1
|
Abdelsattar MM, Zhao W, Diaby M, Vargas-Bello-Pérez E, Zhang N. Recent nutritional strategies and feed additives to stimulate proper rumen development in young goats. Transl Anim Sci 2025; 9:txae164. [PMID: 40191692 PMCID: PMC11969336 DOI: 10.1093/tas/txae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Domestic goats (Capra aegagrus hircus) are important producers of milk, meat, and hair. The early weaned goats may face fundamental issues related to the incomplete rumen development to deal with the transition from liquid feeds into solid feeds. Therefore, the present review focuses on the nutritional strategies and feeding methods to enhance the proper rumen morphological development, fermentation efficiency and microbiota structure in young goats. The enhanced rumen development caused by these nutritional strategies can have lasting positive effects on their overall growth performance and health status, leading to decreasing mortality rates and susceptibility to disease after weaning. A wide range of areas was summarized including liquid feed management in preweaning goats (colostrum, milk, and milk replacer), solid feed management (concentrate and roughages), endogenous and exogenous volatile fatty acids and ketones, plant extracts, prebiotics and probiotics as well as rumen microbial contents that can be incorporated into the kids as an alternative to antibiotics to avoid pathogens and enhance the proper establishment of microbial community. Such nutritional strategies and current breeding recommendations can be used for the development of young goats' production systems to enhance the long-term digestive function efficiency in goats.
Collapse
Affiliation(s)
- Mahmoud M Abdelsattar
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Animal and Poultry Production, Faculty of Agriculture, South Valley University, Qena, Egypt
| | - Wei Zhao
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mohamed Diaby
- College of Animal Science & Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Einar Vargas-Bello-Pérez
- Department of International Development, School of Agriculture, Policy and Development, University of Reading, Reading RG6 6EU, UK
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Naifeng Zhang
- Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Wang S, Kong F, Dai D, Li C, Hao Y, Wang E, Cao Z, Wang Y, Wang W, Li S. Deterministic succession patterns in the rumen and fecal microbiome associate with host metabolic shifts in peripartum dairy cattle. Gigascience 2025; 14:giaf042. [PMID: 40388308 PMCID: PMC12087452 DOI: 10.1093/gigascience/giaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Metabolic disorders in peripartum ruminants affect health and productivity, with gut microbiota playing a key role in host metabolism. Therefore, our study aimed to characterize the gut microbiota of peripartum dairy cows to better understand the relationship between metabolic phenotypes and the rumen and fecal microbiomes during the peripartum period. RESULTS In a longitudinal study of 91 peripartum cows, we analyzed rumen and fecal microbiomes via 16S rRNA and metagenomic sequencing across six time points. By using enterotype classification, ecological model, and random forest analysis, we identified distinct deterministic succession patterns in the rumen and fecal microbiomes (rumen: rapid transition-transition-stable; hindgut: stable-transition-stable). Key microbes, such as Succiniclasticum and Bifidobacterium, were found to drive microbial succession by balancing stochastic and deterministic processes. Notably, we observed that changes in gut microbiota succession patterns significantly influenced metabolic phenotypes (e.g., serum non-esterified fatty acid, glucose, and insulin levels). Mediation analysis suggested that specific gut microbes (e.g., Prevotella sp900315525 in the rumen and Alistipes sp015059845 in the hindgut) and metabolic pathways (e.g., glucose-related pathway) were associated with host metabolic phenotypes. CONCLUSIONS Overall, utilizing a large gut microbiome dataset and enterotype- and ecological model-based microbiome analyses, we comprehensively elucidated the succession and assembly of the gut microbiota in peripartum dairy cows. We further confirmed that changes in gut microbiota succession patterns were significantly related to the metabolic phenotypes of peripartum dairy cows. These findings provide valuable insights for developing health management strategies for peripartum ruminants.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fanlin Kong
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dongwen Dai
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chen Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yangyi Hao
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Erdan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Hai C, Hao Z, Bu L, Lei J, Liu X, Zhao Y, Bai C, Su G, Yang L, Li G. Increased rumen Prevotella enhances BCAA synthesis, leading to synergistically increased skeletal muscle in myostatin-knockout cattle. Commun Biol 2024; 7:1575. [PMID: 39592704 PMCID: PMC11599727 DOI: 10.1038/s42003-024-07252-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Myostatin (MSTN) is a negative regulator of muscle growth, and its relationship with the gut microbiota is not well understood. In this study, we observed increase muscle area and branched-chain amino acids (BCAAs), an energy source of muscle, in myostatin knockout (MSTN-KO) cattle. To explore the link between increased BCAAs and rumen microbiota, we performed metagenomic sequencing, metabolome analysis of rumen fluid, and muscle transcriptomics. MSTN-KO cattle showed a significant increase in the phylum Bacteroidota (formerly Bacteroidetes), particularly the genus Prevotella (P = 3.12e-04). Within this genus, Prevotella_sp._CAG:732, Prevotella_sp._MSX73, and Prevotella_sp._MA2016 showed significant upregulation of genes related to BCAA synthesis. Functional enrichment analysis indicated enrichment of BCAA synthesis-related pathways in both rumen metagenomes and metabolomes. Additionally, muscle transcriptomics indicated enrichment in muscle fiber and amino acid metabolism, with upregulation of solute carrier family genes, enhancing BCAA transport. These findings suggest that elevated rumen Prevotella in MSTN-KO cattle, combined with MSTN deletion, synergistically improves muscle growth through enhanced BCAA synthesis and transport.
Collapse
Affiliation(s)
- Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Zhenting Hao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lige Bu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Jiaru Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Xuefei Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Chunling Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Guanghua Su
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China
| | - Lei Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
4
|
Maynez-Perez A, Jahuey-Martínez FJ, Martínez-Quintana JA, Hume ME, Anderson RC, Corral-Luna A, Rodríguez-Almeida FA, Castillo-Castillo Y, Felix-Portillo M. The Rumen Microbiome Composition of Raramuri Criollo and European Cattle in an Extensive System. Microorganisms 2024; 12:2203. [PMID: 39597592 PMCID: PMC11596369 DOI: 10.3390/microorganisms12112203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Understanding the relationship between Raramuri Criollo cattle (RC) and their microbial ruminal ecosystem will help identify advantageous characteristics of adapted cattle as alternatives to achieve sustainable beef production systems. Our objective was to characterize the rumen microbiome of RC in comparison to Angus and Hereford breeds (European, E) and the cross between them (E × RC). Ruminal fluid was collected from 63 cows in their second productive cycle after grazing in the same paddock for 45 d, in the dry (n = 28) and rain (n = 35) seasons. DNA from ruminal fluid was isolated for 16s rRNA gene next-generation sequencing. The data were analyzed with QIIME2 and compared against the SILVA 16s rRNA database. Beta diversity was different (p < 0.05) between RC and E in both seasons. A microbial core was represented by the most abundant phyla. Planctomycetes and Spirochaetes represented above 1% in the rain season and below 1% in the dry one, whereas Euryarchaeota was below 1% and around 3%, respectively. LEfSe analysis identified differentiated (p < 0.05) key microbial groups that explain the differences between lineages at different taxonomic levels, reflecting the ability of the rumen ecosystem of RC cattle to adapt to hostile environmental conditions by having microbial groups specialized in the degradation of highly fibrous content.
Collapse
Affiliation(s)
- Adrian Maynez-Perez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Francisco J. Jahuey-Martínez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - José A. Martínez-Quintana
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Michael E. Hume
- Food and Feed Safety Research Unit, Southern Plains Area Research Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA; (M.E.H.); (R.C.A.)
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Area Research Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA; (M.E.H.); (R.C.A.)
| | - Agustín Corral-Luna
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Felipe A. Rodríguez-Almeida
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Yamicela Castillo-Castillo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| | - Monserrath Felix-Portillo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Chihuahua 31453, Chih., Mexico; (A.M.-P.); (F.J.J.-M.); (J.A.M.-Q.); (A.C.-L.); (F.A.R.-A.); (Y.C.-C.)
| |
Collapse
|
5
|
Zhu SL, Gu FF, Tang YF, Liu XH, Jia MH, Valencak TG, Liu JX, Sun HZ. Dynamic fecal microenvironment properties enable predictions and understanding of peripartum blood oxidative status and nonesterified fatty acids in dairy cows. J Dairy Sci 2024; 107:573-592. [PMID: 37690725 DOI: 10.3168/jds.2022-23066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/02/2023] [Indexed: 09/12/2023]
Abstract
The transition period in dairy cows is a critical stage and peripartum oxidative status, negative energy balance (NEB), and inflammation are highly prevalent. Fecal microbial metabolism is closely associated with blood oxidative status and nonesterified fatty acids (NEFA) levels. Here, we investigated dynamic changes in total oxidative status markers and NEFA in blood, fecal microbiome, and metabolome of 30 dairy cows during transition (-21, -7, +7, +21 d relative to calving). Then the Bayesian network and 9 machine-learning algorithms were applied to dismantle their relationship. Our results show that the oxidative status indicator (OSI) of -21, -7, +7 d was higher than +21 d. The plasma concentration of NEFA peaked on +7 d. For fecal microenvironment, a decline in bacterial α diversity was observed at postpartum and in bacterial interactions at +7 d. Conversely, microbial metabolites involved in carbohydrate, lipid, and energy metabolism increased on +7 d. A correlation analysis revealed that 11 and 10 microbial metabolites contributed to OSI and NEFA variations, respectively (arc strength >0.5). The support vector machine (SVM) radial model showed the highest average predictive accuracy (100% and 88.9% in the test and external data sets) for OSI using 1 metabolite and 3 microbiota. The SVM radial model also showed the highest average diagnostic accuracy (100% and 91% in the test and external data sets) for NEFA with 2 metabolites and 3 microbiota. Our results reveal a relationship between variation in the fecal microenvironment and indicators of oxidative status, NEB, and inflammation, which provide a theoretical basis for the prevention and precise regulation of peripartum oxidative status and NEB.
Collapse
Affiliation(s)
- Sen-Lin Zhu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Feng-Fei Gu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yi-Fan Tang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Han Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Ming-Hui Jia
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Teresa G Valencak
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jian-Xin Liu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou 310058, China
| | - Hui-Zeng Sun
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Ministry of Education Key laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou 310058, China; Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
6
|
Xue C, Wang Y, He Z, Lu Z, Wu F, Wang Y, Zhen Y, Meng J, Shahzad K, Yang K, Wang M. Melatonin disturbed rumen microflora structure and metabolic pathways in vitro. Microbiol Spectr 2023; 11:e0032723. [PMID: 37929993 PMCID: PMC10714781 DOI: 10.1128/spectrum.00327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/01/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE In in vitro studies, it has been found that the effects of MLT on rumen microorganisms and metabolites can change the rumen flora structure, significantly inhibit the relative abundance of harmful Acinetobacter, and improve the relative abundance of beneficial bacteria. MLT may regulate the "arginine-glutathione" pathway, "phenylalanine, tyrosine and tryptophan biosynthesis-tryptophan generation" branch, "tryptophan-kynurenine" metabolism, and "tryptophan-tryptamine-serotonin" pathway through microorganisms.
Collapse
Affiliation(s)
- Chun Xue
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Yifan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhaoyuan He
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zhiqi Lu
- Ningxia Dairy Science and Innovation Center of Guangming Animal Husbandry Co., Ltd., Zhongwei, China
| | - Feifan Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Kailun Yang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, China
| |
Collapse
|
7
|
Wang H, Xu R, Li Q, Su Y, Zhu W. Daily fluctuation of colonic microbiome in response to nutrient substrates in a pig model. NPJ Biofilms Microbiomes 2023; 9:85. [PMID: 37938228 PMCID: PMC10632506 DOI: 10.1038/s41522-023-00453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Studies on rodents indicate the daily oscillations of the gut microbiota have biological implications for host. However, the responses of fluctuating gut microbes to the dynamic nutrient substrates are not fully clear. In the study, we found that the feed intake, nutrient substrates, microbiota and metabolites in the colon underwent asynchronous oscillation within a day. Short-chain fatty acids (SCFAs) including acetate, propionate, butyrate and valerate peaked during T24 ~ T27 (Timepoint 24, 12:00 pm, T27, 03:00 am) whereas branched SCFAs isobutyrate and isovalerate peaked during T09 ~ T12. Further extended local similarity analysis (eLSA) revealed that the fluctuation of feed intake dynamically correlated with the colonic carbon substrates which further influenced the oscillation of sugar metabolites and acetate, propionate, butyrate and valerate with a certain time shift. The relative abundance of primary degrader Ruminococcaceae taxa was highly related to the dynamics of the carbon substrates whereas the fluctuations of secondary degraders Lactobacillaceae and Streptococcaceae taxa were highly correlated with the sugar metabolites. Meanwhile, colonic nitrogen substrates were correlated with branched amino acids and the branched SCFAs. Furthermore, we validated the evolution of gut microbes under different carbohydrate and protein combinations by using an in vitro fermentation experiment. The study pictured the dynamics of the micro-ecological environment within a day which highlights the implications of the temporal dimension in studies related to the gut microbiota. Feed intake, more precisely substrate intake, is highly correlated with microbial evolution, which makes it possible to develop chronotherapies targeting the gut microbiota through nutrition intervention.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiuke Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Świerk S, Przybyło M, Flaga J, Szczepanik K, Garus-Piętak A, Biernat W, Molik E, Wojtysiak D, Miltko R, Górka P. Effect of increased intake of concentrates and sodium butyrate supplementation on ruminal epithelium structure and function in growing rams. Animal 2023; 17:100898. [PMID: 37558583 DOI: 10.1016/j.animal.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 08/11/2023] Open
Abstract
Increased ruminal butyrate production is considered to have a positive impact on rumen epithelium growth and function. However, excessive ruminal butyrate production may affect the rumen negatively, particularly when the rumen is already challenged with low pH. The aim of this study was to determine the effect of the inclusion of concentrates in the diet and sodium butyrate (SB) supplementation on ruminal epithelium growth and function in growing rams. Forty-two rams (27.8 ± 7.3 kg; 9-14 months of age) were allocated into six treatments and fed a diet with low (22.5% of diet DM; LOW) or high (60% of diet DM; HIGH) inclusion of concentrates in combination with no (SB0), 1.6% (SB1.6) or 3.2% (SB3.2) of diet DM inclusion of SB. There was no impact of the investigated factors on papilla dimensions and mucosa surface area, either in the atrium ruminis or ventral rumen (P ≥ 0.11). Stratum corneum thickness was higher for HIGH compared to LOW treatments (P ≤ 0.04), independently of the location in the rumen. In the atrium ruminis, the epithelium and living strata thickness quadratically increased due to SB supplementation for LOW treatments but quadratically decreased for HIGH treatments (concentrate inclusion × butyrate supplementation interaction; P ≤ 0.03); conversely, in the ventral sac of the rumen, a thicker epithelium was observed due to both increased concentrate inclusion in the diet and SB supplementation (P < 0.01) but living strata thickness was increased only by SB supplementation (linear effect; P < 0.01). The epithelium damage index in the ventral sac of the rumen was higher for LOW compared to HIGH treatments (P = 0.02). Increased inclusion of concentrates in the diet increased mRNA expression of monocarboxylate transporter 1 in both the epithelium of the atrium ruminis and ventral rumen, occludin in the epithelium of the atrium ruminis and downregulated in adenoma in the epithelium of the ventral rumen (P ≤ 0.02). Protein expression of claudin-4 in the epithelium of the ventral rumen was the highest for the HIGH/SB1.6 and HIGH/SB3.2 treatments (significant effect of interaction between main effects; P < 0.01). Under the conditions of the current study, increased intake of concentrates had mostly positive effects on ruminal epithelium in growing rams, and the same was observed for the effect of SB supplementation. However, the effect of SB supplementation was at least partially affected by the inclusion of concentrates in the diet.
Collapse
Affiliation(s)
- S Świerk
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - M Przybyło
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - J Flaga
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - K Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice, Poland
| | - A Garus-Piętak
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - W Biernat
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - E Molik
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - D Wojtysiak
- Department of Animal Genetics, Breeding and Ethology, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland
| | - R Miltko
- The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, ul. Instytucka 3, 05-110 Jabłonna, Poland
| | - P Górka
- Department of Animal Nutrition and Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Krakow, Poland.
| |
Collapse
|
9
|
Zhang Y, Chen X, Wang Y, Li L, Ju Q, Zhang Y, Xi H, Wang F, Qiu D, Liu X, Chang N, Zhang W, Zhang C, Wang K, Li L, Zhang J. Alterations of lower respiratory tract microbiome and short-chain fatty acids in different segments in lung cancer: a multiomics analysis. Front Cell Infect Microbiol 2023; 13:1261284. [PMID: 37915846 PMCID: PMC10617678 DOI: 10.3389/fcimb.2023.1261284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/20/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction The lower respiratory tract microbiome is widely studied to pinpoint microbial dysbiosis of diversity or abundance that is linked to a number of chronic respiratory illnesses. However, it is vital to clarify how the microbiome, through the release of microbial metabolites, impacts lung health and oncogenesis. Methods In order to discover the powerful correlations between microbial metabolites and disease, we collected, under electronic bronchoscopy examinations, samples of paired bronchoalveolar lavage fluids (BALFs) from tumor-burden lung segments and ipsilateral non-tumor sites from 28 lung cancer participants, further performing metagenomic sequencing, short-chain fatty acid (SCFA) metabolomics, and multiomics analysis to uncover the potential correlations of the microbiome and SCFAs in lung cancer. Results In comparison to BALFs from normal lung segments of the same participant, those from lung cancer burden lung segments had slightly decreased microbial diversity in the lower respiratory tract. With 18 differentially prevalent microbial species, including the well-known carcinogens Campylobacter jejuni and Nesseria polysaccharea, the relative species abundance in the lower respiratory tract microbiome did not significantly differ between the two groups. Additionally, a collection of commonly recognized probiotic metabolites called short-chain fatty acids showed little significance in either group independently but revealed a strong predictive value when using an integrated model by machine learning. Multiomics also discovered particular species related to SCFAs, showing a positive correlation with Brachyspira hydrosenteriae and a negative one with Pseudomonas at the genus level, despite limited detection in lower airways. Of note, these distinct microbiota and metabolites corresponded with clinical traits that still required confirmation. Conclusions Further analysis of metagenome functional capacity revealed that genes encoding environmental information processing and metabolism pathways were enriched in the lower respiratory tract metagenomes of lung cancer patients, further supporting the oncogenesis function of various microbial species by different metabolites. These findings point to a potent relationship between particular components of the integrated microbiota-metabolites network and lung cancer, with implications for screening and diagnosis in clinical settings.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Xiangxiang Chen
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine of Fourth Military Medical University, Xi’an, China
| | - Ling Li
- Department of Pediatrics, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Qing Ju
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Yan Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Hangtian Xi
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Fahan Wang
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Dan Qiu
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Xingchen Liu
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Ning Chang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Weiqi Zhang
- Department of Radiology, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Cong Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| | - Ke Wang
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi’an, China
| | - Jian Zhang
- Department of Pulmonary and Critical Care of Medicine, The First Affiliated Hospital of Fourth Military Medical University, Xi’an, China
| |
Collapse
|
10
|
Huang K, Yang B, Xu Z, Chen H, Wang J. The early life immune dynamics and cellular drivers at single-cell resolution in lamb forestomachs and abomasum. J Anim Sci Biotechnol 2023; 14:130. [PMID: 37821933 PMCID: PMC10568933 DOI: 10.1186/s40104-023-00933-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/23/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Four-chambered stomach including the forestomachs (rumen, reticulum, and omasum) and abomasum allows ruminants convert plant fiber into high-quality animal products. The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants, especially the immune development. However, the dynamics of immune development are poorly understood. RESULTS We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep, at 5, 10, 15, and 25 days of age. We found that forestomachs share similar gene expression patterns, all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25, whereas the metabolic function were significantly downregulated with age. We constructed a cell landscape of the four-chambered stomach using single-cell sequencing. Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells, monocytes and macrophages, as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues. Moreover, the non-immune cells such as epithelial cells play key roles in immune maturation. Cell communication analysis predicted that in addition to immune cells, non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs. CONCLUSIONS Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life. We also identified the gene expression patterns and functional cells associated with immune development. Additionally, we identified some key receptors and signaling involved in immune regulation. These results help to understand the early life immune development at single-cell resolution, which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways.
Collapse
Affiliation(s)
- Kailang Huang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Bin Yang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Zebang Xu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Hongwei Chen
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| | - Jiakun Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
11
|
Cao Y, Feng T, Wu Y, Xu Y, Du L, Wang T, Luo Y, Wang Y, Li Z, Xuan Z, Chen S, Yao N, Gao NL, Xiao Q, Huang K, Wang X, Cui K, Rehman SU, Tang X, Liu D, Han H, Li Y, Chen WH, Liu Q. The multi-kingdom microbiome of the goat gastrointestinal tract. MICROBIOME 2023; 11:219. [PMID: 37779211 PMCID: PMC10544373 DOI: 10.1186/s40168-023-01651-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/14/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Goat is an important livestock worldwide, which plays an indispensable role in human life by providing meat, milk, fiber, and pelts. Despite recent significant advances in microbiome studies, a comprehensive survey on the goat microbiomes covering gastrointestinal tract (GIT) sites, developmental stages, feeding styles, and geographical factors is still unavailable. Here, we surveyed its multi-kingdom microbial communities using 497 samples from ten sites along the goat GIT. RESULTS We reconstructed a goat multi-kingdom microbiome catalog (GMMC) including 4004 bacterial, 71 archaeal, and 7204 viral genomes and annotated over 4,817,256 non-redundant protein-coding genes. We revealed patterns of feeding-driven microbial community dynamics along the goat GIT sites which were likely associated with gastrointestinal food digestion and absorption capabilities and disease risks, and identified an abundance of large intestine-enriched genera involved in plant fiber digestion. We quantified the effects of various factors affecting the distribution and abundance of methane-producing microbes including the GIT site, age, feeding style, and geography, and identified 68 virulent viruses targeting the methane producers via a comprehensive virus-bacterium/archaea interaction network. CONCLUSIONS Together, our GMMC catalog provides functional insights of the goat GIT microbiota through microbiome-host interactions and paves the way to microbial interventions for better goat and eco-environmental qualities. Video Abstract.
Collapse
Affiliation(s)
- Yanhong Cao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- Guangxi Vocational University of Agriculture, Nanning, Guangxi, 530007, China
| | - Tong Feng
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| | - Yingjian Wu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yixue Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, 570000, Hainan, China
| | - Teng Wang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yuhong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Zeyi Xuan
- Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Shaomei Chen
- Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Na Yao
- Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, 530001, Guangxi, China
| | - Na L Gao
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qian Xiao
- Hainan Key Lab of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, 570000, Hainan, China
| | - Kongwei Huang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Xiaobo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dewu Liu
- South China Agricultural University, Guangzhou, 510642, China
| | - Hongbing Han
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Wei-Hua Chen
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Institution of Medical Artificial Intelligence, Binzhou Medical University, Yantai, 264003, China.
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
12
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
13
|
Feng Y, Song Y, Zhou J, Duan Y, Kong T, Ma H, Zhang H. Recent progress of Lycium barbarum polysaccharides on intestinal microbiota, microbial metabolites and health: a review. Crit Rev Food Sci Nutr 2022; 64:2917-2940. [PMID: 36168931 DOI: 10.1080/10408398.2022.2128037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intestinal microbiota is symbiotically associated with host health, learning about the characteristics of microbiota and the factors that modulate it could assist in developing strategies to promote human health and prevent diseases. Polysaccharides from Lycium barbarum (LBPs) are found beneficial for enhancing the activity of gut microbiota, as a potential prebiotic, which not only participates in improving body immunity, obesity, hyperlipidemia and systemic inflammation induced by oxidative stress, but also plays a magnificent role in regulating intestinal microenvironment and improving host health and target intestinal effects via its biological activities, as well as gut microbiota and metabolites. To highlight the internal relationship between intestinal microbiota and LBPs, this review focuses on the latest advances in LBPs on the intestinal microbiota, metabolites, immune regulation, intestinal barrier protection, microbiota-gut-brain axis and host health. Moreover, the preparation, structure, bioactivity and modification of LBPs were also discussed. This review may offer new perspective on LBPs improving health of gut and host via intestinal microbiota, and provide useful guidelines for the application of LBPs in the food industry.
Collapse
Affiliation(s)
- Yuqin Feng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yating Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Tianyu Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Gastrointestinal Biogeography of Luminal Microbiota and Short-Chain Fatty Acids in Sika Deer (Cervus nippon). Appl Environ Microbiol 2022; 88:e0049922. [PMID: 35950850 PMCID: PMC9469704 DOI: 10.1128/aem.00499-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gut microbiota of sika deer has been widely investigated, but the spatial distribution of symbiotic microbes among physical niches in the gastrointestinal tract remains to be established. While feces are the most commonly used biological samples in these studies, the accuracy of fecal matter as a proxy of the microbiome at other gastrointestinal sites is as yet unknown. In the present study, luminal contents obtained along the longitudinal axis of deer gastrointestinal tract (rumen, reticulum, omasum, abomasum, small intestine, cecum, colon, and rectum) were subjected to 16S rRNA gene sequencing for profiling of the microbial composition, and samples from the rumen, small intestine, and cecum were subjected to metabolomic analysis to evaluate short-chain fatty acid (SCFA) profiles. Prevotella bacteria were the dominant gastric core microbes, while Christensenellaceae_R-7_group was predominantly observed in the intestine. While the eight gastrointestinal sites displayed variations in microbial diversity, abundance, and function, they could be clustered into stomach, small intestine, and large intestine segments, and the results further highlighted a specific microbial niche of the small intestine. SCFA levels in the rumen, small intestine, and cecum were significantly different, with Bacteroidetes and Spirochaetes were shown to play a critical role in SCFA production. Finally, the rectal microbial composition was significantly correlated with colonic and cecum communities but not those of the small intestine and four gastric sites. Quantification of the compositions and biogeographic relationships between gut microbes and SCFAs in sika deer should provide valuable insights into the interactions contributing to microbial functions and metabolites. IMPORTANCE Feces or specific segments of the gastrointestinal tract (in particular, the rumen) were sampled to explore the gut microbiome. The gastrointestinal biogeography of the luminal microbiota in ruminants, which is critical to guide accurate sampling for different purposes, is poorly understood at present. The microbial community of the rectal sample (as a proxy of fecal sample) showed higher correlation with those of other large intestinal sites relative to the small intestine or stomach, suggesting that the microbial composition is specifically shaped by the unique physiological characteristics of different gastrointestinal niches. In addition, significant differences in microbiomes and SCFAs were observed among the different gastrointestinal sites.
Collapse
|
15
|
Baky MH, Salah M, Ezzelarab N, Shao P, Elshahed MS, Farag MA. Insoluble dietary fibers: structure, metabolism, interactions with human microbiome, and role in gut homeostasis. Crit Rev Food Sci Nutr 2022; 64:1954-1968. [PMID: 36094440 DOI: 10.1080/10408398.2022.2119931] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Consumption of food rich in dietary fibers (DFs) has been long recognized to exert an overall beneficial effect on human health. This review aims to provide a holistic overview on how IDFs impact human gut health either directly, or through modulation of the gut microbiome. Several databases were searched for collecting papers such as PubMed, Google Scholar, Web of Science, Scopus and Reaxys from 2000 till 2022. Firstly, an overview of the chemical structure of the various IDFs and the pathways employed by gut microbiota for their degradation is provided. The impact of IDFs on microbial community structure and pathogens colonization inside the human gut was discussed. Finally, the impact of IDFs on gut homeostasis and systemic effects at the cellular level, as well as the overall immunological benefits of IDFs consumption were analyzed. IDFs viz., cellulose, hemicellulose, resistant starch, and lignin found enriched in food are discussed for these effects. IDFs were found to induce gut immunity, improve intestinal integrity and mucosal proliferation, and favor adhesion of probiotics and hence improve human health. Also, IDFs were concluded to improve the bioavailability of plant polyphenols and improve their health-related functional roles. Ultimately, dietary fibers processing by modification shows potential to enhance fibers-based functional food production, in addition to increase the economic value and usage of food-rich fibers and their by-products.
Collapse
Affiliation(s)
- Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | - Mohamed Salah
- Microbiology Department, College of Pharmacy, Port Said University, Port Said, Egypt
| | - Nada Ezzelarab
- Biology Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou, PR China
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Zhong T, Zhao J, Zhan S, Wang L, Cao J, Dai D, Guo J, Li L, Zhang H, Niu L. LncRNA-mRNA modules involved in goat rumen development: Insights from genome-wide transcriptome profiling. Front Physiol 2022; 13:979121. [PMID: 36091364 PMCID: PMC9449361 DOI: 10.3389/fphys.2022.979121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
The rumen is an essential digestive and absorption organ of ruminants. During fetal life, lactation, and post-weaning period, goat rumen undergoes drastic morphological and metabolic-functional changes triggered by potential regulated genes and non-coding RNA molecules. As the essential regulatory factors, long non-coding RNAs (lncRNAs) have vital functions in various biological activities. However, their roles during rumen development are still poorly explored in ruminants. To explore the genome-wide expression profiles of lncRNAs and mRNAs in the goat rumens, we generated 5,007 lncRNAs and 19,738 mRNAs identified during the fetal and prepubertal stages by the high-throughput RNA sequencing. Notably, 365 lncRNAs and 2,877 mRNAs were considered to be differentially expressed. The weighted gene co-expression network analysis and functional analysis were performed to explore the regulatory roles of those differentially expressed molecules. The cis-and trans-target genes of differently expressed lncRNAs were enriched for pathways related to focal adhesion, cGMP-PKG signaling pathway, alpha-linolenic acid metabolism, arachidonic acid metabolism, and fat digestion and absorption. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes analyses showed that the differently expressed genes mainly participated in mitotic cytokinesis, desmosome, fatty acid degradation, cell adhesion molecules, and fatty acid metabolism. The prediction of lncRNA-mRNA interaction networks further revealed transcripts potentially involved in rumen development. The present study profiles a global overview of lncRNAs and mRNAs during rumen development. Our findings provide valuable resources for genetic regulation and molecular mechanisms of rumen development in ruminants.
Collapse
|
17
|
Effects of Concentrate Supplementation on Growth Performance, Rumen Fermentation, and Bacterial Community Composition in Grazing Yaks during the Warm Season. Animals (Basel) 2022; 12:ani12111398. [PMID: 35681862 PMCID: PMC9179552 DOI: 10.3390/ani12111398] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to evaluate the effects of concentrate supplementation on the growth performance, serum biochemical parameters, rumen fermentation, and bacterial community composition of grazing yaks during the warm season. Eight male yaks (body weight, 123.96 ± 7.43 kg; 3-years) were randomly allocated to two treatments groups: grazing (n = 4, GY) and concentrate supplement group (n = 4, GYS). Concentrate supplementation increased the average daily gain (ADG) (p < 0.05). Glucose (GLU), total protein (TP), and aspartate aminotransferase (AST) serum concentrations were significantly higher in the GYS group than in the GY group (p < 0.05). Ammonia-N, MCP: microbial protein, and total volatile fatty acid concentrations were significantly higher in the GYS group than in the GY group (p < 0.01), whereas the pH and acetate: propionate values were significantly decreased (p < 0.01). The relative abundance of Firmicutes in the rumen fluid was significantly higher in the GYS group than in the GY group (p < 0.01). At the genus level, the relative abundances of Succiniclasticum, Prevotellaceae_UCG_003, Prevotellaceae_UCG_005, and Ruminococcus_1 were significantly greater in the GY group than in the GYS group (p < 0.01). In conclusion, concentrate supplementation improved yaks’ growth potential during the warm season, improved ruminal fermentation, and altered core bacteria abundance.
Collapse
|
18
|
Xue B, Wu M, Yue S, Hu A, Li X, Hong Q, Wang Z, Wang L, Peng Q, Xue B. Changes in Rumen Bacterial Community Induced by the Dietary Physically Effective Neutral Detergent Fiber Levels in Goat Diets. Front Microbiol 2022; 13:820509. [PMID: 35479630 PMCID: PMC9035740 DOI: 10.3389/fmicb.2022.820509] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/14/2022] [Indexed: 01/03/2023] Open
Abstract
Physically effective neutral detergent fiber (peNDF) is a concept that accounts for the particle length of NDF in a feed, sustaining the normal chewing behavior and rumen fermentation of ruminants. This study aimed to elucidate the effects of dietary peNDF on growth performance and bacterial communities in the rumen of goats through a high-throughput sequencing technique. A total of 30 male Lezhi black goats were randomly assigned to five groups, corresponding to five diets with identical compositions and nutrient levels but with varying forage lengths (the peNDF1.18 contents of the diets were 33.0, 29.9, 28.1, 26.5, and 24.8%, respectively). The whole trial lasted for 44 days. As results show, feed intake and average daily gain were highest when peNDF1.18 content was 26.5%, in which the papilla length of the dorsal sac in rumen was the highest. Chao1 and ACE indexes were similar among the treatments, while Shannon and Simpson indexes of the peNDF1.18 = 28.1% group were the highest (p < 0.05). As the level of dietary peNDF1.18 decreased, the dominant phylum transitioned from Bacteroidetes to Firmicutes. The top three dominant genera of rumen bacteria were Prevotella 1, Ruminococcaceae NK4A214 group, and Christensenellaceae R-7 group. They all showed a quadratic correlation with dietary peNDF1.18 level (p < 0.05). The relative abundance of Ruminococcaceae UCG-011 was positively correlated, while that of Prevotella 1 was negatively correlated, with amino acid metabolism and energy metabolism (p < 0.01). In conclusion, dietary peNDF level influenced goat growth performance, rumen development, and rumen bacterial community structures, and a peNDF1.18 level between 26.5 and 28.1% was considered optimal for goat diet.
Collapse
Affiliation(s)
- Benchu Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuangming Yue
- Department of Bioengineering, Sichuan Water Conservancy College, Chengdu, China
| | - Anhai Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiang Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Qionghua Hong
- Yunnan Academy of Animal Science and Veterinary Medicine, Kunming, China
| | - Zhisheng Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Quanhui Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Bai Xue,
| |
Collapse
|
19
|
Altermann E, Reilly K, Young W, Ronimus RS, Muetzel S. Tailored Nanoparticles With the Potential to Reduce Ruminant Methane Emissions. Front Microbiol 2022; 13:816695. [PMID: 35359731 PMCID: PMC8963448 DOI: 10.3389/fmicb.2022.816695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Agricultural methane produced by archaea in the forestomach of ruminants is a key contributor to rising levels of greenhouse gases leading to climate change. Functionalized biological polyhydroxybutyrate (PHB) nanoparticles offer a new concept for the reduction of enteric methane emissions by inhibiting rumen methanogens. Nanoparticles were functionalized in vivo with an archaeal virus lytic enzyme, PeiR, active against a range of rumen Methanobrevibacter species. The impact of functionalized nanoparticles against rumen methanogens was demonstrated in pure cultures, in rumen batch and continuous flow rumen models yielding methane reduction of up to 15% over 11 days in the most complex system. We further present evidence of biological nanoparticle fermentation in a rumen environment. Elevated levels of short-chain fatty acids essential to ruminant nutrition were recorded, giving rise to a promising new strategy combining methane mitigation with a possible increase in animal productivity.
Collapse
Affiliation(s)
- Eric Altermann
- AgResearch Ltd., Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
- *Correspondence: Eric Altermann,
| | | | - Wayne Young
- AgResearch Ltd., Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
20
|
Li P, Chen G, Zhang J, Pei C, Chen Y, Gong J, Deng S, Cai K, Li H, Wang D, Shen B, Xie Z, Liao Q. Live Lactobacillus acidophilus alleviates ulcerative colitis via the SCFAs/mitophagy/NLRP3 inflammasome axis. Food Funct 2022; 13:2985-2997. [PMID: 35195119 DOI: 10.1039/d1fo03360c] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a disease caused by an impaired intestinal epithelial barrier, imbalanced flora, immune imbalance and genetic susceptibility, ulcerative colitis (UC) is becoming a health threat for all ages. Lactobacillus acidophilus (L. acidophilus), an attracting probiotic, has already been confirmed to improve immune dysfunction, stabilize intestinal microflora, and combat gut disorders. However, no studies have focused on the effects of different forms of L. acidophilus on UC, and its mechanism involved in the mitophagy/NLRP3 inflammasome pathway has not been reported. In this study, we found that compared with the heat-killed L. acidophilus and the culture supernatant of L. acidophilus, the live L. acidophilus (La) has the optimal therapeutic effect on UC rats. Furthermore, La evidently increased the contents of SCFAs, inhibited NLRP3 inflammasome and facilitated autophagy. SCFAs regulated by La balanced inflammation homeostasis and improved intestinal barrier dysfunctions in vitro and in vivo, which was achieved by activating the mitophagy/NLRP3 inflammasome pathway. Moreover, PCR analysis indicated that the aforementioned effects of SCFAs regulated by La may be due to the activation of G protein-coupled receptors. These findings provided guidance for the application of L. acidophilus in daily life and provided a new molecular target for interactions among L. acidophilus, its metabolites and host immunity.
Collapse
Affiliation(s)
- Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Guoping Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jiaxian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Chaoying Pei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Song Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Kaiwei Cai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Haiyan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Dawei Wang
- ShunDe Hospital GuangZhou University of Chinese Medicine, Foshan, 528300, China
| | - Baochun Shen
- School of Pharmacy, Kunming Medical University, Kunming, 650500, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Xue MY, Xie YY, Zhong Y, Ma XJ, Sun HZ, Liu JX. Integrated meta-omics reveals new ruminal microbial features associated with feed efficiency in dairy cattle. MICROBIOME 2022; 10:32. [PMID: 35172905 PMCID: PMC8849036 DOI: 10.1186/s40168-022-01228-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 01/07/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND As the global population continues to grow, competition for resources between humans and livestock has been intensifying. Increasing milk protein production and improving feed efficiency are becoming increasingly important to meet the demand for high-quality dairy protein. In a previous study, we found that milk protein yield in dairy cows was associated with the rumen microbiome. The objective of this study was to elucidate the potential microbial features that underpins feed efficiency in dairy cows using metagenomics, metatranscriptomics, and metabolomics. RESULTS Comparison of metagenomic and metatranscriptomic data revealed that the latter was a better approach to uncover the associations between rumen microbial functions and host performance. Co-occurrence network analysis of the rumen microbiome revealed differential microbial interaction patterns between the animals with different feed efficiency, with high-efficiency animals having more and stronger associations than low-efficiency animals. In the rumen of high-efficiency animals, Selenomonas and members of the Succinivibrionaceae family positively interacted with each other, functioning as keystone members due to their essential ecological functions and active carbohydrate metabolic functions. At the metabolic level, analysis using random forest machine learning suggested that six ruminal metabolites (all derived from carbohydrates) could be used as metabolic markers that can potentially differentiate efficient and inefficient microbiomes, with an accuracy of prediction of 95.06%. CONCLUSIONS The results of the current study provided new insights into the new ruminal microbial features associated with feed efficiency in dairy cows, which may improve the ability to select animals for better performance in the dairy industry. The fundamental knowledge will also inform future interventions to improve feed efficiency in dairy cows. Video Abstract.
Collapse
Affiliation(s)
- Ming-Yuan Xue
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Yi Xie
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Zhong
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Jiao Ma
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China.
| | - Jian-Xin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Education Innovation Team of Development and Function of Animal Digestive System, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Sun D, Mao S, Zhu W, Liu J. Proteomic identification of ruminal epithelial protein expression profiles in response to starter feed supplementation in pre-weaned lambs. ACTA ACUST UNITED AC 2021; 7:1271-1282. [PMID: 34786500 PMCID: PMC8567165 DOI: 10.1016/j.aninu.2021.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 12/01/2022]
Abstract
The present study aimed to comparatively characterize the ruminal epithelial protein expression profiles in lambs fed ewe milk or milk plus starter diet using proteome analysis. Twenty new-born lambs were randomly divided into a group receiving ewe milk (M, n = 10) and a group receiving milk plus starter diet (M + S, n = 10). From 10 d old, M group lambs remained with the ewe and suckled ewe milk without receiving the starter diet. The lambs in the M + S group were separated from the ewe and received starter feed. All lambs were slaughtered at 56 d old. Eight rumen epithelia samples (4 per group) were collected to characterize their protein expression profiles using proteomic technology. Proteome analysis showed that 31 upregulated proteins and 40 downregulated proteins were identified in the rumen epithelium of lambs in response to starter diet supplementation. The results showed that starter feeding regulates a variety of biological processes in the epithelium, especially blood vessel development and extracellular matrix protein expression. Meanwhile, the expression of proteins associated with synthesis and degradation of ketone bodies, butanoate metabolism, and citrate cycle signaling transduction pathway were upregulated in the group with starter diet supplementation, including 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGCS2, fold change [FC] = 1.93), 3-hydroxybutyrate dehydrogenase 1 (BDH1, FC = 1.91), and isocitrate dehydrogenase 1 (IDH1, FC = 8.12). The metabolic processes associated with ammonia detoxification and antioxidant stress were also affected by starter diet supplementation, with proteins, microsomal glutathione S-transferase 3 (MGST3, FC = 2.37) and IDH1, linked to the biosynthesis of glutamate and glutathione metabolism pathway being upregulated in the group with starter diet supplementation. In addition, starter feeding decreased the expression of Ras-related protein rap-1A (RAP1A, FC = 0.48) enriched in Rap1 signaling pathway, Ras signaling pathway, cyclic adenosine monophosphate (cAMP) signaling pathway, and mitogen-activated protein kinase (MAPK) signaling pathway. In summary, starter feed supplementation changed the expression of proteins related to energy production, ammonia detoxification, antioxidant stress, and signaling pathways related to proliferation and apoptosis, which facilitates the rumen epithelia development in lambs. The results provide new insights into the molecular adaptation of rumen epithelia in response to starter diet supplementation at the protein level in lambs.
Collapse
Affiliation(s)
- Daming Sun
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengyong Mao
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhua Liu
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.,National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.,National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Hao Y, Guo C, Gong Y, Sun X, Wang W, Wang Y, Yang H, Cao Z, Li S. Rumen Fermentation, Digestive Enzyme Activity, and Bacteria Composition between Pre-Weaning and Post-Weaning Dairy Calves. Animals (Basel) 2021; 11:ani11092527. [PMID: 34573493 PMCID: PMC8467862 DOI: 10.3390/ani11092527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/25/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Weaning is very important for young ruminants. At this stage, calves’ main source of nutrients is transferred from milk into solid feed, such as starter and roughage. At the same time, the rumen function of calves undergoes tremendous changes, such as bacteria, which are the main players in rumen function. Our research found that the rumen bacteria network of post-weaning calves was more complex. The fermentation end products, such as acetate, propionate, and butyrate, were higher in the post-weaning calves than the pre-weaning group. However, digestive enzymes such as protease, carboxymethyl cellulase, cellobiohydrolase, and glucosidase were lower in the post-weaning calves than the pre-weaning calves. These findings provided useful information for reference regarding the feeding management of calves. Abstract To better understand the transition of rumen function during the weaning period in dairy calves, sixteen Holstein dairy calves were selected and divided into two groups: pre-weaning (age = 56 ± 7 day, n = 8) and post-weaning (age = 80 ± 6 day, n = 8). The rumen fluid was obtained by an oral gastric tube. The rumen fermentation profile, enzyme activity, bacteria composition, and their inter-relationship were investigated. The results indicated that the post-weaning calves had a higher rumen acetate, propionate, butyrate, and microbial crude protein (MCP) than the pre-weaning calves (p < 0.05). The rumen pH in the post-weaning calves was lower than the pre-weaning calves (p < 0.05). The protease, carboxymethyl cellulase, cellobiohydrolase, and glucosidase in the post-weaning calves had a lower trend than the pre-weaning calves (0.05 < p < 0.1). There was no difference in α and β diversity between the two groups. Linear discriminant analysis showed that the phylum of Fibrobacteres in the post-weaning group was higher than the pre-weaning group. At the genus level, Shuttleworthia, Rikenellaceae, Fibrobacter, and Syntrophococcus could be worked as the unique bacteria in the post-weaning group. The rumen bacteria network node degree in the post-weaning group was higher than the pre-weaning group (16.54 vs. 9.5). The Shuttleworthia genus was highly positively correlated with MCP, propionate, total volatile fatty acid, glucosidase, acetate, and butyrate (r > 0.65, and p < 0.01). Our study provided new information about the rumen enzyme activity and its relationship with bacteria, which help us to better understand the effects of weaning on the rumen function.
Collapse
Affiliation(s)
- Yangyi Hao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Chunyan Guo
- Jinzhong Vocational and Technical College, Jinzhong 030024, China;
| | - Yue Gong
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Xiaoge Sun
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
- Correspondence: (W.W.); (S.L.)
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.H.); (Y.G.); (X.S.); (Y.W.); (H.Y.); (Z.C.)
- Correspondence: (W.W.); (S.L.)
| |
Collapse
|
24
|
Effects of Age, Diet CP, NDF, EE, and Starch on the Rumen Bacteria Community and Function in Dairy Cattle. Microorganisms 2021; 9:microorganisms9081788. [PMID: 34442867 PMCID: PMC8400643 DOI: 10.3390/microorganisms9081788] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
To understand the effects of diet and age on the rumen bacterial community and function, forty-eight dairy cattle at 1.5 (M1.5), 6 (M6), 9 (M9), 18 (M18), 23 (M23), and 27 (M27) months old were selected. Rumen fermentation profile, enzyme activity, and bacteria community in rumen fluid were measured. The acetate to propionate ratio (A/P) at M9, M18, and M23 was higher than other ages, and M6 was the lowest (p < 0.05). The total volatile fatty acid (TVFA) at M23 and M27 was higher than at other ages (p < 0.05). The urease at M18 was lower than at M1.5, M6, and M9, and the xylanase at M18 was higher than at M1.5, M23, and M27 (p < 0.05). Thirty-three bacteria were identified as biomarkers of the different groups based on the linear discriminant analysis (LDA) when the LDA score >4. The variation partitioning approach analysis showed that the age and diet had a 7.98 and 32.49% contribution to the rumen bacteria community variation, respectively. The richness of Succinivibrionaceae_UCG-002 and Fibrobacter were positive correlated with age (r > 0.60, p < 0.01) and positively correlated with TVFA and acetate (r > 0.50, p < 0.01). The Lachnospiraceae_AC2044_group, Pseudobutyrivibrio, and Saccharofermentans has a positive correlation (r > 0.80, p < 0.05) with diet fiber and a negative correlation (r < −0.80, p < 0.05) with diet protein and starch, which were also positively correlated with the acetate and A/P (r > 0.50, p < 0.01). The genera of Lachnospiraceae_AC2044_group, Pseudobutyrivibrio, and Saccharofermentans could be worked as the target bacteria to modulate the rumen fermentation by diet; meanwhile, the high age correlated bacteria such as Succinivibrionaceae_UCG-002 and Fibrobacter also should be considered when shaping the rumen function.
Collapse
|
25
|
Lactobacillus ruminis Alleviates DSS-Induced Colitis by Inflammatory Cytokines and Gut Microbiota Modulation. Foods 2021; 10:foods10061349. [PMID: 34208038 PMCID: PMC8230674 DOI: 10.3390/foods10061349] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus ruminis can stimulate the immune response in vitro, but previous studies were only carried out in vitro and the anti-inflammatory effects of L. ruminis needs more in vivo evidences. In this study, the immune regulation and potential mechanisms of L. ruminis was investigated in DSS-induced colitis mice. L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 relieved the symptoms of colitis, including inhibition of colon shortening and colon tissue damage. L. ruminis FXJWS27L3 significantly reduced the pro-inflammatory cytokines IL-1β, TNF-α, and IL-17, while L. ruminis FXJSW17L1 significantly increased short chain fatty acids in mice feces. Moreover, L. ruminis FXJWS27L3 and L. ruminis FXJSW17L1 treatments significantly increased the gut microbiota diversity and balance the intestine microbiota profiles, which improved the imbalance of intestine microbiota composition to a certain extent. The results showed that L. ruminis can alleviate DSS-induced colitis, which possibly was related to promoting the expression of pro-inflammatory cytokines, up-regulating SCFAs and restoring the imbalance of gut microbiota.
Collapse
|
26
|
Prevotella-rich enterotype may benefit gut health in finishing pigs fed diet with a high amylose-to-amylopectin ratio. ACTA ACUST UNITED AC 2021; 7:400-411. [PMID: 34258428 PMCID: PMC8245826 DOI: 10.1016/j.aninu.2020.08.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 07/06/2020] [Accepted: 08/13/2020] [Indexed: 01/10/2023]
Abstract
To investigate the influence of baseline enterotypes and dietary starch type on the concentration of short-chain fatty acids (SCFA), numbers of butyrate producing bacteria and the expression of genes related to intestinal barrier and inflammatory response in the colon of finishing pigs, a 60-d in vivo trial was conducted. A 2-wk pre-trial with 102 crossbred (Duroc × [Landrace × Yorkshire]) finishing barrows (90 d old) was conducted to screen enterotypes. Then, a total of 32 pigs (87.40 ± 2.76 kg) with high (HPBR, ≥ 14) and low (LPBR, ≤ 2) Prevotella-to-Bacteroides ratios (PBR) in equal measure were selected and randomly divided into 4 groups with 8 replicates per group and 1 pig per replicate. The trial was designed following a 2 (PBR) × 2 (amylose-to-amylopectin ratio, AMR) factorial arrangement. Pigs with different PBR were fed diets based on corn-soybean meal with high AMR (HAMR, 1.24) or low AMR (LAMR, 0.23), respectively. Results showed that neither PBR nor AMR influenced the growth performance of pigs. HPBR pigs fed HAMR diet had a higher number of colonic Clostridium cluster XIVa and higher gene expression of butyrate kinase compared to the LPBR pigs (P < 0.05). The HPBR pigs fed HAMR diets also had increased colonic concentrations of total SCFA and propionate compared to the LPBR pigs (P < 0.05). Comparing with other pigs, HPBR pigs fed HAMR diets showed a lower (P < 0.05) expression of histone deacetylases (HDAC) gene and higher (P < 0.05) expression of G protein-coupled receptor 43 gene (GPR 43) in the colonic mucosa. The interaction (P < 0.05) of HPBR and HAMR was also found to decrease the gene expression of interleukin (IL)-6, IL-12, IL-1β and tumor necrosis factor-α (TNF-α) in colonic mucosa. These findings show that HAMR diet increased the abundance and activity of butyrate-producing bacteria and the concentration and absorption of SCFA, which may be associated with the decreased gene expression of inflammatory cytokines in the colonic mucosa of pigs with Prevotella-rich enterotype. All these alterations are likely to have a positive effect on the intestinal health of finishing pigs.
Collapse
|
27
|
Guo HM, Zhao Y, Yang MNO, Yang ZH. The potential risks of paclobutrazol residue on yogurt fermentation from the level of chiral enantiomers. J Dairy Sci 2020; 103:7682-7694. [PMID: 32564955 DOI: 10.3168/jds.2019-17988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/09/2020] [Indexed: 01/01/2023]
Abstract
In recent years, pesticide residues in food have increasingly become the focus of public attention. However, the standard system of pesticide maximum residue limits in fermented food is imperfect, which can lead to potential safety risks to consumers. In this context, the aim of the study was to assess the potential effects of paclobutrazol residue on the yogurt fermentation process. We examined the stereoselective behaviors of the 2 paclobutrazol enantiomers from the perspective of chirality during the yogurt fermentation process. The results indicated that no significant degradation occurred for either of the 2 enantiomers (2R, 3R-paclobutrazol, 2S, 3S-paclobutrazol), and no visible enantiomer conversion behavior was observed. In addition, the reason paclobutrazol did not significantly degrade was explained from the perspective of the microbial function. Results from 16S rRNA sequencing indicated that paclobutrazol significantly affected the microbial composition and inhibited metabolic function of microorganisms to exogenous substances, which impeded the degradation of residual pesticide in yogurt. Furthermore, the stable residue of exogenous substance may cause potential food safety problems. Microbial α-diversity analysis indicated that fermentation time played a more important role on diversity than did paclobutrazol concentration. Moreover, Staphylococcus was found in yogurt after treatment with paclobutrazol; Staphylococcus aureus causes dangerous infectious diseases in humans. We devised a method to investigate the presence of pesticide residues during food fermentation and provided a theoretical basis for food safety assessment.
Collapse
Affiliation(s)
- Hao-Ming Guo
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yue Zhao
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, 430070, China
| | - Mei-Nan Ou Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, 430070, China
| | - Zhong-Hua Yang
- College of Plant Science and Technology, Department of Plant Protection, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
28
|
Fan Q, Wanapat M, Hou F. Chemical Composition of Milk and Rumen Microbiome Diversity of Yak, Impacting by Herbage Grown at Different Phenological Periods on the Qinghai-Tibet Plateau. Animals (Basel) 2020; 10:ani10061030. [PMID: 32545764 PMCID: PMC7341253 DOI: 10.3390/ani10061030] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Native values of herbage grown at different phenological periods and rumen diversity of microbial population would impact rumen fermentation end-products and milk compositions of yaks (Bos grunniens). The research was conducted in 12 female yaks grazing on the Qinghai-Tibet Plateau (QTP). The results revealed that the phenological periods (VS: Vegetative stage, May; BS: Bloom stage, August; SS: Senescent stage, December) significantly influenced the nutritive values of herbages, microbial diversity and, as a consequence affected on the yak milk yield and compositions. We concluded that the observed differences resulted from the combined effects of phenological periods, herbage composition, and herbage availability. The findings of this study were of great value and useful for current understandings and onwards to conduct further research and for possible practical implementation for the yak cows grazing on QTP. Abstract To estimate how native herbage of three different phenological periods modify rumen performance and milk quality of yak grazing alpine meadow. In this study, milk composition and the diversity of the rumen microbial community were measured in 12 full-grazing female yaks on the Qinghai-Tibet Plateau (QTP). The nutrient composition of three phenological periods was determined: Vegetative stage (VS), bloom stage (BS), and senescent stage (SS). High-throughput sequencing of the bacterial 16S rRNA gene was used. The results showed that crude protein (CP) content of herbage in BS was higher than that in vs. and SS (p < 0.05), and neutral detergent fiber (NDF) content of herbage in SS was higher than that in vs. and BS (p < 0.05). Milk solids and fat contents were higher in the vs. and SS than in BS (p < 0.05). However, milk protein content was higher for the vs. and BS than those for SS (p < 0.05). The total volatile fatty acid (VFA), acetate, and propionate concentrations were higher in vs. and BS than in SS (p < 0.05). The community richness estimates (Chao1 estimator) of vs. were higher than that in BS and the SS (p < 0.05). The diversity indices (Shannon index) of the BS were higher than that vs. and the SS (p < 0.05). Spearman correlation analysis between the milk composition, ruminal fermentation parameters, and the relative abundances of the rumen bacteria showed that milk protein content, total VFA, acetate, and propionate concentrations were positively correlated with the relative abundances of the genera Desulfovibrio, Prevotella_1, and Butyrivibrio_2 and was negatively correlated with Olsenella, Ruminococcaceae_UCG.010, and Rikenellaceae_RC9_gut_group abundances. Collectively, the results revealed that there were significant differences in nutrient composition of herbage, chemical composition of yak milk, and microbial diversity in rumen at different phenological stages. The correlations between ruminal fermentation parameters, chemical constituents of yak milk, and some genera of ruminal bacteria might be indicative that the ruminal fermentation parameters and chemical constituents of yak milk are strongly influenced by the rumen bacterial community composition.
Collapse
Affiliation(s)
- Qingshan Fan
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China;
| | - Metha Wanapat
- Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu, China;
- Correspondence:
| |
Collapse
|
29
|
Zhang Z, Wang S, Wang M, Shahzad K, Zhang X, Qi R, Shi L. Effects of Urtica cannabina to Leymus chinensis Ratios on Ruminal Microorganisms and Fiber Degradation In Vitro. Animals (Basel) 2020; 10:ani10020335. [PMID: 32093262 PMCID: PMC7070357 DOI: 10.3390/ani10020335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/08/2023] Open
Abstract
The study was conducted in vitro to investigate the effects of different ratios of Urtica cannabina and Leymus chinensis on fiber microstructure and digestibility in ruminal fluid. The experiment was divided into five groups based on the U. cannabina/L. chinensis ratios: A (0:100), B (30:70), C (50:50), D (70:30), and E (100:0). The culture medium was collected at 0, 1, 3, 6, 12, and 24 h. The results showed that: (1) in vitro crude protein degradability (IVCPD) was higher in group A, whereas in vitro neutral detergent fiber degradability (IVNDFD) was higher in group C (p < 0.05); (2) protozoa count was increased from 1 h to 3 h and decreased afterwards, with significant differences observed in several genera (p < 0.05); (3) microbial crude protein (MCP) contents at 1, 3, 6, and 24 h were higher in groups A and C (p < 0.05); (4) the basic tissue of U. cannabina was gradually degraded. At 24h, the secondary xylem vessel structure was observed in groups B and C, but not in groups D and E. In summary, there was higher neutral detergent fiber (NDF) digestibility, higher rumen MCP contents, and lower protozoa count, showing the significance of the 50:50 ratio for microbial growth and fiber digestibility.
Collapse
Affiliation(s)
- Zhenbin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
- Correspondence: ; Tel.: +86-151-5273-4991
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45550, Pakistan;
| | - Xiaoqing Zhang
- Institute of Grassland Science, Chinese Academy of Agricultural Sciences, Huhehote 010010, Inner Mongolia, China;
| | - Ruxin Qi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| | - Liangfeng Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; (Z.Z.); (S.W.); (R.Q.); (L.S.)
| |
Collapse
|
30
|
Mahmoudi B, Fayazi J, Roshanfekr H, Sari M, Bakhtiarizadeh MR. Genome-wide identification and characterization of novel long non-coding RNA in Ruminal tissue affected with sub-acute Ruminal acidosis from Holstein cattle. Vet Res Commun 2020; 44:19-27. [PMID: 32043213 DOI: 10.1007/s11259-020-09769-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/28/2020] [Indexed: 12/12/2022]
Abstract
Sub-acute ruminal acidosis is a type of metabolic disorder in which affected cattle show a considerable depression of rumen pH. This leads to a dramatic decline in productivity and consequent loss of income for many dairy farms. The objective of the present study is to identify and characterize novel long non-coding RNAs (lncRNAs) in Holstein cattle affected by sub-acute ruminal acidosis. Two replicates from six animals were sequenced that bioinformatically analyzed. Results showed 6679 novel lncRNAs among which 12 intergenic lncRNAs showed differential expression (p value ≤0.05). GO and KEGG analysis revealed that calcium signaling and G protein couple-receptor pathways may be involved in regulating metabolic processes during sub-acute ruminal acidosis. Furthermore, other biological processes including transmembrane transport, adult behavior, neuroactive ligand-receptor interaction, GABAergic synapse, cholinergic synapse were significantly enriched. The present data suggest that these differentially expressed lncRNAs may play regulatory roles in modulating biological processes associated with sub-acute ruminal acidosis in cattle rumen.
Collapse
Affiliation(s)
- Bizhan Mahmoudi
- Department of Animal science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
| | - Jamal Fayazi
- Department of Animal science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran.
| | - Hedayatollah Roshanfekr
- Department of Animal science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
| | - Mohsen Sari
- Department of Animal science, Agricultural Sciences and Natural Resources University of Khuzestan, Ahvaz, Iran
| | | |
Collapse
|
31
|
Synchrony Degree of Dietary Energy and Nitrogen Release Influences Microbial Community, Fermentation, and Protein Synthesis in a Rumen Simulation System. Microorganisms 2020; 8:microorganisms8020231. [PMID: 32050406 PMCID: PMC7074744 DOI: 10.3390/microorganisms8020231] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 02/01/2023] Open
Abstract
Synchrony of energy and nitrogen release in rumen has been proposed to maximize ruminal microbial fermentation. However, the information regarding bacterial community composition and its metabolism under a higher or lower degree of synchronization is limited. In our study, a 0 to 6 h post-feeding infusion (first half infusion, FHI), 6 to 12 h post-feeding infusion (second half infusion, SHI), and 0 to 12 h post-feeding infusion (continuous infusion, CI) of maltodextrin were used to simulate varying degrees of synchronization of energy and nitrogen release in a rumen simulation system. In addition, the bacterial community, metabolite, enzyme activity, and microbial protein synthesis (MPS) were evaluated. Compared with the FHI and CI, the relative abundance of Fibrobacter, Ruminobacter, BF311, and CF231 decreased in the SHI, but that of Klebsiella and Succinivibrio increased in the SHI. The NH3-N and branched-chain volatile fatty acids were significantly higher, but propionate content and activities of glutamate dehydrogenase (GDH) and alanine dehydrogenase were significantly lower in the SHI than those in the FHI and CI. The SHI had lower MPS and less efficiency of MPS than the FHI and CI, which indicated that the SHI had a lower degree of synchronization. Correlation analysis showed that MPS was positively related to GDH activity and relative abundance of Fibrobacter but negatively related to NH3-N and relative abundance of Klebsiella. Therefore, a higher degree of synchronization of energy and nitrogen release increased MPS partly via influencing the bacterial community, metabolism, and enzyme activities of ammonia assimilation in the in vitro fermenters.
Collapse
|
32
|
Perilla frutescens Leaf Alters the Rumen Microbial Community of Lactating Dairy Cows. Microorganisms 2019; 7:microorganisms7110562. [PMID: 31766265 PMCID: PMC6921060 DOI: 10.3390/microorganisms7110562] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 02/06/2023] Open
Abstract
Perilla frutescens (L.) Britt., an annual herbaceous plant, has antibacterial, anti-inflammation, and antioxidant properties. To understand the effects of P. frutescens leaf on the ruminal microbial ecology of cattle, Illumina MiSeq 16S rRNA sequencing technology was used. Fourteen cows were used in a randomized complete block design trial. Two diets were fed to these cattle: a control diet (CON); and CON supplemented with 300 g/d P. frutescens leaf (PFL) per cow. Ruminal fluid was sampled at the end of the experiment for microbial DNA extraction. Overall, our findings revealed that supplementation with PFL could increase ruminal fluid pH value. The ruminal bacterial community of cattle was dominated by Bacteroidetes, Firmicutes, and Proteobacteria. The addition of PFL had a positive effect on Firmicutes, Actinobacteria, and Spirochaetes, but had no effect on Bacteroidetes and Proteobacteria compared with the CON. The supplementation with PFL significantly increased the abundance of Marvinbryantia, Acetitomaculum, Ruminococcus gauvreauii, Eubacterium coprostanoligenes, Selenomonas_1, Pseudoscardovia, norank_f__Muribaculaceae, and Sharpea, and decreased the abundance of Treponema_2 compared to CON. Eubacterium coprostanoligenes, and norank_f__Muribaculaceae were positively correlated with ruminal pH value. It was found that norank_f__Muribaculaceae and Acetitomaculum were positively correlated with milk yield, indicating that these different genera are PFL associated bacteria. This study suggests that PFL supplementation could increase the ruminal pH value and induce shifts in the ruminal bacterial composition.
Collapse
|
33
|
Lv X, Chai J, Diao Q, Huang W, Zhuang Y, Zhang N. The Signature Microbiota Drive Rumen Function Shifts in Goat Kids Introduced to Solid Diet Regimes. Microorganisms 2019; 7:microorganisms7110516. [PMID: 31683646 PMCID: PMC6921049 DOI: 10.3390/microorganisms7110516] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022] Open
Abstract
The feeding regime of early, supplementary solid diet improved rumen development and production in goat kids. However, the signature microbiota responsible for linking dietary regimes to rumen function shifts are still unclear. This work analyzed the rumen microbiome and functions affected by an early solid diet regime using a combination of machine learning algorithms. Volatile fatty acids (i.e., acetate, propionate and butyrate) fermented by microbes were found to increase significantly in the supplementary solid diet groups. Predominant genera were found to alter significantly from unclassified Sphingobacteriaceae (non-supplementary group) to Prevotella (supplementary solid diet groups). Random Forest classification model revealed signature microbiota for solid diet that positively correlated with macronutrient intake, and linearly increased with volatile fatty acid production. Bacteria associated with carbohydrate and protein metabolism were also identified. Utilization of a Fish Taco analysis portrayed a set of intersecting core species contributed to rumen function shifts by the solid diet regime. The core community structures consisted of the specific, signature microbiota and the manipulation of their symbiotic partners are manipulated by extra nutrients from concentrate and/or forage, and then produce more volatile fatty acids to promote rumen development and functions eventually host development. Our study provides mechanisms of the microbiome governed by a solid diet regime early in life, and highlights the signature microbiota involved in animal health and production.
Collapse
Affiliation(s)
- Xiaokang Lv
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing 100081, China.
| | - Jianmin Chai
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing 100081, China.
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Qiyu Diao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing 100081, China.
| | - Wenqin Huang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing 100081, China.
| | - Yimin Zhuang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing 100081, China.
| | - Naifeng Zhang
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
34
|
Effects of Nutritional Deprivation and Re-Alimentation on the Feed Efficiency, Blood Biochemistry, and Rumen Microflora in Yaks ( Bos grunniens). Animals (Basel) 2019; 9:ani9100807. [PMID: 31618914 PMCID: PMC6826638 DOI: 10.3390/ani9100807] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 10/11/2019] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Yak, the predominant and semi-domesticated livestock on the Qinghai–Tibet Plateau, suffers severe starvation and body weight reduction in the cold season and recovers relatively rapid growth in the warm season every year, because of the harsh highland environment. Rumen microorganisms have critical nutritional and physiological functions for the growth of ruminant, but the strategy of rumen microorganism of yaks to cope with the starvation and re-alimentation challenges and the contributions of rumen microflora to compensatory growth remain unclear. Herein, we investigated the effects of starvation and refeeding on the growth, feed efficiency, blood biochemistry and rumen microbial community as well as functions of yaks. Our results indicated that the rumen microorganism, in part, contributed to yak adaption to starvation and compensatory growth during re-alimentation. Our study is helpful in the understanding and utilization of this natural character of yaks to explore and improve their growth potential. Abstract Yak suffers severe starvation and body weight reduction in the cold season and recovers relatively rapid growth in the warm season every year. Herein, we investigated the effects of starvation and refeeding on the growth, feed efficiency, blood biochemistry and rumen microbial community as well as functions of yaks. The results showed that starvation significantly reduced the body weight of yaks. Serum glucose and triglyceride concentrations significantly decreased, and β-hydroxybutyric acid and non-esterified fatty acid levels were significantly increased during the starvation period. Starvation also dramatically inhibited rumen microbial fermentations. Whereas, refeeding with the same diet significantly increased the feed efficiency, nutrient digestibility together with rumen acetate, propionate and microbial protein productions compared with those before starvation. The 16S rDNA sequencing results showed that starvation mainly decreased the ruminal protein-degrading bacteria Prevotella and propionate-producing bacteria Succiniclasticum populations and dramatically increased the denitrifying bacteria Thauera populations. Refeeding reduced the Euryarchaeota population and increased propionate-producing bacteria Succinivibrionaceae UCG-002 and starch-degrading bacteria Ruminobacter populations when compared with those before starvation. The predicted microbial metabolic pathways, related to amino acid and starch metabolisms, were also significantly altered during the starvation and refeeding. The results indicated that the rumen microorganisms and their metabolism pathways changed with feed supply, and these alterations in part contributed to yak adaption to starvation and re-alimentation. This study is helpful for enhancing the understanding and utilization of this natural character of yaks to explore and improve their growth potential.
Collapse
|
35
|
Li B, Zhang K, Li C, Wang X, Chen Y, Yang Y. Characterization and Comparison of Microbiota in the Gastrointestinal Tracts of the Goat ( Capra hircus) During Preweaning Development. Front Microbiol 2019; 10:2125. [PMID: 31572331 PMCID: PMC6753876 DOI: 10.3389/fmicb.2019.02125] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/29/2019] [Indexed: 01/10/2023] Open
Abstract
Bacterial communities in gastrointestinal tracts (GIT) play an important role in animal health and performance. Despite its importance, little information is available on the establishment of microbial populations in the goat GIT or on changes occurring during early development. Therefore, this study investigated the bacterial community dynamics of the rumen, duodenum, jejunum, ileum, cecum, and colon in 15 goats at five developmental stages (0, 14, 28, 42, and 56 days old) by using 16S rDNA sequencing and quantitative real-time PCR technology. 940 genera were found to belong to 44 phyla distributed along the GIT. As a whole, the microbial richness and diversity showed a clear increasing trend as the kids aged and alpha diversity differed significantly among GIT compartments mainly occurring at middle day ages (14 and 28 days). Principal coordinate analysis indicated that the bacterial community displayed distinct temporal and spatial specificity along the GIT in preweaning goats. As kids aged, the phylum Firmicutes was replaced by Bacteroidetes in rumen, whereas Proteobacteria in the large intestine was displaced by Firmicutes. The phylum Proteobacteria was mainly present in the small intestine in older animals. In the rumen, taxa, such as Bacillus and Lactococcus decreased and Prevotella, Treponema, Ruminococcus, and unclassified Prevotellaceae increased with the age of kids. Furthermore, a lower proportion of taxa, such as Lactobacillus and Bacteroides was observed with higher abundances of both Christensenellaceae_R_7 and Ruminococcus in duodenum and jejunum in older animals. In the large intestine, the microbiota displayed taxonomic dynamics with increases of Ruminococcaceae UCG 005, unclassified Lachnospiraceae, Barnesiella, and Blautia as kids aged. Predicted pathway analysis suggested that genes involved in amino acid metabolism, and translation were abundant in both rumen and duodenum, while genes involved in membrane transport and carbohydrate metabolism were enriched in the large intestine. These results indicate that both the microbial colonization process and potential function exert a temporal-spatial specificity throughout the GIT of goats. This study provides new insight into the temporal dynamics of GIT microbiota development during preweaning and will aid to develop strategies for improving animal health and downstream production.
Collapse
Affiliation(s)
| | | | | | | | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
36
|
Lu Z, Shen H, Shen Z. Effects of Dietary-SCFA on Microbial Protein Synthesis and Urinal Urea-N Excretion Are Related to Microbiota Diversity in Rumen. Front Physiol 2019; 10:1079. [PMID: 31507445 PMCID: PMC6714491 DOI: 10.3389/fphys.2019.01079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/06/2019] [Indexed: 12/14/2022] Open
Abstract
Two experiments were performed in this study. In Experiment 1, twenty goats were fed with an isonitrogenous diet, containing 28% Non-Fiber Carbohydrate (MNFC group, n = 10) or 14% NFC (LNFC group, n = 10). In the MNFC group, the ruminal concentration of Short Chain Fatty Acids (SCFA) increased, and pH declined. Compared with those in the LNFC group, the microbial protein synthesis in rumen and mRNA abundance of urea transporter B (UT-B) in rumen epithelium increased in the MNFC group, although serum urea-N (SUN) did not differ significantly between groups. Simultaneously, urinal urea-N excretion was reduced in the MNFC group. Significant correlations were found between rumen SCFA and UT-B and between UT-B and urinal urea-N excretion. Furthermore, the abundances of SCFA receptor of GPR41 and GPR43 increased in the rumen epithelium of the MNFC group. These results suggest that increases of SUN transported into the rumen and incorporated into microbial protein and decreases of urinal urea-N excretion are related to ruminal SCFA. This is supported by data from our previous study in which added SCFA on the mucosal side caused increases of urea transport rate (flux Jsm urea) from the blood to the ruminal lumen side. In Experiment 2, we used 16S rRNA Amplicon Sequencing to analyze the structure of the ruminal microbiota community in relation to SCFA. An additional eight goats were assigned into the MNFC (n = 4) and LNFC (n = 4) groups. The dietary ingredients, chemical composition, and feeding regimes were the same as those in Experiment 1. Constrained correspondence analysis (CCA analysis) revealed NFC promoted the expansion of microbiota diversity, particularly of SCFA-producing microbes. The function prediction of 19 upregulated Kyoto Encyclopedia of Genes and Genomes (KEGG) ortholog groups showed an NFC-induced increase of the types and abundances of genes coding for enzymes catalyzing N and fatty acid metabolism. Based on our present and previous investigations, our results indicate that, in goats consuming a MNFC diet, the facilitated urea transport in the rumen and improved urea N salvage are triggered by an expansion of ruminal microbiota diversity and are signaled by ruminal SCFA. This study thus provides new insights into the microbiota involved in the dietary modulation of urea-N salvage in ruminant animals.
Collapse
Affiliation(s)
- Zhongyan Lu
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Zanming Shen
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
37
|
Yuan X, Kang Y, Zhuo C, Huang XF, Song X. The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem Biophys Res Commun 2019; 512:373-380. [PMID: 30898321 DOI: 10.1016/j.bbrc.2019.02.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe mental disorder with unknown etiology. Many mechanisms, including dysregulation of neurotransmitters, immune disturbance, and abnormal neurodevelopment, are proposed for the pathogenesis of schizophrenia. The significance of communication between intestinal flora and the central nervous system through the gut-brain axis is increasingly being recognized. The intestinal microbiota plays an important role in regulating neurotransmission, immune homeostasis, and brain development. We hypothesize that an imbalance in intestinal flora causes immune activation and dysfunction in the gut-brain axis, contributing to schizophrenia. In this review, we examine recent studies that explore the intestinal flora and immune-mediated neurodevelopment of schizophrenia. We conclude that an imbalance in intestinal flora may reduce protectants and increase neurotoxin and inflammatory mediators, causing neuronal and synaptic damage, which induces schizophrenia.
Collapse
Affiliation(s)
- Xiuxia Yuan
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Chuanjun Zhuo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| | - Xueqin Song
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
38
|
Hu R, Zou H, Wang Z, Cao B, Peng Q, Jing X, Wang Y, Shao Y, Pei Z, Zhang X, Xue B, Wang L, Zhao S, Zhou Y, Kong X. Nutritional Interventions Improved Rumen Functions and Promoted Compensatory Growth of Growth-Retarded Yaks as Revealed by Integrated Transcripts and Microbiome Analyses. Front Microbiol 2019; 10:318. [PMID: 30846981 PMCID: PMC6393393 DOI: 10.3389/fmicb.2019.00318] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/06/2019] [Indexed: 12/11/2022] Open
Abstract
Growth retardation reduces the incomes of livestock farming. However, effective nutritional interventions to promote compensatory growth and the mechanisms involving digestive tract microbiomes and transcripts have yet to be elucidated. In this study, Qinghai plateau yaks, which frequently suffer from growth retardation due to malnutrition, were used as an experimental model. Young growth-retarded yaks were pastured (GRP), fed basal ration (GRB), fed basal ration addition cysteamine hydrochloride (CSH; GRBC) or active dry yeast (ADY; GRBY). Another group of growth normal yak was pastured as a positive control (GNP). After 60-day nutritional interventions, the results showed that the average daily gain (ADG) of GRB was similar to the level of GNP, and the growth rates of GRBC and GRBY were significantly higher than the level of GNP (P < 0.05). Basal rations addition of CSH or ADY either improved the serum biochemical indexes, decreased serum LPS concentration, facilitated ruminal epithelium development and volatile fatty acids (VFA) fermentation of growth-retarded yaks. Comparative transcriptome in rumen epithelium between growth-retarded and normal yaks identified the differentially expressed genes mainly enriched in immune system, digestive system, extracellular matrix and cell adhesion pathways. CSH addition and ADY addition in basal rations upregulated ruminal VFA absorption (SLC26A3, PAT1, MCT1) and cell junction (CLDN1, CDH1, OCLN) gene expression, and downregulated complement system (C2, C7) gene expression in the growth-retarded yaks. 16S rDNA results showed that CSH addition and ADY addition in basal rations increased the rumen beneficial bacterial populations (Prevotella_1, Butyrivibrio_2, Fibrobacter) of growth-retarded yaks. The correlation analysis identified that ruminal VFAs and beneficial bacteria abundance were significantly positively correlated with cell junction and VFA absorption gene expressions and negatively correlated with complement system gene expressions on the ruminal epithelium. Therefore, CSH addition and ADY addition in basal rations promoted rumen health and body growth of growth-retarded yaks, of which basal ration addition of ADY had the optimal growth-promoting effects. These results suggested that improving nutrition and probiotics addition is a more effective method to improve growth retardation caused by gastrointestinal function deficiencies.
Collapse
Affiliation(s)
- Rui Hu
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Huawei Zou
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhisheng Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Binghai Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Quanhui Peng
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoping Jing
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yixin Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yaqun Shao
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhaoxi Pei
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangfei Zhang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bai Xue
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lizhi Wang
- Key Laboratory of Low Carbon Culture and Safety Production in Cattle in Sichuan, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Suonan Zhao
- Animal Husbandry and Veterinary Institute, Haibei, China
| | - Yuqing Zhou
- Animal Husbandry and Veterinary Institute, Haibei, China
| | - Xiangying Kong
- Animal Husbandry and Veterinary Institute, Haibei, China
| |
Collapse
|
39
|
Chen L, Shen Y, Wang C, Ding L, Zhao F, Wang M, Fu J, Wang H. Megasphaera elsdenii Lactate Degradation Pattern Shifts in Rumen Acidosis Models. Front Microbiol 2019; 10:162. [PMID: 30792704 PMCID: PMC6374331 DOI: 10.3389/fmicb.2019.00162] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/22/2019] [Indexed: 02/01/2023] Open
Abstract
Background:Megasphaera elsdenii is an ecologically important rumen bacterium that metabolizes lactate and relieves rumen acidosis (RA) induced by a high-grain-diet. Understanding the regulatory mechanisms of the lactate metabolism of this species in RA conditions might contribute to developing dietary strategies to alleviate RA. Methods:Megasphaera elsdenii was co-cultured with four lactate producers (Streptococcus bovis, Lactobacilli fermentum, Butyrivibrio fibrisolvens, and Selenomonas ruminantium) and a series of substrate starch doses (1, 3, and 9 g/L) were used to induce one normal and two RA models (subacute rumen acidosis, SARA and acute rumen acidosis, ARA) under batch conditions. The associations between bacterial competition and the shift of organic acids’ (OA) accumulation patterns in both statics and dynamics manners were investigated in RA models. Furthermore, we examined the effects of substrate lactate concentration and pH on Megasphaera elsdenii’s lactate degradation pattern and genes related to the lactate utilizing pathways in the continuous culture. Results and Conclusion: The positive growth of M. elsdenii and B. fibrisolvens caused OA accumulation in the SARA model to shift from lactate to butyrate and resulted in pH recovery. Furthermore, both the quantities of substrate lactate and pH had remarkable effects on M. elsdenii lactate utilization due to the transcriptional regulation of metabolic genes, and the lactate utilization in M. elsdenii was more sensitive to pH changes than to the substrate lactate level. In addition, compared with associations based on statics data, associations discovered from dynamics data showed greater significance and gave additional explanations regarding the relationships between bacterial competition and OA accumulation.
Collapse
Affiliation(s)
- Lianmin Chen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Yizhao Shen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Chao Wang
- School of Biomedical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Luoyang Ding
- School of Animal Biology, The University of Western Australia, Crawley, WA, Australia
| | - Fangfang Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jingyuan Fu
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
40
|
Wirth R, Kádár G, Kakuk B, Maróti G, Bagi Z, Szilágyi Á, Rákhely G, Horváth J, Kovács KL. The Planktonic Core Microbiome and Core Functions in the Cattle Rumen by Next Generation Sequencing. Front Microbiol 2018; 9:2285. [PMID: 30319585 PMCID: PMC6165872 DOI: 10.3389/fmicb.2018.02285] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
The cow rumen harbors a great variety of diverse microbes, which form a complex, organized community. Understanding the behavior of this multifarious network is crucial in improving ruminant nutrient use efficiency. The aim of this study was to expand our knowledge by examining 10 Holstein dairy cow rumen fluid fraction whole metagenome and transcriptome datasets. DNA and mRNA sequence data, generated by Ion Torrent, was subjected to quality control and filtering before analysis for core elements. The taxonomic core microbiome consisted of 48 genera belonging to Bacteria (47) and Archaea (1). The genus Prevotella predominated the planktonic core community. Core functional groups were identified using co-occurrence analysis and resulted in 587 genes, from which 62 could be assigned to metabolic functions. Although this was a minimal functional core, it revealed key enzymes participating in various metabolic processes. A diverse and rich collection of enzymes involved in carbohydrate metabolism and other functions were identified. Transcripts coding for enzymes active in methanogenesis made up 1% of the core functions. The genera associated with the core enzyme functions were also identified. Linking genera to functions showed that the main metabolic pathways are primarily provided by Bacteria and several genera may serve as a “back-up” team for the central functions. The key actors in most essential metabolic routes belong to the genus Prevotella. Confirming earlier studies, the genus Methanobrevibacter carries out the overwhelming majority of rumen methanogenesis and therefore methane emission mitigation seems conceivable via targeting the hydrogenotrophic methanogenesis.
Collapse
Affiliation(s)
- Roland Wirth
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | | | - Balázs Kakuk
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltán Bagi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - József Horváth
- Faculty of Agriculture, University of Szeged, Hódmezövásárhely, Hungary
| | - Kornél L Kovács
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Oral Biology and Experimental Dental Research, University of Szeged, Szeged, Hungary
| |
Collapse
|
41
|
Jin Y, Jiang C, Zhang X, Shi L, Wang M. Effect of dietary Urtica cannabina on the growth performance, apparent digestibility, rumen fermentation and gastrointestinal morphology of growing lambs. Anim Feed Sci Technol 2018. [DOI: 10.1016/j.anifeedsci.2018.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|