1
|
Huang J, Zheng X, Yu T, Ali M, Wiese J, Hu S, Huang L, Huang Y. Diverse lifestyles and adaptive evolution of uncultured UBA5794 actinobacteria, a sister order of "Candidatus actinomarinales". ENVIRONMENTAL MICROBIOME 2025; 20:39. [PMID: 40253436 PMCID: PMC12008989 DOI: 10.1186/s40793-025-00701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Uncultured UBA5794 actinobacteria are frequently found in marine and inland water environments by using metagenomic approaches. However, knowledge about these actinobacteria is limited, hindering their isolation and cultivation, and they are always confused with "Candidatus Actinomarinales" based on 16S rRNA gene classification. Here, to conduct genomic characterization of them, we obtained three high-quality UBA5794 metagenome-assembled genomes (MAGs) from a hydrothermal sediment on the Carlsberg Ridge (CR) and retrieved 131 high-quality UBA5794 genomes from public datasets. Phylogenomic analysis confirms UBA5794 as an independent order within the class Acidimicrobiia. Genome-based metabolic predictions reveal that flexible metabolism and diversified energy acquisition, as well as heavy metal(loid) detoxification capacity, are crucial for the ability of UBA5794 to thrive in diverse environments. Moreover, there is separation between sponge-associated and free-living UBA5794 groups in phylogeny and functional potential, which can be attributed to the symbiotic nature of the sponge-associated group and the extensive horizontal gene transfer (HGT) events observed in these bacteria. Ancestral state reconstruction suggests that the UBA5794 clade may have originated from a free-living environment and then some members gradually migrated to the sponge host. Overall, our study sheds light on the ecological adaptation and evolutionary history of the ubiquitous but poorly understood UBA5794 actinobacteria.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- RU Marine Ecology, RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Xiaowei Zheng
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Yu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mohsin Ali
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jutta Wiese
- RU Marine Ecology, RD3 Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Songnian Hu
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Ying Huang
- State Key Laboratory of Microbial Diversity and Innovative Utilization, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Williams AD, Leung VW, Tang JW, Hidekazu N, Suzuki N, Clarke AC, Pearce DA, Lam TTY. Ancient environmental microbiomes and the cryosphere. Trends Microbiol 2025; 33:233-249. [PMID: 39487079 DOI: 10.1016/j.tim.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
In this review, we delineate the unique set of characteristics associated with cryosphere environments (namely, ice and permafrost) which present both challenges and opportunities for studying ancient environmental microbiomes (AEMs). In a field currently reliant on several assumptions, we discuss the theoretical and empirical feasibility of recovering microbial nucleic acids (NAs) from ice and permafrost with varying degrees of antiquity. We also summarize contamination control best practices and highlight considerations for the latest approaches, including shotgun metagenomics, and downstream bioinformatic authentication approaches. We review the adoption of existing software and provide an overview of more recently published programs, with reference to their suitability for AEM studies. Finally, we summarize outstanding challenges and likely future directions for AEM research.
Collapse
Affiliation(s)
- Alexander D Williams
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| | - Vivian W Leung
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China
| | - Julian W Tang
- Respiratory Sciences, University of Leicester, Leicester, UK; Clinical Microbiology, University Hospitals of Leicester, Leicester, UK
| | - Nishimura Hidekazu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai 983-8520, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Chuou 2-20-1, Kurashiki, Okayama 710-0046, Japan
| | - Andrew C Clarke
- School of Biosciences, University of Nottingham, College Road, Sutton Bonington, LE12 5RD, UK
| | - David A Pearce
- Department of Applied Science, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Newcastle, NE1 8ST, UK; British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Tommy Tsan-Yuk Lam
- Laboratory of Data Discovery for Health Limited (D(2)4H), 12/F, Building 19W, 19 Science Park West Avenue, Hong Kong Science Park, Hong Kong Special Administrative Region of China; State Key Laboratory of Emerging Infectious Diseases, School of Public Health, The University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
3
|
Gomathinayagam S, Kanagalingam S, Chandrasekaran S, Krishnan T, Kodiveri Muthukaliannan G. Millennial-scale microbiome analysis reveals ancient antimicrobial resistance conserved despite modern selection pressures. ENVIRONMENTAL MICROBIOME 2024; 19:110. [PMID: 39695840 PMCID: PMC11657988 DOI: 10.1186/s40793-024-00652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Antimicrobial resistance presents a formidable challenge, yet its existence predates the introduction of antibiotics. Our study delves into the presence of antimicrobial resistance genes (ARGs) in ancient permafrost microbiomes, comparing them with contemporary soil and pristine environments. Majority of the samples are from regions around Beringia, encompassing parts of Russia and Alaska, with only one sample originating from the Tien Shan Mountain range in Kyrgyzstan. RESULTS From over 2.3 tera basepairs of raw metagenomic data, retrieved from samples ranging in age from approximately 7,000 years to 1.1 million years, we assembled about 1.3 billion metagenomic contigs and explored the prevalence of ARGs within them. Our findings reveal a diverse array of ARGs in ancient microbiomes, akin to contemporary counterparts. On average, we identified 2 ARGs per rRNA gene in ancient samples. Actinomycetota, Bacillota, and several thermophiles were prominent carriers of ARGs in Chukochi and Kamchatkan samples. Conversely, ancient permafrost from the Tien Shan Mountain range exhibited no Thermophiles or Actinomycetota carrying ARGs. Both ancient and contemporary microbiomes showcased numerous divergent ARGs, majority of which have identity between 40 and 60% to genes in antibiotic resistance gene databases. To study the selection pressure on ARGs, we performed dN/dS analysis specifically on antibiotic inactivation-type ARGs, which exhibited purifying selection compared to contemporary genes. CONCLUSION Antibiotic resistance has existed throughout microbial evolution and will likely persist, as microbes have the capacity to develop and retain resistance genes through evolutionary processes. The classes of antimicrobial resistance genes profiled and the function of antibiotic-inactivating enzymes from ancient permafrost microbiomes do not seem to be very different from the genes found in the antibiotic era. Additionally, we retrieved 359 putative complete viruses from ancient microbiomes and none of them harboured any ARGs.
Collapse
Affiliation(s)
- Sankaranarayanan Gomathinayagam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Swathi Kanagalingam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Srimathi Chandrasekaran
- Department of Information Security, School of Computer Science, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumoorthy Krishnan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
4
|
Geers AU, Buijs Y, Schostag MD, Elberling B, Bentzon-Tilia M. Exploring the biosynthesis potential of permafrost microbiomes. ENVIRONMENTAL MICROBIOME 2024; 19:96. [PMID: 39578925 PMCID: PMC11583570 DOI: 10.1186/s40793-024-00644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Permafrost microbiomes are of paramount importance for the biogeochemistry of high latitude soils and while endemic biosynthetic domain sequences involved in secondary metabolism have been found in polar surface soils, the biosynthetic potential of permafrost microbiomes remains unexplored. Moreover, the nature of these ecosystems facilitates the unique opportunity to study the distribution and diversity of biosynthetic genes in relic DNA from ancient microbiomes. To explore the biosynthesis potential in permafrost, we used adenylation (AD) domain sequencing to evaluate non-ribosomal peptide (NRP) production in permafrost cores housing microbiomes separated at kilometer and kiloyear scales. RESULTS Permafrost microbiomes represented NRP repertoires significantly different from that of temperate soil microbiomes, but as for temperate soils, the estimated domain richness and diversity was strongly correlated to the bacterial taxonomic diversity across locations. Furthermore, we found significant differences in both community composition and AD domain composition across geographical and temporal distances. Overall, the vast majority of biosynthetic domains showed below 90% amino acid similarity to characterized BGCs, confirming the high degree of novelty of NRPs inherent to permafrost microbiomes. Using available metagenomic sequences, we further identified a high biosynthetic diversity beyond NRPs throughout arctic surface soils down to deep and ancient (megayear old) permafrost microbiomes. CONCLUSION We have shown that arctic permafrost microbiomes harbor a unique biosynthetic repertoire rich in hitherto undescribed NRPs. This diversity is driven by geographic separation across kilometer scales and by the bacterial taxonomic diversity between microbiomes confined in separate permafrost layers. Hence the permafrost biome represents a unique resource for studying secondary metabolism, and potentially for the discovery of novel drug leads.
Collapse
Affiliation(s)
- Aileen Ute Geers
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
- River Ecosystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Morten Dencker Schostag
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Bo Elberling
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
5
|
Ali A, Vishnivetskaya TA, Chauhan A. Comparative analysis of prokaryotic microbiomes in high-altitude active layer soils: insights from Ladakh and global analogues using In-Silico approaches. Braz J Microbiol 2024; 55:2437-2452. [PMID: 38758507 PMCID: PMC11405653 DOI: 10.1007/s42770-024-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
The active layer is the portion of soil overlaying the permafrost that freezes and thaws seasonally. It is a harsh habitat in which a varied and vigorous microbial population thrives. The high-altitude active layer soil in northern India is a unique and important cryo-ecosystem. However, its microbiology remains largely unexplored. It represents a unique reservoir for microbial communities with adaptability to harsh environmental conditions. In the Changthang region of Ladakh, the Tsokar area is a high-altitude permafrost-affected area situated in the southern part of Ladakh, at a height of 4530 m above sea level. Results of the comparison study with the QTP, Himalayan, Alaskan, Russian, Canadian and Polar active layers showed that the alpha diversity was significantly higher in the Ladakh and QTP active layers as the environmental condition of both the sites were similar. Moreover, the sampling site in the Ladakh region was in a thawing condition at the time of sampling which possibly provided nutrients and access to alternative nitrogen and carbon sources to the microorganisms thriving in it. Analysis of the samples suggested that the geochemical parameters and environmental conditions shape the microbial alpha diversity and community composition. Further analysis revealed that the cold-adapted methanogens were present in the Ladakh, Himalayan, Polar and Alaskan samples and absent in QTP, Russian and Canadian active layer samples. These methanogens could produce methane at slow rates in the active layer soils that could increase the atmospheric temperature owing to climate change.
Collapse
Affiliation(s)
- Ahmad Ali
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India
| | | | - Archana Chauhan
- Department of Zoology, Panjab University, Sector 14, 160014, Chandigarh, India.
| |
Collapse
|
6
|
Li Y, Xue Y, Roy Chowdhury T, Graham DE, Tringe SG, Jansson JK, Taş N. Genomic insights into redox-driven microbial processes for carbon decomposition in thawing Arctic soils and permafrost. mSphere 2024; 9:e0025924. [PMID: 38860762 PMCID: PMC11288003 DOI: 10.1128/msphere.00259-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Climate change is rapidly transforming Arctic landscapes where increasing soil temperatures speed up permafrost thaw. This exposes large carbon stocks to microbial decomposition, possibly worsening climate change by releasing more greenhouse gases. Understanding how microbes break down soil carbon, especially under the anaerobic conditions of thawing permafrost, is important to determine future changes. Here, we studied the microbial community dynamics and soil carbon decomposition potential in permafrost and active layer soils under anaerobic laboratory conditions that simulated an Arctic summer thaw. The microbial and viral compositions in the samples were analyzed based on metagenomes, metagenome-assembled genomes, and metagenomic viral contigs (mVCs). Following the thawing of permafrost, there was a notable shift in microbial community structure, with fermentative Firmicutes and Bacteroidota taking over from Actinobacteria and Proteobacteria over the 60-day incubation period. The increase in iron and sulfate-reducing microbes had a significant role in limiting methane production from thawed permafrost, underscoring the competition within microbial communities. We explored the growth strategies of microbial communities and found that slow growth was the major strategy in both the active layer and permafrost. Our findings challenge the assumption that fast-growing microbes mainly respond to environmental changes like permafrost thaw. Instead, they indicate a common strategy of slow growth among microbial communities, likely due to the thermodynamic constraints of soil substrates and electron acceptors, and the need for microbes to adjust to post-thaw conditions. The mVCs harbored a wide range of auxiliary metabolic genes that may support cell protection from ice formation in virus-infected cells. IMPORTANCE As the Arctic warms, thawing permafrost unlocks carbon, potentially accelerating climate change by releasing greenhouse gases. Our research delves into the underlying biogeochemical processes likely mediated by the soil microbial community in response to the wet and anaerobic conditions, akin to an Arctic summer thaw. We observed a significant shift in the microbial community post-thaw, with fermentative bacteria like Firmicutes and Bacteroidota taking over and switching to different fermentation pathways. The dominance of iron and sulfate-reducing bacteria likely constrained methane production in the thawing permafrost. Slow-growing microbes outweighed fast-growing ones, even after thaw, upending the expectation that rapid microbial responses to dominate after permafrost thaws. This research highlights the nuanced and complex interactions within Arctic soil microbial communities and underscores the challenges in predicting microbial response to environmental change.
Collapse
Affiliation(s)
- Yaoming Li
- College of Grassland Science, Beijing Forest University, Beijing, China
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yaxin Xue
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca R&D, Cambridge, United Kingdom
| | | | - David E. Graham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Susannah G. Tringe
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Janet K. Jansson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
7
|
Özdoğan KT, Gelabert P, Hammers N, Altınışık NE, de Groot A, Plets G. Archaeology meets environmental genomics: implementing sedaDNA in the study of the human past. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2024; 16:108. [PMID: 38948161 PMCID: PMC11213777 DOI: 10.1007/s12520-024-01999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Sedimentary ancient DNA (sedaDNA) has become one of the standard applications in the field of paleogenomics in recent years. It has been used for paleoenvironmental reconstructions, detecting the presence of prehistoric species in the absence of macro remains and even investigating the evolutionary history of a few species. However, its application in archaeology has been limited and primarily focused on humans. This article argues that sedaDNA holds significant potential in addressing key archaeological questions concerning the origins, lifestyles, and environments of past human populations. Our aim is to facilitate the integration of sedaDNA into the standard workflows in archaeology as a transformative tool, thereby unleashing its full potential for studying the human past. Ultimately, we not only underscore the challenges inherent in the sedaDNA field but also provide a research agenda for essential enhancements needed for implementing sedaDNA into the archaeological workflow.
Collapse
Affiliation(s)
- Kadir Toykan Özdoğan
- Department of History and Art History, Utrecht University, Drift 6, Utrecht, 3512 BS Netherlands
- Animal Ecology, Wageningen Environmental Research, P.O box 47, Wageningen, Gelderland 6700 AA The Netherlands
| | - Pere Gelabert
- Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
| | - Neeke Hammers
- Environmental Archaeology, ADC ArcheoProjecten, Nijverheidsweg-Noord 114, Amersfoort, Utrecht, 3812 PN Netherlands
| | - N. Ezgi Altınışık
- Human-G Laboratory, Department of Anthropology, Hacettepe University, Ankara, 06800 Türkiye
| | - Arjen de Groot
- Animal Ecology, Wageningen Environmental Research, P.O box 47, Wageningen, Gelderland 6700 AA The Netherlands
| | - Gertjan Plets
- Department of History and Art History, Utrecht University, Drift 6, Utrecht, 3512 BS Netherlands
| |
Collapse
|
8
|
Clark MS, Hoffman JI, Peck LS, Bargelloni L, Gande D, Havermans C, Meyer B, Patarnello T, Phillips T, Stoof-Leichsenring KR, Vendrami DLJ, Beck A, Collins G, Friedrich MW, Halanych KM, Masello JF, Nagel R, Norén K, Printzen C, Ruiz MB, Wohlrab S, Becker B, Dumack K, Ghaderiardakani F, Glaser K, Heesch S, Held C, John U, Karsten U, Kempf S, Lucassen M, Paijmans A, Schimani K, Wallberg A, Wunder LC, Mock T. Multi-omics for studying and understanding polar life. Nat Commun 2023; 14:7451. [PMID: 37978186 PMCID: PMC10656552 DOI: 10.1038/s41467-023-43209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Polar ecosystems are experiencing amongst the most rapid rates of regional warming on Earth. Here, we discuss 'omics' approaches to investigate polar biodiversity, including the current state of the art, future perspectives and recommendations. We propose a community road map to generate and more fully exploit multi-omics data from polar organisms. These data are needed for the comprehensive evaluation of polar biodiversity and to reveal how life evolved and adapted to permanently cold environments with extreme seasonality. We argue that concerted action is required to mitigate the impact of warming on polar ecosystems via conservation efforts, to sustainably manage these unique habitats and their ecosystem services, and for the sustainable bioprospecting of novel genes and compounds for societal gain.
Collapse
Affiliation(s)
- M S Clark
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - J I Hoffman
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany.
| | - L S Peck
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, Italy
| | - D Gande
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - C Havermans
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - B Meyer
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129, Oldenburg, Germany
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, Italy
| | - T Phillips
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - K R Stoof-Leichsenring
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, 14473, Potsdam, Germany
| | - D L J Vendrami
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
| | - A Beck
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, Botanische Staatssammlung München (SNSB-BSM), Menzinger Str. 67, 80638, München, Germany
| | - G Collins
- Senckenberg Biodiversity and Climate Research Centre & Loewe-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Manaaki Whenua-Landcare Research, 231 Morrin Road St Johns, Auckland, 1072, New Zealand
| | - M W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - K M Halanych
- Center for Marine Science, University of North Carolina, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - J F Masello
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
- Justus-Liebig-Universität Gießen, Giessen, Germany
| | - R Nagel
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - K Norén
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - C Printzen
- Senckenberg Biodiversity and Climate Research Centre & Loewe-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - M B Ruiz
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Universität Duisburg-Essen, Universitätstrasse 5, 45151, Essen, Germany
| | - S Wohlrab
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129, Oldenburg, Germany
| | - B Becker
- Universität zu Köln, Institut für Pflanzenwissenschaften, Zülpicher Str. 47b, 60674, Köln, Germany
| | - K Dumack
- Universität zu Köln, Terrestrische Ökologie, Zülpicher Str. 47b, 60674, Köln, Germany
| | - F Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - K Glaser
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - S Heesch
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - C Held
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - U John
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - U Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - S Kempf
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - M Lucassen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - A Paijmans
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
| | - K Schimani
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195, Berlin, Germany
| | - A Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - L C Wunder
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - T Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
9
|
Shatilovich A, Gade VR, Pippel M, Hoffmeyer TT, Tchesunov AV, Stevens L, Winkler S, Hughes GM, Traikov S, Hiller M, Rivkina E, Schiffer PH, Myers EW, Kurzchalia TV. A novel nematode species from the Siberian permafrost shares adaptive mechanisms for cryptobiotic survival with C. elegans dauer larva. PLoS Genet 2023; 19:e1010798. [PMID: 37498820 PMCID: PMC10374039 DOI: 10.1371/journal.pgen.1010798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/24/2023] [Indexed: 07/29/2023] Open
Abstract
Some organisms in nature have developed the ability to enter a state of suspended metabolism called cryptobiosis when environmental conditions are unfavorable. This state-transition requires execution of a combination of genetic and biochemical pathways that enable the organism to survive for prolonged periods. Recently, nematode individuals have been reanimated from Siberian permafrost after remaining in cryptobiosis. Preliminary analysis indicates that these nematodes belong to the genera Panagrolaimus and Plectus. Here, we present precise radiocarbon dating indicating that the Panagrolaimus individuals have remained in cryptobiosis since the late Pleistocene (~46,000 years). Phylogenetic inference based on our genome assembly and a detailed morphological analysis demonstrate that they belong to an undescribed species, which we named Panagrolaimus kolymaensis. Comparative genome analysis revealed that the molecular toolkit for cryptobiosis in P. kolymaensis and in C. elegans is partly orthologous. We show that biochemical mechanisms employed by these two species to survive desiccation and freezing under laboratory conditions are similar. Our experimental evidence also reveals that C. elegans dauer larvae can remain viable for longer periods in suspended animation than previously reported. Altogether, our findings demonstrate that nematodes evolved mechanisms potentially allowing them to suspend life over geological time scales.
Collapse
Affiliation(s)
- Anastasia Shatilovich
- Institute of Physicochemical and Biological Problems in Soil Science RAS, Pushchino, Russia
- Zoological Institute RAS, St. Petersburg, Russia
| | - Vamshidhar R. Gade
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- Institute of Biochemistry, ETH Zürich, Zürich, Switzerland
| | | | | | - Alexei V. Tchesunov
- Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russia
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Sylke Winkler
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN concept Genome Center, Dresden, Germany
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sofia Traikov
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Hiller
- Center for Systems Biology, Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberg Society for Nature Research & Goethe University, Frankfurt am Main, Germany
| | - Elizaveta Rivkina
- Institute of Physicochemical and Biological Problems in Soil Science RAS, Pushchino, Russia
| | | | | | | |
Collapse
|
10
|
Waldrop MP, Chabot CL, Liebner S, Holm S, Snyder MW, Dillon M, Dudgeon SR, Douglas TA, Leewis MC, Walter Anthony KM, McFarland JW, Arp CD, Bondurant AC, Taş N, Mackelprang R. Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients. THE ISME JOURNAL 2023:10.1038/s41396-023-01429-6. [PMID: 37217592 DOI: 10.1038/s41396-023-01429-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25-50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variation. Permafrost is different from other soils. Perennially frozen conditions in permafrost dictate that microbial communities do not turn over quickly, thus possibly providing strong linkages to past environments. Thus, the factors structuring the composition and function of microbial communities may differ from patterns observed in other terrestrial environments. Here, we analyzed 133 permafrost metagenomes from North America, Europe, and Asia. Permafrost biodiversity and taxonomic distribution varied in relation to pH, latitude and soil depth. The distribution of genes differed by latitude, soil depth, age, and pH. Genes that were the most highly variable across all sites were associated with energy metabolism and C-assimilation. Specifically, methanogenesis, fermentation, nitrate reduction, and replenishment of citric acid cycle intermediates. This suggests that adaptations to energy acquisition and substrate availability are among some of the strongest selective pressures shaping permafrost microbial communities. The spatial variation in metabolic potential has primed communities for specific biogeochemical processes as soils thaw due to climate change, which could cause regional- to global- scale variation in C and nitrogen processing and greenhouse gas emissions.
Collapse
Affiliation(s)
- Mark P Waldrop
- Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, Menlo Park, CA, 94025, USA.
| | - Christopher L Chabot
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, 14476, Potsdam, Germany
| | - Stine Holm
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| | - Michael W Snyder
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Megan Dillon
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven R Dudgeon
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory 9th Avenue, Building 4070 Fort, Wainwright, AK, 99703, USA
| | - Mary-Cathrine Leewis
- Agriculture and Agri-Food Canada, 2560 Boulevard Hochelaga, Québec, QC, G1V 2J3, Canada
| | - Katey M Walter Anthony
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jack W McFarland
- Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, Menlo Park, CA, 94025, USA
| | - Christopher D Arp
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Allen C Bondurant
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rachel Mackelprang
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA.
| |
Collapse
|
11
|
Wu X, Almatari AL, Cyr WA, Williams DE, Pfiffner SM, Rivkina EM, Lloyd KG, Vishnivetskaya TA. Microbial life in 25-m-deep boreholes in ancient permafrost illuminated by metagenomics. ENVIRONMENTAL MICROBIOME 2023; 18:33. [PMID: 37055869 PMCID: PMC10103415 DOI: 10.1186/s40793-023-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
This study describes the composition and potential metabolic adaptation of microbial communities in northeastern Siberia, a repository of the oldest permafrost in the Northern Hemisphere. Samples of contrasting depth (1.75 to 25.1 m below surface), age (from ~ 10 kyr to 1.1 Myr) and salinity (from low 0.1-0.2 ppt and brackish 0.3-1.3 ppt to saline 6.1 ppt) were collected from freshwater permafrost (FP) of borehole AL1_15 on the Alazeya River, and coastal brackish permafrost (BP) overlying marine permafrost (MP) of borehole CH1_17 on the East Siberian Sea coast. To avoid the limited view provided with culturing work, we used 16S rRNA gene sequencing to show that the biodiversity decreased dramatically with permafrost age. Nonmetric multidimensional scaling (NMDS) analysis placed the samples into three groups: FP and BP together (10-100 kyr old), MP (105-120 kyr old), and FP (> 900 kyr old). Younger FP/BP deposits were distinguished by the presence of Acidobacteriota, Bacteroidota, Chloroflexota_A, and Gemmatimonadota, older FP deposits had a higher proportion of Gammaproteobacteria, and older MP deposits had much more uncultured groups within Asgardarchaeota, Crenarchaeota, Chloroflexota, Patescibacteria, and unassigned archaea. The 60 recovered metagenome-assembled genomes and un-binned metagenomic assemblies suggested that despite the large taxonomic differences between samples, they all had a wide range of taxa capable of fermentation coupled to nitrate utilization, with the exception of sulfur reduction present only in old MP deposits.
Collapse
Affiliation(s)
- Xiaofen Wu
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Abraham L Almatari
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Wyatt A Cyr
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Daniel E Williams
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA
| | - Elizaveta M Rivkina
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia, 142290
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tatiana A Vishnivetskaya
- Center for Environmental Biotechnology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996-1605, USA.
- Soil Cryology Laboratory, Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, Russia, 142290.
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
12
|
Tessler M, Cunningham SW, Ingala MR, Warring SD, Brugler MR. An Environmental DNA Primer for Microbial and Restoration Ecology. MICROBIAL ECOLOGY 2023; 85:796-808. [PMID: 36735064 DOI: 10.1007/s00248-022-02168-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/28/2022] [Indexed: 05/04/2023]
Abstract
Environmental DNA (eDNA) sequencing-DNA collected from the environment from living cells or shed DNA-was first developed for working with microbes and has greatly benefitted microbial ecologists for decades since. These tools have only become increasingly powerful with the advent of metabarcoding and metagenomics. Most new studies that examine diverse assemblages of bacteria, archaea, protists, fungi, and viruses lean heavily into eDNA using these newer technologies, as the necessary sequencing technology and bioinformatic tools have become increasingly affordable and user friendly. However, eDNA methods are rapidly evolving, and sometimes it can feel overwhelming to simply keep up with the basics. In this review, we provide a starting point for microbial ecologists who are new to DNA-based methods by detailing the eDNA methods that are most pertinent, including study design, sample collection and storage, selecting the right sequencing technology, lab protocols, equipment, and a few bioinformatic tools. Furthermore, we focus on how eDNA work can benefit restoration and what modifications are needed when working in this subfield.
Collapse
Affiliation(s)
- Michael Tessler
- Department of Biology, St. Francis College, Brooklyn, NY, USA.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA.
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA.
| | - Seth W Cunningham
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
- Department of Biological Sciences, Fordham University, Bronx, NY, 10458, USA
| | - Melissa R Ingala
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, 07940, USA
| | | | - Mercer R Brugler
- Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, 10024, USA
- Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC, 29902, USA
| |
Collapse
|
13
|
Sood U, Dhingra GG, Anand S, Hira P, Kumar R, Kaur J, Verma M, Singhvi N, Lal S, Rawat CD, Singh VK, Kaur J, Verma H, Tripathi C, Singh P, Dua A, Saxena A, Phartyal R, Jayaraj P, Makhija S, Gupta R, Sahni S, Nayyar N, Abraham JS, Somasundaram S, Lata P, Solanki R, Mahato NK, Prakash O, Bala K, Kumari R, Toteja R, Kalia VC, Lal R. Microbial Journey: Mount Everest to Mars. Indian J Microbiol 2022; 62:323-337. [PMID: 35974919 PMCID: PMC9375815 DOI: 10.1007/s12088-022-01029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/01/2022] [Indexed: 11/05/2022] Open
Abstract
A rigorous exploration of microbial diversity has revealed its presence on Earth, deep oceans, and vast space. The presence of microbial life in diverse environmental conditions, ranging from moderate to extreme temperature, pH, salinity, oxygen, radiations, and altitudes, has provided the necessary impetus to search for them by extending the limits of their habitats. Microbiology started as a distinct science in the mid-nineteenth century and has provided inputs for the betterment of mankind during the last 150 years. As beneficial microbes are assets and pathogens are detrimental, studying both have its own merits. Scientists are nowadays working on illustrating the microbial dynamics in Earth's subsurface, deep sea, and polar regions. In addition to studying the role of microbes in the environment, the microbe-host interactions in humans, animals and plants are also unearthing newer insights that can help us to improve the health of the host by modulating the microbiota. Microbes have the potential to remediate persistent organic pollutants. Antimicrobial resistance which is a serious concern can also be tackled only after monitoring the spread of resistant microbes using disciplines of genomics and metagenomics The cognizance of microbiology has reached the top of the world. Space Missions are now looking for signs of life on the planets (specifically Mars), the Moon and beyond them. Among the most potent pieces of evidence to support the existence of life is to look for microbial, plant, and animal fossils. There is also an urgent need to deliberate and communicate these findings to layman and policymakers that would help them to take an adequate decision for better health and the environment around us. Here, we present a glimpse of recent advancements by scientists from around the world, exploring and exploiting microbial diversity.
Collapse
Affiliation(s)
- Utkarsh Sood
- The Energy and Resources Institute, New Delhi, India
| | | | - Shailly Anand
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Princy Hira
- Maitreyi College, University of Delhi, New Delhi, India
| | - Roshan Kumar
- Post-Graduate Department of Zoology, Magadh University, Bodh Gaya, Bihar India
| | | | - Mansi Verma
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | - Sukanya Lal
- Ramjas College, University of Delhi, Delhi, India
| | | | | | - Jaspreet Kaur
- Maitreyi College, University of Delhi, New Delhi, India
| | | | | | - Priya Singh
- Maitreyi College, University of Delhi, New Delhi, India
| | - Ankita Dua
- Shivaji College, University of Delhi, New Delhi, India
| | - Anjali Saxena
- Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | | | - Perumal Jayaraj
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Renu Gupta
- Maitreyi College, University of Delhi, New Delhi, India
| | - Sumit Sahni
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | - Namita Nayyar
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | | | - Pushp Lata
- Ramjas College, University of Delhi, Delhi, India
| | - Renu Solanki
- Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Nitish Kumar Mahato
- University Department of Zoology, Kolhan University, Chaibasa, Jharkhand India
| | - Om Prakash
- National Centre for Cell Sciences, Pune, Maharashtra India
| | - Kiran Bala
- Deshbandhu College, University of Delhi, New Delhi, India
| | - Rashmi Kumari
- College of Commerce, Arts and Science, Patliputra University, Patna, Bihar India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| | | | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
14
|
Ye M, Zhang Z, Sun M, Shi Y. Dynamics, gene transfer, and ecological function of intracellular and extracellular DNA in environmental microbiome. IMETA 2022; 1:e34. [PMID: 38868707 PMCID: PMC10989830 DOI: 10.1002/imt2.34] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 06/14/2024]
Abstract
Extracellular DNA (eDNA) and intracellular DNA (iDNA) extensively exist in both terrestrial and aquatic environment systems and have been found to play a significant role in the nutrient cycling and genetic information transmission between the environment and microorganisms. As inert DNA sequences, eDNA is able to present stability in the environment from the ribosome enzyme lysis, therein acting as the historical genetic information archive of the microbiome. As a consequence, both eDNA and iDNA can shed light on the functional gene variety and the corresponding microbial activity. In addition, eDNA is a ubiquitous composition of the cell membrane, which exerts a great impact on the resistance of outer stress from environmental pollutants, such as heavy metals, antibiotics, pesticides, and so on. This study focuses on the environmental dynamics and the ecological functions of the eDNA and iDNA from the perspectives of environmental behavior, genetic information transmission, resistance to the environmental contaminants, and so on. By reviewing the status quo and the future vista of the e/iDNAs research, this article sheds light on exploring the ecological functioning of the e/iDNAs in the environmental microbiome.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
15
|
A Critical Assessment of the Congruency between Environmental DNA and Palaeoecology for the Biodiversity Monitoring and Palaeoenvironmental Reconstruction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159445. [PMID: 35954801 PMCID: PMC9368151 DOI: 10.3390/ijerph19159445] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023]
Abstract
The present study suggests that standardized methodology, careful site selection, and stratigraphy are essential for investigating ancient ecosystems in order to evaluate biodiversity and DNA-based time series. Based on specific keywords, this investigation reviewed 146 publications using the SCOPUS, Web of Science (WoS), PUBMED, and Google Scholar databases. Results indicate that environmental deoxyribose nucleic acid (eDNA) can be pivotal for assessing and conserving ecosystems. Our review revealed that in the last 12 years (January 2008–July 2021), 63% of the studies based on eDNA have been reported from aquatic ecosystems, 25% from marine habitats, and 12% from terrestrial environments. Out of studies conducted in aquatic systems using the environmental DNA (eDNA) technique, 63% of the investigations have been reported from freshwater ecosystems, with an utmost focus on fish diversity (40%). Further analysis of the literature reveals that during the same period, 24% of the investigations using the environmental DNA technique were carried out on invertebrates, 8% on mammals, 7% on plants, 6% on reptiles, and 5% on birds. The results obtained clearly indicate that the environmental DNA technique has a clear-cut edge over other biodiversity monitoring methods. Furthermore, we also found that eDNA, in conjunction with different dating techniques, can provide better insight into deciphering eco-evolutionary feedback. Therefore, an attempt has been made to offer extensive information on the application of dating methods for different taxa present in diverse ecosystems. Last, we provide suggestions and elucidations on how to overcome the caveats and delineate some of the research avenues that will likely shape this field in the near future. This paper aims to identify the gaps in environmental DNA (eDNA) investigations to help researchers, ecologists, and decision-makers to develop a holistic understanding of environmental DNA (eDNA) and its utility as a palaeoenvironmental contrivance.
Collapse
|
16
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
17
|
Beale DJ, Jones OA, Bose U, Broadbent JA, Walsh TK, van de Kamp J, Bissett A. Omics-based ecosurveillance for the assessment of ecosystem function, health, and resilience. Emerg Top Life Sci 2022; 6:185-199. [PMID: 35403668 PMCID: PMC9023019 DOI: 10.1042/etls20210261] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022]
Abstract
Current environmental monitoring efforts often focus on known, regulated contaminants ignoring the potential effects of unmeasured compounds and/or environmental factors. These specific, targeted approaches lack broader environmental information and understanding, hindering effective environmental management and policy. Switching to comprehensive, untargeted monitoring of contaminants, organism health, and environmental factors, such as nutrients, temperature, and pH, would provide more effective monitoring with a likely concomitant increase in environmental health. However, even this method would not capture subtle biochemical changes in organisms induced by chronic toxicant exposure. Ecosurveillance is the systematic collection, analysis, and interpretation of ecosystem health-related data that can address this knowledge gap and provide much-needed additional lines of evidence to environmental monitoring programs. Its use would therefore be of great benefit to environmental management and assessment. Unfortunately, the science of 'ecosurveillance', especially omics-based ecosurveillance is not well known. Here, we give an overview of this emerging area and show how it has been beneficially applied in a range of systems. We anticipate this review to be a starting point for further efforts to improve environmental monitoring via the integration of comprehensive chemical assessments and molecular biology-based approaches. Bringing multiple levels of omics technology-based assessment together into a systems-wide ecosurveillance approach will bring a greater understanding of the environment, particularly the microbial communities upon which we ultimately rely to remediate perturbed ecosystems.
Collapse
Affiliation(s)
- David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park QLD 4102, Australia
| | - Oliver A.H. Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, Bundoora West Campus, PO Box 71, Bundoora, VIC 3083, Australia
| | - Utpal Bose
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - James A. Broadbent
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Queensland Bioscience Precinct, St Lucia, QLD 4067, Australia
| | - Thomas K. Walsh
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia
| | - Jodie van de Kamp
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| |
Collapse
|
18
|
Abstract
Water is the cellular milieu, drives all biochemistry within Earth's biosphere and facilitates microbe-mediated decay processes. Instead of reviewing these topics, the current article focuses on the activities of water as a preservative-its capacity to maintain the long-term integrity and viability of microbial cells-and identifies the mechanisms by which this occurs. Water provides for, and maintains, cellular structures; buffers against thermodynamic extremes, at various scales; can mitigate events that are traumatic to the cell membrane, such as desiccation-rehydration, freeze-thawing and thermal shock; prevents microbial dehydration that can otherwise exacerbate oxidative damage; mitigates against biocidal factors (in some circumstances reducing ultraviolet radiation and diluting solute stressors or toxic substances); and is effective at electrostatic screening so prevents damage to the cell by the intense electrostatic fields of some ions. In addition, the water retained in desiccated cells (historically referred to as 'bound' water) plays key roles in biomacromolecular structures and their interactions even for fully hydrated cells. Assuming that the components of the cell membrane are chemically stable or at least repairable, and the environment is fairly constant, water molecules can apparently maintain membrane geometries over very long periods provided these configurations represent thermodynamically stable states. The spores and vegetative cells of many microbes survive longer in the presence of vapour-phase water (at moderate-to-high relative humidities) than under more-arid conditions. There are several mechanisms by which large bodies of water, when cooled during subzero weather conditions remain in a liquid state thus preventing potentially dangerous (freeze-thaw) transitions for their microbiome. Microbial life can be preserved in pure water, freshwater systems, seawater, brines, ice/permafrost, sugar-rich aqueous milieux and vapour-phase water according to laboratory-based studies carried out over periods of years to decades and some natural environments that have yielded cells that are apparently thousands, or even (for hypersaline fluid inclusions of mineralized NaCl) hundreds of millions, of years old. The term preservative has often been restricted to those substances used to extend the shelf life of foods (e.g. sodium benzoate, nitrites and sulphites) or those used to conserve dead organisms, such as ethanol or formaldehyde. For living microorganisms however, the ultimate preservative may actually be water. Implications of this role are discussed with reference to the ecology of halophiles, human pathogens and other microbes; food science; biotechnology; biosignatures for life and other aspects of astrobiology; and the large-scale release/reactivation of preserved microbes caused by global climate change.
Collapse
Affiliation(s)
- John E. Hallsworth
- Institute for Global Food SecuritySchool of Biological SciencesQueen’s University Belfast19 Chlorine GardensBelfastBT9 5DLUK
| |
Collapse
|
19
|
Global Analysis of Transcriptome and Translatome Revealed That Coordinated WNT and FGF Regulate the Carapacial Ridge Development of Chinese Soft-Shell Turtle. Int J Mol Sci 2021; 22:ijms222212441. [PMID: 34830331 PMCID: PMC8621500 DOI: 10.3390/ijms222212441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The turtle carapace is composed of severely deformed fused dorsal vertebrae, ribs, and bone plates. In particular, the lateral growth in the superficial layer of turtle ribs in the dorsal trunk causes an encapsulation of the scapula and pelvis. The recent study suggested that the carapacial ridge (CR) is a new model of epithelial–mesenchymal transition which is essential for the arrangement of the ribs. Therefore, it is necessary to explore the regulatory mechanism of carapacial ridge development to analyze the formation of the turtle shell. However, the current understanding of the regulatory network underlying turtle carapacial ridge development is poor due to the lack of both systematic gene screening at different carapacial ridge development stages and gene function verification studies. In this study, we obtained genome-wide gene transcription and gene translation profiles using RNA sequencing and ribosome nascent-chain complex mRNA sequencing from carapacial ridge tissues of Chinese soft-shell turtle at different development stages. A correlation analysis of the transcriptome and translatome revealed that there were 129, 670, and 135 codifferentially expressed genes, including homodirection and opposite-direction differentially expressed genes, among three comparison groups, respectively. The pathway enrichment analysis of codifferentially expressed genes from the Kyoto Encyclopedia of Genes and Genomes showed dynamic changes in signaling pathways involved in carapacial ridge development. Especially, the results revealed that the Wnt signaling pathway and MAPK signaling pathway may play important roles in turtle carapacial ridge development. In addition, Wnt and Fgf were expressed during the carapacial ridge development. Furthermore, we discovered that Wnt5a regulated carapacial ridge development through the Wnt5a/JNK pathway. Therefore, our studies uncover that the morphogenesis of the turtle carapace might function through the co-operation between conserved WNT and FGF signaling pathways. Consequently, our findings revealed the dynamic signaling pathways acting on the carapacial ridge development of Chinese soft-shell turtle and provided new insights into uncover the molecular mechanism underlying turtle shell morphogenesis.
Collapse
|