1
|
Venkatachalam S, Jabir T, Vipindas PV, Krishnan KP. Ecological significance of Candidatus ARS69 and Gemmatimonadota in the Arctic glacier foreland ecosystems. Appl Microbiol Biotechnol 2024; 108:128. [PMID: 38229335 DOI: 10.1007/s00253-023-12991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 01/18/2024]
Abstract
The Gemmatimonadota phylum has been widely detected in diverse natural environments, yet their specific ecological roles in many habitats remain poorly investigated. Similarly, the Candidatus ARS69 phylum has been identified only in a few habitats, and literature on their metabolic functions is relatively scarce. In the present study, we investigated the ecological significance of phyla Ca. ARS69 and Gemmatimonadota in the Arctic glacier foreland (GF) ecosystems through genome-resolved metagenomics. We have reconstructed the first high-quality metagenome-assembled genome (MAG) belonging to Ca. ARS69 and 12 other MAGs belonging to phylum Gemmatimonadota from the three different Arctic GF samples. We further elucidated these two groups phylogenetic lineage and their metabolic function through phylogenomic and pangenomic analysis. The analysis showed that all the reconstructed MAGs potentially belonged to novel species. The MAGs belonged to Ca. ARS69 consist about 8296 gene clusters, of which only about 8% of single-copy core genes (n = 980) were shared among them. The study also revealed the potential ecological role of Ca. ARS69 is associated with carbon fixation, denitrification, sulfite oxidation, and reduction biochemical processes in the GF ecosystems. Similarly, the study demonstrates the widespread distribution of different classes of Gemmatimonadota across wide ranges of ecosystems and their metabolic functions, including in the polar region. KEY POINTS: • Glacier foreland ecosystems act as a natural laboratory to study microbial community structure. • We have reconstructed 13 metagenome-assembled genomes from the soil samples. • All the reconstructed MAGs belonged to novel species with different metabolic processes. • Ca. ARS69 and Gemmatimonadota MAGs were found to participate in carbon fixation and denitrification processes.
Collapse
Affiliation(s)
- Siddarthan Venkatachalam
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India.
| | - Thajudeen Jabir
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| |
Collapse
|
2
|
Wang Y, Sun Y, Huang K, Gao Y, Lin Y, Yuan B, Wang X, Xu G, Nussio LG, Yang F, Ni K. Multi-omics analysis reveals the core microbiome and biomarker for nutrition degradation in alfalfa silage fermentation. mSystems 2024; 9:e0068224. [PMID: 39440963 PMCID: PMC11575373 DOI: 10.1128/msystems.00682-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Alfalfa (Medicago sativa L.) is one of the most extensively cultivated forage crops globally, and its nutritional quality critically influences the productivity of dairy cows. Silage fermentation is recognized as a crucial technique for the preservation of fresh forage, ensuring the retention of its vital nutrients. However, the detailed microbial components and their functions in silage fermentation are not fully understood. This study integrated large-scale microbial culturing with high-throughput sequencing to thoroughly examine the microbial community structure in alfalfa silage and explored the potential pathways of nutritional degradation via metagenomic analysis. The findings revealed an enriched microbial diversity in silage, indicated by the identification of amplicon sequence variants. Significantly, the large-scale culturing approach recovered a considerable number of unique microbes undetectable by high-throughput sequencing. Predominant genera, such as Lactiplantibacillus, Leuconostoc, Lentilactobacillus, Weissella, and Liquorilactobacillus, were identified based on their abundance and prevalence. Additionally, genes associated with Enterobacteriaceae were discovered, which might be involved in pathways leading to the production of ammonia-N and butyric acid. Overall, this study offers a comprehensive insight into the microbial ecology of silage fermentation and provides valuable information for leveraging microbial consortia to enhance fermentation quality. IMPORTANCE Silage fermentation is a microbial-driven anaerobic process that efficiently converts various substrates into nutrients readily absorbable and metabolizable by ruminant animals. This study, integrating culturomics and metagenomics, has successfully identified core microorganisms involved in silage fermentation, including those at low abundance. This discovery is crucial for the targeted cultivation of specific microorganisms to optimize fermentation processes. Furthermore, our research has uncovered signature microorganisms that play pivotal roles in nutrient metabolism, significantly advancing our understanding of the intricate relationships between microbial communities and nutrient degradation during silage fermentation.
Collapse
Affiliation(s)
- Yuan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Frontier Technology Research Institute, China Agricultural University, Shenzhen, China
| | - Yunlei Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - KeXin Huang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yu Gao
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Yufan Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Baojie Yuan
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Xin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Gang Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | | | - Fuyu Yang
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
- Frontier Technology Research Institute, China Agricultural University, Shenzhen, China
- College of Animal Science, Guizhou University, Guiyang, China
| | - Kuikui Ni
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
García-Roldán A, de la Haba RR, Sánchez-Porro C, Ventosa A. 'Altruistic' cooperation among the prokaryotic community of Atlantic salterns assessed by metagenomics. Microbiol Res 2024; 288:127869. [PMID: 39154602 DOI: 10.1016/j.micres.2024.127869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Hypersaline environments are extreme habitats with a limited prokaryotic diversity, mainly restricted to halophilic or halotolerant archaeal and bacterial taxa adapted to highly saline conditions. This study attempts to analyze the taxonomic and functional diversity of the prokaryotes that inhabit a solar saltern located at the Atlantic Coast, in Isla Cristina (Huelva, Southwest Spain), and the influence of salinity on the diversity and metabolic potential of these prokaryotic communities, as well as the interactions and cooperation among the individuals within that community. Brine samples were obtained from different saltern ponds, with a salinity range between 19.5 % and 39 % (w/v). Total prokaryotic DNA was sequenced using the Illumina shotgun metagenomic strategy and the raw sequence data were analyzed using supercomputing services following the MetaWRAP and SqueezeMeta protocols. The most abundant phyla at moderate salinities (19.5-22 % [w/v]) were Methanobacteriota (formerly "Euryarchaeota"), Pseudomonadota and Bacteroidota, followed by Balneolota and Actinomycetota and Uroviricota in smaller proportions, while at high salinities (36-39 % [w/v]) the most abundant phylum was Methanobacteriota, followed by Bacteroidota. The most abundant genera at intermediate salinities were Halorubrum and the bacterial genus Spiribacter, while the haloarchaeal genera Halorubrum, Halonotius, and Haloquadratum were the main representatives at high salinities. A total of 65 MAGs were reconstructed from the metagenomic datasets and different functions and pathways were identified in them, allowing to find key taxa in the prokaryotic community able to synthesize and supply essential compounds, such as biotin, and precursors of other bioactive molecules, like β-carotene, and bacterioruberin, to other dwellers in this habitat, lacking the required enzymatic machinery to produce them. This work shed light on the ecology of aquatic hypersaline environments, such as the Atlantic Coast salterns, and on the dynamics and factors affecting the microbial populations under such extreme conditions.
Collapse
Affiliation(s)
- Alicia García-Roldán
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla 41012, Spain.
| |
Collapse
|
4
|
Chung HC, Friedberg I, Bromberg Y. Assembling bacterial puzzles: piecing together functions into microbial pathways. NAR Genom Bioinform 2024; 6:lqae109. [PMID: 39184378 PMCID: PMC11344244 DOI: 10.1093/nargab/lqae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
Functional metagenomics enables the study of unexplored bacterial diversity, gene families, and pathways essential to microbial communities. However, discovering biological insights with these data is impeded by the scarcity of quality annotations. Here, we use a co-occurrence-based analysis of predicted microbial protein functions to uncover pathways in genomic and metagenomic biological systems. Our approach, based on phylogenetic profiles, improves the identification of functional relationships, or participation in the same biochemical pathway, between enzymes over a comparable homology-based approach. We optimized the design of our profiles to identify potential pathways using minimal data, clustered functionally related enzyme pairs into multi-enzymatic pathways, and evaluated our predictions against reference pathways in the KEGG database. We then demonstrated a novel extension of this approach to predict inter-bacterial protein interactions amongst members of a marine microbiome. Most significantly, we show our method predicts emergent biochemical pathways between known and unknown functions. Thus, our work establishes a basis for identifying the potential functional capacities of the entire metagenome, capturing previously unknown and abstract functions into discrete putative pathways.
Collapse
Affiliation(s)
- Henri C Chung
- Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA 50011 , USA
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA
| | - Yana Bromberg
- Department of Computer Science, Emory University, Atlanta, GA 30307, USA
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Oren A. Novel insights into the diversity of halophilic microorganisms and their functioning in hypersaline ecosystems. NPJ BIODIVERSITY 2024; 3:18. [PMID: 39242694 PMCID: PMC11332174 DOI: 10.1038/s44185-024-00050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/25/2024] [Indexed: 09/09/2024]
Abstract
Our understanding of the microbial diversity inhabiting hypersaline environments, here defined as containing >100-150 g/L salts, has greatly increased in the past five years. Halophiles are found in each of the three domains of life. Many novel types have been cultivated, and metagenomics and other cultivation-independent approaches have revealed the existence of many previously unrecognized lineages. Syntrophic interactions between different phylogenetic lineages have been discovered, such as the symbiosis between members of the archaeal class Halobacteria and the 'Candidatus Nanohalarchaeota'. Metagenomics techniques also have shed light on the biogeography of halophiles, especially of the genera Salinibacter (Bacteria) and Haloquadratum and Halorubrum (Archaea). Exploration of the microbiome of hypersaline lakes led to the discovery of novel types of metabolism previously unknown to occur at high salt concentrations. Studies of environments with high concentrations of chaotropic ions such as magnesium, calcium, and lithium have refined our understanding of the limits of life.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Israel.
| |
Collapse
|
6
|
Abdallah RZ, Elbehery AHA, Ahmed SF, Ouf A, Malash MN, Liesack W, Siam R. Deciphering the functional and structural complexity of the Solar Lake flat mat microbial benthic communities. mSystems 2024; 9:e0009524. [PMID: 38727215 PMCID: PMC11237645 DOI: 10.1128/msystems.00095-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
The Solar Lake in Taba, Egypt, encompasses one of the few modern-day microbial mats' systems metabolically analogous to Precambrian stromatolites. Solar Lake benthic communities and their adaptation to the Lake's unique limnological cycle have not been described for over two decades. In this study, we revisit the flat mat and describe the summer's shallow water versus exposed microbial community; the latter occurs in response to the seasonal partial receding of water. We employed metagenomic NovaSeq-6000 shotgun sequencing and 16S rRNA, mcrA, and dsrB quantitative PCR. A total of 292 medium-to-high-quality metagenome-assembled genomes (MAGs) were reconstructed. At the structural level, Candidatus Aenigmatarchaeota, Micrarchaeota, and Omnitrophota MAGs were exclusively detected in the shallow-water mats, whereas Halobacteria and Myxococcota MAGs were specific to the exposed microbial mat. Functionally, genes involved in reactive oxygen species (ROS) detoxification and osmotic pressure were more abundant in the exposed than in the shallow-water microbial mats, whereas genes involved in sulfate reduction/oxidation and nitrogen fixation were ubiquitously detected. Genes involved in the utilization of methylated amines for methane production were predominant when compared with genes associated with alternative methanogenesis pathways. Solar Lake methanogen MAGs belonged to Methanosarcinia, Bathyarchaeia, Candidatus Methanofastidiosales, and Archaeoglobales. The latter had the genetic capacity for anaerobic methane oxidation. Moreover, Coleofasciculus chthonoplastes, previously reported to dominate the winter shallow-water flat mat, had a substantial presence in the summer. These findings reveal the taxonomic and biochemical microbial zonation of the exposed and shallow-water Solar Lake flat mat benthic community and their capacity to ecologically adapt to the summer water recession. IMPORTANCE Fifty-five years ago, the extremophilic "Solar Lake" was discovered on the Red Sea shores, garnering microbiologists' interest worldwide from the 1970s to 1990s. Nevertheless, research on the lake paused at the turn of the millennium. In our study, we revisited the Solar Lake benthic community using a genome-centric approach and described the distinct microbial communities in the exposed versus shallow-water mat unveiling microbial zonation in the benthic communities surrounding the Solar Lake. Our findings highlighted the unique structural and functional adaptations employed by these microbial mat communities. Moreover, we report new methanogens and phototrophs, including an intriguing methanogen from the Archaeoglobales family. We describe how the Solar Lake's flat mat microbial community adapts to stressors like oxygen intrusion and drought due to summer water level changes, which provides insights into the genomic strategies of microbial communities to cope with altered and extreme environmental conditions.
Collapse
Affiliation(s)
- Rehab Z Abdallah
- Biology department, The American University in Cairo, Cairo, Egypt
| | - Ali H A Elbehery
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Shimaa F Ahmed
- Biology department, The American University in Cairo, Cairo, Egypt
| | - Amged Ouf
- Biology department, The American University in Cairo, Cairo, Egypt
| | - Mohamed N Malash
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, Egypt
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Rania Siam
- Biology department, The American University in Cairo, Cairo, Egypt
| |
Collapse
|
7
|
Medina-Ruiz A, Jiménez-Millán J, Abad I, Gálvez A, Grande MJ, Jiménez-Espinosa R. Aragonite crystallization in a sulfate-rich hypersaline wetland under dry Mediterranean climate (Laguna Honda, eastern Guadalquivir basin, S Spain). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171362. [PMID: 38428615 DOI: 10.1016/j.scitotenv.2024.171362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
This research investigates the influence of water composition, the presence of seasonal algal mats, detrital inputs and the activity of microorganisms on the crystallization of aragonite in the sediments deposited in the hypersaline Laguna Honda wetland (S of Spain). The high alkaline and hypersaline waters (pH > 9.2 and C.E. > 70 mS/cm) of the wetland lake are rich in SO42- (>24,000 mg/l), Cl- (>21,000 mg/l), Na+ (>11,000 mg/l) Mg2+ (>8400 mg/l) and Ca2+ (>1000 mg/l), and are supersaturated for dolomite, calcite and aragonite. Sediments have lower pH values than column waters, oscillating from 8.54 in the low Eh (up to -80.9 mV) central deep sediments and 6.33 in the shallower higher Eh (around -13.6 mV) shore sediments. Erosion of the surrounding olive groves soils produced detrital silicates rich sediments with concretions of carbonate or sulfate. Aragonite (up to 19 %) and pyrite (up to 13 %) are mainly concentrated in the organic matter rich samples from the upper part of the sediment cores, whereas gypsum is preferably concentrated in low organic matter content samples. Mineral crusts containing a MgAl silicate phase, epsomite, halite and gypsum are precipitated on the floating algal mats covering the wetland waters. Floating algal mats deposit increased the organic matter content of the upper sediments which promoted the presence of fermentative microorganisms, sulfate-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) communities and variations of Eh that influence the authigenesis of carbonate and S-bearing minerals. Replacement of poorly crystalline MgSi phases infilling algal cells by aragonite was favored in the organic matter rich sediments with low Eh values and important SRB communities that promoted sulfate bioreduction processes to form pyrite. Aragonite precipitation was favored by the increase of carbonate and bicarbonate concentration produced by the SRB oxidation of organic matter, the CO2 degassing by high summer temperatures and the CO2 uptake by photosynthesis of the algal mats.
Collapse
Affiliation(s)
- Antonio Medina-Ruiz
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Juan Jiménez-Millán
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Isabel Abad
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - María José Grande
- Microbiology Division, Department of Health Sciences, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Rosario Jiménez-Espinosa
- Department of Geology and CEACTEMA, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
8
|
Deng C, Chen T, Qiu Z, Zhou H, Li B, Zhang Y, Xu X, Lian C, Qiao X, Yu K. A mixed blessing of influent leachate microbes in downstream biotreatment systems of a full-scale landfill leachate treatment plant. WATER RESEARCH 2024; 253:121310. [PMID: 38368734 DOI: 10.1016/j.watres.2024.121310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
In landfill leachate treatment plants (LLTPs), the microbiome plays a pivotal role in the decomposition of organic compounds, reduction in nutrient levels, and elimination of toxins. However, the effects of microbes in landfill leachate influents on downstream treatment systems remain poorly understood. To address this knowledge gap, we collected 23 metagenomic and 12 metatranscriptomic samples from landfill leachate and activated sludge from various treatment units in a full-scale LLTP. We successfully recovered 1,152 non-redundant metagenome-assembled genomes (MAGs), encompassing a wide taxonomic range, including 48 phyla, 95 classes, 166 orders, 247 families, 238 genera, and 1,152 species. More diverse microbes were observed in the influent leachate than in the downstream biotreatment systems, among which, an unprecedented ∼30 % of microbes with transcriptional expression migrated from the influent to the biological treatment units. Network analysis revealed that 399 shared MAGs across the four units exhibited high node centrality and degree, thus supporting enhanced interactions and increased stability of microbial communities. Functional reconstruction and genome characterization of MAGs indicated that these shared MAGs possessed greater capabilities for carbon, nitrogen, sulfur, and arsenic metabolism compared to non-shared MAGs. We further identified a novel species of Zixibacteria in the leachate influent with discrete lineages from those in other environments that accounted for up to 17 % of the abundance of the shared microbial community and exhibited notable metabolic versatility. Meanwhile, we presented groundbreaking evidence of the involvement of Zixibacteria-encoded genes in the production of harmful gas emissions, such as N2O and H2S, at the transcriptional level, thus suggesting that influent microbes may pose safety risks to downstream treatment systems. In summary, this study revealed the complex impact of the influent microbiome on LLTP and emphasizes the need to consider these microbial characteristics when designing treatment technologies and strategies for landfill leachate management.
Collapse
Affiliation(s)
- Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Tianyi Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, China
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Hong Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810000, China
| | - Bing Li
- Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, PR China
| | - Xuming Xu
- Institute of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Chunang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
9
|
Qiu Z, Yuan L, Lian CA, Lin B, Chen J, Mu R, Qiao X, Zhang L, Xu Z, Fan L, Zhang Y, Wang S, Li J, Cao H, Li B, Chen B, Song C, Liu Y, Shi L, Tian Y, Ni J, Zhang T, Zhou J, Zhuang WQ, Yu K. BASALT refines binning from metagenomic data and increases resolution of genome-resolved metagenomic analysis. Nat Commun 2024; 15:2179. [PMID: 38467684 PMCID: PMC10928208 DOI: 10.1038/s41467-024-46539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Metagenomic binning is an essential technique for genome-resolved characterization of uncultured microorganisms in various ecosystems but hampered by the low efficiency of binning tools in adequately recovering metagenome-assembled genomes (MAGs). Here, we introduce BASALT (Binning Across a Series of Assemblies Toolkit) for binning and refinement of short- and long-read sequencing data. BASALT employs multiple binners with multiple thresholds to produce initial bins, then utilizes neural networks to identify core sequences to remove redundant bins and refine non-redundant bins. Using the same assemblies generated from Critical Assessment of Metagenome Interpretation (CAMI) datasets, BASALT produces up to twice as many MAGs as VAMB, DASTool, or metaWRAP. Processing assemblies from a lake sediment dataset, BASALT produces ~30% more MAGs than metaWRAP, including 21 unique class-level prokaryotic lineages. Functional annotations reveal that BASALT can retrieve 47.6% more non-redundant opening-reading frames than metaWRAP. These results highlight the robust handling of metagenomic sequencing data of BASALT.
Collapse
Affiliation(s)
- Zhiguang Qiu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
| | - Li Yuan
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Chun-Ang Lian
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
| | - Bin Lin
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
| | - Jie Chen
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Rong Mu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Xuejiao Qiao
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Liyu Zhang
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Zheng Xu
- Southern University of Sciences and Technology Yantian Hospital, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Yunzeng Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Junyi Li
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, China
| | - Huiluo Cao
- Department of Microbiology, University of Hong Kong, Hong Kong, China
| | - Bing Li
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Chi Song
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Wuhan Benagen Technology Co., Ltd, Wuhan, China
| | - Yongxin Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lili Shi
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yonghong Tian
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China
- School of Electronic and Computer Engineering, Peking University, Shenzhen, China
- Peng Cheng Laboratory, Shenzhen, China
| | - Jinren Ni
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, China
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, Hong Kong, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Auckland, Auckland, New Zealand
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China.
- AI for Science (AI4S)-Preferred Program, Peking University, Shenzhen, China.
| |
Collapse
|
10
|
Maza-Márquez P, Lee MD, Bebout BM. Community ecology and functional potential of bacteria, archaea, eukarya and viruses in Guerrero Negro microbial mat. Sci Rep 2024; 14:2561. [PMID: 38297006 PMCID: PMC10831059 DOI: 10.1038/s41598-024-52626-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 02/02/2024] Open
Abstract
In this study, the microbial ecology, potential environmental adaptive mechanisms, and the potential evolutionary interlinking of genes between bacterial, archaeal and viral lineages in Guerrero Negro (GN) microbial mat were investigated using metagenomic sequencing across a vertical transect at millimeter scale. The community composition based on unique genes comprised bacteria (98.01%), archaea (1.81%), eukarya (0.07%) and viruses (0.11%). A gene-focused analysis of bacteria archaea, eukarya and viruses showed a vertical partition of the community. The greatest coverages of genes of bacteria and eukarya were detected in first layers, while the highest coverages of genes of archaea and viruses were found in deeper layers. Many genes potentially related to adaptation to the local environment were detected, such as UV radiation, multidrug resistance, oxidative stress, heavy metals, salinity and desiccation. Those genes were found in bacterial, archaeal and viral lineages with 6477, 44, and 1 genes, respectively. The evolutionary histories of those genes were studied using phylogenetic analysis, showing an interlinking between domains in GN mat.
Collapse
Affiliation(s)
- P Maza-Márquez
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA.
- University of Granada, Granada, Spain.
| | - M D Lee
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - B M Bebout
- Exobiology Branch, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
11
|
Reid RP, Suosaari EP, Oehlert AM, Pollier CGL, Dupraz C. Microbialite Accretion and Growth: Lessons from Shark Bay and the Bahamas. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:487-511. [PMID: 38231736 DOI: 10.1146/annurev-marine-021423-124637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Microbialites provide geological evidence of one of Earth's oldest ecosystems, potentially recording long-standing interactions between coevolving life and the environment. Here, we focus on microbialite accretion and growth and consider how environmental and microbial forces that characterize living ecosystems in Shark Bay and the Bahamas interact to form an initial microbialite architecture, which in turn establishes distinct evolutionary pathways. A conceptual three-dimensional model is developed for microbialite accretion that emphasizes the importance of a dynamic balance between extrinsic and intrinsic factors in determining the initial architecture. We then explore how early taphonomic and diagenetic processes modify the initial architecture, culminating in various styles of preservation in the rock record. The timing of lithification of microbial products is critical in determining growth patterns and preservation potential. Study results have shown that all microbialites are not created equal; the unique evolutionary history of an individual microbialite matters.
Collapse
Affiliation(s)
- R Pamela Reid
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
- Bahamas Marine EcoCentre, Miami, Florida, USA;
| | - Erica P Suosaari
- Bahamas Marine EcoCentre, Miami, Florida, USA;
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Bush Heritage Australia, Melbourne, Victoria, Australia
| | - Amanda M Oehlert
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
| | - Clément G L Pollier
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
| | - Christophe Dupraz
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden;
| |
Collapse
|
12
|
Venkatachalam S, Vipindas PV, Jabir T, Jain A, Krishnan KP. Metagenomic insights into novel microbial lineages with distinct ecological functions in the Arctic glacier foreland ecosystems. ENVIRONMENTAL RESEARCH 2024; 241:117726. [PMID: 37984782 DOI: 10.1016/j.envres.2023.117726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Land-terminating glaciers are retreating globally, resulting in the expansion of the ice-free glacier forelands (GFs). These GFs act as a natural laboratory to study microbial community succession, soil formation, and ecosystem development. Here, we have employed gene-centric and genome-resolved metagenomic approaches to disseminate microbial diversity, community structure, and their associated biogeochemical processes involved in the carbon, nitrogen, and sulfur cycling across three GF ecosystems. Here, we present a compendium of draft Metagenome Assembled Genomes (MAGs) belonging to bacterial (n = 899) and archaeal (n = 4) domains. These MAGs were reconstructed using a total of 27 shotgun metagenomic datasets obtained from three different GFs, including Midtre Lovénbreen glacier (Svalbard), Russell glacier (Greenland), and Storglaciaren (Sweden). The taxonomic classification revealed that 98% of MAGs remained unclassified at species levels, suggesting the presence of novel microbial lineages. The abundance of metabolic genes associated with carbon, nitrogen, and sulfur cycling pathways varied between and within the samples collected across the three GF ecosystems. Our findings indicate that MAGs from different GFs share close phylogenetic relationships but exhibit significant differences in abundance, distribution patterns, and metabolic functions. This compendium of novel MAGs, encompassing autotrophic, phototrophic, and chemolithoautotrophic microbial groups reconstructed from GF ecosystems, represents a valuable resource for further studies.
Collapse
Affiliation(s)
- Siddarthan Venkatachalam
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India.
| | - Puthiya Veettil Vipindas
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Thajudeen Jabir
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Anand Jain
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| | - Kottekkatu Padinchati Krishnan
- Arctic Ecology and Biogeochemistry Division, National Centre for Polar and Ocean Research, Ministry of Earth Sciences (Govt. of India), Vasco-da-Gama, Goa, India
| |
Collapse
|
13
|
Chen X, Liu J, Zhu XY, Xue CX, Yao P, Fu L, Yang Z, Sun K, Yu M, Wang X, Zhang XH. Phylogenetically and metabolically diverse autotrophs in the world's deepest blue hole. ISME COMMUNICATIONS 2023; 3:117. [PMID: 37964026 PMCID: PMC10645885 DOI: 10.1038/s43705-023-00327-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/28/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
The world's deepest yongle blue hole (YBH) is characterized by sharp dissolved oxygen (DO) gradients, and considerably low-organic-carbon and high-inorganic-carbon concentrations that may support active autotrophic communities. To understand metabolic strategies of autotrophic communities for obtaining carbon and energy spanning redox gradients, we presented finer characterizations of microbial community, metagenome and metagenome-assembled genomes (MAGs) in the YBH possessing oxic, hypoxic, essentially anoxic and completely anoxic zones vertically. Firstly, the YBH microbial composition and function shifted across the four zones, linking to different biogeochemical processes. The recovery of high-quality MAGs belonging to various uncultivated lineages reflected high novelty of the YBH microbiome. Secondly, carbon fixation processes and associated energy metabolisms varied with the vertical zones. The Calvin-Benson-Bassham (CBB) cycle was ubiquitous but differed in affiliated taxa at different zones. Various carbon fixation pathways were found in the hypoxic and essentially anoxic zones, including the 3-hyroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle affiliated to Nitrososphaeria, and Wood-Ljungdahl (WL) pathway affiliated to Planctomycetes, with sulfur oxidation and dissimilatory nitrate reduction as primary energy-conserving pathways. The completely anoxic zone harbored diverse taxa (Dehalococcoidales, Desulfobacterales and Desulfatiglandales) utilizing the WL pathway coupled with versatile energy-conserving pathways via sulfate reduction, fermentation, CO oxidation and hydrogen metabolism. Finally, most of the WL-pathway containing taxa displayed a mixotrophic lifestyle corresponding to flexible carbon acquisition strategies. Our result showed a vertical transition of microbial lifestyle from photo-autotrophy, chemoautotrophy to mixotrophy in the YBH, enabling a better understanding of carbon fixation processes and associated biogeochemical impacts with different oxygen availability.
Collapse
Affiliation(s)
- Xing Chen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Yu Zhu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chun-Xu Xue
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Peng Yao
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liang Fu
- Sansha Track Ocean Coral Reef Conservation Research Institute, Sansha, 573199, China
| | - Zuosheng Yang
- College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China
| | - Kai Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Min Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, 266237, China.
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
14
|
Madrigal-Trejo D, Sánchez-Pérez J, Espinosa-Asuar L, Valdivia-Anistro JA, Eguiarte LE, Souza V. A Metagenomic Time-Series Approach to Assess the Ecological Stability of Microbial Mats in a Seasonally Fluctuating Environment. MICROBIAL ECOLOGY 2023; 86:2252-2270. [PMID: 37393557 PMCID: PMC10640475 DOI: 10.1007/s00248-023-02231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/23/2023] [Indexed: 07/04/2023]
Abstract
Microbial mats are complex ecological assemblages that have been present in the rock record since the Precambrian and can still be found in extant marginalized environments. These structures are considered highly stable ecosystems. In this study, we evaluate the ecological stability of dome-forming microbial mats in a modern, water-level fluctuating, hypersaline pond located in the Cuatro Ciénegas Basin, Mexico. We conducted metagenomic sampling of the site from 2016 to 2019 and detected 2250 genera of Bacteria and Archaea, with only <20 belonging to the abundant taxa (>1%). The microbial community was dominated by Proteobacteria, Euryarchaeota, Bacteroidetes, Firmicutes, and Cyanobacteria, and was compositionally sensitive to disturbances, leading to high taxonomic replacement even at the phylum level, with a significant increase in Archaea from [Formula: see text]1-4% to [Formula: see text]33% throughout the 2016-2019 study period. Although a core community represented most of the microbial community (>75%), relative abundances shifted significantly between samples, as demonstrated by changes in the abundance of Coleofasciculus from 10.2% in 2017 to 0.05% in 2019. Although functional differences between seasons were subtle, co-occurrence networks suggest differential ecological interactions between the seasons, with the addition of a new module during the rainy season and the potential shift in hub taxa. Functional composition was slightly more similar between samples, but basic processes such as carbohydrate, amino acid, and nucleic acid metabolisms were widely distributed among samples. Major carbon fixation processes included sulfur oxidation, nitrogen fixation, and photosynthesis (both oxygenic and anoxygenic), as well as the Wood-Ljundgahl and Calvin cycles.
Collapse
Affiliation(s)
- David Madrigal-Trejo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jazmín Sánchez-Pérez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Laura Espinosa-Asuar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Jorge A Valdivia-Anistro
- Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional AutÓnoma de México, Mexico City, Mexico.
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile.
| |
Collapse
|
15
|
Wang L, Lian C, Wan W, Qiu Z, Luo X, Huang Q, Deng Y, Zhang T, Yu K. Salinity-triggered homogeneous selection constrains the microbial function and stability in lakes. Appl Microbiol Biotechnol 2023; 107:6591-6605. [PMID: 37688597 DOI: 10.1007/s00253-023-12696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Accepted: 07/18/2023] [Indexed: 09/11/2023]
Abstract
Climate change and anthropogenic exploitation have led to the gradual salinization of inland waters worldwide. However, the impacts of this process on the prokaryotic plankton communities and their role in biogeochemical cycles in the inland lake are poorly known. Here, we take a space-for-time substitution approach, using 16S rRNA gene amplicon sequencing and metagenomic sequencing. We analyzed the prokaryotic plankton communities of 11 lakes in northwest China, with average water salinities ranging from 0.002 to 14.370%. The results demonstrated that, among the various environmental parameters, salinity was the most important driver of prokaryotic plankton β-diversity (Mantel test, r = 0.53, P < 0.001). (1) Under low salinity, prokaryotic planktons were assembled by stochastic processes and employed diverse halotolerant strategies, including the synthesis and uptake of compatible solutes and extrusion of Na+ or Li+ in exchange for H+. Under elevated salinity pressure, strong homogeneous selection meant that only planktonic prokaryotes showing an energetically favorable halotolerant strategy employing an Mnh-type Na+/H+ antiporter remained. (2) The decreasing taxonomic diversity caused by intense environmental filtering in high-salinity lakes impaired functional diversity related to substance metabolism. The prokaryotes enhanced the TCA cycle, carbon fixation, and low-energy-consumption amino acid biosynthesis in high-salinity lakes. (3) Elevated salinity pressure decreased the negative:positive cohesion and the modularity of the molecular ecology networks for the planktonic prokaryotes, indicating a precarious microbial network. Our findings provide new insights into plankton ecology and are helpful for the protecting of the biodiversity and function of inland lakes against the background of salinization. KEY POINTS: • Increased salinity enhances homogeneous selection in the microbial assembly. • Elevated salinity decreases the microbial co-occurrence networks stability. • High salinity damages the microbial function diversity.
Collapse
Affiliation(s)
- Li Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Chunang Lian
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xuesong Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of ·Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of ·Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
16
|
Chen T, Deng C, Wu Z, Liu T, Zhang Y, Xu X, Zhao X, Li J, Li S, Xu N, Yu K. Metagenomic analysis unveils the underexplored roles of prokaryotic viruses in a full-scale landfill leachate treatment plant. WATER RESEARCH 2023; 245:120611. [PMID: 37722141 DOI: 10.1016/j.watres.2023.120611] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/20/2023]
Abstract
Enormous viral populations have been identified in activated sludge systems, but their ecological and biochemical roles in landfill leachate treatment plants remain poorly understood. To address this knowledge gap, we conducted an in-depth analysis using 36 metagenomic datasets that we collected and sequenced during a half-year time-series sampling campaign at six sites in a full-scale landfill leachate treatment plant (LLTP), elucidating viral distribution, virus‒host dynamics, virus-encoded auxiliary metabolic genes (AMGs), and viral contributions to the spread of virulence and antibiotic resistance genes. Our findings demonstrated that viral and prokaryotic communities differed widely among different treatment units, with stability over time. LLTP viruses were linked to various prokaryotic hosts, spanning 35 bacterial phyla and one archaeal phylum, which included the core microbes involved in biological treatments, as well as some of the less well-characterized microbial dark matter phyla. By encoding 2364 auxiliary metabolic genes (AMGs), viruses harbored the potential to regulate microbial nucleotide metabolism, facilitate the biodegradation of complex organic matter, and enhance flocculation and settling in biological treatment plants. The abundance distribution of AMGs varied considerably across treatment units and showed a lifestyle-dependent pattern with temperate virus-associated AMGs exhibiting a higher average abundance in downstream biological treatment units and effluent water. Meanwhile, temperate viruses tended to carry a higher load of virulence factor genes (VFGs), antibiotic resistance genes (ARGs), and biotic and metal resistance genes (BMRGs), and engaged in more frequent gene exchanges with prokaryotes than lytic viruses, thus acting as a pivotal contributor to the dissemination of pathogenicity and resistance genes in downstream LLTP units. This study provided a comprehensive profile of viral and prokaryotic communities in the LLTP and unveiled the varying roles of different-lifestyle viruses in biochemical processes and water quality safety.
Collapse
Affiliation(s)
- Tianyi Chen
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chunfang Deng
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Zongzhi Wu
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tang Liu
- Environmental Microbiome Engineering and Innovative Genomics Laboratory, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanyan Zhang
- Jiangxi Academy of Eco-Environmental Sciences & Planning, Nanchang 330029, China
| | - Xuming Xu
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Xiaohui Zhao
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jiarui Li
- Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shaoyang Li
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ke Yu
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
17
|
Li S, Lian WH, Han JR, Ali M, Lin ZL, Liu YH, Li L, Zhang DY, Jiang XZ, Li WJ, Dong L. Capturing the microbial dark matter in desert soils using culturomics-based metagenomics and high-resolution analysis. NPJ Biofilms Microbiomes 2023; 9:67. [PMID: 37736746 PMCID: PMC10516943 DOI: 10.1038/s41522-023-00439-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Deserts occupy one-third of the Earth's terrestrial surface and represent a potentially significant reservoir of microbial biodiversity, yet the majority of desert microorganisms remain uncharacterized and are seen as "microbial dark matter". Here, we introduce a multi-omics strategy, culturomics-based metagenomics (CBM) that integrates large-scale cultivation, full-length 16S rRNA gene amplicon, and shotgun metagenomic sequencing. The results showed that CBM captured a significant amount of taxonomic and functional diversity missed in direct sequencing by increasing the recovery of amplicon sequence variants (ASVs) and high/medium-quality metagenome-assembled genomes (MAGs). Importantly, CBM allowed the post hoc recovery of microbes of interest (e.g., novel or specific taxa), even those with extremely low abundance in the culture. Furthermore, strain-level analyses based on CBM and direct sequencing revealed that the desert soils harbored a considerable number of novel bacterial candidates (1941, 51.4%), of which 1095 (from CBM) were culturable. However, CBM would not exactly reflect the relative abundance of true microbial composition and functional pathways in the in situ environment, and its use coupled with direct metagenomic sequencing could provide greater insight into desert microbiomes. Overall, this study exemplifies the CBM strategy with high-resolution is an ideal way to deeply explore the untapped novel bacterial resources in desert soils, and substantially expands our knowledge on the microbial dark matter hidden in the vast expanse of deserts.
Collapse
Affiliation(s)
- Shuai Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
- School of Life Science, Jiaying University, Meizhou, 514015, China
| | - Wen-Hui Lian
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Jia-Rui Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Mukhtiar Ali
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Zhi-Liang Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Dong-Ya Zhang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, 510700, China
| | - Xian-Zhi Jiang
- Microbiome Research Center, Moon (Guangzhou) Biotech Ltd., Guangzhou, 510700, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat‑sen University, Guangzhou, 510275, China.
| |
Collapse
|
18
|
Medina-Chávez NO, Viladomat-Jasso M, Zarza E, Islas-Robles A, Valdivia-Anistro J, Thalasso-Siret F, Eguiarte LE, Olmedo-Álvarez G, Souza V, De la Torre-Zavala S. A Transiently Hypersaline Microbial Mat Harbors a Diverse and Stable Archaeal Community in the Cuatro Cienegas Basin, Mexico. ASTROBIOLOGY 2023; 23:796-811. [PMID: 37279013 DOI: 10.1089/ast.2021.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microbial mats are biologically diverse communities that are analogs to some of the earliest ecosystems on Earth. In this study, we describe a unique transiently hypersaline microbial mat uncovered in a shallow pond within the Cuatro Cienegas Basin (CCB) in northern México. The CCB is an endemism-rich site that harbors living stromatolites that have been studied to understand the conditions of the Precambrian Earth. These microbial mats form elastic domes filled with biogenic gas, and the mats have a relatively large and stable subpopulation of archaea. For this reason, this site has been termed archaean domes (AD). The AD microbial community was analyzed by metagenomics over three seasons. The mat exhibited a highly diverse prokaryotic community dominated by bacteria. Bacterial sequences are represented in 37 phyla, mainly Proteobacteria, Firmicutes, and Actinobacteria, that together comprised >50% of the sequences from the mat. Archaea represented up to 5% of the retrieved sequences, with up to 230 different archaeal species that belong to 5 phyla (Euryarchaeota, Crenarchaeota, Thaumarchaeota, Korarchaeota, and Nanoarchaeota). The archaeal taxa showed low variation despite fluctuations in water and nutrient availability. In addition, predicted functions highlight stress responses to extreme conditions present in the AD, including salinity, pH, and water/drought fluctuation. The observed complexity of the AD mat thriving in high pH and fluctuating water and salt conditions within the CCB provides an extant model of great value for evolutionary studies, as well as a suitable analog to the early Earth and Mars.
Collapse
Affiliation(s)
- Nahui-Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, México
| | | | - Eugenia Zarza
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Tapachula, Mexico
- Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Africa Islas-Robles
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. Campus Irapuato, Irapuato, México
| | - Jorge Valdivia-Anistro
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza, Facultad de Estudios Superiores Zaragoza, UNAM, Ciudad de México, México
| | - Frédéric Thalasso-Siret
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Gabriela Olmedo-Álvarez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del I.P.N. Campus Irapuato, Irapuato, México
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM, Ciudad de México, México
- Centro de Estudios del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, México
| |
Collapse
|
19
|
Defining Composition and Function of the Rhizosphere Microbiota of Barley Genotypes Exposed to Growth-Limiting Nitrogen Supplies. mSystems 2022; 7:e0093422. [PMID: 36342125 PMCID: PMC9765016 DOI: 10.1128/msystems.00934-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The microbiota populating the rhizosphere, the interface between roots and soil, can modulate plant growth, development, and health. These microbial communities are not stochastically assembled from the surrounding soil, but their composition and putative function are controlled, at least partially, by the host plant. Here, we use the staple cereal barley as a model to gain novel insights into the impact of differential applications of nitrogen, a rate-limiting step for global crop production, on the host genetic control of the rhizosphere microbiota. Using a high-throughput amplicon sequencing survey, we determined that nitrogen availability for plant uptake is a factor promoting the selective enrichment of individual taxa in the rhizosphere of wild and domesticated barley genotypes. Shotgun sequencing and metagenome-assembled genomes revealed that this taxonomic diversification is mirrored by a functional specialization, manifested by the differential enrichment of multiple Gene Ontology terms, of the microbiota of plants exposed to nitrogen conditions limiting barley growth. Finally, a plant soil feedback experiment revealed that host control of the barley microbiota underpins the assembly of a phylogenetically diverse group of bacteria putatively required to sustain plant performance under nitrogen-limiting supplies. Taken together, our observations indicate that under nitrogen conditions limiting plant growth, host-microbe and microbe-microbe interactions fine-tune the host genetic selection of the barley microbiota at both taxonomic and functional levels. The disruption of these recruitment cues negatively impacts plant growth. IMPORTANCE The microbiota inhabiting the rhizosphere, the thin layer of soil surrounding plant roots, can promote the growth, development, and health of their host plants. Previous research indicated that differences in the genetic composition of the host plant coincide with variations in the composition of the rhizosphere microbiota. This is particularly evident when looking at the microbiota associated with input-demanding modern cultivated varieties and their wild relatives, which have evolved under marginal conditions. However, the functional significance of these differences remains to be fully elucidated. We investigated the rhizosphere microbiota of wild and cultivated genotypes of the global crop barley and determined that nutrient conditions limiting plant growth amplify the host control on microbes at the root-soil interface. This is reflected in a plant- and genotype-dependent functional specialization of the rhizosphere microbiota, which appears to be required for optimal plant growth. These findings provide novel insights into the significance of the rhizosphere microbiota for plant growth and sustainable agriculture.
Collapse
|
20
|
Pavloudi C, Zafeiropoulos H. Deciphering the community structure and the functional potential of a hypersaline marsh microbial mat community. FEMS Microbiol Ecol 2022; 98:6843573. [PMID: 36416806 DOI: 10.1093/femsec/fiac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mats are vertically stratified communities of microorganisms characterized by pronounced physiochemical gradients allowing for high species diversity and a wide range of metabolic capabilities. High Throughput Sequencing has the potential to reveal the biodiversity and function of such ecosystems in the cycling of elements. The present study combines 16S rRNA amplicon sequencing and shotgun metagenomics on a hypersaline marsh in Tristomo bay (Karpathos, Greece). Samples were collected in July 2018 and November 2019 from microbial mats, deeper sediment, aggregates observed in the water overlying the sediment, as well as sediment samples with no apparent layering. Metagenomic samples' coassembly and binning revealed 250 bacterial and 39 archaeal metagenome-assembled genomes, with completeness estimates higher than 70% and contamination less than 5%. All MAGs had KEGG Orthology terms related to osmoadaptation, with the 'salt in' strategy ones being prominent. Halobacteria and Bacteroidetes were the most abundant taxa in the mats. Photosynthesis was most likely performed by purple sulphur and nonsulphur bacteria. All samples had the capacity for sulphate reduction, dissimilatory arsenic reduction, and conversion of pyruvate to oxaloacetate. Overall, both sequencing methodologies resulted in similar taxonomic compositions and revealed that the formation of the microbial mat in this marsh exhibits seasonal variation.
Collapse
Affiliation(s)
- Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biological Sciences, The George Washington University, 2029 G St NW, Bell Hall 302, Washington DC 20052, United States
| | - Haris Zafeiropoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013, Heraklion, Crete, Greece.,Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, box 1028, 3000 Leuven, Belgium
| |
Collapse
|
21
|
Perez-Fernandez CA, Wilburn P, Davila A, DiRuggiero J. Adaptations of endolithic communities to abrupt environmental changes in a hyper-arid desert. Sci Rep 2022; 12:20022. [PMID: 36414646 PMCID: PMC9681764 DOI: 10.1038/s41598-022-23437-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The adaptation mechanisms of microbial communities to natural perturbations remain unexplored, particularly in extreme environments. The extremophilic communities of halite (NaCl) nodules from the hyper-arid core of the Atacama Desert are self-sustained and represent a unique opportunity to study functional adaptations and community dynamics with changing environmental conditions. We transplanted halite nodules to different sites in the desert and investigated how their taxonomic, cellular, and biochemical changes correlated with water availability, using environmental data modeling and metagenomic analyses. Salt-in strategists, mainly represented by haloarchaea, significantly increased in relative abundance at sites characterized by extreme dryness, multiple wet/dry cycles, and colder conditions. The functional analysis of metagenome-assembled genomes (MAGs) revealed site-specific enrichments in archaeal MAGs encoding for the uptake of various compatible solutes and for glycerol utilization. These findings suggest that opportunistic salt-in strategists took over the halite communities at the driest sites. They most likely benefited from compounds newly released in the environment by the death of microorganisms least adapted to the new conditions. The observed changes were consistent with the need to maximize cellular bioenergetics when confronted with lower water availability and higher salinity, providing valuable information on microbial community adaptations and resilience to climate change.
Collapse
Affiliation(s)
- Cesar A. Perez-Fernandez
- grid.21107.350000 0001 2171 9311Department of Biology, The Johns Hopkins University, Baltimore, MD USA
| | - Paul Wilburn
- grid.419075.e0000 0001 1955 7990NASA Ames Research Center-Exobiology Branch MS 239-4, Moffett Field, CA USA
| | - Alfonso Davila
- grid.419075.e0000 0001 1955 7990NASA Ames Research Center-Exobiology Branch MS 239-4, Moffett Field, CA USA
| | - Jocelyne DiRuggiero
- grid.21107.350000 0001 2171 9311Department of Biology, The Johns Hopkins University, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
22
|
Abstract
Rhodopsins are widely distributed across all domains of life where they perform a plethora of functions through the conversion of electromagnetic radiation into physicochemical signals. As a result of an extensive survey of available genomic and metagenomic sequencing data, we reported the existence of novel clades and exotic sequence motifs scattered throughout the evolutionary radiations of both Type-1 and Type-3 rhodopsins that will likely enlarge the optogenetics toolbox. We expanded the typical rhodopsin blueprint by showing that a highly conserved and functionally important arginine residue (i.e., Arg82) was substituted multiple times during evolution by an extensive amino acid spectrum. We proposed the umbrella term Alt-rhodopsins (AltRs) for all such proteins that departed Arg82 orthodoxy. Some AltRs formed novel clades in the rhodopsin phylogeny and were found in giant viruses. Some newly uncovered AltRs were phylogenetically close to heliorhodopsins, which allowed a closer examination of the phylogenetic border between Type-1 rhodopsins and heliorhodopsins. Comprehensive phylogenetic trees and ancestral sequence reconstructions allowed us to advance the hypothesis that proto-heliorhodopsins were a eukaryotic innovation before their subsequent diversification into the extant Type-3 rhodopsins. IMPORTANCE The rhodopsin scaffold is remarkably versatile and widespread, coupling light availability to energy production and other light-dependent cellular responses with minor alterations to critical residues. We described an unprecedented spectrum of substitutions at one of the most conserved amino acids in the rhodopsin fold, Arg82. We denoted such phylogenetically diverse rhodopsins with the umbrella name Alt-rhodopsins (AltR) and described a distinct branch of AltRs in giant viruses. Intriguingly, some AltRs were the closest phylogenetic neighbors to Heliorhodopsins (HeRs) whose origins have remained enigmatic. Our analyses of HeR origins in the light of AltRs led us to posit a most unusual evolutionary trajectory that suggested a eukaryotic origin for HeRs before their diversification in prokaryotes.
Collapse
|
23
|
Raes EJ, Tolman J, Desai D, Ratten JM, Zorz J, Robicheau BM, Haider D, LaRoche J. Seasonal bacterial niche structures and chemolithoautotrophic ecotypes in a North Atlantic fjord. Sci Rep 2022; 12:15335. [PMID: 36097189 PMCID: PMC9468339 DOI: 10.1038/s41598-022-19165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022] Open
Abstract
Quantifying the temporal change of bacterial communities is essential to understanding how both natural and anthropogenic pressures impact the functions of coastal marine ecosystems. Here we use weekly microbial DNA sampling across four years to show that bacterial phyla have distinct seasonal niches, with a richness peak in winter (i.e., an inverse relationship with daylength). Our results suggest that seasonal fluctuations, rather than the kinetic energy or resource hypotheses, dominated the pattern of bacterial diversity. These findings supplement those from global analyses which lack temporal replication and present few data from winter months in polar and temperate regions. Centered log-ratio transformed data provided new insights into the seasonal niche partitioning of conditionally rare phyla, such as Modulibacteria, Verrucomicrobiota, Synergistota, Deinococcota, and Fermentibacterota. These patterns could not be identified using the standard practice of ASV generation followed by rarefaction. Our study provides evidence that five globally relevant ecotypes of chemolithoautotrophic bacteria from the SUP05 lineage comprise a significant functional group with varying seasonal dominance patterns in the Bedford Basin.
Collapse
Affiliation(s)
- Eric J Raes
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Flourishing Oceans, Minderoo Foundation, Broadway, WA, 6009, Australia.
| | - Jennifer Tolman
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Dhwani Desai
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jenni-Marie Ratten
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Jackie Zorz
- Department of Geoscience, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Brent M Robicheau
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Diana Haider
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Julie LaRoche
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
24
|
Deng L, Meile C, Fiskal A, Bölsterli D, Han X, Gajendra N, Dubois N, Bernasconi SM, Lever MA. Deposit-feeding worms control subsurface ecosystem functioning in intertidal sediment with strong physical forcing. PNAS NEXUS 2022; 1:pgac146. [PMID: 36714871 PMCID: PMC9802194 DOI: 10.1093/pnasnexus/pgac146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/25/2022] [Indexed: 06/18/2023]
Abstract
Intertidal sands are global hotspots of terrestrial and marine carbon cycling with strong hydrodynamic forcing by waves and tides and high macrofaunal activity. Yet, the relative importance of hydrodynamics and macrofauna in controlling these ecosystems remains unclear. Here, we compare geochemical gradients and bacterial, archaeal, and eukaryotic gene sequences in intertidal sands dominated by subsurface deposit-feeding worms (Abarenicola pacifica) to adjacent worm-free areas. We show that hydrodynamic forcing controls organismal assemblages in surface sediments, while in deeper layers selective feeding by worms on fine, algae-rich particles strongly decreases the abundance and richness of all three domains. In these deeper layers, bacterial and eukaryotic network connectivity decreases, while percentages of clades involved in degradation of refractory organic matter, oxidative nitrogen, and sulfur cycling increase. Our findings reveal macrofaunal activity as the key driver of biological community structure and functioning, that in turn influence carbon cycling in intertidal sands below the mainly physically controlled surface layer.
Collapse
Affiliation(s)
| | - Christof Meile
- Department of Marine Sciences, University of Georgia, 325 Sanford Drive, Athens, GA 30602, USA
| | | | - Damian Bölsterli
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | | | - Niroshan Gajendra
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Nathalie Dubois
- Department of Surface Waters - Research and Management, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Überlandstrasse 133, 8600 Dübendorf, Switzerland
- Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Sonneggstrasse 5, 8092 Zürich, Switzerland
| | - Stefano M Bernasconi
- Department of Earth Sciences, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Sonneggstrasse 5, 8092 Zürich, Switzerland
| | - Mark A Lever
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology, Zurich (ETH Zurich), Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
25
|
Escudeiro P, Henry CS, Dias RP. Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100159. [PMID: 36561390 PMCID: PMC9764257 DOI: 10.1016/j.crmicr.2022.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eight-hundred thousand to one trillion prokaryotic species may inhabit our planet. Yet, fewer than two-hundred thousand prokaryotic species have been described. This uncharted fraction of microbial diversity, and its undisclosed coding potential, is known as the "microbial dark matter" (MDM). Next-generation sequencing has allowed to collect a massive amount of genome sequence data, leading to unprecedented advances in the field of genomics. Still, harnessing new functional information from the genomes of uncultured prokaryotes is often limited by standard classification methods. These methods often rely on sequence similarity searches against reference genomes from cultured species. This hinders the discovery of unique genetic elements that are missing from the cultivated realm. It also contributes to the accumulation of prokaryotic gene products of unknown function among public sequence data repositories, highlighting the need for new approaches for sequencing data analysis and classification. Increasing evidence indicates that these proteins of unknown function might be a treasure trove of biotechnological potential. Here, we outline the challenges, opportunities, and the potential hidden within the functional dark matter (FDM) of prokaryotes. We also discuss the pitfalls surrounding molecular and computational approaches currently used to probe these uncharted waters, and discuss future opportunities for research and applications.
Collapse
Affiliation(s)
- Pedro Escudeiro
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Christopher S. Henry
- Argonne National Laboratory, Lemont, Illinois, USA
- University of Chicago, Chicago, Illinois, USA
| | - Ricardo P.M. Dias
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- iXLab - Innovation for National Biological Resilience, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
26
|
Magnuson E, Altshuler I, Fernández-Martínez MÁ, Chen YJ, Maggiori C, Goordial J, Whyte LG. Active lithoautotrophic and methane-oxidizing microbial community in an anoxic, sub-zero, and hypersaline High Arctic spring. THE ISME JOURNAL 2022; 16:1798-1808. [PMID: 35396347 PMCID: PMC9213412 DOI: 10.1038/s41396-022-01233-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 05/01/2023]
Abstract
Lost Hammer Spring, located in the High Arctic of Nunavut, Canada, is one of the coldest and saltiest terrestrial springs discovered to date. It perennially discharges anoxic (<1 ppm dissolved oxygen), sub-zero (~-5 °C), and hypersaline (~24% salinity) brines from the subsurface through up to 600 m of permafrost. The sediment is sulfate-rich (1 M) and continually emits gases composed primarily of methane (~50%), making Lost Hammer the coldest known terrestrial methane seep and an analog to extraterrestrial habits on Mars, Europa, and Enceladus. A multi-omics approach utilizing metagenome, metatranscriptome, and single-amplified genome sequencing revealed a rare surface terrestrial habitat supporting a predominantly lithoautotrophic active microbial community driven in part by sulfide-oxidizing Gammaproteobacteria scavenging trace oxygen. Genomes from active anaerobic methane-oxidizing archaea (ANME-1) showed evidence of putative metabolic flexibility and hypersaline and cold adaptations. Evidence of anaerobic heterotrophic and fermentative lifestyles were found in candidate phyla DPANN archaea and CG03 bacteria genomes. Our results demonstrate Mars-relevant metabolisms including sulfide oxidation, sulfate reduction, anaerobic oxidation of methane, and oxidation of trace gases (H2, CO2) detected under anoxic, hypersaline, and sub-zero ambient conditions, providing evidence that similar extant microbial life could potentially survive in similar habitats on Mars.
Collapse
Affiliation(s)
- Elisse Magnuson
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Ianina Altshuler
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Ya-Jou Chen
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | - Catherine Maggiori
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada
| | | | - Lyle G Whyte
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
27
|
Abstract
Members of candidate Asgardarchaeota superphylum appear to share numerous eukaryotic-like attributes thus being broadly explored for their relevance to eukaryogenesis. On the contrast, the ecological roles of Asgard archaea remains understudied. Asgard archaea have been frequently associated to low-oxygen aquatic sedimentary environments worldwide spanning a broad but not extreme salinity range. To date, the available information on diversity and potential biogeochemical roles of Asgardarchaeota mostly sourced from marine habitats and to a much lesser extend from true saline environments (i.e., > 3% w/v total salinity). Here, we provide an overview on diversity and ecological implications of Asgard archaea distributed across saline environments and briefly explore their metagenome-resolved potential for osmoadaptation. Loki-, Thor- and Heimdallarchaeota are the dominant Asgard clades in saline habitats where they might employ anaerobic/microaerophilic organic matter degradation and autotrophic carbon fixation. Homologs of primary solute uptake ABC transporters seemingly prevail in Thorarchaeota, whereas those putatively involved in trehalose and ectoine biosynthesis were mostly inferred in Lokiarchaeota. We speculate that Asgardarchaeota might adopt compatible solute-accumulating ('salt-out') strategy as response to salt stress. Our current understanding on the distribution, ecology and salt-adaptive strategies of Asgardarchaeota in saline environments are, however, limited by insufficient sampling and incompleteness of the available metagenome-assembled genomes. Extensive sampling combined with 'omics'- and cultivation-based approaches seem, therefore, crucial to gain deeper knowledge on this particularly intriguing archaeal lineage.
Collapse
|
28
|
Wei YF, Wang L, Xia ZY, Gou M, Sun ZY, Lv WF, Tang YQ. Microbial communities in crude oil phase and filter-graded aqueous phase from a Daqing oilfield after polymer flooding. J Appl Microbiol 2022; 133:842-856. [PMID: 35490352 DOI: 10.1111/jam.15603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/01/2022]
Abstract
AIMS The aim was to characterize indigenous microorganisms in oil reservoirs after polymer flooding (RAPF). METHODS The microbial communities in the crude oil phase (Oil) and in the filter-graded aqueous phases Aqu0.22 (>0.22 μm) and Aqu0.1 (0.1~0.22 μm) were investigated by 16S rRNA gene high-throughput sequencing. RESULTS Indigenous microorganisms related to hydrocarbon degradation prevailed in the three phases of each well. However, obvious differences of bacterial compositions were observed among the three phases of the same well and among the same phase of different wells. The crude oil and Aqu0.22 shared many dominant bacteria. Aqu0.1 contained a unique bacterial community in each well. Most bacteria in Aqu0.1 were affiliated to culturable genera, suggesting that they may adapt to the oil reservoir environment by reduction of cell size. Contrary to the bacterial genera, archaeal genera were similar in the three phases but varied in relative abundances. The observed microbial differences may be driven by specific environmental factors in each oil well. CONCLUSIONS The results suggest an application potential of microbial enhanced oil recovery (MEOR) technology in RAPF. The crude oil and Aqu0.1 contain many different functional microorganisms related to hydrocarbon degradation. Both should not be overlooked when investing and exploring the indigenous microorganisms for MEOR. SIGNIFICANCE AND IMPACT OF THE STUDY This work facilitates the understanding of microbial community structures in RAPF and provides information for microbial control in oil fields.
Collapse
Affiliation(s)
- Yan-Feng Wei
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Lu Wang
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| | - Wei-Feng Lv
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, No. 24, South Section 1, First Ring Road, Chengdu, Sichuan 610065, China
| |
Collapse
|
29
|
Abstract
Here we review the application of molecular biological approaches to mineral precipitation in modern marine microbialites. The review focuses on the nearly two decades of nucleotide sequencing studies of the microbialites of Shark Bay, Australia; and The Bahamas. Molecular methods have successfully characterized the overall community composition of mats, pinpointed microbes involved in key metabolisms, and revealed patterns in the distributions of microbial groups and functional genes. Molecular tools have become widely accessible, and we can now aim to establish firmer links between microbes and mineralization. Two promising future directions include “zooming in” to assess the roles of specific organisms, microbial groups, and surfaces in carbonate biomineralization and “zooming out” to consider broader spans of space and time. A middle ground between the two can include model systems that contain representatives of important microbial groups, processes, and metabolisms in mats and simplify hypothesis testing. These directions will benefit from expanding reference datasets of marine microbes and enzymes and enrichments of representative microbes from mats. Such applications of molecular tools should improve our ability to interpret ancient and modern microbialites and increase the utility of these rocks as long-term recorders of microbial processes and environmental chemistry.
Collapse
|
30
|
Deng C, Zhao R, Qiu Z, Li B, Zhang T, Guo F, Mu R, Wu Y, Qiao X, Zhang L, Cheng JJ, Ni J, Yu K. Genome-centric metagenomics provides new insights into the microbial community and metabolic potential of landfill leachate microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151635. [PMID: 34774959 DOI: 10.1016/j.scitotenv.2021.151635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Landfills are important sources of microorganisms associated with anaerobic digestion. However, the knowledge on microbiota along with their functional potential in this special habitat are still lacking. In this study, we recovered 1168 non-redundant metagenome-assembled genomes (MAGs) from nine landfill leachate samples collected from eight cities across China, spanning 42 phyla, 73 classes, 114 orders, 189 families, and 267 genera. Totally, 74.1% of 1168 MAGs could not be classified to any known species and 5.9% of these MAGs belonged to microbial dark matter phyla. Two putative novel classes were discovered from landfill leachate samples. The identification of thousands of novel carbohydrate-active enzymes showed similar richness level compared to the cow rumen microbiota. The methylotrophic methanogenic pathway was speculated to contribute significantly to methane production in the landfill leachate because of its co-occurrence with the acetoclastic and hydrogenotrophic methanogenic pathways. The genetic potential of dissimilatory nitrate reduction to ammonium (DNRA) was observed, implying DNRA may play a role in ammonium generation in landfill leachate. These findings implied that landfill leachate might be a valuable microbial resource repository and filled the previous understanding gaps for both methanogenesis and nitrogen cycling in landfill leachate microbiota. Our study provides a comprehensive genomic catalog and substantially provides unprecedented taxonomic and functional profiles of the landfill leachate microbiota.
Collapse
Affiliation(s)
- Chunfang Deng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Renxin Zhao
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhiguang Qiu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bing Li
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Feng Guo
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Rong Mu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yang Wu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xuejiao Qiao
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liyu Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jay J Cheng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Biological & Agricultural Engineering Department, North Carolina State University, Raleigh, NC 27695, USA
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Ke Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
31
|
Kindler GS, Wong HL, Larkum AWD, Johnson M, MacLeod FI, Burns BP. Genome-resolved metagenomics provides insights into the functional complexity of microbial mats in Blue Holes, Shark Bay. FEMS Microbiol Ecol 2021; 98:6448473. [PMID: 34865013 DOI: 10.1093/femsec/fiab158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
The present study describes for the first time the community composition and functional potential of the microbial mats found in the supratidal, gypsum-rich, and hypersaline region of Blue Holes, Shark Bay. This was achieved via high throughput metagenomic sequencing of total mat community DNA and complementary analyses using hyperspectral confocal microscopy. Mat communities were dominated by Proteobacteria (29%), followed by Bacteroidetes/Chlorobi Group (11%), and Planctomycetes (10%). These mats were found to also harbor a diverse community of potentially novel microorganisms including members from the DPANN, Asgard archaea, and Candidate Phyla Radiation, with highest diversity found in the lower regions (∼14-20 mm depth) of the mat. In addition to pathways for major metabolic cycles, a range of putative rhodopsins with previously uncharacterized motifs and functions were identified along with heliorhodopsins and putative schizorhodopsins. Critical microbial interactions were also inferred, and from 117 medium-to-high quality metagenome-assembled genomes (MAGs), viral defense mechanisms (CRISPR, BREX, and DISARM), elemental transport, osmoprotection, heavy metal and UV resistance were also detected. These analyses have provided a greater understanding of these distinct mat systems in Shark Bay, including key insights into adaptive responses and proposing that photoheterotrophy may be an important lifestyle in Blue Holes.
Collapse
Affiliation(s)
- Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Michael Johnson
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales Sydney, Sydney, NSW, Australia
| |
Collapse
|
32
|
Nobs SJ, MacLeod FI, Wong HL, Burns BP. Eukarya the chimera: eukaryotes, a secondary innovation of the two domains of life? Trends Microbiol 2021; 30:421-431. [PMID: 34863611 DOI: 10.1016/j.tim.2021.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
One of the most significant events in the evolution of life is the origin of the eukaryotic cell, an increase in cellular complexity that occurred approximately 2 billion years ago. Ground-breaking research has centered around unraveling the characteristics of the Last Eukaryotic Common Ancestor (LECA) and the nuanced archaeal and bacterial contributions in eukaryogenesis, resulting in fundamental changes in our understanding of the Tree of Life. The archaeal and bacterial roles are covered by theories of endosymbiogenesis wherein an ancestral host archaeon and a bacterial endosymbiont merged to create a new complex cell type - Eukarya - and its mitochondrion. Eukarya is often regarded as a unique and distinct domain due to complex innovations not found in archaea or bacteria, despite housing a chimeric genome containing genes of both archaeal and bacterial origin. However, the discovery of complex cell machineries in recently described Asgard archaeal lineages, and the growing support for diverse bacterial gene transfers prior to and during the time of LECA, is redefining our understanding of eukaryogenesis. Indeed, the uniqueness of Eukarya, as a domain, is challenged. It is likely that many microbial syntrophies, encompassing a 'microbial village', were required to 'raise' a eukaryote during the process of eukaryogenesis.
Collapse
Affiliation(s)
- Stephanie-Jane Nobs
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Fraser I MacLeod
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia; Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia; Australian Centre for Astrobiology, University of New South Wales, Sydney, Australia.
| |
Collapse
|
33
|
Hughes ER, Winter MG, Alves da Silva L, Muramatsu MK, Jimenez AG, Gillis CC, Spiga L, Chanin RB, Santos RL, Zhu W, Winter SE. Reshaping of bacterial molecular hydrogen metabolism contributes to the outgrowth of commensal E. coli during gut inflammation. eLife 2021; 10:e58609. [PMID: 34085924 PMCID: PMC8177889 DOI: 10.7554/elife.58609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
The composition of gut-associated microbial communities changes during intestinal inflammation, including an expansion of Enterobacteriaceae populations. The mechanisms underlying microbiota changes during inflammation are incompletely understood. Here, we analyzed previously published metagenomic datasets with a focus on microbial hydrogen metabolism. The bacterial genomes in the inflamed murine gut and in patients with inflammatory bowel disease contained more genes encoding predicted hydrogen-utilizing hydrogenases compared to communities found under non-inflamed conditions. To validate these findings, we investigated hydrogen metabolism of Escherichia coli, a representative Enterobacteriaceae, in mouse models of colitis. E. coli mutants lacking hydrogenase-1 and hydrogenase-2 displayed decreased fitness during colonization of the inflamed cecum and colon. Utilization of molecular hydrogen was in part dependent on respiration of inflammation-derived electron acceptors. This work highlights the contribution of hydrogenases to alterations of the gut microbiota in the context of non-infectious colitis.
Collapse
Affiliation(s)
| | - Maria G Winter
- Department of Microbiology, UT SouthwesternDallasUnited States
| | - Laice Alves da Silva
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | | | - Angel G Jimenez
- Department of Microbiology, UT SouthwesternDallasUnited States
| | | | - Luisella Spiga
- Department of Microbiology, UT SouthwesternDallasUnited States
| | | | - Renato L Santos
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Wenhan Zhu
- Department of Microbiology, UT SouthwesternDallasUnited States
| | - Sebastian E Winter
- Department of Microbiology, UT SouthwesternDallasUnited States
- Department of Immunology, UT SouthwesternDallasUnited States
| |
Collapse
|
34
|
Gutiérrez-Chávez C, Benaud N, Ferrari BC. The ecological roles of microbial lipopeptides: Where are we going? Comput Struct Biotechnol J 2021; 19:1400-1413. [PMID: 33777336 PMCID: PMC7960500 DOI: 10.1016/j.csbj.2021.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Lipopeptides (LPs) are secondary metabolites produced by a diversity of bacteria and fungi. Their unique chemical structure comprises both a peptide and a lipid moiety. LPs are of major biotechnological interest owing to their emulsification, antitumor, immunomodulatory, and antimicrobial activities. To date, these versatile compounds have been applied across multiple industries, from pharmaceuticals through to food processing, cosmetics, agriculture, heavy metal, and hydrocarbon bioremediation. The variety of LP structures and the diversity of the environments from which LP-producing microorganisms have been isolated suggest important functions in their natural environment. However, our understanding of the ecological role of LPs is limited. In this review, the mode of action and the role of LPs in motility, antimicrobial activity, heavy metals removal and biofilm formation are addressed. We include discussion on the need to characterise LPs from a diversity of microorganisms, with a focus on taxa inhabiting 'extreme' environments. We introduce the use of computational target fishing and molecular dynamics simulations as powerful tools to investigate the process of interaction between LPs and cell membranes. Together, these advances will provide new understanding of the mechanism of action of novel LPs, providing greater insights into the roles of LPs in the natural environment.
Collapse
Affiliation(s)
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| |
Collapse
|