive responses, from behavioral to cellular. These results highlight the possibility of selecting more heat-tolerant individuals based on the identified SNP for CR indicators.
Collapse
Affiliation(s)
- Hui Wen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jay S. Johnson
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, United States
| | - Henrique A. Mulim
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Andre C. Araujo
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | | | - Artur O. Rocha
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Yijian Huang
- Smithfield Premium Genetics, Raleigh, NC, United States
| | - Francesco Tiezzi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Firenze, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Allan P. Schinckel
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Luiz F. Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
7
|
Nanto-Hara F, Ohtsu H. In laying hens, chronic heat stress-induced renal fibrosis is potentially promoted by indoxyl sulfate. Sci Rep 2024; 14:23213. [PMID: 39369114 PMCID: PMC11455881 DOI: 10.1038/s41598-024-75066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 10/01/2024] [Indexed: 10/07/2024] Open
Abstract
Indoxyl sulfate (IS), a uremic toxin, is a harmful factor that damages kidneys. Chronic heat stress in laying hens causes renal injury; however, whether IS accumulation is involved in this injury remains unknown. We selected 20 Boris brown laying hens (27 weeks old) and randomly assigned them to two groups (n = 10), one group was exposed to chronic heat stress (32 °C for 4 weeks), whereas the other was maintained at 24 °C. Chronic heat exposure significantly increased plasma and renal IS concentrations (P < 0.05). Exposure to heat also increased renal expression of the aryl hydrocarbon receptor (AhR) and its target genes (CYP1A4 and CYP1B1). Furthermore, chronic heat exposure tended to increase the 2-thiobarbituric acid reactive substances content (P = 0.08) and significantly decreased the antioxidant capacity in the kidney, while increasing the transcription levels of nuclear factor κB and fibrosis-related genes (COLA1A1, αSMA, TGF-β, Smad3, and VCAM-1) and the area of renal fibrosis. Our results indicate that chronic heat exposure induces systemic and renal IS accumulation in laying hens. This accumulated IS may activate the AhR pathway and chronically disrupt the oxidative stress status and antioxidant activity, thus promoting renal fibrosis and dysfunction in laying hens.
Collapse
Affiliation(s)
- Fumika Nanto-Hara
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), Tsukuba, Japan.
| | - Haruhiko Ohtsu
- Division of Meat Animal and Poultry Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NILGS), Tsukuba, Japan
| |
Collapse
|
8
|
Kim HW, Kim JH, Han GP, Kil DY. Increasing concentrations of dietary threonine, tryptophan, and glycine improve growth performance and intestinal health with decreasing stress responses in broiler chickens raised under multiple stress conditions. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:145-153. [PMID: 39257858 PMCID: PMC11385068 DOI: 10.1016/j.aninu.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/13/2024] [Accepted: 03/20/2024] [Indexed: 09/12/2024]
Abstract
The current study aimed to compare the effects of increasing concentrations of dietary threonine (Thr), tryptophan (Trp), and glycine (Gly) on growth performance, stress biomarkers, and intestinal function in broiler chickens under multiple stress conditions. Five hundred sixty broiler chickens at 21 d old were randomly allotted to 5 treatments with 8 replicates. Birds in a positive control (PC) treatment were raised under low stock density (16.9 birds/m2 per cage) with recommended environmental conditions, whereas birds in 4 treatments were subjected to multiple stress conditions: a cyclic heat stress of 30 ± 0.3 °C for 10 h and 23 ± 0.2 °C for 14 h per day with high stock density (25.3 birds/m2 per cage). A basal diet was assigned to both PC and negative control (NC) treatments. Three additional diets were individually formulated to contain double concentrations of digestible Thr, Trp, or Gly + Ser compared with their concentrations in the basal diet. The experiment lasted for 14 d. Results showed that NC treatment had less growth performance (P < 0.001), jejunal goblet cell counts (P = 0.018), and trans-epithelial electrical resistance (TEER; P < 0.001), but greater (P = 0.026) feather corticosterone (CORT) concentrations than PC treatment. Thr treatment showed the least (P < 0.001) feed conversion ratio (FCR) among treatments under multiple stress conditions. Thr, Trp, and Gly treatments had less (P = 0.026) feather CORT concentrations, but had greater (P < 0.001) TEER than NC treatment. In conclusion, increasing concentrations of dietary Thr, Trp, or Gly improve the growth performance and intestinal health in broiler chickens with decreasing stress response under multiple stress conditions.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Jong Hyuk Kim
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
9
|
Wu X, Du X, Pian H, Yu D. Effect of Curcumin on Hepatic mRNA and lncRNA Co-Expression in Heat-Stressed Laying Hens. Int J Mol Sci 2024; 25:5393. [PMID: 38791430 PMCID: PMC11121607 DOI: 10.3390/ijms25105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heat stress is an important factor affecting poultry production; birds have a range of inflammatory reactions under high-temperature environments. Curcumin has anti-inflammatory and antioxidant effects. The purpose of this experiment was to investigate the effect of dietary curcumin supplementation on the liver transcriptome of laying hens under heat stress conditions. In the animal experiment, a total of 240 Hy-Line brown hens aged 280 days were divided randomly into four different experimental diets with four replicates, and each replicate consisted of 15 hens during a 42-D experiment. The ambient temperature was adjusted to 34 ± 2 °C for 8 h per day, transiting to a range of 22 °C to 28 °C for the remaining 16 h. In the previous study of our lab, it was found that supplemental 150 mg/kg curcumin can improve production performance, antioxidant enzyme activity, and immune function in laying hens under heat stress. To further investigate the regulatory mechanism of curcumin on heat stress-related genes, in total, six samples of three liver tissues from each of 0 mg/kg and 150 mg/kg curcumin test groups were collected for RNA-seq analysis. In the transcriptome analysis, we reported for the first time that the genes related to heat stress of mRNA, such as HSPA8, HSPH1, HSPA2, and DNAJA4, were co-expressed with lncRNA such as XLOC010450, XLOC037987, XLOC053511, XLOC061207, and XLOC100318, and all of these genes are shown to be down-regulated. These findings provide a scientific basis for the possible benefits of dietary curcumin addition in heat-stressed laying hens.
Collapse
Affiliation(s)
- Xinyue Wu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Xubin Du
- Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing 210095, China;
| | - Huifang Pian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.W.); (H.P.)
| |
Collapse
|
10
|
Zeng XY, Javid A, Tian G, Zhang KY, Bai SP, Ding XM, Wang JP, Lv L, Xuan Y, Li SS, Zeng QF. Metabolomics analysis to interpret changes in physiological and metabolic responses to chronic heat stress in Pekin ducks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169382. [PMID: 38110095 DOI: 10.1016/j.scitotenv.2023.169382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Heat stress (HS) is a major environmental threat that affects duck production in subtropical and tropical regions, especially in summer. This study aimed to evaluate the physiological and metabolic responses of Pekin ducks to chronic HS conditions via liquid chromatography-mass spectrometry (LC-MS) using a paired-fed (PF) experimental design. On the basis of equivalent feed intake (HS vs. PF), HS significantly reduced growth performance and the percentage of leg and breast muscles, however, markedly increased the percentage of abdominal fat and breast skin fat. Serum metabolomics results revealed that heat-stressed ducks showed enhanced glycolysis and pentose phosphate pathways, as demonstrated by higher glucose 6-phosphate and 6-phogluconic acid levels in the PF vs. HS comparison. HS decreased hepatic mRNA levels of mitochondrial fatty acid β-oxidation-related genes (MCAD and SCAD) compared to the PF group, resulting in acetylcarnitine accumulation in serum. Moreover, HS elevated the concentrations of serum amino acids and mRNA levels of ubiquitination-related genes (MuRF1 and MAFbx) in the skeletal muscle and amino acid transporter-related genes (SLC1A1 and SLC7A1) and gluconeogenesis-related genes (PCK1 and PCase) in the liver compared to the PF group. When compared to the normal control group (NC), HS further decreased growth performance, but it elevated the abdominal fat rate. However, increased mRNA levels of ubiquitination-related genes and serum amino acid accumulation were not observed in the HS group compared to the NC group, implying that reduced feed intake masked the effect of HS on skeletal muscle breakdown and is a form of protection for the organism. These results suggest that chronic HS induces protein degradation in the skeletal muscle to provide amino acids for hepatic gluconeogenesis to provide sufficient energy, as Pekin ducks under HS conditions failed to efficiently oxidise fatty acids and ketones in the mitochondria, leading to poor growth performance and slaughter characteristics.
Collapse
Affiliation(s)
- Xiangyi-Yi Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Arshad Javid
- University of Veterinary & Animal Science, Lahore, Pakistan
| | - Gang Tian
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Ke-Ying Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Shi-Ping Bai
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue-Mei Ding
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian-Ping Wang
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Lv
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Xuan
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Shan-Shan Li
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiu-Feng Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
11
|
Oluwagbenga EM, Fraley GS. Heat stress and poultry production: a comprehensive review. Poult Sci 2023; 102:103141. [PMID: 37852055 PMCID: PMC10591017 DOI: 10.1016/j.psj.2023.103141] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
The impact of global warming on poultry production has gained significant attention over the years. However, our current knowledge and understanding of the mechanisms through which heat stress (HS) resulting from global warming affects the welfare, behavior, immune response, production performance, and even transgenerational effects in poultry are still incomplete. Further research is needed to delve deeper into these mechanisms to gain a comprehensive understanding. Numerous studies have investigated various biomarkers of stress in poultry, aiming to identify reliable markers that can accurately assess the physiological status and well-being of birds. However, there is a significant amount of variation and inconsistency in the results reported across different studies. This inconsistency highlights the need for more standardized methods and assays and a clearer understanding of the factors that influence these biomarkers in poultry. This review article specifically focuses on 3 main aspects: 1) the neuroendocrine and behavioral responses of poultry to HS, 2) the biomarkers of HS and 3) the impact of HS on poultry production that have been studied in poultry. By examining the neuroendocrine and behavioral changes exhibited by poultry under HS, we aim to gain insights into the physiological impact of elevated temperatures in poultry.
Collapse
Affiliation(s)
| | - G S Fraley
- Animal Sciences, Purdue University, West Lafayette, IN USA.
| |
Collapse
|
12
|
Teyssier JR, Cozannet P, Greene E, Dridi S, Rochell SJ. Influence of different heat stress models on nutrient digestibility and markers of stress, inflammation, lipid, and protein metabolism in broilers. Poult Sci 2023; 102:103048. [PMID: 37797358 PMCID: PMC10613759 DOI: 10.1016/j.psj.2023.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
This experiment determined the effects of different HS models and pair-feeding (PF) on nutrient digestibility and markers of stress, inflammation, and metabolism in broilers. Birds (720 total) were allocated into 12 environmentally controlled chambers and reared under thermoneutral conditions until 20 d. Until 41 d birds were exposed to 4 treatments, including: thermoneutral at 24°C (TN-al), daily cyclic HS (12 h at 24 and 12 h at 35°C; cyHS), constant HS at 35°C (coHS), and PF birds maintained at 24°C and fed to equalize FI with coHS birds (TN-coPF). At d 41, ileal digesta were collected to determine nutrient apparent ileal digestibility (AID). Blood, liver, and breast tissues were collected from 8 birds per treatment to determine the mRNA expression of stress, inflammation, and metabolism markers. An additional 8 TN-al birds were sampled after acute HS exposure at 35°C for 4 h (aHS), and 8 cyHS birds were sampled either right before or 4 h after HS initiation. Data were analyzed by 1-way ANOVA and means were separated using Tukey's HSD test. Compared with TN-al birds, AID of nitrogen and ether extract were reduced in coHS birds, and both cyHS and coHS reduced (P < 0.05) AID of total essential amino acids. TNFα and SOD2 expression were increased (P < 0.05) under aHS, coHS, and TN-coPF conditions. IL6 and HSP70 were increased (P < 0.05) under coHS and aHS, respectively. Expression of lipogenic enzymes ACCα and FASN were reduced by coHS and TN-coPF, while coHS increased the lipolytic enzyme ATGL (P < 0.05). IGF1 was lowered in coHS birds, and p70S6K and MyoG were reduced under coHS and TN-coPF (P < 0.05). Interestingly, MuRF1 and MAFbx were increased (P < 0.05) under coHS only. Overall, these results indicate that coHS has a greater impact on nutrient digestibility and metabolism than aHS and cyHS. Interestingly, increased protein degradation during HS appears to be mostly driven by HS per se and not the reduced FI.
Collapse
Affiliation(s)
- J R Teyssier
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - P Cozannet
- Adisseo France S.A.S., Center of Expertise in Research and Nutrition, 03600 Malicorne, France
| | - E Greene
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S Dridi
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA
| | - S J Rochell
- Department of Poultry Science, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
13
|
Kim DY, Han GP, Lim C, Kim JM, Kil DY. Effect of dietary betaine supplementation on the liver transcriptome profile in broiler chickens under heat stress conditions. Anim Biosci 2023; 36:1632-1646. [PMID: 37654169 PMCID: PMC10623048 DOI: 10.5713/ab.23.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
OBJECTIVE The objective of the present study was to investigate the effect of dietary betaine (BT) supplementation on the hepatic transcriptome profiles in broiler chickens raised under heat stress (HS) conditions. METHODS A total of 180 (21-d-old) Ross 308 male broiler chicks were allotted to 1 of 3 treatment groups with 6 replicated cages in a completely randomized design. One group was kept under thermoneutral conditions at all times and was fed a basal diet (PC). Other 2 groups were exposed to a cyclic heat stress condition. One of the 2 groups under heat stress conditions was fed the basal diet as a negative control (NC), whereas the other group was fed the basal diet supplemented with 0.2% BT. All chickens were provided with diets and water ad libitum for 21 d. Following the experiment, the liver samples were collected for RNA sequencing analysis. RESULTS Broiler chickens in NC and BT group had decreased (p<0.05) growth performance. In the transcriptome analysis, the number of differentially expressed genes were identified in the liver by HS conditions and dietary BT supplementation. In the comparison between NC and PC treatments, genes related to energy and nucleic acid metabolism, amino acid metabolism, and immune system were altered by HS, which support the reason why heat-stressed poultry had decreased growth performance. In the comparison between NC and BT treatments, genes related to lipid metabolism, carbohydrate metabolism, and immune system were differently expressed under HS conditions. CONCLUSION HS negatively impacts various physiological processes, including DNA replication, metabolism of amino acids, lipids, and carbohydrates, and cell cycle progression in broiler chickens. Dietary BT supplementation, however, offers potential counteractive effects by modulating liver function, facilitating gluconeogenesis, and enhancing immune systems. These findings provide a basis for understanding molecular responses by HS and the possible benefits of dietary BT supplementation in broiler chickens exposed to HS.
Collapse
Affiliation(s)
- Deok Yun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Chiwoong Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
14
|
Liu X, Ma Z, Wang Y, Jia H, Wang Z, Zhang L. Heat stress exposure cause alterations in intestinal microbiota, transcriptome, and metabolome of broilers. Front Microbiol 2023; 14:1244004. [PMID: 37795292 PMCID: PMC10547010 DOI: 10.3389/fmicb.2023.1244004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Heat stress can affect the production of poultry through complex interactions between genes, metabolites and microorganisms. At present, it is unclear how heat stress affects genetic, metabolic and microbial changes in poultry, as well as the complex interactions between them. Methods Thus, at 28 days of age a total of 200 Arbor Acres broilers with similar body weights were randomly divided into the control (CON) and heat stress treatment (HS). There were 5 replicates in CON and HS, respectively, 20 per replication. From the 28-42 days, the HS was kept at 31 ± 1°C (9:00-17:00, 8 h) and other time was maintained at 21 ± 1°C as in the CON. At the 42nd day experiment, we calculated the growth performance (n = 8) of broilers and collected 3 and 6 cecal tissues for transcriptomic and metabolomic investigation and 4 cecal contents for metagenomic investigation of each treatment. Results and discussion The results indicate that heat stress significantly reduced the average daily gain and body weight of broilers (value of p < 0.05). Transcriptome KEGG enrichment showed that the differential genes were mainly enriched in the NF-kB signaling pathway. Metabolomics results showed that KEGG enrichment showed that the differential metabolites were mainly enriched in the mTOR signaling pathway. 16S rDNA amplicon sequencing results indicated that heat stress increased the relative abundance of Proteobacteria decreased the relative abundance of Firmicutes. Multi-omics analysis showed that the co-participating pathway of differential genes, metabolites and microorganisms KEGG enrichment was purine metabolism. Pearson correlation analysis found that ornithine was positively correlated with SULT1C3, GSTT1L and g_Lactobacillus, and negatively correlated with CALB1. PE was negatively correlated with CALB1 and CHAC1, and positively with g_Alistipes. In conclusion, heat stress can generate large amounts of reactive oxygen and increase the types of harmful bacteria, reduce intestinal nutrient absorption and antioxidant capacity, and thereby damage intestinal health and immune function, and reduce growth performance indicators. This biological process is manifested in the complex regulation, providing a foundational theoretical basis for solving the problem of heat stress.
Collapse
Affiliation(s)
| | | | | | | | - Zheng Wang
- Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China
| | - Lihuan Zhang
- Shanxi Key Lab. for the Modernization of TCVM, College of Life and Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
15
|
Won SY, Han GP, Kwon CH, Lee EC, Kil DY. Effect of individual or combination of dietary betaine and glycine on productive performance, stress response, liver health, and intestinal barrier function in broiler chickens raised under heat stress conditions. Poult Sci 2023; 102:102771. [PMID: 37236038 DOI: 10.1016/j.psj.2023.102771] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
The current experiment was conducted to investigate the effect of individual or combination of dietary betaine (Bet) and glycine (Gly) on productive performance, stress response, liver health, and intestinal barrier function in broiler chickens raised under heat stress (HS) conditions. A total of four hundred twenty 21-d-old Ross 308 broiler chickens were randomly allotted to 1 of 5 dietary treatments with 7 replicates. Birds in treatment 1 were raised under the thermoneutral condition (TN; 23 ± 0.6°C). Birds in other 4 treatment groups were subjected to a cyclic HS by exposing them to 32 ± 0.9°C for 8 h/d (from 09:00 to 17:00 h) and 28 ± 1.2°C for the remaining time for 14 d. Birds were fed a basal diet in TN condition (TN-C) and one group in HS conditions (HS-C), whereas other birds raised under HS conditions were fed the basal diet supplemented with 0.20% Bet (HS-Bet), 0.79% Gly (HS-Gly), or their combination (0.20% Bet + 0.79% Gly; HS-Bet+Gly). Results indicated that birds in HS-Bet, HS-Gly, or HS-Bet+Gly treatment had higher (P < 0.05) final BW and BW gain, but lower (P < 0.05) feed conversion ratio (FCR) than those in HS-C treatment. However, values for improved final BW, BW gain, and FCR by dietary treatments were lower (P < 0.05) than those measured in TN-C treatment. Under HS conditions, birds in HS-Bet, HS-Gly, or HS-Bet+Gly treatment had lower (P < 0.05) heterophil to lymphocyte ratio than those in HS-C treatment. Birds in HS-Gly or HS-Bet+Gly treatment had higher (P < 0.05) villus height and goblet cell number than birds in HS-C treatment. Intestinal permeability was higher (P < 0.05) in all HS-treatment groups than in TN-C treatment, but it was not affected by dietary treatment. In conclusion, individual supplementation of 0.20% Bet or 0.79% Gly in diets alleviates the negative effect of HS in broiler chickens. However, the synergistic effect of the combination of 0.20% Bet and 0.79% Gly in broiler diets seems lower than expected.
Collapse
Affiliation(s)
- Seung Yeon Won
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Gi Ppeum Han
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Chan Ho Kwon
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Eun Cheol Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Dong Yong Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
16
|
Effect of Glutamine on the Growth Performance, Oxidative Stress, and Nrf2/p38 MAPK Expression in the Livers of Heat-Stressed Broilers. Animals (Basel) 2023; 13:ani13040652. [PMID: 36830439 PMCID: PMC9951748 DOI: 10.3390/ani13040652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
The purpose of this work was to study the effects of glutamine (Gln) on the growth performance, oxidative stress, Nrf2, and p38 MAPK pathway in the livers of heat-stressed broilers. In total, 300 broilers were divided into five groups, including a normal temperature (NT, without dietary Gln) group and four cyclic high temperature groups (HT, GHT1, GHT2, and GHT3) fed with 0%, 0.5%, 1.0%, and 1.5% Gln, respectively. High temperature conditions increased (p < 0.05) liver malonaldehyde (MDA) concentration, but decreased (p < 0.05), body weight gain (BWG), feed intake (FI), liver superoxide dismutase (SOD), total antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px), glutathione S-transferase (GST), and glutathione (GSH) levels in broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were lower (p < 0.05) in the NT group than that in the HT group. However, dietary 1.5% Gln decreased (p < 0.05) liver MDA concentration, but increased (p < 0.05) BWG, FI, liver SOD, T-AOC, GSH-Px, GST, and GSH levels in heat-stressed broilers. Nrf2 and p38 MAPK protein and mRNA expression levels were higher (p < 0.05) in the GHT3 group than that in the HT group. In summary, Gln improved oxidative damage through the activation of Nrf2 and p38 MAPK expression in the livers of heat-stressed broilers.
Collapse
|