1
|
Hauserman MR, Sullivan LE, James KL, Ferraro MJ, Rice KC. Response of Staphylococcus aureus physiology and Agr quorum sensing to low-shear modeled microgravity. J Bacteriol 2024; 206:e0027224. [PMID: 39120147 PMCID: PMC11411946 DOI: 10.1128/jb.00272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Staphylococcus aureus is commonly isolated from astronauts returning from spaceflight. Previous analysis of omics data from S. aureus low Earth orbit cultures indicated significantly increased expression of the Agr quorum sensing system and its downstream targets in spaceflight samples compared to ground controls. In this current study, the rotary cell culture system (RCCS) was used to investigate the effect of low-shear modeled microgravity (LSMMG) on S. aureus physiology and Agr activity. When cultured in the same growth medium and temperature as the previous spaceflight experiment, S. aureus LSMMG cultures exhibited decreased agr expression and altered growth compared to normal gravity control cultures, which are typically oriented with oxygenation membrane on the bottom of the high aspect rotating vessel (HARV). When S. aureus was grown in an inverted gravity control orientation (oxygenation membrane on top of the HARV), reduced Agr activity was observed relative to both traditional control and LSMMG cultures, signifying that oxygen availability may affect the observed differences in Agr activity. Metabolite assays revealed increased lactate and decreased acetate excretion in both LSMMG and inverted control cultures. Secretomics analysis of LSMMG, control, and inverted control HARV culture supernatants corroborated these results, with inverted and LSMMG cultures exhibiting a decreased abundance of Agr-regulated virulence factors and an increased abundance of proteins expressed in low-oxygen conditions. Collectively, these studies suggest that the orientation of the HARV oxygenation membrane can affect S. aureus physiology and Agr quorum sensing in the RCCS, a variable that should be considered when interpreting data using this ground-based microgravity model.IMPORTANCES. aureus is commonly isolated from astronauts returning from spaceflight and from surfaces within human-inhabited closed environments such as spacecraft. Astronaut health and immune function are significantly altered in spaceflight. Therefore, elucidating the effects of microgravity on S. aureus physiology is critical for assessing its pathogenic potential during long-term human space habitation. These results also highlight the necessity of eliminating potential confounding factors when comparing simulated microgravity model data with actual spaceflight experiments.
Collapse
Affiliation(s)
- Matthew R. Hauserman
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Leia E. Sullivan
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kimberly L. James
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Mariola J. Ferraro
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kelly C. Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
O'Malley MA. The concept of balance in microbiome research. Bioessays 2024; 46:e2400050. [PMID: 38924108 DOI: 10.1002/bies.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Microbiome research is changing how ecosystems, including animal bodies, are understood. In the case of humans, microbiome knowledge is transforming medical approaches and applications. However, the field is still young, and many conceptual and explanatory issues need resolving. These include how microbiome causality is understood, and how to conceptualize the role microbiomes have in the health status of their hosts and other ecosystems. A key concept that crops up in the medical microbiome literature is "balance." A balanced microbiome is thought to produce health and an imbalanced one disease. Based on a quantitative and qualitative analysis of how balance is used in the microbiome literature, this "think again" essay critically analyses each of the several subconceptions of balance. As well as identifying problems with these uses, the essay suggests some starting points for filling this conceptual gap in microbiome research.
Collapse
Affiliation(s)
- Maureen A O'Malley
- School of History and Philosophy of Science, University of Sydney, Sydney, Australia
| |
Collapse
|
3
|
Hauserman MR, Ferraro MJ, Carroll RK, Rice KC. Altered quorum sensing and physiology of Staphylococcus aureus during spaceflight detected by multi-omics data analysis. NPJ Microgravity 2024; 10:2. [PMID: 38191486 PMCID: PMC10774393 DOI: 10.1038/s41526-023-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Staphylococcus aureus colonizes the nares of approximately 30% of humans, a risk factor for opportunistic infections. To gain insight into S. aureus virulence potential in the spaceflight environment, we analyzed RNA-Seq, cellular proteomics, and metabolomics data from the "Biological Research in Canisters-23" (BRIC-23) GeneLab spaceflight experiment, a mission designed to measure the response of S. aureus to growth in low earth orbit on the international space station. This experiment used Biological Research in Canisters-Petri Dish Fixation Units (BRIC-PDFUs) to grow asynchronous ground control and spaceflight cultures of S. aureus for 48 h. RNAIII, the effector of the Accessory Gene Regulator (Agr) quorum sensing system, was the most highly upregulated gene transcript in spaceflight relative to ground controls. The agr operon gene transcripts were also highly upregulated during spaceflight, followed by genes encoding phenol-soluble modulins and secreted proteases, which are positively regulated by Agr. Upregulated spaceflight genes/proteins also had functions related to urease activity, type VII-like Ess secretion, and copper transport. We also performed secretome analysis of BRIC-23 culture supernatants, which revealed that spaceflight samples had increased abundance of secreted virulence factors, including Agr-regulated proteases (SspA, SspB), staphylococcal nuclease (Nuc), and EsxA (secreted by the Ess system). These data also indicated that S. aureus metabolism is altered in spaceflight conditions relative to the ground controls. Collectively, these data suggest that S. aureus experiences increased quorum sensing and altered expression of virulence factors in response to the spaceflight environment that may impact its pathogenic potential.
Collapse
Affiliation(s)
- Matthew R Hauserman
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA
| | - Mariola J Ferraro
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
4
|
Zhang Y, Li Z, Peng Y, Guo Z, Wang H, Wei T, Shakir Y, Jiang G, Deng Y. Microbiome in a ground-based analog cabin of China Space Station during a 50-day human occupation. ISME COMMUNICATIONS 2024; 4:ycae013. [PMID: 38495633 PMCID: PMC10942772 DOI: 10.1093/ismeco/ycae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 03/19/2024]
Abstract
Dead-corner areas in space station that untouched by the clean-up campaign often experience microorganisms outbreaks, but the microbiome of these areas has never been studied. In this study, the microbiome in a ground-based analog ``Tianhe'' core module of China Space Station was first investigated during a 50-day three-crew occupation. Dead-corner areas were receiving attention by adopting a new sampling method. Results indicate that the astronauts occupation did not affect the dominant bacteria community, but affected a small proportion. Due to the frequent activity of astronauts in the work and sleep areas, the biomarkers in these two areas are common human skin surface and gut microorganisms, respectively. For areas that astronaut rarely visits, the biomarkers in which are common environmental microbial groups. Fluorescence counting showed that 70.12-84.78% of bacteria were alive, with a quantity of 104-105 cells/100 cm2. With the occupation time extension, the number of microorganisms increased. At the same sampling time, there was no significant bioburden difference in various locations. The cultivable bioburden ranged from 101 to 104 colony forming unit (CFU)/100 cm2, which are the following eight genera Penicillium, Microsphaeropsis, Stachybotrys, Humicola, Cladosporium, Bacillus, Planomicrobium, and Acinetobacter. Chryseomicrobium genus may be a key focus for future microbial prevention and control work.
Collapse
Affiliation(s)
- Ying Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhidong Li
- Office of International Business and Technology Application, Beijing Institute of Spacecraft System Engineering, Beijing 100094, China
| | - Yuan Peng
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zimu Guo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tao Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yasmeen Shakir
- Department of Biochemistry, Hazara University, Mansehra 21120, Pakistan
| | - Guohua Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Ruxton CHS, Kajita C, Rocca P, Pot B. Microbiota and probiotics: chances and challenges - a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e6. [PMID: 39295904 PMCID: PMC11406417 DOI: 10.1017/gmb.2023.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 09/21/2024]
Abstract
The 10th International Yakult Symposium was held in Milan, Italy, on 13-14 October 2022. Two keynote lectures covered the crewed journey to space and its implications for the human microbiome, and how current regulatory systems can be adapted and updated to ensure the safety of microorganisms used as probiotics or food processing ingredients. The remaining lectures were split into sections entitled "Chances" and "Challenges." The "Chances" section explored opportunities for the science of probiotics and fermented foods to contribute to diverse areas of health such as irritable bowel syndrome, major depression, Parkinson's disease, immune dysfunction, infant colic, intensive care, respiratory infections, and promoting healthy longevity. The "Challenges" section included selecting appropriate clinical trial participants and methodologies to minimise heterogeneity in responses, how to view probiotics in the context of One Health, adapting regulatory frameworks, and understanding how substances of bacterial origin can cross the blood-brain barrier. The symposium provided evidence from cutting-edge research that gut eubiosis is vital for human health and, like space, the microbiota deserves further exploration of its vast potential.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe BV, Almere, Netherlands
| |
Collapse
|
6
|
Capri M, Conte M, Ciurca E, Pirazzini C, Garagnani P, Santoro A, Longo F, Salvioli S, Lau P, Moeller R, Jordan J, Illig T, Villanueva MM, Gruber M, Bürkle A, Franceschi C, Rittweger J. Long-term human spaceflight and inflammaging: Does it promote aging? Ageing Res Rev 2023; 87:101909. [PMID: 36918115 DOI: 10.1016/j.arr.2023.101909] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Spaceflight and its associated stressors, such as microgravity, radiation exposure, confinement, circadian derailment and disruptive workloads represent an unprecedented type of exposome that is entirely novel from an evolutionary stand point. Within this perspective, we aimed to review the effects of prolonged spaceflight on immune-neuroendocrine systems, brain and brain-gut axis, cardiovascular system and musculoskeletal apparatus, highlighting in particular the similarities with an accelerated aging process. In particular, spaceflight-induced muscle atrophy/sarcopenia and bone loss, vascular and metabolic changes, hyper and hypo reaction of innate and adaptive immune system appear to be modifications shared with the aging process. Most of these modifications are mediated by molecular events that include oxidative and mitochondrial stress, autophagy, DNA damage repair and telomere length alteration, among others, which directly or indirectly converge on the activation of an inflammatory response. According to the inflammaging theory of aging, such an inflammatory response could be a driver of an acceleration of the normal, physiological rate of aging and it is likely that all the systemic modifications in turn lead to an increase of inflammaging in a sort of vicious cycle. The most updated countermeasures to fight these modifications will be also discussed in the light of their possible application not only for astronauts' benefit, but also for older adults on the ground.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Maria Conte
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy.
| | - Erika Ciurca
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy; Clinical Chemistry Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Aurelia Santoro
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Federica Longo
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Science, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Patrick Lau
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Medical Faculty, University of Cologne, Cologne, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Maria-Moreno Villanueva
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Alexander Bürkle
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claudio Franceschi
- Department of Applied Mathematics of the Institute of ITMM, National Research Lobachevsky State University of Nizhny Novgorod, the Russian Federation
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Phenotypic, genomic, and transcriptomic changes in an Acinetobacter baumannii strain after spaceflight in China's Tiangong-2 space laboratory. Braz J Microbiol 2022; 53:1447-1464. [PMID: 35763257 DOI: 10.1007/s42770-022-00772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 05/11/2022] [Indexed: 11/02/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen often found in patients with low immunity. It causes nosocomial infections, which are difficult to treat. This bacterium can rapidly mutate, developing resistance to antimicrobials and adapting to environmental stress, thereby increasing its survival. Understanding such adaptive mechanisms will be beneficial for controlling the spread of A. baumannii. Astrobiology studies have demonstrated that microbiomes from astronauts and manned spaceflight environments show resistance to stress and antibiotics. Astronauts also encounter low immunity during spaceflight missions. The extreme conditions of spaceflight provide a unique research platform for studying how opportunistic pathogens such as A. baumannii adapt to conditions such as microgravity and mutate during spaceflight. In this study, we compared phenotypic variations and analyzed genomic and transcriptomic variations in A. baumannii strains exposed to three different conditions: ST1 (64 days on Tiangong-2 space laboratory), GT1 (ground control), and Aba (original strain). Biofilm formation ability of the ST1 strain increased after 64 days of spaceflight. In addition, high-throughput sequencing revealed that some differentially expressed genes were upregulated in the ST1 strain compared to the GT1 strain. These results provide insights into the environmental adaptation of this widespread pathogen.
Collapse
|
8
|
Kuehnast T, Abbott C, Pausan MR, Pearce DA, Moissl-Eichinger C, Mahnert A. The crewed journey to Mars and its implications for the human microbiome. MICROBIOME 2022; 10:26. [PMID: 35125119 PMCID: PMC8818331 DOI: 10.1186/s40168-021-01222-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
A human spaceflight to Mars is scheduled for the next decade. In preparation for this unmatched endeavor, a plethora of challenges must be faced prior to the actual journey to Mars. Mission success will depend on the health of its crew and its working capacity. Hence, the journey to Mars will also depend on the microbiome and its far-reaching effects on individual crew health, the spaceship's integrity, and food supply. As human beings rely on their microbiome, these microbes are essential and should be managed to ensure their beneficial effects outweigh potential risks. In this commentary, we focus on the current state of knowledge regarding a healthy (gut) microbiome of space travelers based on research from the International Space Station and simulation experiments on Earth. We further indicate essential knowledge gaps of microbial conditions during long-term space missions in isolated confined space habitats or outposts and give detailed recommendations for microbial monitoring during pre-flight, in-flight, and post-flight. Finally, the conclusion outlines open questions and aspects of space traveler's health beyond the scope of this commentary. Video Abstract.
Collapse
Affiliation(s)
- Torben Kuehnast
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - Carmel Abbott
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Manuela R Pausan
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
| | - David A Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Christine Moissl-Eichinger
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| | - Alexander Mahnert
- Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010, Graz, Austria.
| |
Collapse
|
9
|
Yang J, Fu Y, Liu H. Microbiomes of air dust collected during the ground-based closed bioregenerative life support experiment "Lunar Palace 365". ENVIRONMENTAL MICROBIOME 2022; 17:4. [PMID: 35081988 PMCID: PMC8793263 DOI: 10.1186/s40793-022-00399-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/07/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND Understanding the dynamics of airborne microbial communities and antibiotic resistance genes (ARGs) in space life support systems is important because potential pathogens and antibiotic resistance pose a health risk to crew that can lead to mission failure. There have been few reports on the distribution patterns of microbiomes and ARGs in space life support systems. In particular, there have been no detailed investigations of microbiomes and/or antibiotic resistance based on molecular methods in long-term confined bioregenerative life support systems (BLSSs). Therefore, in the present study, we collected air dust samples from two crew shifts, different areas, and different time points in the "Lunar Palace 365" experiment. We evaluated microbial diversity, species composition, functional potential, and antibiotic resistance by combining cultivation-independent analyses (amplicon, shot-gun sequencing, and qPCR). RESULTS We found that the bacterial community diversity in the Lunar Palace1 (LP1) system was higher than that in a controlled environment but lower than that in an open environment. Personnel exchange led to significant differences in bacterial community diversity, and source tracking analysis revealed that most bacteria in the air derived from the cabin crew and plants, but no differences in microbial function or antibiotic resistance were observed. Thus, human presence had the strongest effect on the succession of microbial diversity in the BLSSs. CONCLUSIONS Our results highlight that microbial diversity in BLSSs is heavily influenced by changes in crew and is unique from other open and controlled environments. Our findings can be used to help develop safe, enclosed BLSS that meet the requirements of human survival and habitation in outer space. In addition, our results can further enhance our understanding of the indoor air microbial community and effectively maintain a safe working and living environment, including plant growth.
Collapse
Affiliation(s)
- Jianlou Yang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China
| | - Yuming Fu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.
| | - Hong Liu
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, No. 37 Xueyuan Road, Beijing, 100191, China.
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing, 100191, China.
- International Joint Research Center of Aerospace Biotechnology and Medical Engineering, Beihang University, Beijing, 100191, China.
| |
Collapse
|
10
|
Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS, Lal R. The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 2022; 15:110-128. [PMID: 34713975 PMCID: PMC8719816 DOI: 10.1111/1751-7915.13953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
What microbiology beholds after a decade and a half in the future requires a vision based on the facts and ongoing trends in research and technological advancements. While the latter, assisted by microbial dark matter, presents a greater potential of creating an upsurge in in-situ and ex-situ rapid microbial detection techniques, this anticipated change will also set forth a revolution in microbial cultivation and diversity analyses. The availability of a microbial genetic toolbox at the expanse will help complement the current understanding of the microbiome and assist in real-time monitoring of the dynamics for detecting the health status of the host with utmost precision. Alongside, in light of the emerging infectious diseases, antimicrobial resistance (AMR) and social demands for safer and better health care alternatives, microbiology laboratories are prospected to drift in terms of the volume and nature of research and outcomes. With today's microbiological lens, one can predict with certainty that in the years to come, microbes will play a significant role in therapeutic treatment and the designing of novel diagnostic techniques. Another area where the scope of microbial application seems to be promising is the use of novel probiotics as a method to offer health benefits whilst promoting metabolic outputs specific for microbiome replenishment. Nonetheless, the evolution of extraterrestrial microbes or the adaptation of earth microbes as extraterrestrial residents are also yet another prominent microbial event one may witness in the upcoming years. But like the two sides of the coin, there is also an urgent need to dampen the bloom of urbanization, overpopulation and global trade and adopting sustainable approaches to control the recurrence of epidemics and pandemics.
Collapse
Affiliation(s)
- Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBihar824234India
| | - Utkarsh Sood
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| | - Jasvinder Kaur
- Department of ZoologyGargi CollegeUniversity of DelhiSiri Fort RoadNew Delhi110049India
| | - Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya CollegeUniversity of DelhiDwarkaNew Delhi110078India
| | - Vipin Gupta
- Indira Paryavaran BhawanMinistry of Environment, Forest and Climate ChangeLodi ColonyNew Delhi110003India
| | - Kishor Sureshbhai Patil
- Department of Biological SciencesP. D. Patel Institute of Applied SciencesCharotar University of Science and Technology (CHARUSAT)ChangaGujarat388421India
| | - Rup Lal
- The Energy and Resources InstituteDarbari Seth Block, IHC Complex, Lodhi RoadNew Delhi110003India
| |
Collapse
|
11
|
Bacci G, Mengoni A, Emiliani G, Chiellini C, Cipriani EG, Bianconi G, Canganella F, Fani R. Defining the resilience of the human salivary microbiota by a 520-day longitudinal study in a confined environment: the Mars500 mission. MICROBIOME 2021; 9:152. [PMID: 34193273 PMCID: PMC8247138 DOI: 10.1186/s40168-021-01070-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The human microbiota plays several roles in health and disease but is often difficult to determine which part is in intimate relationships with the host vs. the occasional presence. During the Mars500 mission, six crewmembers lived completely isolated from the outer world for 520 days following standardized diet regimes. The mission constitutes the first spaceflight simulation to Mars and was a unique experiment to determine, in a longitudinal study design, the composition and importance of the resident vs. a more variable microbiota-the fraction of the human microbiota that changes in time and according to environmental conditions-in humans. METHODS Here, we report the characterization of the salivary microbiota from 88 samples taken during and after Mars500 mission for a total of 720 days. Amplicon sequencing of the V3-V4 regions of 16S rRNA gene was performed, and results were analyzed monitoring the diversity of the microbiota while evaluating the effect of the three main variables present in the experimental system: time, diet, and individuality of each subject. RESULTS Results showed statistically significant effects for either time, diet, and individuality of each subject. The main contribution came from the individuality of each subject, emphasizing salivary microbiota-personalized features, and an individual-based resilience of the microbiota. CONCLUSIONS The uniqueness of Mars500 mission, allowed to dampen the effect of environmental variables on salivary microbiota, highlighting its pronounced personalization even after sharing the same physical space for more than a year. Video abstract.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy
| | - Alessio Mengoni
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy
| | - Giovanni Emiliani
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Carolina Chiellini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy
| | - Edoardo Giovanni Cipriani
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy
| | - Giovanna Bianconi
- Department of Biological, Agricultural and Forestry Sciences, Università della Tuscia, Via San Camillo de Lellis snc, I-01100 Viterbo, Italy
| | - Francesco Canganella
- Department of Biological, Agricultural and Forestry Sciences, Università della Tuscia, Via San Camillo de Lellis snc, I-01100 Viterbo, Italy
- Embassy of Italy, 98 Hannam-daero, Hannam-dong, Yongsan-gu, Seoul, South Korea
| | - Renato Fani
- Department of Biology, University of Florence, Via Madonna del Piano 6, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Brereton N, Pitre F, Gonzalez E. Reanalysis of the Mars500 experiment reveals common gut microbiome alterations in astronauts induced by long-duration confinement. Comput Struct Biotechnol J 2021; 19:2223-2235. [PMID: 33995915 PMCID: PMC8099722 DOI: 10.1016/j.csbj.2021.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Maintaining astronaut health throughout long-duration spaceflight is essential to the feasibility of a manned mission to Mars. The ground-based Mars500 experiment investigated long-duration health by isolating six astronauts for 520 days, the longest controlled human confinement study conducted to date. After 520 days, astronauts had uniform strength and lean body mass losses, and increased fasting plasma glucose, calprotectin, and neutrophil levels characteristic of intestinal inflammation but previous analyses revealed no common significant changes in gut microbiota. This study reanalysed data from early (days 7–45) and late (days 420–520) faecal samples and identified 408 exact sequence variants (ESVs), including 213 shared by all astronauts. Thirty-two ESVs were significantly differentially abundant over time, including depletion of keystone resistant starch degrading, anti-inflammatory and insulin sensitivity-associated species, such as Faecalibacterium prausnitzii, Ruminococcus bromii, Blautia luti, Anaerostipes hadrus, Roseburia faecis, and Lactobacillus rogosae, and enrichment of yet-to-be-cultured bacteria. Additionally, the extraordinary experimental confinement allowed observation of microbiota potentially shared between astronauts and their habitat. Forty-nine species were shared, representing 49% and 12% of the human and environmental microbiome diversity, respectively. These findings reveal the microbiota which significantly altered in relative abundance throughout confinement, including species known to influence inflammation and host glucose homeostasis consistent with astronaut symptoms. Identification of microbiome alterations after 520 days of isolation represents a missing piece connecting Mars500 astronaut physiological studies. Knowledge of the impact of long-term confinement upon the human microbiome helps to improve our understanding of how humans interact with their habitats and is a valuable step forward towards enabling long-duration spaceflight.
Collapse
Affiliation(s)
- N.J.B. Brereton
- Institut de Recherche en Biologie Végétale, University of Montreal, Montreal, QC H1X 2B2, Canada
- Corresponding author.
| | - F.E. Pitre
- Institut de Recherche en Biologie Végétale, University of Montreal, Montreal, QC H1X 2B2, Canada
| | - E. Gonzalez
- Canadian Centre for Computational Genomics (C3G), Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC H3A 0G1, Canada
- Microbiome Research Platform, McGill Interdisciplinary Initiative in Infection and Immunity (MI4), Genome Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
13
|
Chen Y, Xu C, Zhong C, Lyu Z, Liu J, Chen Z, Dun H, Xin B, Xie Q. Temporal Characteristics of the Oropharyngeal and Nasal Microbiota Structure in Crewmembers Stayed 180 Days in the Controlled Ecological Life Support System. Front Microbiol 2021; 11:617696. [PMID: 33613468 PMCID: PMC7886687 DOI: 10.3389/fmicb.2020.617696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Confined experiments are carried out to simulate the closed environment of space capsule on the ground. The Chinese Controlled Ecological Life Support System (CELSS) is designed including a closed-loop system supporting 4 healthy volunteers surviving for 180 days, and we aim to reveal the temporal characteristics of the oropharyngeal and nasal microbiota structure in crewmembers stayed 180 days in the CELSS, so as to accumulate the information about microbiota balance associated with respiratory health for estimating health risk in future spaceflight. We investigated the distribution of microorganisms and their dynamic characteristics in the nasal cavity and oropharynx of occupants with prolonged confinement. Based on the 16S rDNA v3–v4 regions using Illumina high-throughput sequencing technology, the oropharyngeal and nasal microbiota were monitored at eight time points during confinement. There were significant differences between oropharyngeal and nasal microbiota, and there were also individual differences among the same site of different volunteers. Analysis on the structure of the microbiota showed that, in the phylum taxon, the nasal bacteria mainly belonged to Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, etc. In addition to the above phyla, in oropharyngeal bacteria Fusobacterial accounted for a relatively high proportion. In the genus taxon, the nasal and oropharyngeal bacteria were independent. Corynebacterium and Staphylococcus were dominant in nasal cavity, and Corynebacterium, Streptococcus, and Neisseria were dominant in oropharynx. With the extension of the confinement time, the abundance of Staphylococcus in the nasal cavity and Neisseria in the oropharynx increased, and the index Chao fluctuated greatly from 30 to 90 days after the volunteers entered the CELSS. Conclusion: The structure and diversity of the nasal and oropharyngeal microbiota changed in the CELSS, and there was the phenomenon of migration between occupants, suggesting that the microbiota structure and health of the respiratory tract could be affected by living in a closed environment for a long time.
Collapse
Affiliation(s)
- Yanwu Chen
- Space Science and Technology Institute (Shenzhen), Shenzhen, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing, China
| | - Chongfa Zhong
- China Astronaut Research and Training Center, Beijing, China
| | - Zhitang Lyu
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Baoding, China
| | - Junlian Liu
- China Astronaut Research and Training Center, Beijing, China
| | - Zhanghuang Chen
- China Astronaut Research and Training Center, Beijing, China
| | - Huanhuan Dun
- China Astronaut Research and Training Center, Beijing, China
| | - Bingmu Xin
- Space Science and Technology Institute (Shenzhen), Shenzhen, China.,China Astronaut Research and Training Center, Beijing, China
| | - Qiong Xie
- China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
14
|
Mahnert A, Verseux C, Schwendner P, Koskinen K, Kumpitsch C, Blohs M, Wink L, Brunner D, Goessler T, Billi D, Moissl-Eichinger C. Microbiome dynamics during the HI-SEAS IV mission, and implications for future crewed missions beyond Earth. MICROBIOME 2021; 9:27. [PMID: 33487169 PMCID: PMC7831191 DOI: 10.1186/s40168-020-00959-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/06/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Human health is closely interconnected with its microbiome. Resilient microbiomes in, on, and around the human body will be key for safe and successful long-term space travel. However, longitudinal dynamics of microbiomes inside confined built environments are still poorly understood. Herein, we used the Hawaii Space Exploration Analog and Simulation IV (HI-SEAS IV) mission, a 1 year-long isolation study, to investigate microbial transfer between crew and habitat, in order to understand adverse developments which may occur in a future outpost on the Moon or Mars. RESULTS Longitudinal 16S rRNA gene profiles, as well as quantitative observations, revealed significant differences in microbial diversity, abundance, and composition between samples of the built environment and its crew. The microbiome composition and diversity associated with abiotic surfaces was found to be rather stable, whereas the microbial skin profiles of individual crew members were highly dynamic, resulting in an increased microbiome diversity at the end of the isolation period. The skin microbiome dynamics were especially pronounced by a regular transfer of the indicator species Methanobrevibacter between crew members within the first 200 days. Quantitative information was used to track the propagation of antimicrobial resistance in the habitat. Together with functional and phenotypic predictions, quantitative and qualitative data supported the observation of a delayed longitudinal microbial homogenization between crew and habitat surfaces which was mainly caused by a malfunctioning sanitary facility. CONCLUSIONS This study highlights main routes of microbial transfer, interaction of the crew, and origins of microbial dynamics in an isolated environment. We identify key targets of microbial monitoring, and emphasize the need for defined baselines of microbiome diversity and abundance on surfaces and crew skin. Targeted manipulation to counteract adverse developments of the microbiome could be a highly important strategy to ensure safety during future space endeavors. Video abstract.
Collapse
Affiliation(s)
- Alexander Mahnert
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Cyprien Verseux
- Laboratory of Applied Space Microbiology, Center of Applied Space Technology and Microgravity (ZARM), University of Bremen, Am Fallturm 2, 28359 Bremen, Germany
| | - Petra Schwendner
- University of Florida, Space Life Sciences Lab, 505 Odyssey Way, Exploration Park, N. Merritt Island, FL 32953 USA
| | - Kaisa Koskinen
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christina Kumpitsch
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Marcus Blohs
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Lisa Wink
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Brunner
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Theodora Goessler
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica s.n.c, 00133 Rome, Italy
| | - Christine Moissl-Eichinger
- Interactive Microbiome Research, Diagnostic & Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
15
|
Turroni S, Magnani M, KC P, Lesnik P, Vidal H, Heer M. Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Front Physiol 2020; 11:553929. [PMID: 33013480 PMCID: PMC7505921 DOI: 10.3389/fphys.2020.553929] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
The upcoming exploration missions will imply a much longer duration than any of the missions flown so far. In these missions, physiological adaptation to the new environment leads to changes in different body systems, such as the cardiovascular and musculoskeletal systems, metabolic and neurobehavioral health and immune function. To keep space travelers healthy on their trip to Moon, Mars and beyond and their return to Earth, a variety of countermeasures need to be provided to maintain body functionality. From research on the International Space Station (ISS) we know today, that for instance prescribing an adequate training regime for each individual with the devices available in the respective spacecraft is still a challenge. Nutrient supply is not yet optimal and must be optimized in exploration missions. Food intake is intrinsically linked to changes in the gut microbiome composition. Most of the microbes that inhabit our body supply ecosystem benefit to the host-microbe system, including production of important resources, bioconversion of nutrients, and protection against pathogenic microbes. The gut microbiome has also the ability to signal the host, regulating the processes of energy storage and appetite perception, and influencing immune and neurobehavioral function. The composition and functionality of the microbiome most likely changes during spaceflight. Supporting a healthy microbiome by respective measures in space travelers might maintain their health during the mission but also support rehabilitation when being back on Earth. In this review we are summarizing the changes in the gut microbiome observed in spaceflight and analog models, focusing particularly on the effects on metabolism, the musculoskeletal and immune systems and neurobehavioral disorders. Since space travelers are healthy volunteers, we focus on the potential of countermeasures based on pre- and probiotics supplements.
Collapse
Affiliation(s)
- Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - Pukar KC
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR_S 1166), Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Philippe Lesnik
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR_S 1166), Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRA, Université Claude Bernard Lyon 1, Pierre-Benite, France
| | - Martina Heer
- International University of Applied Sciences, Bad Reichenhall, Germany
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|
16
|
Wischer D, Schneider D, Poehlein A, Herrmann F, Oruc H, Meinhardt J, Wagner O, Ahmed R, Kharin S, Novikova N, Haag R, Daniel R, Grohmann E. Novel Antimicrobial Cellulose Fleece Inhibits Growth of Human-Derived Biofilm-Forming Staphylococci During the SIRIUS19 Simulated Space Mission. Front Microbiol 2020; 11:1626. [PMID: 32849336 PMCID: PMC7405646 DOI: 10.3389/fmicb.2020.01626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Two novel antimicrobial surface coatings were assessed for their lasting antibacterial effect under simulated space conditions during the SIRIUS-19 study. Because long-term space travel can affect the human immune system, astronauts are particularly susceptible to infectious disease. Moreover, the space flight environment can alter the composition of microbial communities within the spacecraft and increase bacterial virulence and resistance to antibiotics. In addition to protecting the crew from infection by human pathogens, prevention and elimination of bacterial contamination is important to avoid corrosion and damage of the technical equipment. The antimicrobial coating AGXX® consists of micro-galvanic cells composed of silver and ruthenium which damage bacterial cells through the release of reactive oxygen species. Over the last years, several studies on the antimicrobial effect of AGXX® have demonstrated an effective inhibition of growth and even complete elimination of many pathogenic bacteria – including multiresistant microorganisms – as well as their biofilms. The second antimicrobial coating, GOX, consists of chemically modified graphene oxide. Through a positive surface charge and its flexible scaffold, GOX can multivalently bind and immobilize bacteria via electrostatic attraction. Here, AGXX® and GOX were applied to non-metallic carriers not previously tested. The antimicrobial coated materials, as well as uncoated control samples, were exposed in the SIRIUS artificial space module and analyzed at different time points during the 4-months isolation study. Survival and growth of airborne heterotrophic, aerobic bacteria on the surfaces were assessed by cultivation-based methods, employing growth conditions suitable for potential human pathogens. Human-associated, biofilm-forming Staphylococcus spp. (S. hominis, S. haemolyticus, and S. epidermidis) strongly dominated at all time points, most were resistant against erythromycin, kanamycin, and ampicillin. AGXX® coatings completely inhibited growth of these opportunistic pathogens on all tested surface materials. Particularly, AGXX®-cellulose fleece achieved a clear reduction in bacterial load able to recover post contact. GOX-cellulose fleece effectively immobilized bacteria. Sequence analysis of 16S rRNA gene amplicons revealed that the isolated Staphylococcus spp. did not dominate the overall bacterial community, accounting for only 0.1–0.4% of all sequences. Instead, molecular data revealed Lactobacillus, Comamonas, Pseudomonas, Sporosarcina, and Bacillus as the dominant genera across all samples and time points.
Collapse
Affiliation(s)
- Daniela Wischer
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Dominik Schneider
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Friederike Herrmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Harun Oruc
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Junias Meinhardt
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| | - Olaf Wagner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rameez Ahmed
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sergey Kharin
- Institute of Biomedical Problems (IBMP), Moscow, Russia
| | | | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elisabeth Grohmann
- Faculty of Life Sciences and Technology, Department of Microbiology, Beuth University of Applied Sciences, Berlin, Germany
| |
Collapse
|
17
|
Abstract
This study provides the first assessment of monitoring cultivable and viable microorganisms on surfaces within a submerged, closed, analog habitat. The results of the analyses presented herein suggest that the surface material plays a role in microbial community structure, as the microbial populations differed between LDP and metal/glass surfaces. The metal/glass surfaces had less-complex community, lower bioburden, and more closely resembled the controls. These results indicated that material choice is crucial when building closed habitats, even if they are simply analogs. Finally, while a few species were associated with previously cultivated isolates from the International Space Station and MIR spacecraft, the majority of the microbial ecology of the submerged analog habitat differs greatly from that of previously studied analog habitats. Microbial contamination during long-term confinements of space exploration presents potential risks for both crew members and spacecraft life support systems. A novel swab kit was used to sample various surfaces from a submerged, closed, analog habitat to characterize the microbial populations. Samples were collected from various locations across the habitat which were constructed from various surface materials (linoleum, dry wall, particle board, glass, and metal), and microbial populations were examined by culture, quantitative PCR (qPCR), microbiome 16S rRNA gene sequencing, and shotgun metagenomics. Propidium monoazide (PMA)-treated samples identified the viable/intact microbial population of the habitat. The cultivable microbial population ranged from below the detection limit to 106 CFU/sample, and their identity was characterized using Sanger sequencing. Both 16S rRNA amplicon and shotgun sequencing were used to characterize the microbial dynamics, community profiles, and functional attributes (metabolism, virulence, and antimicrobial resistance). The 16S rRNA amplicon sequencing revealed abundance of viable (after PMA treatment) Actinobacteria (Brevibacterium, Nesternkonia, Mycobacterium, Pseudonocardia, and Corynebacterium), Firmicutes (Virgibacillus, Staphylococcus, and Oceanobacillus), and Proteobacteria (especially Acinetobacter) on linoleum, dry wall, and particle board (LDP) surfaces, while members of Firmicutes (Leuconostocaceae) and Proteobacteria (Enterobacteriaceae) were high on the glass/metal surfaces. Nonmetric multidimensional scaling determined from both 16S rRNA and metagenomic analyses revealed differential microbial species on LDP surfaces and glass/metal surfaces. The shotgun metagenomic sequencing of samples after PMA treatment showed bacterial predominance of viable Brevibacterium (53.6%), Brachybacterium (7.8%), Pseudonocardia (9.9%), Mycobacterium (3.7%), and Staphylococcus (2.1%), while fungal analyses revealed Aspergillus and Penicillium dominance. IMPORTANCE This study provides the first assessment of monitoring cultivable and viable microorganisms on surfaces within a submerged, closed, analog habitat. The results of the analyses presented herein suggest that the surface material plays a role in microbial community structure, as the microbial populations differed between LDP and metal/glass surfaces. The metal/glass surfaces had less-complex community, lower bioburden, and more closely resembled the controls. These results indicated that material choice is crucial when building closed habitats, even if they are simply analogs. Finally, while a few species were associated with previously cultivated isolates from the International Space Station and MIR spacecraft, the majority of the microbial ecology of the submerged analog habitat differs greatly from that of previously studied analog habitats.
Collapse
|
18
|
Current Progression: Application of High-Throughput Sequencing Technique in Space Microbiology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4094191. [PMID: 32685480 PMCID: PMC7327617 DOI: 10.1155/2020/4094191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/01/2020] [Indexed: 11/17/2022]
Abstract
During a spaceflight, astronauts need to live in a spacecraft on orbit for a long time, and the relationship between humans and microorganisms in the closed environment of space is not the same as on the ground. The dynamic study of microorganisms in confined space shows that with the extension of the isolation time, harmful bacteria gradually accumulate. Monitoring and controlling microbial pollution in a confined environment system are very important for crew health and the sustainable operation of a space life support system. Culture-based assays have been used traditionally to assess the microbial loads in a spacecraft, and uncultured-based techniques are already under way according to the NASA global exploration roadmap. High-throughput sequencing technology has been used generally to study the communities of the environment and human on the ground and shows its broad prospects applied onboard. We here review the recent application of high-throughput sequencing on space microbiology and analyze its feasibility and potential as an on-orbit detection technology.
Collapse
|
19
|
Lopez JV, Peixoto RS, Rosado AS. Inevitable future: space colonization beyond Earth with microbes first. FEMS Microbiol Ecol 2020; 95:5553461. [PMID: 31437273 PMCID: PMC6748721 DOI: 10.1093/femsec/fiz127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022] Open
Abstract
Based on modern microbiology, we propose a major revision in current space exploration philosophy and planetary protection policy, especially regarding microorganisms in space. Mainly, microbial introduction should not be considered accidental but inevitable. We hypothesize the near impossibility of exploring new planets without carrying and/or delivering any microbial travelers. In addition, although we highlight the importance of controlling and tracking such contaminations-to explore the existence of extraterrestrial microorganisms-we also believe that we must discuss the role of microbes as primary colonists and assets, rather than serendipitous accidents, for future plans of extraterrestrial colonization. This paradigm shift stems partly from the overwhelming evidence of microorganisms' diverse roles in sustaining life on Earth, such as symbioses and ecosystem services (decomposition, atmosphere effects, nitrogen fixation, etc.). Therefore, we propose a framework for new discussion based on the scientific implications of future colonization and terraforming: (i) focus on methods to track and avoid accidental delivery of Earth's harmful microorganisms and genes to extraterrestrial areas; (ii) begin a rigorous program to develop and explore 'Proactive Inoculation Protocols'. We outline a rationale and solicit feedback to drive a public and private research agenda that optimizes diverse organisms for potential space colonization.
Collapse
Affiliation(s)
- Jose V Lopez
- Halmos College of Natural Sciences and Oceanography, Nova Southeastern University, Dania Beach, FL 33004, USA
| | - Raquel S Peixoto
- Institute of Microbiology, Federal University of Rio de Janeiro-UFRJ, Av. Carlos Chagas Filho, 373. CCS, Bloco E, Ilha do Fundão, CEP: 21941-902 Rio de Janeiro, Brazil.,University of California Davis, Davis, CA 95616, USA
| | - Alexandre S Rosado
- Institute of Microbiology, Federal University of Rio de Janeiro-UFRJ, Av. Carlos Chagas Filho, 373. CCS, Bloco E, Ilha do Fundão, CEP: 21941-902 Rio de Janeiro, Brazil.,University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
20
|
Fahrion J, Fink C, Zabel P, Schubert D, Mysara M, Van Houdt R, Eikmanns B, Beblo-Vranesevic K, Rettberg P. Microbial Monitoring in the EDEN ISS Greenhouse, a Mobile Test Facility in Antarctica. Front Microbiol 2020; 11:525. [PMID: 32296408 PMCID: PMC7137377 DOI: 10.3389/fmicb.2020.00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
The EDEN ISS greenhouse, integrated in two joined containers, is a confined mobile test facility in Antarctica for the development and optimization of new plant cultivation techniques for future space programs. The EDEN ISS greenhouse was used successfully from February to November 2018 for fresh food production for the overwintering crew at the Antarctic Neumayer III station. During the 9 months of operation, samples from the different plants, from the nutrition solution of the aeroponic planting system, and from diverse surfaces within the three different compartments of the container were taken [future exploration greenhouse (FEG), service section (SS), and cold porch (CP)]. Quantity as well as diversity of microorganisms was examined by cultivation. In case of the plant samples, microbial quantities were in a range from 102 to 104 colony forming units per gram plant material. Compared to plants purchased from a German grocery, the produce hosted orders of magnitude more microorganisms than the EDEN ISS plants. The EDEN ISS plant samples contained mainly fungi and a few bacteria. No classical food associated pathogenic microorganism, like Escherichia and Salmonella, could be found. Probably due to the used cultivation approach, Archaea were not found in the samples. The bioburden in the nutrition solutions increased constantly over time but never reached critical values like 102-103 cfu per 100 mL in irrigation water as it is stated, e.g., for commercial European plant productions. The surface samples revealed high differences in the microbial burden between the greenhouse part of the container and the SS and CP part. However, the numbers of organisms (bacteria and fungi) found in the planted greenhouse were still not critical. The microbial loaded surfaces showed strong temporal as well as spatial fluctuations. In samples of the nutrition solution and the surface, the amount of bacteria exceeded the amount of fungi by many times. For identification, 16S rRNA gene sequencing was performed for the isolated prokaryotic organisms. Phylogenetic analyses revealed that the most abundant bacterial phyla were Firmicutes and Actinobacteria. These phyla include plant- and human-associated bacterial species. In general, it could be shown that it is possible to produce edible fresh food in a remote environment and this food is safe for consumption from a microbiological point of view.
Collapse
Affiliation(s)
- Jana Fahrion
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | - Carina Fink
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Paul Zabel
- Institute for Space Systems, German Aerospace Center (DLR), Bremen, Germany
| | - Daniel Schubert
- Institute for Space Systems, German Aerospace Center (DLR), Bremen, Germany
| | - Mohamed Mysara
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bernhard Eikmanns
- Institute of Microbiology and Biotechnology, Faculty of Natural Sciences, University of Ulm, Ulm, Germany
| | | | - Petra Rettberg
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
21
|
Prescott SL, Bland JS. Spaceship Earth Revisited: The Co-Benefits of Overcoming Biological Extinction of Experience at the Level of Person, Place and Planet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041407. [PMID: 32098222 PMCID: PMC7068540 DOI: 10.3390/ijerph17041407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/27/2022]
Abstract
Extensive research underscores that we interpret the world through metaphors; moreover, common metaphors are a useful means to enhance the pursuit of personal and collective goals. In the context of planetary health—defined as the interdependent vitality of all natural and anthropogenic ecosystems (social, political and otherwise)—one enduring metaphor can be found in the concept of “Spaceship Earth”. Although not without criticism, the term “Spaceship Earth” has been useful to highlight both resource limitations and the beauty and fragility of delicate ecosystems that sustain life. Rene Dubos, who helped popularize the term, underscored the need for an exposome perspective, one that examines the total accumulated environmental exposures (both detrimental and beneficial) that predict the biological responses of the “total organism to the total environment” over time. In other words, how large-scale environmental changes affect us all personally, albeit in individualized ways. This commentary focuses the ways in which microbes, as an essential part of all ecosystems, provide a vital link between personal and planetary systems, and mediate the biopsychosocial aspects of our individualized experience—and thus health—over our life course journey. A more fine-grained understanding of these dynamics and our power to change them, personally and collectively, lies at the core of restoring “ecosystems balance” for person, place and planet. In particular, restoring human connectedness to the natural world, sense of community and shared purpose must occur in tandem with technological solutions, and will enhance individual empowerment for personal well-being, as well as our collective potential to overcome our grand challenges. Such knowledge can help shape the use of metaphor and re-imagine solutions and novel ways for restoration or rewilding of ecosystems, and the values, behaviors and attitudes to light the path toward exiting the Anthropocene.
Collapse
Affiliation(s)
- Susan L. Prescott
- The ORIGINS Project, Telethon Kids Institute, University of Western Australia, Perth Children’s Hospital, Nedlands, WA 6009, Australia
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ 10704, USA;
- Correspondence:
| | - Jeffrey S. Bland
- inVIVO Planetary Health of the Worldwide Universities Network (WUN), West New York, NJ 10704, USA;
- Personalized Lifestyle Medicine Institute, Tacoma, WA 98443, USA
| |
Collapse
|
22
|
Chen J, Wang Q, Hao Z, Li Z, Sahu SK, Liu H, Xiao L. Relationship between the Gut Microbiome and Energy/Nutrient Intake in a Confined Bioregenerative Life Support System. Appl Environ Microbiol 2020; 86:e02465-19. [PMID: 31811045 PMCID: PMC6997737 DOI: 10.1128/aem.02465-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Recent studies have suggested that the gut microbiome is modified in space analogs and that human health can be affected during actual spaceflight. However, the relationship between the gut microbiome and dietary intake in simulator subjects and astronauts remains unclear. Bioregenerative life support systems (BLSSs) are confined and self-sufficient ecosystems that enable exploration of this issue. Here, we correlate changes in gut microbes to the nutrient types present in controlled diets within subjects cohabitating in a BLSS. A metagenome-wide association study (MWAS) was performed on 55 shotgun-sequenced fecal samples longitudinally obtained from healthy Chinese subjects (n = 4 in total, n = 2 per sex) subjected to a 60-day BLSS stay and a specialized diet. Each food item was categorized based on nutrient type according to the Chinese Food Ingredients List (https://wenku.baidu.com/view/3f2b628488eb172ded630b1c59eef8c75fbf9514.html?from=search). The physical parameters of each subject fluctuated within normal medical ranges. Sex- and individual-specific differences and a trend of individual convergence of the gut microbiome in the BLSS were observed. Depletion of bacterial taxa such as Faecalibacterium prausnitzii, Bifidobacterium longum, and Escherichia coli and functional modules such as short-chain fatty acid (SCFA) production, as well as an increase in an unidentified Lachnospiraceae and glutamate/tryptophan synthesis, were observed in the BLSS. Correlation analysis showed that these compositional and functional changes were associated with energy/nutrient intake during the BLSS stay. Our findings suggest that the gut microbiota is a useful indicator for monitoring health and that individual nutritive diets should be considered according to sex and individual differences in simulations or in spaceflight.IMPORTANCE The gut microbiome shows individual specificity and is affected by sex, environment, and diet; gut microbiome imbalance is related to cancer, cardiovascular diseases, and autoimmune diseases. Astronauts are faced with a challenging environment and limited diet in outer space. Recent studies indicate that the gut microbiome is altered in space simulators and space, but what happens to intestinal microorganisms when astronauts cohabitate in a self-sufficient ecosystem in which they plant and cook food is unclear. Bioregenerative life support systems (BLSSs) are ideal devices to investigate the above issues because they are closed and self-sufficient. Four healthy Chinese subjects cohabitated in a confined BLSS for 60 days, during which their physical parameters and energy/nutrient intake were recorded. We performed a metagenome-wide association study (MWAS) on 55 shotgun-sequenced fecal samples longitudinally obtained from the subjects. Alterations occurred in the gut microbial composition and function, and their relationships with energy/nutrient intake were explored.
Collapse
Affiliation(s)
- Juanjuan Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- BGI-Shenzhen, Shenzhen, China
| | - Qi Wang
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Zikai Hao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | | | | | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | | |
Collapse
|
23
|
Mora M, Wink L, Kögler I, Mahnert A, Rettberg P, Schwendner P, Demets R, Cockell C, Alekhova T, Klingl A, Krause R, Zolotariof A, Alexandrova A, Moissl-Eichinger C. Space Station conditions are selective but do not alter microbial characteristics relevant to human health. Nat Commun 2019; 10:3990. [PMID: 31488812 PMCID: PMC6728350 DOI: 10.1038/s41467-019-11682-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
The International Space Station (ISS) is a unique habitat for humans and microorganisms. Here, we report the results of the ISS experiment EXTREMOPHILES, including the analysis of microbial communities from several areas aboard at three time points. We assess microbial diversity, distribution, functional capacity and resistance profile using a combination of cultivation-independent analyses (amplicon and shot-gun sequencing) and cultivation-dependent analyses (physiological and genetic characterization of microbial isolates, antibiotic resistance tests, co-incubation experiments). We show that the ISS microbial communities are highly similar to those present in ground-based confined indoor environments and are subject to fluctuations, although a core microbiome persists over time and locations. The genomic and physiological features selected by ISS conditions do not appear to be directly relevant to human health, although adaptations towards biofilm formation and surface interactions were observed. Our results do not raise direct reason for concern with respect to crew health, but indicate a potential threat towards material integrity in moist areas.
Collapse
Affiliation(s)
- Maximilian Mora
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Lisa Wink
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Ines Kögler
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Alexander Mahnert
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Linder Höhe, 51147, Cologne, Germany
| | - Petra Schwendner
- University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - René Demets
- European Space Research and Technology Centre (ESTEC), Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands
| | - Charles Cockell
- University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Tatiana Alekhova
- Lomonosov Moscow State University, Biological Faculty, ul. Leninskiye Gory, 1, стр. 12, Moscow, Russia
| | - Andreas Klingl
- Ludwig Maximilians University of Munich, Plant Development and Electron Microscopy, Department of Biology I, Biocenter, Großhaderner Str. 2, 82152, Planegg-Martinsried, Germany
| | - Robert Krause
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria
- BioTechMed Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - Anna Zolotariof
- University of Edinburgh, School of Physics and Astronomy, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - Alina Alexandrova
- Lomonosov Moscow State University, Biological Faculty, ul. Leninskiye Gory, 1, стр. 12, Moscow, Russia
| | - Christine Moissl-Eichinger
- Medical University of Graz, Department of Internal Medicine, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed Graz, Mozartgasse 12/II, 8010, Graz, Austria.
| |
Collapse
|
24
|
Wolfgang A, Taffner J, Guimarães RA, Coyne D, Berg G. Novel Strategies for Soil-Borne Diseases: Exploiting the Microbiome and Volatile-Based Mechanisms Toward Controlling Meloidogyne-Based Disease Complexes. Front Microbiol 2019; 10:1296. [PMID: 31231356 PMCID: PMC6568234 DOI: 10.3389/fmicb.2019.01296] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/23/2019] [Indexed: 11/24/2022] Open
Abstract
Under more intensified cropping conditions agriculture will face increasing incidences of soil-borne plant pests and pathogens, leading to increasingly higher yield losses world-wide. Soil-borne disease complexes, in particular, are especially difficult to control. In order to better understand soil-borne Meloidogyne-based disease complexes, we studied the volatile-based control mechanism of associated bacteria as well as the rhizospheric microbiome on Ugandan tomato plants presenting different levels of root-galling damage, using a multiphasic approach. The experimental design was based on representative samplings of healthy and infected tomato plants from two field locations in Uganda, to establish species collections and DNA libraries. Root galling symptoms on tomato resulted from a multispecies infection of root-knot nematodes (Meloidogyne spp.). Results revealed that 16.5% of the bacterial strain collection produced nematicidal volatile organic compounds (nVOC) active against Meloidogyne. Using SPME GC-MS, diverse VOC were identified, including sulfuric compounds, alkenes and one pyrazine. Around 28% of the bacterial strains were also antagonistic toward at least one fungal pathogen of the disease complex. However, antagonistic interactions appear highly specific. Nematicidal antagonists included Pseudomonas, Comamonas, and Variovorax and fungicidal antagonists belonged to Bacillus, which interestingly, were primarily recovered from healthy roots, while nematode antagonists were prominent in the rhizosphere and roots of diseased roots. In summary, all antagonists comprised up to 6.4% of the tomato root microbiota. In general, the microbiota of healthy and diseased root endospheres differed significantly in alpha and quantitative beta diversity indices. Bacteria-derived volatiles appear to provide a remarkable, yet wholly unexploited, potential to control Meloidogyne-based soil-borne disease complexes. The highly specific observed antagonism indicates that a combination of volatiles or VOC-producing bacteria are necessary to counter the range of pathogens involved in such complexes.
Collapse
Affiliation(s)
- Adrian Wolfgang
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Julian Taffner
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Danny Coyne
- International Institute of Tropical Agriculture, Nairobi, Kenya
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
25
|
Gonzalez E, Pitre FE, Brereton NJB. ANCHOR: a 16S rRNA gene amplicon pipeline for microbial analysis of multiple environmental samples. Environ Microbiol 2019; 21:2440-2468. [PMID: 30990927 PMCID: PMC6851558 DOI: 10.1111/1462-2920.14632] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/04/2023]
Abstract
Analysis of 16S ribosomal RNA (rRNA) gene amplification data for microbial barcoding can be inaccurate across complex environmental samples. A method, ANCHOR, is presented and designed for improved species‐level microbial identification using paired‐end sequences directly, multiple high‐complexity samples and multiple reference databases. A standard operating procedure (SOP) is reported alongside benchmarking against artificial, single sample and replicated mock data sets. The method is then directly tested using a real‐world data set from surface swabs of the International Space Station (ISS). Simple mock community analysis identified 100% of the expected species and 99% of expected gene copy variants (100% identical). A replicated mock community revealed similar or better numbers of expected species than MetaAmp, DADA2, Mothur and QIIME1. Analysis of the ISS microbiome identified 714 putative unique species/strains and differential abundance analysis distinguished significant differences between the Destiny module (U.S. laboratory) and Harmony module (sleeping quarters). Harmony was remarkably dominated by human gastrointestinal tract bacteria, similar to enclosed environments on earth; however, Destiny module bacteria also derived from nonhuman microbiome carriers present on the ISS, the laboratory's research animals. ANCHOR can help substantially improve sequence resolution of 16S rRNA gene amplification data within biologically replicated environmental experiments and integrated multidatabase annotation enhances interpretation of complex, nonreference microbiomes.
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill University and Genome Quebec Innovation Centre, Montréal, QC, H3A 0G1, Canada.,Department of Human Genetics, McGill University, Montreal, H3A 1B1, Canada
| | - Frederic E Pitre
- Institut de Recherche en Biologie Végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada.,Montreal Botanical Garden, Montreal, QC, H1X 2B2, Canada
| | - Nicholas J B Brereton
- Institut de Recherche en Biologie Végétale, University of Montreal, Montreal, QC, H1X 2B2, Canada
| |
Collapse
|
26
|
A comparison of exercise interventions from bed rest studies for the prevention of musculoskeletal loss. NPJ Microgravity 2019; 5:12. [PMID: 31098391 PMCID: PMC6506471 DOI: 10.1038/s41526-019-0073-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/14/2019] [Indexed: 12/27/2022] Open
Abstract
Musculoskeletal loss in actual or simulated microgravity occurs at a high rate. Bed rest studies are a reliable ground-based spaceflight analogue that allow for direct comparison of intervention and control participants. The aim of this review was to investigate the impact of exercise compared to no intervention on bone mineral density (BMD) and muscle cross-sectional area (muscle CSA) in bed rest studies relative to other terrestrial models. Eligible bed rest studies with healthy participants had an intervention arm with an exercise countermeasure and a control arm. A search strategy was implemented for MEDLINE. After screening, eight studies were identified for inclusion. Interventions included resistive exercise (RE), resistive vibration exercise (RVE), flywheel resistive exercise, treadmill exercise with lower body negative pressure (LBNP) and a zero-gravity locomotion simulator (ZLS). Lower limb skeletal sites had the most significant BMD losses, particularly at the hip which reduced in density by 4.59% (p < 0.05) and the tibial epiphysis by 6% (p < 0.05). Exercise attenuated bone loss at the hip and distal tibia compared to controls (p < 0.05). Muscle CSA changes indicated that the calf and quadriceps were most affected by bed rest. Exercise interventions significantly attenuated loss of muscle mass. ZLS, LBNP treadmill and RE significantly attenuated bone and muscle loss at the hip compared to baseline and controls. Despite exercise intervention, high rates of bone loss were still observed. Future studies should consider adding bisphosphonates and pharmacological/nutrition-based interventions for consideration of longer-duration missions. These findings correlate to terrestrial bed rest settings, for example, stroke or spinal-injury patients.
Collapse
|
27
|
Checinska Sielaff A, Urbaniak C, Mohan GBM, Stepanov VG, Tran Q, Wood JM, Minich J, McDonald D, Mayer T, Knight R, Karouia F, Fox GE, Venkateswaran K. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. MICROBIOME 2019; 7:50. [PMID: 30955503 PMCID: PMC6452512 DOI: 10.1186/s40168-019-0666-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/14/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The International Space Station (ISS) is a closed system inhabited by microorganisms originating from life support systems, cargo, and crew that are exposed to unique selective pressures such as microgravity. To date, mandatory microbial monitoring and observational studies of spacecraft and space stations have been conducted by traditional culture methods, although it is known that many microbes cannot be cultured with standard techniques. To fully appreciate the true number and diversity of microbes that survive in the ISS, molecular and culture-based methods were used to assess microbial communities on ISS surfaces. Samples were taken at eight pre-defined locations during three flight missions spanning 14 months and analyzed upon return to Earth. RESULTS The cultivable bacterial and fungal population ranged from 104 to 109 CFU/m2 depending on location and consisted of various bacterial (Actinobacteria, Firmicutes, and Proteobacteria) and fungal (Ascomycota and Basidiomycota) phyla. Amplicon sequencing detected more bacterial phyla when compared to the culture-based analyses, but both methods identified similar numbers of fungal phyla. Changes in bacterial and fungal load (by culture and qPCR) were observed over time but not across locations. Bacterial community composition changed over time, but not across locations, while fungal community remained the same between samplings and locations. There were no significant differences in community composition and richness after propidium monoazide sample treatment, suggesting that the analyzed DNA was extracted from intact/viable organisms. Moreover, approximately 46% of intact/viable bacteria and 40% of intact/viable fungi could be cultured. CONCLUSIONS The results reveal a diverse population of bacteria and fungi on ISS environmental surfaces that changed over time but remained similar between locations. The dominant organisms are associated with the human microbiome and may include opportunistic pathogens. This study provides the first comprehensive catalog of both total and intact/viable bacteria and fungi found on surfaces in closed space systems and can be used to help develop safety measures that meet NASA requirements for deep space human habitation. The results of this study can have significant impact on our understanding of other confined built environments on the Earth such as clean rooms used in the pharmaceutical and medical industries.
Collapse
Affiliation(s)
- Aleksandra Checinska Sielaff
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
- Washington State University Extension - Youth and Families Program Unit, Washington State University, Pullman, WA, USA
| | - Camilla Urbaniak
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Ganesh Babu Malli Mohan
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Victor G Stepanov
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jason M Wood
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Jeremiah Minich
- Marine Biology Research Division, Scripps Institute of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Teresa Mayer
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Fathi Karouia
- NASA Ames Research Center, Space Bioscience Division, Moffett Field, Mountain View, CA, USA
- Research Center, Moffett Field, Mountain View, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - George E Fox
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Biotechnology and Planetary Protection Group,, Pasadena, CA, USA.
| |
Collapse
|
28
|
Thaler DS, Head MG, Horsley A. Precision public health to inhibit the contagion of disease and move toward a future in which microbes spread health. BMC Infect Dis 2019; 19:120. [PMID: 30727964 PMCID: PMC6364421 DOI: 10.1186/s12879-019-3715-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance continues to outpace the development of new chemotherapeutics. Novel pathogens continue to evolve and emerge. Public health innovation has the potential to open a new front in the war of "our wits against their genes" (Joshua Lederberg). Dense sampling coupled to next generation sequencing can increase the spatial and temporal resolution of microbial characterization while sensor technologies precisely map physical parameters relevant to microbial survival and spread. Microbial, physical, and epidemiological big data could be combined to improve prospective risk identification. However, applied in the wrong way, these approaches may not realize their maximum potential benefits and could even do harm. Minimizing microbial-human interactions would be a mistake. There is evidence that microbes previously thought of at best "benign" may actually enhance human health. Benign and health-promoting microbiomes may, or may not, spread via mechanisms similar to pathogens. Infectious vaccines are approaching readiness to make enhanced contributions to herd immunity. The rigorously defined nature of infectious vaccines contrasts with indigenous "benign or health-promoting microbiomes" but they may converge. A "microbial Neolithic revolution" is a possible future in which human microbial-associations are understood and managed analogously to the macro-agriculture of plants and animals. Tradeoffs need to be framed in order to understand health-promoting potentials of benign, and/or health-promoting microbiomes and infectious vaccines while also discouraging pathogens. Super-spreaders are currently defined as individuals who play an outsized role in the contagion of infectious disease. A key unanswered question is whether the super-spreader concept may apply similarly to health-promoting microbes. The complex interactions of individual rights, community health, pathogen contagion, the spread of benign, and of health-promoting microbiomes including infectious vaccines require study. Advancing the detailed understanding of heterogeneity in microbial spread is very likely to yield important insights relevant to public health.
Collapse
Affiliation(s)
- David S. Thaler
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Michael G. Head
- Clinical Informatics Research Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton, Coxford Road, Southampton, SO16 6YD UK
| | - Andrew Horsley
- Research School of Physics and Engineering, The Australian National University, Mills Rd., Canberra, ACT 2601 Australia
| |
Collapse
|
29
|
Capri M, Morsiani C, Santoro A, Moriggi M, Conte M, Martucci M, Bellavista E, Fabbri C, Giampieri E, Albracht K, Flück M, Ruoss S, Brocca L, Canepari M, Longa E, Di Giulio I, Bottinelli R, Cerretelli P, Salvioli S, Gelfi C, Franceschi C, Narici M, Rittweger J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting. FASEB J 2019; 33:5168-5180. [PMID: 30620616 PMCID: PMC6436655 DOI: 10.1096/fj.201801625r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Sarcolab pilot study of 2 crewmembers, investigated before and after a 6-mo International Space Station mission, has demonstrated the substantial muscle wasting and weakness, along with disruption of muscle's oxidative metabolism. The present work aimed at evaluating the pro/anti-inflammatory status in the same 2 crewmembers (A, B). Blood circulating (c-)microRNAs (miRs), c-proteasome, c-mitochondrial DNA, and cytokines were assessed by real-time quantitative PCR or ELISA tests. Time series analysis was performed ( i.e., before flight and after landing) at 1 and 15 d of recovery (R+1 and R+15, respectively). C-biomarkers were compared with an age-matched control population and with 2-dimensional proteomic analysis of the 2 crewmembers' muscle biopsies. Striking differences were observed between the 2 crewmembers at R+1, in terms of inflamma-miRs (c-miRs-21-5p, -126-3p, and -146a-5p), muscle specific (myo)-miR-206, c-proteasome, and IL-6/leptin, thus making the 2 astronauts dissimilar to each other. Final recovery levels of c-proteasome, c-inflamma-miRs, and c-myo-miR-206 were not reverted to the baseline values in crewmember A. In both crewmembers, myo-miR-206 changed significantly after recovery. Muscle biopsy of astronaut A showed an impressive 80% increase of α-1-antitrypsin, a target of miR-126-3p. These results point to a strong stress response induced by spaceflight involving muscle tissue and the proinflammatory setting, where inflamma-miRs and myo-miR-206 mediate the systemic recovery phase after landing.-Capri, M., Morsiani, C., Santoro, A., Moriggi, M., Conte, M., Martucci, M., Bellavista, E., Fabbri, C., Giampieri, E., Albracht, K., Flück, M., Ruoss, S., Brocca, L., Canepari, M., Longa, E., Di Giulio, I., Bottinelli, R., Cerretelli, P., Salvioli, S., Gelfi, C., Franceschi, C., Narici, M., Rittweger, J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Manuela Moriggi
- National Research Council-Institute of Molecular Bioimaging and Physiology (CNR-IBFM), Segrate, Milan, Italy.,Italian National Olympic Committee (CONI), Rome, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Elena Bellavista
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Fabbri
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Enrico Giampieri
- Galvani Interdepartmental Center, University of Bologna, Bologna, Italy.,Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Kirsten Albracht
- Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
| | - Martin Flück
- Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Severin Ruoss
- Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Longa
- Sport Medicine Center, University of Pavia, Pavia, Italy
| | - Irene Di Giulio
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Fondazione Salvatore Maugeri, Institute of Hospitalization and Scientific Care (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Paolo Cerretelli
- National Research Council-Institute of Molecular Bioimaging and Physiology (CNR-IBFM), Segrate, Milan, Italy.,Italian National Olympic Committee (CONI), Rome, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS, Istituto Ortopedico Galeazzi, Milan, Italy
| | - Claudio Franceschi
- Department of Applied Mathematics, Institute of Information Technology, Mathematics, and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), Nizhny Novogoro, Russia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; and.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
30
|
Mahnert A, Haratani M, Schmuck M, Berg G. Enriching Beneficial Microbial Diversity of Indoor Plants and Their Surrounding Built Environment With Biostimulants. Front Microbiol 2018; 9:2985. [PMID: 30568641 PMCID: PMC6290261 DOI: 10.3389/fmicb.2018.02985] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/19/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial diversity is suggested as the key for plant and human health. However, how microbial diversity can be enriched is largely unknown but of great interest for health issues. Biostimulants offer the way to directly augment our main living areas by the healthy microbiome of indoor plants. Here, we investigated shifts of the microbiome on leaves of spider plants (Chlorophytum comosum) and its surrounding abiotic surfaces in the built environment after irrigation with a vermicompost-based biostimulant for 12 weeks. The biostimulant could not only promote plant growth, but changed the composition of the microbiome and abundance of intact microbial cells on plant leaves and even stronger on abiotic surfaces in close vicinity under constant conditions of the microclimate. Biostimulant treatments stabilized microbial diversity and resulted in an increase of Bacteroidetes and a surprising transient emerge of new phyla, e.g., Verrucomicrobia, Acidobacteria, and Thaumarchaeota. The proportion of potentially beneficial microorganisms like Brevibacillus, Actinoallomurus, Paenibacillus, Sphaerisporangium increased relatively; microbial diversity was stabilized, and the built environment became more plant-like. Detected metabolites like indole-3-acetic acid in the biostimulant were potentially contributed by species of Pseudomonas. Overall, effects of the biostimulant on the composition of the microbiome could be predicted with an accuracy of 87%. This study shows the potential of biostimulants not only for the plant itself, but also for other living holobionts like humans in the surrounding environment.
Collapse
Affiliation(s)
- Alexander Mahnert
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | | |
Collapse
|
31
|
Singh NK, Wood JM, Karouia F, Venkateswaran K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. MICROBIOME 2018; 6:204. [PMID: 30424821 PMCID: PMC6234677 DOI: 10.1186/s40168-018-0585-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 10/24/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND The International Space Station (ISS) is an ideal test bed for studying the effects of microbial persistence and succession on a closed system during long space flight. Culture-based analyses, targeted gene-based amplicon sequencing (bacteriome, mycobiome, and resistome), and shotgun metagenomics approaches have previously been performed on ISS environmental sample sets using whole genome amplification (WGA). However, this is the first study reporting on the metagenomes sampled from ISS environmental surfaces without the use of WGA. Metagenome sequences generated from eight defined ISS environmental locations in three consecutive flights were analyzed to assess the succession and persistence of microbial communities, their antimicrobial resistance (AMR) profiles, and virulence properties. Metagenomic sequences were produced from the samples treated with propidium monoazide (PMA) to measure intact microorganisms. RESULTS The intact microbial communities detected in Flight 1 and Flight 2 samples were significantly more similar to each other than to Flight 3 samples. Among 318 microbial species detected, 46 species constituting 18 genera were common in all flight samples. Risk group or biosafety level 2 microorganisms that persisted among all three flights were Acinetobacter baumannii, Haemophilus influenzae, Klebsiella pneumoniae, Salmonella enterica, Shigella sonnei, Staphylococcus aureus, Yersinia frederiksenii, and Aspergillus lentulus. Even though Rhodotorula and Pantoea dominated the ISS microbiome, Pantoea exhibited succession and persistence. K. pneumoniae persisted in one location (US Node 1) of all three flights and might have spread to six out of the eight locations sampled on Flight 3. The AMR signatures associated with β-lactam, cationic antimicrobial peptide, and vancomycin were detected. Prominent virulence factors were cobalt-zinc-cadmium resistance and multidrug-resistance efflux pumps. CONCLUSIONS There was an increase in AMR and virulence gene factors detected over the period sampled, and metagenome sequences of human pathogens persisted over time. Comparative analysis of the microbial compositions of ISS with Earth analogs revealed that the ISS environmental surfaces were different in microbial composition. Metagenomics coupled with PMA treatment would help future space missions to estimate problematic risk group microbial pathogens. Cataloging AMR/virulence characteristics, succession, accumulation, and persistence of microorganisms would facilitate the development of suitable countermeasures to reduce their presence in the closed built environment.
Collapse
Affiliation(s)
- Nitin Kumar Singh
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Jason M. Wood
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| | - Fathi Karouia
- Space Bioscience Division, NASA Ames Research Center, Moffett Field, CA USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
| |
Collapse
|
32
|
Zhao X, Yu Y, Zhang X, Huang B, Bai P, Xu C, Li D, Zhang B, Liu C. Decreased biofilm formation ability of Acinetobacter baumannii after spaceflight on China's Shenzhou 11 spacecraft. Microbiologyopen 2018; 8:e00763. [PMID: 30379419 PMCID: PMC6562233 DOI: 10.1002/mbo3.763] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/30/2022] Open
Abstract
China has prepared for construction of a space station by the early 2020s. The mission will require astronauts to stay on the space station for at least 180 days. Microbes isolated from the International Space Station (ISS) have shown profound resistance to clinical antibiotics and environmental stresses. Previous studies have demonstrated that the space environment could affect microbial survival, growth, virulence, biofilms, metabolism, as well as their antibiotic‐resistant phenotypes. Furthermore, several studies have reported that astronauts experience a decline in their immunity during long‐duration spaceflights. Monitoring microbiomes in the ISS or the spacecraft will be beneficial for the prevention of infection among the astronauts during spaceflight. The development of a manned space program worldwide not only provides an opportunity to investigate the impact of this extreme environment on opportunistic pathogenic microbes, but also offers a unique platform to detect mutations in pathogenic bacteria. Various microorganisms have been carried on a spacecraft for academic purposes. Acinetobacter baumannii is a common multidrug‐resistant bacterium often prevalent in hospitals. Variations in the ability to cope with environmental hazards increase the chances of microbial survival. Our study aimed to compare phenotypic variations and analyze genomic and transcriptomic variations in A. baumannii among three different groups: SS1 (33 days on the Shenzhou 11 spacecraft), GS1 (ground control), and Aba (reference strain). Consequently, the biofilm formation ability of the SS1 strain decreased after 33 days of spaceflight. Furthermore, high‐throughput sequencing revealed that some differentially expressed genes were downregulated in the SS1 strain compared with those in the GS1 strain. In conclusion, this present study provides insights into the environmental adaptation of A. baumannii and might be useful for understanding changes in the opportunistic pathogenic microbes on our spacecraft and on China's future ISS.
Collapse
Affiliation(s)
- Xian Zhao
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Yi Yu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Xuelin Zhang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Bing Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Po Bai
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Chou Xu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Diangeng Li
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Bin Zhang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| | - Changting Liu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
33
|
Hao Z, Li L, Fu Y, Liu H. The influence of bioregenerative life-support system dietary structure and lifestyle on the gut microbiota: a 105-day ground-based space simulation in Lunar Palace 1. Environ Microbiol 2018; 20:3643-3656. [DOI: 10.1111/1462-2920.14358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 03/26/2018] [Accepted: 07/08/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Zikai Hao
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
| | - Leyuan Li
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering; Beihang University; Beijing, 100083 China
| | - Yuming Fu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering; Beihang University; Beijing, 100083 China
| | - Hong Liu
- Institute of Environmental Biology and Life Support Technology, School of Biological Science and Medical Engineering; Beihang University; Beijing, 100083 China
- Beijing Advanced Innovation Centre for Biomedical Engineering; Beihang University; Beijing, 100083 China
- State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering; Beihang University; Beijing, 100083 China
- International Joint Research Center of Aerospace Biotechnology & Medical Engineering; Beihang University; Beijing, 100083 China
| |
Collapse
|
34
|
Huang B, Li DG, Huang Y, Liu CT. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil Med Res 2018; 5:18. [PMID: 29807538 PMCID: PMC5971428 DOI: 10.1186/s40779-018-0162-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Spaceflight and ground-based microgravity analog experiments have suggested that microgravity can affect microbial growth and metabolism. Although the effects of microgravity and its analogs on microorganisms have been studied for more than 50 years, plausible conflicting and diverse results have frequently been reported in different experiments, especially regarding microbial growth and secondary metabolism. Until now, only the responses of a few typical microbes to microgravity have been investigated; systematic studies of the genetic and phenotypic responses of these microorganisms to microgravity in space are still insufficient due to technological and logistical hurdles. The use of different test strains and secondary metabolites in these studies appears to have caused diverse and conflicting results. Moreover, subtle changes in the extracellular microenvironments around microbial cells play a key role in the diverse responses of microbial growth and secondary metabolisms. Therefore, "indirect" effects represent a reasonable pathway to explain the occurrence of these phenomena in microorganisms. This review summarizes current knowledge on the changes in microbial growth and secondary metabolism in response to spaceflight and its analogs and discusses the diverse and conflicting results. In addition, recommendations are given for future studies on the effects of microgravity in space on microbial growth and secondary metabolism.
Collapse
Affiliation(s)
- Bing Huang
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Dian-Geng Li
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Chang-Ting Liu
- Nanlou Respiratory Diseases Department, Chinese PLA General Hospital/Chinese PLA Postgraduate Medical School, Beijing, 100853, China.
| |
Collapse
|
35
|
|