1
|
Yu H, Nie Y, Zhang B, Xue J, Xue K, Huang X, Zhang X. Creatine supplementation in largemouth bass (Micropterus salmoides) diets: Improving intestinal health and alleviating enteritis. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110164. [PMID: 39894092 DOI: 10.1016/j.fsi.2025.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Creatine plays an important role in regulating intestinal epithelial cell energy metabolism, epithelial integrity, and intestinal barrier function. In this study, three feeds with varying creatine concentrations (0 %, 0.5 %, and 4 %, labeled CR0, CR0.5, and CR4, respectively) were formulated and administered to juvenile largemouth bass (Micropterus salmoides) for 8 weeks. Creatine-containing diets significantly improved growth performance and intestinal villus height. Microbiota analysis revealed that creatine-containing diets changed the beta diversity of gut microbes and increased the relative proportion of Cetobacterium. Enteritis was induced for 7 days using the corresponding feeds containing creatine and 2 % DSS (labeled CR0, DCR0, DCR0.5, and DCR4). Enteritis resulted in an increase in hif1α expression in the DCR0.5 and DCR4 groups and a significant increase expression of creatine transporter SLC6A8. QPCR and Western blotting of intestinal barrier-related genes (e.g., Claudin1, Claudin4, and ZO1), MUC2 immunohistochemistry, and PAS mucus staining were used to show intestinal barrier status, these results suggest that dietary creatine attenuates the extent of intestinal barrier damage. After TUNEL and KI67 immunofluorescence analyses of the intestine and detection of the expression of relevant genes at the protein and transcript levels, the results showed that dietary addition of creatine significantly alleviated intestinal apoptosis and cellular inflammatory responses due to DSS-induced enteritis. These findings indicate long-term dietary supplementation with creatine modulated the microbial composition of the intestinal lumen of juvenile largemouth bass, promoted intestinal health, and improved anti-inflammatory properties following enteritis induction. This study provides a theoretical foundation for largemouth bass feed formulation optimization and fish enteritis control.
Collapse
Affiliation(s)
- Haodong Yu
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yukang Nie
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Boran Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jiajie Xue
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Kun Xue
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xixuan Huang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China; Hubei Hongshan Laboratory, Wuhan, 430070, China; Research Institute of Huanong-Tianchen, Wuhan, 430070, China.
| |
Collapse
|
2
|
Boteanu RM, Suica VI, Uyy E, Ivan L, Uta DV, Mares RG, Simionescu M, Schiopu A, Antohe F. Cardiac ATP production and contractility are favorably regulated by short-term S100A9 blockade after myocardial infarction. J Adv Res 2025:S2090-1232(25)00061-X. [PMID: 39870300 DOI: 10.1016/j.jare.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/20/2024] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION The infarcted heart is energetically compromised exhibiting a deficient production of adenosine triphosphate (ATP) and the ensuing impaired contractile function. Short-term blockade of the protein S100A9 improves cardiac performance in mice after myocardial infarction (MI). The implications upon ATP production during this process are not known. OBJECTIVES This study evaluates whether S100A9 blockade effects ATP synthesis and cardiac contractility in C57BL/6 mice at seven days post-MI. METHODS Three experimental groups were used: (i) mice with MI, induced by permanent left coronary ligation, (ii) mice with MI, short-term treated with the S100A9 blocker ABR-238901, and (iii) sham (control) mice. After removing the left ventricle, mass spectrometry, pathway enrichment analysis, Western blot, RT-PCR and pharmacological network analysis were performed. RESULTS A number of 600 differentially abundant proteins (DAPs) was significantly altered by the S100A9 blocker in MI-treated mice compared with MI mice. Some of these proteins were associated with oxidative phosphorylation, citrate cycle (TCA), mitochondrial fatty acid beta-oxidation, glycolysis and cardiac muscle contraction pathways. In the ischemic ventricle, ABR-238901 treatment increased (1.8- to 38-fold) the abundance of proteins NDUFAB1, UQCRC1, HADHA, ACAA2, ALDOA, PKM1, DLD, DLAT, PDHX, ACO2, IDH3A, FH1, CKM, CKMT2, TNNC1, crucial for early cellular metabolic changes, ATP distribution and contractility. The cardiac level of ATP increased (1.8-fold, p < 0.05) in MI mice treated with ABR-238901 compared to MI mice. The network pharmacology analysis uncovered potential pharmacologic targets of ABR-238901 that may interact with DAPs related to ATP production and contractility. CONCLUSION Short-term S100A9 blockade effectively regulates the proteins implicated in ATP production and cardiac contractility post-MI, providing a framework for future cardiac energy metabolism studies.
Collapse
Affiliation(s)
- Raluca M Boteanu
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Viorel I Suica
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Elena Uyy
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Luminita Ivan
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Diana V Uta
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Razvan G Mares
- Department of Pathophysiology, University of Medicine Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
| | - Maya Simionescu
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Alexandru Schiopu
- Department of Pathophysiology, University of Medicine Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania; Department of Clinical Sciences Malmö, Lund University, Sweden
| | - Felicia Antohe
- Proteomics Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| |
Collapse
|
3
|
Grzelak N, Kaczmarek D, Poziemba KM, Mrówczyński W. Myocardial Disorders in BDNF-Deficient Rats: Limited Recovery Post-Moderate Endurance Training. Diabetes Metab Syndr Obes 2024; 17:4649-4660. [PMID: 39654953 PMCID: PMC11626974 DOI: 10.2147/dmso.s486807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The study aimed to determine whether heterozygous BDNF-deficient (BDNF-knockout, SD-BDNF) rats exhibit pathological changes in the myocardium and to assess whether a 5-week moderate-intensity endurance training program can reverse adverse changes in the heart muscle. Methods Experiments were conducted on four groups of rats: control wild-type, control BDNF knockout, trained wild-type and trained BDNF knockout. Knockout rats were selected due to the presence of symptoms resembling metabolic syndrome in serum and liver while 5-week moderate endurance training was used as an intervention targeted at restoring heart function. Measurements of BDNF/Trk-B concentrations and molecules levels and activities, such as cardiac specific enzymes like creatine kinase and creatine kinase myocardial band, lipids as total cholesterol, low-density lipoprotein and triglycerides, metabolic enzymes including alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase and lactate dehydrogenase and interleukin-1 were carried out in myocardium homogenates. Results In BDNF-deficient rats, the myocardium showed significantly reduced lipid concentrations, decreased metabolic and cardiac enzyme activity, and elevated Trk-B levels, all of which are indicative of myocardial ischemia or hypoxia. These changes in critical biomarkers were consistent with those earlier observed in the livers of BDNF-deficient rats, suggesting a link between the liver and cardiac function. Moderate endurance training led to an increase in creatine kinase activity in the myocardium of trained rats, suggesting increased production and utilization of energy required for myocardial contraction in trained wild-type and knockout populations of rats. Discussion BDNF-deficient rats exhibited numerous myocardial abnormalities, most of which were not reversible after moderate-intensity endurance training. These findings provide a basis for a deeper understanding of the mechanisms underlying myocardial disorders in BDNF-deficient rats, which appear to be a suitable model for studying various aspects of metabolic disorders.
Collapse
Affiliation(s)
- Norbert Grzelak
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Dominik Kaczmarek
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | - Krystian Marek Poziemba
- Department of Physiology and Biochemistry, Poznań University of Physical Education, Poznań, Poland
| | | |
Collapse
|
4
|
Bian T, Lynch A, Ballas K, Mamallapalli J, Freeman B, Scala A, Wang Y, Traboulsi H, Chellian RK, Fagan A, Tang Z, Ding H, De U, Fredenburg KM, Huo Z, Baglole CJ, Zhang W, Reznikov LR, Bruijnzeel AW, Xing C. Flavokavains A- and B-Free Kava Enhances Resilience against the Adverse Health Effects of Tobacco Smoke in Mice. ACS Pharmacol Transl Sci 2024; 7:3502-3517. [PMID: 39539272 PMCID: PMC11555507 DOI: 10.1021/acsptsci.4c00415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/18/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Tobacco smoke remains a serious global issue, resulting in serious health complications, contributing to the onset of numerous preventive diseases and imposing significant health burdens. Despite regulatory policies and cessation measures aimed at curbing its usage, novel interventions are urgently needed for effective damage reduction. Our preclinical and pilot clinical studies showed that AB-free kava has the potential to reduce tobacco-smoking-induced lung cancer risk, mitigate tobacco dependence, and reduce tobacco use. To understand the scope of its benefits in damage reduction and potential limitations, this study evaluated the effects of AB-free kava on a panel of health indicators in mice exposed to 2-4 weeks of daily tobacco smoke exposure. Our assessments included global transcriptional profiling of the lung and liver tissues, analysis of lung inflammation, evaluation of lung function, exploration of tobacco nicotine withdrawal, and characterization of the causal protein kinase A (PKA) signaling pathway. As expected, tobacco smoke exposure perturbed a wide range of biological processes and compromised multiple functions in mice. Remarkably, AB-free kava demonstrated the ability to globally mitigate tobacco smoke-induced deficits at the molecular and functional levels with promising safety profiles, offering AB-free kava unique promise to mitigate tobacco smoke-related health damages. Further preclinical evaluations are warranted to fully harness the potential of AB-free kava in combating tobacco smoke-related harms in the preparation of its clinical translation.
Collapse
Affiliation(s)
- Tengfei Bian
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Allison Lynch
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Kayleigh Ballas
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Jessica Mamallapalli
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Breanne Freeman
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Alexander Scala
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Yifan Wang
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Hussein Traboulsi
- Division
of Experimental Medicine, Research Institute
of the McGill University Health Center (RI-MUHC), 1001 Decarie Boulevard, Montreal, Qc H4A3J1, Canada
| | - Ranjith kumar Chellian
- Department
of Psychiatry, College of Medicine, University
of Florida, Gainesville, Florida 32610, United States
| | - Amy Fagan
- Department
of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Zhixin Tang
- Department
of Biostatistics, College of Public Health and Health Professionals
& College of Medicine, University of
Florida, Gainesville, Florida 32610, United States
| | - Haocheng Ding
- Department
of Biostatistics, College of Public Health and Health Professionals
& College of Medicine, University of
Florida, Gainesville, Florida 32610, United States
| | - Umasankar De
- Department
of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Kristianna M. Fredenburg
- Department
of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Zhiguang Huo
- Department
of Biostatistics, College of Public Health and Health Professionals
& College of Medicine, University of
Florida, Gainesville, Florida 32610, United States
| | - Carolyn J. Baglole
- Division
of Experimental Medicine, Research Institute
of the McGill University Health Center (RI-MUHC), 1001 Decarie Boulevard, Montreal, Qc H4A3J1, Canada
| | - Weizhou Zhang
- Department
of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Leah R. Reznikov
- Department
of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Adriaan W. Bruijnzeel
- Department
of Psychiatry, College of Medicine, University
of Florida, Gainesville, Florida 32610, United States
| | - Chengguo Xing
- Department
of Medicinal Chemistry, Center for Natural Products, Drug Discovery
and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Das S, Preethi B, Kushwaha S, Shrivastava R. Therapeutic strategies to modulate gut microbial health: Approaches for sarcopenia management. Histol Histopathol 2024; 39:1395-1425. [PMID: 38497338 DOI: 10.14670/hh-18-730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Sarcopenia is a progressive and generalized loss of skeletal muscle and functions associated with ageing with currently no definitive treatment. Alterations in gut microbial composition have emerged as a significant contributor to the pathophysiology of multiple diseases. Recently, its association with muscle health has pointed to its potential role in mediating sarcopenia. The current review focuses on the association of gut microbiota and mediators of muscle health, connecting the dots between the influence of gut microbiota and their metabolites on biomarkers of sarcopenia. It further delineates the mechanism by which the gut microbiota affects muscle health with progressing age, aiding the formulation of a multi-modal treatment plan involving nutritional supplements and pharmacological interventions along with lifestyle changes compiled in the review. Nutritional supplements containing proteins, vitamin D, omega-3 fatty acids, creatine, curcumin, kefir, and ursolic acid positively impact the gut microbiome. Dietary fibres foster a conducive environment for the growth of beneficial microbes such as Bifidobacterium, Faecalibacterium, Ruminococcus, and Lactobacillus. Probiotics and prebiotics act by protecting against reactive oxygen species (ROS) and inflammatory cytokines. They also increase the production of gut microbiota metabolites like short-chain fatty acids (SCFAs), which aid in improving muscle health. Foods rich in polyphenols are anti-inflammatory and have an antioxidant effect, contributing to a healthier gut. Pharmacological interventions like faecal microbiota transplantation (FMT), non-steroidal anti-inflammatory drugs (NSAIDs), ghrelin mimetics, angiotensin-converting enzyme inhibitors (ACEIs), and butyrate precursors lead to the production of anti-inflammatory fatty acids and regulate appetite, gut motility, and microbial impact on gut health. Further research is warranted to deepen our understanding of the interaction between gut microbiota and muscle health for developing therapeutic strategies for ameliorating sarcopenic muscle loss.
Collapse
Affiliation(s)
- Shreya Das
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - B Preethi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, India.
| | - Richa Shrivastava
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, Rajasthan, India.
| |
Collapse
|
6
|
Kalbas Y, Kumabe Y, Karl-Ludwig F, Halvachizadeh S, Teuben MPJ, Weisskopf M, Cesarovic N, Hülsmeier AJ, Märsmann S, Hierholzer C, Hildebrand F, Hornemann T, Pfeifer R, Cinelli P, Pape HC. Systemic acylcarnitine levels are affected in response to multiple injuries and hemorrhagic shock: An analysis of lipidomic changes in a standardized porcine model. J Trauma Acute Care Surg 2024; 97:248-257. [PMID: 38556639 DOI: 10.1097/ta.0000000000004328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Along with recent advances in analytical technologies, tricarboxylic acid-cycle intermediates are increasingly identified as promising makers for cellular ischemia and mitochondrial dysfunction during hemorrhagic shock. For traumatized patients, the knowledge of the role of lipid oxidation substrates is sparse. In this study, we aimed to analyze the dynamics of systemic acylcarnitine (AcCa) release in a standardized polytrauma model with hemorrhagic shock. METHODS Fifty-two male pigs (50 ± 5 kg) were randomized into two groups: group isolated fracture was subject to a standardized femur shaft fracture, and group polytrauma was subject to a femur fracture, followed by blunt chest trauma, liver laceration, and a pressure-controlled hemorrhagic shock for 60 minutes. Resuscitation was performed with crystalloids. Fractures were stabilized by intramedullary nailing. Venous samples were collected at six time points (baseline, trauma, resuscitation, 2 hours, 4 hours, and 6 hours). Lipidomic analysis was performed via liquid chromatography coupled mass spectrometry. Measurements were collated with clinical markers and near-infrared spectrometry measurements of tissue perfusion. Longitudinal analyses were performed with linear mixed models, and Spearman's correlations were calculated. A p value of 0.05 was defined as threshold for statistical significance. RESULTS From a total of 303 distinct lipids, we identified two species of long-chain AcCas. Both showed a highly significant ( p < 0.001) twofold increase after hemorrhagic shock in group polytrauma that promptly normalized after resuscitation. This increase was associated with a significant decrease of the base excess ( p = 0.005), but recovery after resuscitation was faster. For both AcCas, there were significant correlations with decreased muscle tissue oxygen delivery ( p = 0.008, p = 0.003) and significant time-lagged correlations with the increase of creatine kinase ( p < 0.001, p < 0.001). CONCLUSION Our results point to plasma AcCas as a possible indicator for mitochondrial dysfunction and cellular ischemia in hemorrhagic shock. The more rapid normalization after resuscitation in comparison with acid base changes may warrant further investigation.
Collapse
Affiliation(s)
- Yannik Kalbas
- From the Department of Trauma Surgery (Y. Kalbas, F.K.-L., S.H., M.P.J.T., R.P., P.C., H.-C.P.), University Hospital Zurich, Harald-Tscherne Laboratory for Orthopaedic and Trauma Research (Y. Kalbas, Y. Kumabe, F.K.-L., S.H., M.P.J.T., S.M., C.H., R.P., P.C., H.-C.P.), Center for Preclinical Development (M.W.), University Hospital of Zurich, University of Zurich; Department of Health Sciences and Technology (N.C.), Swiss Federal Institute of Technology; Institute of Clinical Chemistry (A.J.H., T.H.), University Hospital Zurich, University of Zurich, Zurich, Switzerland; and Department of Orthopaedic Trauma and Reconstructive Surgery (F.H.), University Hospital RWTH, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Li J, Farrow M, Ibrahim K, McTigue DM, Kramer J, Tong B, Jutzeler C, Jones L, Yarar-Fisher C. Racial differences in serological markers across the first year of injury in spinal cord injury: a retrospective analysis of a multi-center interventional study. Spinal Cord 2024; 62:486-494. [PMID: 38961159 PMCID: PMC11300300 DOI: 10.1038/s41393-024-00998-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
STUDY DESIGN Secondary analysis of a randomized, multi-center, placebo-controlled study(Sygen®). OBJECTIVES To evaluate racial differences in serological markers in individuals with spinal cord injury(SCI) across the first year of injury. SETTING Hospitals in North America. METHODS Serological markers (e.g.,cell count, liver, kidney, and pancreatic function, metabolism, and muscle damage) were assessed among 316 participants (247 White, 69 Black) at admission, weeks 1, 2, 4, 8, and 52 post-injury. Linear mixed models were employed to explore the main effects of time, race (Black vs. White), and their interaction, with adjustment of covariates such as study center, polytrauma, injury (level, completeness), treatment group, and sex. RESULTS A main effect of race was observed where White individuals had higher alanine transaminase, blood urea nitrogen(BUN), BUN/Creatinine ratio, sodium, and chloride, while Black individuals had higher calcium, total serum protein, and platelets. For markers with interaction effects, post-hoc comparisons showed that at week 52, White individuals had higher mature neutrophils, hematocrit, hemoglobin, mean corpuscular hemoglobin, albumin, and triglycerides, and Black individuals had higher amylase. Eosinophils, monocytes, red blood cells, aspartate aminotransferase, bilirubin, cholesterol, partial thromboplastin time, urine specific gravity, urine pH, CO2, and inorganic phosphorus did not differ between races. CONCLUSIONS Our results revealed racial differences in serological markers and underscores the importance of considering race as a determinant of physiological responses. Future studies are warranted to explore the causes and implications of these racial disparities to facilitate tailored clinical management and social policy changes that can improve health equity.
Collapse
Affiliation(s)
- Jia Li
- College of Medicine, Department of Physical Medicine & Rehabilitation, The Ohio State University, Columbus, OH, USA.
| | - Matthew Farrow
- College of Medicine, Department of Physical Medicine & Rehabilitation, The Ohio State University, Columbus, OH, USA
| | - Kerollos Ibrahim
- College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Dana M McTigue
- College of Medicine - Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - John Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Bobo Tong
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Catherine Jutzeler
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Linda Jones
- Department of Physical Therapy, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ceren Yarar-Fisher
- College of Medicine, Department of Physical Medicine & Rehabilitation, The Ohio State University, Columbus, OH, USA
- College of Medicine - Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
8
|
Rojas-Torres M, Beltrán-Camacho L, Martínez-Val A, Sánchez-Gomar I, Eslava-Alcón S, Rosal-Vela A, Jiménez-Palomares M, Doiz-Artázcoz E, Martínez-Torija M, Moreno-Luna R, Olsen JV, Duran-Ruiz MC. Unraveling the differential mechanisms of revascularization promoted by MSCs & ECFCs from adipose tissue or umbilical cord in a murine model of critical limb-threatening ischemia. J Biomed Sci 2024; 31:71. [PMID: 39004727 PMCID: PMC11247736 DOI: 10.1186/s12929-024-01059-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Critical limb-threatening ischemia (CLTI) constitutes the most severe manifestation of peripheral artery disease, usually induced by atherosclerosis. CLTI patients suffer from high risk of amputation of the lower extremities and elevated mortality rates, while they have low options for surgical revascularization due to associated comorbidities. Alternatively, cell-based therapeutic strategies represent an effective and safe approach to promote revascularization. However, the variability seen in several factors such as cell combinations or doses applied, have limited their success in clinical trials, being necessary to reach a consensus regarding the optimal "cellular-cocktail" prior further application into the clinic. To achieve so, it is essential to understand the mechanisms by which these cells exert their regenerative properties. Herein, we have evaluated, for the first time, the regenerative and vasculogenic potential of a combination of endothelial colony forming cells (ECFCs) and mesenchymal stem cells (MSCs) isolated from adipose-tissue (AT), compared with ECFCs from umbilical cord blood (CB-ECFCs) and AT-MSCs, in a murine model of CLTI. METHODS Balb-c nude mice (n:32) were distributed in four different groups (n:8/group): control shams, and ischemic mice (after femoral ligation) that received 50 µl of physiological serum alone or a cellular combination of AT-MSCs with either CB-ECFCs or AT-ECFCs. Follow-up of blood flow reperfusion and ischemic symptoms was carried out for 21 days, when mice were sacrificed to evaluate vascular density formation. Moreover, the long-term molecular changes in response to CLTI and both cell combinations were analyzed in a proteomic quantitative approach. RESULTS AT-MSCs with either AT- or CB-ECFCs, promoted a significant recovery of blood flow in CLTI mice 21 days post-ischemia. Besides, they modulated the inflammatory and necrotic related processes, although the CB group presented the slowest ischemic progression along the assay. Moreover, many proteins involved in the repairing mechanisms promoted by cell treatments were identified. CONCLUSIONS The combination of AT-MSCs with AT-ECFCs or with CB-ECFCs promoted similar revascularization in CLTI mice, by restoring blood flow levels, together with the modulation of the inflammatory and necrotic processes, and reduction of muscle damage. The protein changes identified are representative of the molecular mechanisms involved in ECFCs and MSCs-induced revascularization (immune response, vascular repair, muscle regeneration, etc.).
Collapse
Affiliation(s)
- Marta Rojas-Torres
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Lucía Beltrán-Camacho
- Cell Biology, Physiology and Immunology Department, University of Cordoba, Cordoba, 14004, Spain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, 14004, Spain
| | - Ana Martínez-Val
- National Center of Cardiovascular Research Carlos III (CNIC), Madrid, 28029, Spain
| | - Ismael Sánchez-Gomar
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Sara Eslava-Alcón
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Antonio Rosal-Vela
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Margarita Jiménez-Palomares
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain
| | - Esther Doiz-Artázcoz
- Angiology & Vascular Surgery Unit, Hospital Universitario Puerta del Mar, Cadiz, Spain
| | - Mario Martínez-Torija
- Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos (SESCAM), Toledo, 45071, Spain
- Nursing department, Hospital Universitario de Toledo (SESCAM), Toledo, 45071, Spain
| | - Rafael Moreno-Luna
- Pathophysiology and Regenerative Medicine Group, Hospital Nacional de Parapléjicos (SESCAM), Toledo, 45071, Spain.
- Cooperative Research Network Orientated to Health Results, Vascular Brain Diseases, RICORS-ICTUS, SESCAM, Toledo, Spain.
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Ma Carmen Duran-Ruiz
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cadiz, 11002, Spain.
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Cadiz, 11002, Spain.
- Biomedicine, Biotechnology and Public Health Department, Science Faculty, Cádiz University. Torre Sur. Avda. República Saharaui S/N, Polígono Río San Pedro, Puerto Real, Cádiz, 11519, Spain.
| |
Collapse
|
9
|
Abreu MAD, de Castro PASV, Moreira FRC, de Oliveira Ferreira H, Simões E Silva AC. Potential Role of Novel Cardiovascular Biomarkers in Pediatric Patients with Chronic Kidney Disease. Mini Rev Med Chem 2024; 24:491-506. [PMID: 37231748 DOI: 10.2174/1389557523666230523114331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/15/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Cardiovascular Disease is the leading cause of death in adult and pediatric patients with Chronic Kidney Disease (CKD) and its pathogenesis involves the interaction of multiple pathways. As Inflammatory mechanisms play a critical role in the vascular disease of CKD pediatric patients, there are several biomarkers related to inflammation strongly associated with this comorbidity. OBJECTIVE This review provides available evidence on the link between several biomarkers and the pathophysiology of heart disease in patients with CKD. METHODS The data were obtained independently by the authors, who carried out a comprehensive and non-systematic search in PubMed, Cochrane, Scopus, and SciELO databases. The search terms were "Chronic Kidney Disease", "Cardiovascular Disease", "Pediatrics", "Pathophysiology", "Mineral and Bone Disorder (MBD)", "Renin Angiotensin System (RAS)", "Biomarkers", "BNP", "NTproBNP", "CK-MB", "CXCL6", "CXCL16", "Endocan-1 (ESM-1)", "FABP3", "FABP4", h-FABP", "Oncostatin- M (OSM)", "Placental Growth Factor (PlGF)" and "Troponin I". RESULTS The pathogenesis of CKD-mediated cardiovascular disease is linked to inflammatory biomarkers, which play a critical role in the initiation, maintenance, and progression of cardiovascular disease. There are several biomarkers associated with cardiovascular disease in pediatric patients, including BNP, NTproBNP, CK-MB, CXCL6, CXCL16, Endocan-1 (ESM-1), FABP3, FABP4, Oncostatin- M (OSM), Placental Growth Factor (PlGF), and Troponin I. CONCLUSION The pathogenesis of CKD-mediated cardiovascular disease is not completely understood, but it is linked to inflammatory biomarkers. Further studies are required to elucidate the pathophysiological and potential role of these novel biomarkers.
Collapse
Affiliation(s)
- Maria Augusta Duarte Abreu
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Alves Soares Vaz de Castro
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Rocha Chaves Moreira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Henrique de Oliveira Ferreira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- Department of Pediatric Unit of Pediatric Nephrology, Faculty of Medicine UFMG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Allebrandt Neto EW, Rondon E Silva J, Santos SF, de França Lemes SA, Kawashita NH, Peron Pereira M. The futile creatine cycle and the synthesis of fatty acids in inguinal white adipose tissue from growing rats, submitted to a hypoprotein-hyperglycidic diet for 15 days. Lipids 2024; 59:3-12. [PMID: 38223990 DOI: 10.1002/lipd.12384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The low-protein, high-carbohydrate (LPHC) diet administered to growing rats soon after weaning, for 15 days, promoted an increase in energy expenditure by uncoupling protein 1 (UCP1) in interscapular brown adipose tissue, and also due to the occurrence of the browning process in the perirenal white adipose tissue (periWAT). However, we believe that inguinal white adipose tissue (ingWAT) may also contribute to energy expenditure through other mechanisms. Therefore, the aim of this work is to investigate the presence of the futile creatine cycle, and the origin of lipids in ingWAT, since that tissue showed an increase in the lipids content in rats submitted to the LPHC diet for 15 days. We observed increases in creatine kinase and alkaline phosphatase activity in ingWAT, of the LPHC animals. The mitochondrial Nicotinamide adenine dinucleotide reduced/nicotinamide adenine dinucleotide oxidized ratio is lower in ingWAT of LPHC animals. In the LPHC animals treated with β-guanidinopropionic acid, the extracellular uptake of creatine in ingWAT was lower, as was the rectal temperature. Regarding lipid metabolism, we observed that in ingWAT, lipolysis in vitro when stimulated with noradrenaline is lower, and there were no changes in baseline levels. In addition, increases in the activity of enzymes were also observed: malic, glucose-6-phosphate dehydrogenase, and ATP-citrate lyase, in addition to an increase in the PPARγ content. The results show the occurrence of the futile creatine cycle in ingWAT, and that the increase in the relative mass may be due to an increase in de novo fatty acid synthesis.
Collapse
Affiliation(s)
| | | | | | | | - Nair Honda Kawashita
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| | - Mayara Peron Pereira
- Department of Chemistry, Federal University of Mato Grosso, Cuiabá, Mato Grosso, Brazil
| |
Collapse
|
11
|
Shrestha GS, Vijay AK, Stapleton F, White A, Pickford R, Carnt N. Human tear metabolites associated with nucleoside-signalling pathways in bacterial keratitis. Exp Eye Res 2023; 228:109409. [PMID: 36775205 DOI: 10.1016/j.exer.2023.109409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/17/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
OBJECTIVE The study aimed to profile and quantify tear metabolites associated with bacterial keratitis using both untargeted and targeted metabolomic platforms. METHODS Untargeted metabolomic analysis using liquid-chromatography-Q Exactive-HF mass-spectrometry explored tear metabolites significantly associated with bacterial keratitis (n = 6) compared to healthy participants (n = 6). Differential statistics and principal component analysis determined meaningful metabolite differences between cases and controls. Purines and nucleosides were further quantified and compared between 15 cases and 15 controls in the targeted metabolomic platform using TSQ quantum access triple quadrupole mass spectrometry. Compound quantification was done by plotting the calibration curves and the difference in the compound levels was evaluated using the Wilcoxon rank-sum test. RESULTS In the untargeted analysis, 49 tear metabolites (27 upregulated and 22 downregulated) were differentially expressed between cases and controls. The untargeted analysis indicated that the purine metabolism pathway was the most affected by bacterial keratitis. Metabolite quantification in the targeted analysis further confirmed the upregulation of xanthine (P = 0.02) and downregulation of adenine (P < 0.0001), adenosine (P < 0.0001) and cytidine (P < 0.0001) in the tears of participants with bacterial keratitis compared to that of healthy participants. CONCLUSIONS Bacterial keratitis significantly changes the tear metabolite profile, including five major compound classes such as indoles, amino acids, nucleosides, carbohydrates, and steroids. This study also indicates that tear fluids can be used to map the metabolic pathways and uncover metabolic markers associated with bacterial keratitis. Conceivably, the inhibition of nucleoside synthesis may contribute to the pathophysiology of bacterial keratitis because nucleosides are required for maintaining cellular energy homeostasis and immune adaptability.
Collapse
Affiliation(s)
| | | | - Fiona Stapleton
- School of Optometry and Vision Science, UNSW Sydney, Australia
| | - Andrew White
- Department of Ophthalmology, Westmead Hospital, University of Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, UNSW Sydney, Australia
| | - Nicole Carnt
- School of Optometry and Vision Science, UNSW Sydney, Australia; Westmead Institute for Medical Research, University of Sydney, Australia; Institute of Ophthalmology, University College London, United Kingdom
| |
Collapse
|
12
|
Qiaolongbatu X, Zhao W, Huang X, Qian F, Yang X, Wu J, Ma C, Qu H, Wang L, Fan G, Wu Z. The Therapeutic Mechanism of Schisandrol A and Its Metabolites on Pulmonary Fibrosis Based on Plasma Metabonomics and Network Analysis. Drug Des Devel Ther 2023; 17:477-496. [PMID: 36814892 PMCID: PMC9939797 DOI: 10.2147/dddt.s391503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
Background Schisandrol A (Sch A) is the main active ingredient of Schisandra chinensis (Turcz.) Baill. Our previous study showed that Sch A has anti-pulmonary fibrosis (PF) activity, but its metabolic-related mechanisms of action are not clear. Methods Here, we explored the therapeutic mechanisms of Sch A on PF by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) metabolomics approach and network analysis. The metabolites of Sch A in mice (bleomycin + Sch A high-dose group) plasma were identified based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). Results 32 metabolites were detected reversed to normal level after treating bleomycin (BLM)-induced PF mice with Sch A. The 32 biomarkers were enriched in energy metabolism and several amino acid metabolisms, which was the first report on the therapeutic effects of Sch A on PF through rescuing the disordered energy metabolism. The UPLC-Q-TOF/MS analysis identified 17 possible metabolites (including isomers) of Sch A in mice plasma. Network analysis revealed that Sch A and 17 metabolites were related to 269 genes, and 1109 disease genes were related to PF. The construction of the Sch A/metabolites-target-PF network identified a total of 79 intersection genes and the TGF-β signaling pathway was determined to be the main signaling pathway related to the treatment of PF by Sch A. The integrated approach involving metabolomics and network analysis revealed that the TGF-β1-ID3-creatine pathway, TGF-β1-VIM-carnosine pathway were two of the possible pathways Sch A regulated to modulate metabolic disorders, especially energy metabolism, and the metabolite of Sch A M5 was identified as a most likely active metabolite. Conclusion The results suggested the feasibility of combining metabolomics and network analysis to reflect the effects of Sch A on the biological network and the metabolic state of PF and to evaluate the drug efficacy of Sch A and its related mechanisms.
Collapse
Affiliation(s)
- Xijier Qiaolongbatu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Wenjuan Zhao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xucong Huang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China,School of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xinyi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiaqi Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Cui Ma
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Han Qu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China,Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Li Wang
- School of Pharmacy, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China,Correspondence: Zhenghua Wu; Guorong Fan, Department of Clinical Pharmacy, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, No. 85 Wujin Road, Shanghai, 200080, People’s Republic of China, Tel +86-133-0177-7863; +86-21-36123711, Email ;
| |
Collapse
|
13
|
Colgan SP, Wang RX, Hall CH, Bhagavatula G, Lee JS. Revisiting the "starved gut" hypothesis in inflammatory bowel disease. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e0016. [PMID: 36644501 PMCID: PMC9831042 DOI: 10.1097/in9.0000000000000016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/22/2022] [Indexed: 01/17/2023]
Abstract
Active episodes of inflammatory bowel disease (IBD), which include ulcerative colitis and Crohn's disease, coincide with profound shifts in the composition of the microbiota and host metabolic energy demand. Intestinal epithelial cells (IEC) that line the small intestine and colon serve as an initial point for contact for the microbiota and play a central role in innate immunity. In the 1980s, Roediger et al proposed the hypothesis that IBD represented a disease of diminished mucosal nutrition and energy deficiency ("starved gut") that strongly coincided with the degree of inflammation. These studies informed the scientific community about the important contribution of microbial-derived metabolites, particularly short-chain fatty acids (SCFA) such as butyrate, to overall energy homeostasis. Decades later, it is appreciated that disease-associated shifts in the microbiota, termed dysbiosis, places inordinate demands on energy acquisition within the mucosa, particularly during active inflammation. Here, we review the topic of tissue energetics in mucosal health and disease from the original perspective of that proposed by the starved gut hypothesis.
Collapse
Affiliation(s)
- Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
- Rocky Mountain Veterans Hospital, Aurora, CO, USA
| | - Ruth X. Wang
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Caroline H.T. Hall
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Colorado, Aurora, CO, USA
| | - Geetha Bhagavatula
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital Colorado, Aurora, CO, USA
| | - J. Scott Lee
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
14
|
Dietrich MA, Adamek M, Teitge F, Teich L, Jung-Schroers V, Malinowska A, Świderska B, Rakus K, Kodzik N, Chadzińska M, Karol H, Liszewska E, Ciereszko A. Proteomic analysis of carp seminal plasma provides insights into the immune response to bacterial infection of the male reproductive system. FISH & SHELLFISH IMMUNOLOGY 2022; 127:822-835. [PMID: 35840052 DOI: 10.1016/j.fsi.2022.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas salmonicida is recognized as a significant bacterial pathogen in ulcerative disease of cyprinid fish. However, the mechanism of immunity to these bacteria in common carp is still not well understood, especially the immune regulation in the gonad to bacterial infection. The aims of our study were to analyze changes in the seminal plasma proteome following A. salmonicida infection in carp males. The observed pathological changes in the tissue (liver, spleen, kidney and testis) morphology and upregulation of immune-related genes (tnfa2, il6a) confirmed the successful infection challenge. Using mass spectrometry-based label-free quantitative proteomics, we identified 1402 seminal plasma proteins, and 44 proteins (20 up- and 24 downregulated) were found to be differentially abundant between infected and control males. Most differentially abundant proteins were involved in the immune response mechanisms, such as acute phase response, complement activation and coagulation, inflammation, lipid metabolism, cell-cell and cell-matrix adhesion, creatine-phosphate biosynthesis and germ cell-Sertoli cell junction signaling. Bacterial infection also caused profound changes in expression of selected genes in the testis and hematopoietic organs, which contributed to changes in seminal proteins. The altered seminal proteins and bacterial proteins in seminal plasma may serve as valuable markers of infection in the testis.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Mikołaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Lukas Teich
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559, Hannover, Germany
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Natalia Kodzik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Magdalena Chadzińska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Halina Karol
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Ewa Liszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
15
|
Rivas M, Gupta G, Costanzo L, Ahmed H, Wyman AE, Geraghty P. Senescence: Pathogenic Driver in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:817. [PMID: 35744080 PMCID: PMC9228143 DOI: 10.3390/medicina58060817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 01/10/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a disease of accelerated lung aging. Over the past two decades, mounting evidence suggests an accumulation of senescent cells within the lungs of patients with COPD that contributes to dysregulated tissue repair and the secretion of multiple inflammatory proteins, termed the senescence-associated secretory phenotype (SASP). Cellular senescence in COPD is linked to telomere dysfunction, DNA damage, and oxidative stress. This review gives an overview of the mechanistic contributions and pathologic consequences of cellular senescence in COPD and discusses potential therapeutic approaches targeting senescence-associated signaling in COPD.
Collapse
Affiliation(s)
- Melissa Rivas
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Gayatri Gupta
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Louis Costanzo
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Huma Ahmed
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Anne E. Wyman
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| | - Patrick Geraghty
- Department of Medicine, State University of New York Downstate Medical Centre, Brooklyn, NY 11203, USA; (M.R.); (L.C.); (H.A.); (A.E.W.)
| |
Collapse
|
16
|
Usman S, Razis AFA, Shaari K, Azmai MNA, Saad MZ, Isa NM, Nazarudin MF. Polystyrene microplastics induce gut microbiome and metabolome changes in Javanese medaka fish ( Oryzias javanicus Bleeker, 1854). Toxicol Rep 2022; 9:1369-1379. [PMID: 36518379 PMCID: PMC9742877 DOI: 10.1016/j.toxrep.2022.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023] Open
Abstract
Microplastics (MPs) have become emerging pollutants of public health concern, due to their impact on aqua-terrestrial ecosystems and integration into the food web, with evidence of human exposure and unrevealed health implications. There is a paucity of information regarding the effects of MPs exposure on the gut system using metagenomic and metabolomic approaches. In this study, Javanese medaka fish was exposed to 5 µm beads of polystyrene microplastics (PS-MPs) suspensions, at concentrations of 100 μg/L (MP-LOW), 500 μg/L (MP-MED), and 1000 μg/L (MP-HIGH), for a duration of 21 days, and evaluated for gut microbiome and metabolome responses. The results revealed a significant reduction (p < 0.05) in richness and diversity of the gut microbiome in the MP-HIGH group, and identification of 7 bacterial genera as differential features by the Linear discriminant analysis Effect Size (LEfSe). The gut metabolic profile revealed upregulation of 9 metabolites related to energy metabolism, via tricarboxylic acid cycle (TCA), creatine pathway, and urea cycle, as determined by the pathway analysis. Furthermore, positive correlation was found between the genus Aeromonas and glucose, lactate, and creatine metabolites. The study revealed that PS-MPs exposure resulted in altered bacterial microbiome and metabolic disorder related to energy metabolism. It further provided additional data on gut bacterial genera and metabolites associated with MPs toxicity in aquatic organism, which will inevitably enable its future health risks assessment in animals and possibly humans.
Collapse
Affiliation(s)
- Sunusi Usman
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Faizal Abdull Razis
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Zamri Saad
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nurulfiza M. Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Vaccines and Biomolecules (VacBio), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Farhan Nazarudin
- Aquatic Animal Health and Therapeutics Laboratory (Aqua Health), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
17
|
Bao MH, Zhang RQ, Huang XS, Zhou J, Guo Z, Xu BF, Liu R. Transcriptomic and Proteomic Profiling of Human Stable and Unstable Carotid Atherosclerotic Plaques. Front Genet 2021; 12:755507. [PMID: 34804124 PMCID: PMC8599967 DOI: 10.3389/fgene.2021.755507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/12/2021] [Indexed: 01/09/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease with high prevalence and mortality. The rupture of atherosclerotic plaque is the main reason for the clinical events caused by atherosclerosis. Making clear the transcriptomic and proteomic profiles between the stabe and unstable atherosclerotic plaques is crucial to prevent the clinical manifestations. In the present study, 5 stable and 5 unstable human carotid atherosclerotic plaques were obtained by carotid endarterectomy. The samples were used for the whole transcriptome sequencing (RNA-Seq) by the Next-Generation Sequencing using the Illumina HiSeq, and for proteome analysis by HPLC-MS/MS. The lncRNA-targeted genes and circRNA-originated genes were identified by analyzing their location and sequence. Gene Ontology and KEGG enrichment was carried out to analyze the functions of differentially expressed RNAs and proteins. The protein-protein interactions (PPI) network was constructed by the online tool STRING. The consistency of transcriptome and proteome were analyzed, and the lncRNA/circRNA-miRNA-mRNA interactions were predicted. As a result, 202 mRNAs, 488 lncRNAs, 91 circRNAs, and 293 proteins were identified to be differentially expressed between stable and unstable atherosclerotic plaques. The 488 lncRNAs might target 381 protein-coding genes by cis-acting mechanisms. Sequence analysis indicated the 91 differentially expressed circRNAs were originated from 97 protein-coding genes. These differentially expressed RNAs and proteins were mainly enriched in the terms of the cellular response to stress or stimulus, the regulation of gene transcription, the immune response, the nervous system functions, the hematologic activities, and the endocrine system. These results were consistent with the previous reported data in the dataset GSE41571. Further analysis identified CD5L, S100A12, CKB (target gene of lncRNA MSTRG.11455.17), CEMIP (target gene of lncRNA MSTRG.12845), and SH3GLB1 (originated gene of hsacirc_000411) to be critical genes in regulating the stability of atherosclerotic plaques. Our results provided a comprehensive transcriptomic and proteomic knowledge on the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Mei-Hua Bao
- Academician Workstation, Changsha, China.,School of Stomatology, Changsha Medical University, Changsha, China
| | - Ruo-Qi Zhang
- School of Stomatology, Changsha Medical University, Changsha, China
| | - Xiao-Shan Huang
- Department of Pharmacology, Changsha Health Vocational College, Changsha, China
| | - Ji Zhou
- Academician Workstation, Changsha, China
| | - Zhen Guo
- Academician Workstation, Changsha, China
| | - Bao-Feng Xu
- Academician Workstation, Changsha, China.,First Hospital of Jilin University, Changchun, Jilin, China
| | - Rui Liu
- Academician Workstation, Changsha, China.,Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Hajem S, Ederhy S, Champiat S, Troalen F, Nolin-Lapalme A, Berhoune M, Cauquil C, Martin-Romano P, Baldini C, Laparra A, Vuagnat P, Hollebecque A, Mateus C, Besse B, Naltet C, Robert C, Marabelle A, Massard C, Lambotte O, Michot JM. Absence of significant clinical benefit for a systematic routine creatine phosphokinase measurement in asymptomatic patients treated with anti-programmed death protein (ligand) 1 immune checkpoint inhibitor to screen cardiac or neuromuscular immune-related toxicities. Eur J Cancer 2021; 157:383-390. [PMID: 34571335 DOI: 10.1016/j.ejca.2021.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
AIM Despite unprecedented results of anti-programmed death protein (ligand) 1 (PD-(L)1) immune checkpoint inhibitor in the oncology's armamentarium, immune-related adverse events (irAEs) represent a therapeutic hurdle. Currently, there is no consensual recommendation on a routinely monitored biomarker to early detect irAE. Biological markers such as serum creatine phosphokinase (CPK) are commonly used to measure muscular tissue injury. The potential of routine serum CPK monitoring to predict cardiac or neuromuscular irAE in patients treated with immunotherapy remains unknown. METHODS In this retrospective study between January 2016 and December 2018 at Gustave Roussy Cancer Campus, 1151 cancer patients treated with anti-PD-(L)1 immunotherapy were systematically monitored with serum CPK measurements before each immunotherapy cycle. We considered significant CPK increases according to Common Terminology Criteria for Adverse Events v5.0 (CTCAEV5) of grade ≥2 severity. Comparisons were performed in patients with immune-related CPK (ir-CPK) elevations symptomatic versus asymptomatic. RESULTS Overall, 53 of 1151 (4.6%) patients showed a CPK increase. Elevations of CPK were deemed to be immunotherapy-related in 31 of 1151 (2.7%) patients. Among them, 12 of 31 (38.7%) patients experienced symptomatic cardiac or neuromuscular irAE, whereas the other 19 of 31 (61.3%) patients remained asymptomatic. In patients with symptomatic irAE, the mean ir-CPK level was higher compared with asymptomatic patients (1271 versus 771 UI/L, P value = 0.02). In the asymptomatic group, all patients experienced a spontaneous resolution of the ir-CPK increase, and none required medical intervention. CONCLUSION Most patients with immune-related CPK increase remained asymptomatic. The CPK serum increase did not alter the clinical management of asymptomatic patients. The results of this study did not support a significant clinical interest for a systematic routine CPK monitoring in patients amenable to anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Samia Hajem
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France; Centre de Recherche Du Centre Hospitalier de Montréal (CRCHUM), Université de Montréal, Montréal, Canada
| | - Stéphane Ederhy
- Department of Cardiology, Saint Antoine Hospital, Assistance Publique-Hôpitaux de Paris, UNICO-GRECO Cardio-oncology Program, France
| | - Stéphane Champiat
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Frédéric Troalen
- Department of Biology, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Alexis Nolin-Lapalme
- Centre de Recherche Du Centre Hospitalier de Montréal (CRCHUM), Université de Montréal, Montréal, Canada
| | - Malik Berhoune
- Department of Pharmacy, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Cécile Cauquil
- Department of Neurology, Kremlin Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - Patricia Martin-Romano
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Capucine Baldini
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Ariane Laparra
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Perrine Vuagnat
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Antoine Hollebecque
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Christine Mateus
- Department of Oncology, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Benjamin Besse
- Department of Oncology, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Charles Naltet
- Department of Oncology, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Caroline Robert
- Department of Oncology, Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Aurélien Marabelle
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Christophe Massard
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France
| | - Olivier Lambotte
- Clinical Immunology Department, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, 94270, Le Kremlin Bicêtre, France; Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IDMIT/IMVA-HB), UMR1184, 94270, Le Kremlin Bicêtre, France
| | - Jean-Marie Michot
- Drug Development Department (DITEP), Gustave Roussy, Université Paris-Sud, Université Paris-Saclay, F-94805, Villejuif, France.
| |
Collapse
|
19
|
Starr AE, Deeke SA, Ning Z, de Nanassy J, Singleton R, Benchimol EI, Mack DR, Stintzi A, Figeys D. Associations between Cellular Energy and Pediatric Inflammatory Bowel Disease Patient Response to Treatment. J Proteome Res 2021; 20:4393-4404. [PMID: 34424714 DOI: 10.1021/acs.jproteome.1c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis, are chronic diseases of the gastrointestinal tract, with an unknown etiology, that affect over 6.8 million people worldwide. To characterize disease pathogenesis, proteomic and bioinformatic analyses were performed on colon biopsies collected during diagnostic endoscopy from 119 treatment-naïve pediatric patients, including from 78 IBD patients and 41 non-IBD patients who served as controls. Due to the presence of noninflamed and/or inflamed regions in IBD patients, up to two biopsies were obtained from IBD patients as compared to a single noninflamed biopsy from non-IBD pediatric control patients. Additional biopsies were obtained and analyzed from 33 of the IBD patients after IBD-directed therapeutic intervention for comparison of pre- and post-treatment proteomes. SuperSILAC was utilized to perform quantitative analysis of homogenized tissues, which were processed by filter-aided sample preparation. Hierarchical clustering and principal component analyses revealed proteomic patterns that distinguished inflamed from noninflamed tissues independent of therapy. Gene ontology revealed that proteins downregulated in inflammation are associated with metabolism, whereas upregulated proteins contribute to protein processing. A comparison of pre- and post-treatment proteomes from CD patients identified over 100 proteins that are significantly different between patients who responded and those who did not respond to therapy, including creatine kinase B and basigin.
Collapse
|
20
|
Yi-Dan H, Ying-Xin Z, Shi-Wei Y, Yu-Jie Z. High-Energy Phosphates and Ischemic Heart Disease: From Bench to Bedside. Front Cardiovasc Med 2021; 8:675608. [PMID: 34395552 PMCID: PMC8355518 DOI: 10.3389/fcvm.2021.675608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
The purpose of this review is to bridge the gap between clinical and basic research through providing a comprehensive and concise description of the cellular and molecular aspects of cardioprotective mechanisms and a critical evaluation of the clinical evidence of high-energy phosphates (HEPs) in ischemic heart disease (IHD). According to the well-documented physiological, pathophysiological and pharmacological properties of HEPs, exogenous creatine phosphate (CrP) may be considered as an ideal metabolic regulator. It plays cardioprotection roles from upstream to downstream of myocardial ischemia through multiple complex mechanisms, including but not limited to replenishment of cellular energy. Although exogenous CrP administration has not been shown to improve long-term survival, the beneficial effects on multiple secondary but important outcomes and short-term survival are concordant with its pathophysiological and pharmacological effects. There is urgent need for high-quality multicentre RCTs to confirm long-term survival improvement in the future.
Collapse
Affiliation(s)
- Hao Yi-Dan
- The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhao Ying-Xin
- The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yang Shi-Wei
- The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhou Yu-Jie
- The Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Auger C, Vinaik R, Appanna VD, Jeschke MG. Beyond mitochondria: Alternative energy-producing pathways from all strata of life. Metabolism 2021; 118:154733. [PMID: 33631145 PMCID: PMC8052308 DOI: 10.1016/j.metabol.2021.154733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022]
Abstract
It is well-established that mitochondria are the powerhouses of the cell, producing adenosine triphosphate (ATP), the universal energy currency. However, the most significant strengths of the electron transport chain (ETC), its intricacy and efficiency, are also its greatest downfalls. A reliance on metal complexes (FeS clusters, hemes), lipid moities such as cardiolipin, and cofactors including alpha-lipoic acid and quinones render oxidative phosphorylation vulnerable to environmental toxins, intracellular reactive oxygen species (ROS) and fluctuations in diet. To that effect, it is of interest to note that temporal disruptions in ETC activity in most organisms are rarely fatal, and often a redundant number of failsafes are in place to permit continued ATP production when needed. Here, we highlight the metabolic reconfigurations discovered in organisms ranging from parasitic Entamoeba to bacteria such as pseudomonads and then complex eukaryotic systems that allow these species to adapt to and occasionally thrive in harsh environments. The overarching aim of this review is to demonstrate the plasticity of metabolic networks and recognize that in times of duress, life finds a way.
Collapse
Affiliation(s)
- Christopher Auger
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Roohi Vinaik
- University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | | | - Marc G Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; University of Toronto, Toronto, Ontario M5S 1A1, Canada.
| |
Collapse
|
22
|
Creatine Supplementation for Patients with Inflammatory Bowel Diseases: A Scientific Rationale for a Clinical Trial. Nutrients 2021; 13:nu13051429. [PMID: 33922654 PMCID: PMC8145094 DOI: 10.3390/nu13051429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Based on theoretical considerations, experimental data with cells in vitro, animal studies in vivo, as well as a single case pilot study with one colitis patient, a consolidated hypothesis can be put forward, stating that “oral supplementation with creatine monohydrate (Cr), a pleiotropic cellular energy precursor, is likely to be effective in inducing a favorable response and/or remission in patients with inflammatory bowel diseases (IBD), like ulcerative colitis and/or Crohn’s disease”. A current pilot clinical trial that incorporates the use of oral Cr at a dose of 2 × 7 g per day, over an initial period of 2 months in conjunction with ongoing therapies (NCT02463305) will be informative for the proposed larger, more long-term Cr supplementation study of 2 × 3–5 g of Cr per day for a time of 3–6 months. This strategy should be insightful to the potential for Cr in reducing or alleviating the symptoms of IBD. Supplementation with chemically pure Cr, a natural nutritional supplement, is well tolerated not only by healthy subjects, but also by patients with diverse neuromuscular diseases. If the outcome of such a clinical pilot study with Cr as monotherapy or in conjunction with metformin were positive, oral Cr supplementation could then be used in the future as potentially useful adjuvant therapeutic intervention for patients with IBD, preferably together with standard medication used for treating patients with chronic ulcerative colitis and/or Crohn’s disease.
Collapse
|
23
|
Park N, Marquez J, Garcia MVF, Shimizu I, Lee SR, Kim HK, Han J. Phosphorylation in Novel Mitochondrial Creatine Kinase Tyrosine Residues Render Cardioprotection against Hypoxia/Reoxygenation Injury. J Lipid Atheroscler 2021; 10:223-239. [PMID: 34095014 PMCID: PMC8159762 DOI: 10.12997/jla.2021.10.2.223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 11/09/2022] Open
Abstract
Objective Ischemic cardiomyopathy (ICM) is the leading cause of heart failure. Proteomic and genomic studies have demonstrated ischemic preconditioning (IPC) can assert cardioprotection against ICM through mitochondrial function regulation. Considering IPC is conducted in a relatively brief period, regulation of protein expression also occurs very rapidly, highlighting the importance of protein function modulation by post-translational modifications. This study aimed to identify and analyze novel phosphorylated mitochondrial proteins that can be harnessed for therapeutic strategies for preventing ischemia/reperfusion (I/R) injury. Methods Sprague-Dawley rat hearts were used in an ex vivo Langendorff system to simulate normal perfusion, I/R, and IPC condition, after which the samples were prepared for phosphoproteomic analysis. Employing human cardiomyocyte AC16 cells, we investigated the cardioprotective role of CKMT2 through overexpression and how site-directed mutagenesis of putative CKMT2 phosphorylation sites (Y159A, Y255A, and Y368A) can affect cardioprotection by measuring CKMT2 protein activity, mitochondrial function and protein expression changes. Results The phosphoproteomic analysis revealed dephosphorylation of mitochondrial creatine kinase (CKMT2) during ischemia and I/R, while preserving its phosphorylated state during IPC. CKMT2 overexpression conferred cardioprotection against hypoxia/reoxygenation (H/R) by increasing cell viability and mitochondrial adenosine triphosphate level, preserving mitochondrial membrane potential, and reduced reactive oxygen species (ROS) generation, while phosphomutations, especially in Y368, nullified cardioprotection by significantly reducing cell viability and increasing ROS production during H/R. CKMT2 overexpression increased mitochondrial function by mediating the proliferator-activated receptor γ coactivator-1α/estrogen-related receptor-α pathway, and these effects were mostly inhibited by Y368A mutation. Conclusion These results suggest that regulation of quantitative expression and phosphorylation site Y368 of CKMT2 offers a unique mechanism in future ICM therapeutics.
Collapse
Affiliation(s)
- Nammi Park
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea
| | - Jubert Marquez
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea
| | - Maria Victoria Faith Garcia
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sung Ryul Lee
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea
| | - Hyoung Kyu Kim
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.,Department of Physiology, College of Medicine, Inje University, Busan, Korea
| | - Jin Han
- Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutics Center, Inje University, Busan, Korea.,Department of Health Sciences and Technology, Graduate School of Inje University, Busan, Korea.,Department of Physiology, College of Medicine, Inje University, Busan, Korea
| |
Collapse
|
24
|
Characterization of Creatine Kinase Levels in Tofacitinib-Treated Patients with Ulcerative Colitis: Results from Clinical Trials. Dig Dis Sci 2021; 66:2732-2743. [PMID: 32816215 PMCID: PMC8298233 DOI: 10.1007/s10620-020-06560-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tofacitinib is an oral, small-molecule JAK inhibitor for the treatment of ulcerative colitis (UC). Creatine kinase (CK) levels and CK-related adverse events (AEs) in tofacitinib-treated patients with UC were evaluated. METHODS Data were analyzed for three UC cohorts: Induction (phase 2 and 3 induction studies); Maintenance (phase 3 maintenance study); Overall [patients who received tofacitinib 5 or 10 mg twice daily (b.d.) in phase 2, phase 3, or open-label, long-term extension studies; data at November 2017]. Clinical trial data for tofacitinib-treated patients with rheumatoid arthritis, psoriasis, and psoriatic arthritis are presented for contextualization. RESULTS Week 8 mean change from baseline CK with tofacitinib 10 mg b.d. induction therapy was 91.1 U/L (95% CI, 48.1-134.1) versus 19.2 U/L (8.5-29.9) with placebo. Among patients completing induction with 10 mg b.d. and re-randomized to 52 weeks of maintenance therapy, mean increases from induction baseline to the end of maintenance were 35.9 (8.1-63.7), 90.3 (51.9-128.7), and 115.6 U/L (91.6-139.7), with placebo, 5 and 10 mg b.d., respectively. The incidence rate (unique patients with events per 100 patient-years) for AEs of CK elevation in the tofacitinib-treated UC Overall cohort was 6.6 versus 2.2, 6.5, and 3.7 for tofacitinib-treated patients with rheumatoid arthritis, psoriasis, and psoriatic arthritis, respectively. No serious AEs of CK elevation or AEs of myopathy occurred in UC studies. CONCLUSIONS In patients with UC, CK elevations with tofacitinib appeared reversible and not associated with clinically significant AEs. UC findings were consistent with tofacitinib use in other inflammatory diseases. TRIAL REGISTRATION NCT00787202; NCT01465763; NCT01458951; NCT01458574; NCT01470612; NCT01262118; NCT01484561; NCT00147498; NCT00413660; NCT00550446; NCT00603512; NCT00687193; NCT01059864; NCT01164579; NCT00976599; NCT01359150; NCT02147587; NCT00960440; NCT00847613; NCT00814307; NCT00856544; NCT00853385; NCT01039688; NCT02187055; NCT00413699; NCT00661661; NCT01710046; NCT00678210; NCT01276639; NCT01309737; NCT01241591; NCT01186744; NCT01163253; NCT01877668; NCT01882439; NCT01976364.
Collapse
|
25
|
Lee JS, Wang RX, Alexeev EE, Colgan SP. Intestinal Inflammation as a Dysbiosis of Energy Procurement: New Insights into an Old Topic. Gut Microbes 2021; 13:1-20. [PMID: 33583319 PMCID: PMC7889129 DOI: 10.1080/19490976.2021.1880241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) coincides with profound shifts in microbiota and host metabolic energy supply and demand. The gastrointestinal epithelium is anatomically positioned to provide a selective barrier between the anaerobic luminal microbiota and host lamina propria, with the microbiota and epithelium participating in an intricate energy exchange necessary for homeostasis. Maintenance and restoration of the barrier requires high energy flux and places significant demands on available substrates to generate ATP. It is recently appreciated that components of the microbiota contribute significantly to a multitude of biochemical pathways within and outside of the mucosa. Decades-old studies have appreciated that byproducts of the microbiota provide essential sources of energy to the intestinal epithelium, especially the colon. More recent work has unveiled the existence of numerous microbial-derived metabolites that support energy procurement within the mucosa. It is now appreciated that disease-associated shifts in the microbiota, termed dysbiosis, places significant demands on energy acquisition within the mucosa. Here, we review the topic of host- and microbial-derived components that influence tissue energetics in health and during disease.
Collapse
Affiliation(s)
- J. Scott Lee
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| | - Ruth X. Wang
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| | - Erica E. Alexeev
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
- Department of Gastroenterology, Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, United States
| | - Sean P. Colgan
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, United States
| |
Collapse
|
26
|
Li S, Bianconi S, van der Veen JW, Do AD, Stolinski J, Cecil KM, Hannah-Shmouni F, Porter FD, Shen J. Oxidative phosphorylation in creatine transporter deficiency. NMR IN BIOMEDICINE 2021; 34:e4419. [PMID: 32990357 PMCID: PMC7722185 DOI: 10.1002/nbm.4419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
X-linked creatine transporter deficiency (CTD) is one of the three types of cerebral creatine deficiency disorders. CTD arises from pathogenic variants in the X-linked gene SLC6A8. We report the first phosphorus (31 P) MRS study of patients with CTD, where both phosphocreatine and total creatine concentrations were found to be markedly reduced. Despite the diminished role of creatine and phosphocreatine in oxidative phosphorylation in CTD, we found no elevation of lactate or lowered pH, indicating that the brain energy supply still largely relied on oxidative metabolism. Our results suggest that mitochondrial function is a potential therapeutic target for CTD.
Collapse
Affiliation(s)
- Shizhe Li
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Simona Bianconi
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | - An Dang Do
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - JoEllyn Stolinski
- NMR Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Kim M. Cecil
- Department of Radiology, Cincinnati Children’s Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Fady Hannah-Shmouni
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Forbes D. Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jun Shen
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Wang L, Nie R, Yu Z, Xin R, Zheng C, Zhang Z, Zhang J, Cai J. An interpretable deep-learning architecture of capsule networks for identifying cell-type gene expression programs from single-cell RNA-sequencing data. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-00244-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Almeida FM, Battochio AS, Napoli JP, Alves KA, Balbin GS, Oliveira-Junior M, Moriya HT, Pego-Fernandes PM, Vieira RP, Pazetti R. Creatine Supply Attenuates Ischemia-Reperfusion Injury in Lung Transplantation in Rats. Nutrients 2020; 12:2765. [PMID: 32927837 PMCID: PMC7551831 DOI: 10.3390/nu12092765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) is one of the factors limiting the success of lung transplantation (LTx). IRI increases death risk after transplantation through innate immune system activation and inflammation induction. Some studies have shown that creatine (Cr) protects tissues from ischemic damage by its antioxidant action. We evaluated the effects of Cr supplementation on IRI after unilateral LTx in rats. Sixty-four rats were divided into four groups: water + 90 min of ischemia; Cr + 90 min of ischemia; water + 180 min of ischemia; and Cr + 180 min of ischemia. Donor animals received oral Cr supplementation (0.5 g/kg/day) or vehicle (water) for five days prior to LTx. The left lung was exposed to cold ischemia for 90 or 180 min, followed by reperfusion for 2 h. We evaluated the ventilatory mechanics and inflammatory responses of the graft. Cr-treated animals showed a significant decrease in exhaled nitric oxide levels and inflammatory cells in blood, bronchoalveolar lavage fluid and lung tissue. Moreover, edema, cell proliferation and apoptosis in lung parenchyma were reduced in Cr groups. Finally, TLR-4, IL-6 and CINC-1 levels were lower in Cr-treated animals. We concluded that Cr caused a significant decrease in the majority of inflammation parameters evaluated and had a protective effect on the IRI after LTx in rats.
Collapse
Affiliation(s)
- Francine M. Almeida
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (F.M.A.); (A.S.B.); (P.M.P.-F.)
| | - Angela S. Battochio
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (F.M.A.); (A.S.B.); (P.M.P.-F.)
| | - João P. Napoli
- Laboratorio de Pesquisa em Cirurgia Toracica-LIM61, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (J.P.N.); (K.A.A.); (G.S.B.)
| | - Katiusa A. Alves
- Laboratorio de Pesquisa em Cirurgia Toracica-LIM61, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (J.P.N.); (K.A.A.); (G.S.B.)
| | - Grace S. Balbin
- Laboratorio de Pesquisa em Cirurgia Toracica-LIM61, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (J.P.N.); (K.A.A.); (G.S.B.)
| | - Manoel Oliveira-Junior
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos 04372-020, Brazil; (M.O.-J.); (R.P.V.)
| | - Henrique T. Moriya
- Biomedical Engineering Laboratory-LEB, University of Sao Paulo, Sao Paulo 05508-060, Brazil;
| | - Paulo M. Pego-Fernandes
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (F.M.A.); (A.S.B.); (P.M.P.-F.)
| | - Rodolfo P. Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Sao Jose dos Campos 04372-020, Brazil; (M.O.-J.); (R.P.V.)
- Post-Graduation Program in Bioengineering, Universidade Brasil, Sao Paulo 05403-000, Brazil
- Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Federal University of Sao Paulo (UNIFESP), Santos 04021-001, Brazil
| | - Rogerio Pazetti
- Laboratorio de Pesquisa em Cirurgia Toracica-LIM61, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 05508-060, Brazil; (J.P.N.); (K.A.A.); (G.S.B.)
| |
Collapse
|
29
|
Mao S, Zhang X, Chen M, Wang C, Chen Q, Guo L, Zhang M, Hinek A. Beneficial Effects of Baduanjin Exercise on Left Ventricular Remodelling in Patients after Acute Myocardial Infarction: an Exploratory Clinical Trial and Proteomic Analysis. Cardiovasc Drugs Ther 2020; 35:21-32. [PMID: 32761487 DOI: 10.1007/s10557-020-07047-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The beneficial effects of physical exercise on cardiac remodelling improvement after myocardial infarction have already been suggested. However, the results of previous clinical trials have not been consistent. Moreover, the putative molecular mechanisms leading to the clinically observed effects of physical exercise still remain elusive. AIM We aimed to evaluate whether the well-defined and strictly controlled traditional Chinese Qigong Baduanjin exercise (BE) would attenuate the adverse left ventricular (LV) remodelling in patients with ST-elevation myocardial infarction (STEMI). METHODS A total of 110 clinically stable STEMI patients, following successful revascularization of their infarcted coronary arteries, were randomized and enrolled in two groups: 56 were subjected to a 12-week BE-based cardiac rehabilitation programme (BE group), and the remaining 54 were exposed to the usual physical exercise (control group) for the same time period. The primary outcome was the change from baseline to 6 months in the echocardiographic LV end-diastolic volume index (ΔLVEDVi). Proteomic analysis was also performed to uncover associated mechanisms. RESULTS Compared with the control group, the BE group showed significantly lower ΔLVEDVi (-5.1 ± 1.1 vs. 0.3 ± 1.2 mL/m2, P < 0.01). Proteomic analysis revealed BE-induced variations in the expression of 80 proteins linked to regulation the of metabolic process, immune process, and extracellular matrix reorganization. Furthermore, correlation analyses between the validated serum proteomes and primary endpoint demonstrated a positive association between ΔLVEDVi and MMP-9 expression, but a negative correlation between ΔLVEDVi and CXCL1 expression. CONCLUSION This is the first study indicating that BE in STEMI patients can alleviate adverse LV remodelling associated with beneficial energy metabolism adaptation, inflammation curbing, and extracellular matrix organization adjustment.
Collapse
Affiliation(s)
- Shuai Mao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.,Translational Medicine, Hospital for Sick Children, Toronto, M5G 0A4, Canada
| | - Xiaoxuan Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Minggui Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chuyang Wang
- Biological Resource Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Qubo Chen
- Biological Resource Center, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Liheng Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Minzhou Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China. .,Department of Critical Care Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Aleksander Hinek
- Translational Medicine, Hospital for Sick Children, Toronto, M5G 0A4, Canada
| |
Collapse
|
30
|
Stem Cells as Drug-like Biologics for Mitochondrial Repair in Stroke. Pharmaceutics 2020; 12:pharmaceutics12070615. [PMID: 32630218 PMCID: PMC7407993 DOI: 10.3390/pharmaceutics12070615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
Stroke is a devastating condition characterized by widespread cell death after disruption of blood flow to the brain. The poor regenerative capacity of neural cells limits substantial recovery and prolongs disruptive sequelae. Current therapeutic options are limited and do not adequately address the underlying mitochondrial dysfunction caused by the stroke. These same mitochondrial impairments that result from acute cerebral ischemia are also present in retinal ischemia. In both cases, sufficient mitochondrial activity is necessary for cell survival, and while astrocytes are able to transfer mitochondria to damaged tissues to rescue them, they do not have the capacity to completely repair damaged tissues. Therefore, it is essential to investigate this mitochondrial transfer pathway as a target of future therapeutic strategies. In this review, we examine the current literature pertinent to mitochondrial repair in stroke, with an emphasis on stem cells as a source of healthy mitochondria. Stem cells are a compelling cell type to study in this context, as their ability to mitigate stroke-induced damage through non-mitochondrial mechanisms is well established. Thus, we will focus on the latest preclinical research relevant to mitochondria-based mechanisms in the treatment of cerebral and retinal ischemia and consider which stem cells are ideally suited for this purpose.
Collapse
|
31
|
Derosa G, Pasqualotto S, Catena G, D’Angelo A, Maggi A, Maffioli P. A Randomized, Double-Blind, Placebo-Controlled Study to Evaluate the Effectiveness of a Food Supplement Containing Creatine and D-Ribose Combined with a Physical Exercise Program in Increasing Stress Tolerance in Patients with Ischemic Heart Disease. Nutrients 2019; 11:nu11123075. [PMID: 31861049 PMCID: PMC6950237 DOI: 10.3390/nu11123075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 11/16/2022] Open
Abstract
The aim of this study is to establish whether a supplement of creatine and ribose combined with a physical exercise program can improve the total work capacity during exercise in a population of patients with known ischemic heart disease. A double-blind, six-month study was designed in which 53 patients were enrolled and randomized to take either a nutraceutical composition containing creatine, D-ribose, vitamin B1, and vitamin B6 (active treatment) or the placebo. Both the nutraceutical supplement and the placebo were supplied by Giellepi S.p.A. Health Science in Lissone, Italy. After six months of study, the cardiac double product at the peak of the load, the delta double product, and the chronotropic index were higher in the active treatment group than in the placebo group. We can conclude that a supplementation with creatine, D-ribose, vitamin B1, and vitamin B6, in addition to standard therapy and a physical exercise program, seems to be helpful in improving exercise tolerance compared to the placebo in a population with cardiovascular disease. However, this needs to be further studied, given that there is no clear evidence that the double product can be used as a surrogate measure of exercise tolerance.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.D.); (P.M.)
- Center for the Study of Endocrine-Metabolic Pathophysiology and Clinical Research, University of Pavia, 27100 Pavia, Italy
- Laboratory of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-526217; Fax: +39-0382-526259
| | - Silvia Pasqualotto
- Section of Cardiology, Department of Medicine, University of Verona, 37017 Verona, Italy;
| | | | - Angela D’Angelo
- Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.D.); (P.M.)
- Laboratory of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Antonio Maggi
- Cardiologic Unit, Poliambulanza Foundation, 25020 Brescia, Italy;
| | - Pamela Maffioli
- Department of Internal Medicine and Therapeutics, University of Pavia and Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (A.D.); (P.M.)
| |
Collapse
|
32
|
Heyck M, Bonsack B, Zhang H, Sadanandan N, Cozene B, Kingsbury C, Lee JY, Borlongan CV. The brain and eye: Treating cerebral and retinal ischemia through mitochondrial transfer. Exp Biol Med (Maywood) 2019; 244:1485-1492. [PMID: 31604382 DOI: 10.1177/1535370219881623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stroke remains a devastating disease with limited treatment options, despite our growing understanding of its pathology. While ischemic stroke is traditionally characterized by a blockage of blood flow to the brain, this may coincide with reduced blood circulation to the eye, resulting in retinal ischemia, which may in turn lead to visual impairment. Although effective treatment options for retinal ischemia are similarly scarce, new evidence suggests that deleterious changes to mitochondrial structure and function play a major role in both cerebral and retinal ischemia pathologies. Prior studies establish that astrocytes transfer healthy mitochondria to ischemic neurons following stroke; however, this alone is not enough to significantly mitigate the damage caused by primary and secondary cell death. Thus, stem cell-based regenerative medicine targeting amelioration of ischemia-induced mitochondrial dysfunction via the transfer of functional mitochondria to injured neural cells represents a promising approach to improve stroke outcomes for both cerebral and retinal ischemia. In this review, we evaluate recent laboratory evidence supporting the remedial capabilities of mitochondrial transfer as an innovative stroke treatment. In particular, we examine exogenous stem cell transplants in their potential role as suppliers of healthy mitochondria to neurons, brain endothelial cells, and retinal cells.Impact statementStroke constitutes a global health crisis, yet potent, applicable therapeutic options remain effectively inaccessible for many patients. To this end, stem cell transplants stand as a promising stroke treatment and as an emerging subject of research for cell-based regenerative medicine. This is the first review to synthesize the implications of stem cell-derived mitochondrial transfer in both the brain and the eye. As such, this report carries fresh insight into the commonalities between the two stroke-affected organs. We present the findings of this developing area of research inquiry with the hope that our evaluation may advance the use of stem cell transplants as viable therapeutic alternatives for ischemic stroke and related disorders characterized by mitochondrial dysfunction. Such lab-to-clinic translational advancement has the potential to save and improve the ever increasing millions of lives affected by stroke.
Collapse
Affiliation(s)
- Matt Heyck
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Henry Zhang
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Blaise Cozene
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
33
|
Valli A, Morotti M, Zois CE, Albers PK, Soga T, Feldinger K, Fischer R, Frejno M, McIntyre A, Bridges E, Haider S, Buffa FM, Baban D, Rodriguez M, Yanes O, Whittington HJ, Lake HA, Zervou S, Lygate CA, Kessler BM, Harris AL. Adaptation to HIF1α Deletion in Hypoxic Cancer Cells by Upregulation of GLUT14 and Creatine Metabolism. Mol Cancer Res 2019; 17:1531-1544. [PMID: 30885992 DOI: 10.1158/1541-7786.mcr-18-0315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 01/28/2019] [Accepted: 03/13/2019] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factor 1α is a key regulator of the hypoxia response in normal and cancer tissues. It is well recognized to regulate glycolysis and is a target for therapy. However, how tumor cells adapt to grow in the absence of HIF1α is poorly understood and an important concept to understand for developing targeted therapies is the flexibility of the metabolic response to hypoxia via alternative pathways. We analyzed pathways that allow cells to survive hypoxic stress in the absence of HIF1α, using the HCT116 colon cancer cell line with deleted HIF1α versus control. Spheroids were used to provide a 3D model of metabolic gradients. We conducted a metabolomic, transcriptomic, and proteomic analysis and integrated the results. These showed surprisingly that in three-dimensional growth, a key regulatory step of glycolysis is Aldolase A rather than phosphofructokinase. Furthermore, glucose uptake could be maintained in hypoxia through upregulation of GLUT14, not previously recognized in this role. Finally, there was a marked adaptation and change of phosphocreatine energy pathways, which made the cells susceptible to inhibition of creatine metabolism in hypoxic conditions. Overall, our studies show a complex adaptation to hypoxia that can bypass HIF1α, but it is targetable and it provides new insight into the key metabolic pathways involved in cancer growth. IMPLICATIONS: Under hypoxia and HIF1 blockade, cancer cells adapt their energy metabolism via upregulation of the GLUT14 glucose transporter and creatine metabolism providing new avenues for drug targeting.
Collapse
Affiliation(s)
- Alessandro Valli
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matteo Morotti
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christos E Zois
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Patrick K Albers
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Katharina Feldinger
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Martin Frejno
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Alan McIntyre
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Esther Bridges
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Syed Haider
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Francesca M Buffa
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Dilair Baban
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Miguel Rodriguez
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders-CIBERDEM, Madrid, Spain
| | - Oscar Yanes
- Metabolomics Platform, IISPV, Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain
- Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders-CIBERDEM, Madrid, Spain
| | - Hannah J Whittington
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah A Lake
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sevasti Zervou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Nacul L, de Barros B, Kingdon CC, Cliff JM, Clark TG, Mudie K, Dockrell HM, Lacerda EM. Evidence of Clinical Pathology Abnormalities in People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) from an Analytic Cross-Sectional Study. Diagnostics (Basel) 2019; 9:E41. [PMID: 30974900 PMCID: PMC6627354 DOI: 10.3390/diagnostics9020041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/25/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease presenting with extreme fatigue, post-exertional malaise, and other symptoms. In the absence of a diagnostic biomarker, ME/CFS is diagnosed clinically, although laboratory tests are routinely used to exclude alternative diagnoses. In this analytical cross-sectional study, we aimed to explore potential haematological and biochemical markers for ME/CFS, and disease severity. We reviewed laboratory test results from 272 people with ME/CFS and 136 healthy controls participating in the UK ME/CFS Biobank (UKMEB). After corrections for multiple comparisons, most results were within the normal range, but people with severe ME/CFS presented with lower median values (p < 0.001) of serum creatine kinase (CK; median = 54 U/L), compared to healthy controls (HCs; median = 101.5 U/L) and non-severe ME/CFS (median = 84 U/L). The differences in CK concentrations persisted after adjusting for sex, age, body mass index, muscle mass, disease duration, and activity levels (odds ratio (OR) for being a severe case = 0.05 (95% confidence interval (CI) = 0.02-0.15) compared to controls, and OR = 0.16 (95% CI = 0.07-0.40), compared to mild cases). This is the first report that serum CK concentrations are markedly reduced in severe ME/CFS, and these results suggest that serum CK merits further investigation as a biomarker for severe ME/CFS.
Collapse
Affiliation(s)
- Luis Nacul
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Barbara de Barros
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Caroline C Kingdon
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Jacqueline M Cliff
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London,WC1E 7HT, UK.
| | - Kathleen Mudie
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Hazel M Dockrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | - Eliana M Lacerda
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
35
|
Chen F, Zhu K, Chen L, Ouyang L, Chen C, Gu L, Jiang Y, Wang Z, Lin Z, Zhang Q, Shao X, Dai J, Zhao Y. Protein target identification of ginsenosides in skeletal muscle tissues: discovery of natural small-molecule activators of muscle-type creatine kinase. J Ginseng Res 2019; 44:461-474. [PMID: 32372868 PMCID: PMC7195589 DOI: 10.1016/j.jgr.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
Background Ginseng effectively reduces fatigue in both animal models and clinical trials. However, the mechanism of action is not completely understood, and its molecular targets remain largely unknown. Methods By screening for proteins that interact with the primary components of ginseng (ginsenosides) in an affinity chromatography assay, we have identified muscle-type creatine kinase (CK-MM) as a potential target in skeletal muscle tissues. Results Biolayer interferometry analysis showed that ginsenoside metabolites, instead of parent ginsenosides, had direct interaction with recombinant human CK-MM. Subsequently, 20(S)-protopanaxadiol (PPD), which is a ginsenoside metabolite and displayed the strongest interaction with CK-MM in the study, was selected as a representative to confirm direct binding and its biological importance. Biolayer interferometry kinetics analysis and isothermal titration calorimetry assay demonstrated that PPD specifically bound to human CK-MM. Moreover, the mutation of key amino acids predicted by molecular docking decreased the affinity between PPD and CK-MM. The direct binding activated CK-MM activity in vitro and in vivo, which increased the levels of tissue phosphocreatine and strengthened the function of the creatine kinase/phosphocreatine system in skeletal muscle, thus buffering cellular ATP, delaying exercise-induced lactate accumulation, and improving exercise performance in mice. Conclusion Our results suggest a cellular target and an initiating molecular event by which ginseng reduces fatigue. All these findings indicate PPD as a small molecular activator of CK-MM, which can help in further developing better CK-MM activators based on the dammarane-type triterpenoid structure.
Collapse
Affiliation(s)
- Feiyan Chen
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kexuan Zhu
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, China
| | - Lin Chen
- Department of Physiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liufeng Ouyang
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Laboratory of Pathological Sciences, College of Medicine, Yan'an University, Yan'an, China
| | - Cuihua Chen
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Gu
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yucui Jiang
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhongli Wang
- School of Nursing, Jiujiang University, Jiujiang, China
| | - Zixuan Lin
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiang Zhang
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Shao
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianguo Dai
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, China
- Research Center, Basic Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Corresponding author. Department of Pathology and Pathophysiology, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
36
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
37
|
Hamlin AN, Tillotson J, Bumpus NN. Genetic variation of kinases and activation of nucleotide analog reverse transcriptase inhibitor tenofovir. Pharmacogenomics 2019; 20:105-111. [PMID: 30628547 DOI: 10.2217/pgs-2018-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As antiretroviral therapy has become more accessible across the world and coformulations have improved patient compliance; the morbidity and mortality of HIV/AIDS has decreased. However, there is still a substantial gap in knowledge regarding the impact of genetic variation on the metabolism of and response to some of the most commonly prescribed antiretrovirals, including the nucleotide reverse transcriptase inhibitor tenofovir. While it has been scientifically established that tenofovir must be activated to be efficacious against HIV, the enzymes responsible for this activation have not been well characterized. The purpose of this review is to summarize and clarify the scientific knowledge regarding the enzymes that phosphorylate and activate this clinically important drug.
Collapse
Affiliation(s)
- Allyson N Hamlin
- Department of Medicine (Division of Clinical Pharmacology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joseph Tillotson
- Department of Medicine (Division of Clinical Pharmacology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Namandjé N Bumpus
- Department of Medicine (Division of Clinical Pharmacology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
38
|
Magnadóttir B, Hayes P, Hristova M, Bragason BT, Nicholas AP, Dodds AW, Guðmundsdóttir S, Lange S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny novel roles in tissue remodelling and mucosal immune defences? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:157-170. [PMID: 29908202 DOI: 10.1016/j.dci.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 06/08/2023]
Abstract
Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Polly Hayes
- Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| | - Mariya Hristova
- Perinatal Brain Protection and Repair Group, EGA Institute for Women's Health, University College London, WC1E 6HX, London, UK.
| | - Birkir Thor Bragason
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Anthony P Nicholas
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alister W Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Sigríður Guðmundsdóttir
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, 112 Reykjavik, Iceland.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
39
|
Gastrodin Protects Cardiomyocytes from Anoxia/Reoxygenation Injury by 14-3-3 η. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3685391. [PMID: 30147833 PMCID: PMC6083485 DOI: 10.1155/2018/3685391] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/06/2018] [Accepted: 06/07/2018] [Indexed: 11/29/2022]
Abstract
Gastrodin (GAS) is the major component isolated from the rhizome of the Chinese traditional medicinal herb “Tianma.” Many clinical studies have found that GAS protects cardiomyocytes in cardiovascular diseases, although the effects and underlying mechanisms on cardiovascular anoxia/reoxygenation (A/R) injury remain unknown. This study is aimed at exploring the effect of gastrodin on cardiomyocytes in A/R injury. Our results suggested that the protective effect of GAS on cardiomyocytes is associated with upregulated 14-3-3η levels. Pretreatment with GAS could increase the cell viability and decrease the activities of creatine phosphokinase (CPK) and lactate dehydrogenase (LDH). GAS could also reduce reactive oxygen species (ROS) production, inhibit mitochondrial permeability transition pore (mPTP) opening, alter the maintenance of the mitochondrial membrane potential (∆Ψm), decrease the activation of caspase-3, and finally restrain cell apoptosis. Downregulating 14-3-3η levels by transfection with siRNA14-3-3η clearly attenuated the protective effect of GAS on cardiomyocytes in A/R injury.
Collapse
|
40
|
Hiroshima Y, Yamamoto T, Watanabe M, Baba Y, Shinohara Y. Effects of cold exposure on metabolites in brown adipose tissue of rats. Mol Genet Metab Rep 2018; 15:36-42. [PMID: 30023288 PMCID: PMC6047462 DOI: 10.1016/j.ymgmr.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 01/10/2023] Open
Abstract
Brown adipose tissue (BAT) plays an important role in regulation of energy expenditure while adapting to a cold environment. BAT thermogenesis depends on uncoupling protein 1 (UCP1), which is expressed in the inner mitochondrial membranes of BAT. Gene expression profiles induced by cold exposure in BAT have been studied, but the metabolomic biological pathway that contributes to the activation of thermogenesis in BAT remains unclear. In this study, we comprehensively compared the relative levels of metabolites between the BAT of rats kept at room temperature (22 °C) and of those exposed to a cold temperature (4 °C) for 48 h using capillary electrophoresis (CE) time-of-flight mass spectrometry (TOFMS) and liquid chromatography (LC)-TOFMS. We identified 218 metabolites (137 cations and 81 anions) by CE-TOFMS and detected 81 metabolites (47 positive and 34 negative) by LC-TOFMS in BAT. We found that cold exposure highly influenced the BAT metabolome. We showed that the cold environment lead to lower levels of glycolysis and gluconeogenesis intermediates and higher levels of the tricarboxylic acid (TCA) cycle metabolites, fatty acids, and acyl-carnitine metabolites than control conditions in the BAT of rats. These results indicate that glycolysis and β-oxidation of fatty acids in BAT are positive biological pathways that contribute to the activation of thermogenesis by cold exposure, thereby facilitating the generation of heat by UCP1. These data provide useful information for understanding the basal metabolic functions of BAT thermogenesis in rats in response to cold exposure.
Collapse
Affiliation(s)
- Yuka Hiroshima
- Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Takenori Yamamoto
- Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
- Faculty of Pharmaceutical Science, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Masahiro Watanabe
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama 703-8516, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- ImPACT Research Center for Advanced Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu 761-0395, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
- Faculty of Pharmaceutical Science, University of Tokushima, 1-78 Shomachi, Tokushima 770-8505, Japan
| |
Collapse
|
41
|
NMR metabolomic study of blood plasma in ischemic and ischemically preconditioned rats: an increased level of ketone bodies and decreased content of glycolytic products 24 h after global cerebral ischemia. J Physiol Biochem 2018; 74:417-429. [DOI: 10.1007/s13105-018-0632-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 04/23/2018] [Indexed: 10/16/2022]
|
42
|
Salla M, Aguayo-Ortiz R, Danmaliki GI, Zare A, Said A, Moore J, Pandya V, Manaloor R, Fong S, Blankstein AR, Gibson SB, Garcia LR, Meier P, Bhullar KS, Hubbard BP, Fiteh Y, Vliagoftis H, Goping IS, Brocks D, Hwang P, Velázquez-Martínez CA, Baksh S. Identification and Characterization of Novel Receptor-Interacting Serine/Threonine-Protein Kinase 2 Inhibitors Using Structural Similarity Analysis. J Pharmacol Exp Ther 2018; 365:354-367. [PMID: 29555876 DOI: 10.1124/jpet.117.247163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
Receptor-interacting protein kinase 2 (RIP2 or RICK, herein referred to as RIPK2) is linked to the pathogen pathway that activates nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) and autophagic activation. Using molecular modeling (docking) and chemoinformatics analyses, we used the RIPK2/ponatinib crystal structure and searched in chemical databases for small molecules exerting binding interactions similar to those exerted by ponatinib. The identified RIPK2 inhibitors potently inhibited the proliferation of cancer cells by > 70% and also inhibited NFκB activity. More importantly, in vivo inhibition of intestinal and lung inflammation rodent models suggests effectiveness to resolve inflammation with low toxicity to the animals. Thus, our identified RIPK2 inhibitor may offer possible therapeutic control of inflammation in diseases such as inflammatory bowel disease, asthma, cystic fibrosis, primary sclerosing cholangitis, and pancreatitis.
Collapse
Affiliation(s)
- Mohamed Salla
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Rodrigo Aguayo-Ortiz
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Gaddafi I Danmaliki
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Alaa Zare
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Ahmed Said
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Jack Moore
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Vrajeshkumar Pandya
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Robin Manaloor
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Sunny Fong
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Anna R Blankstein
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Spencer B Gibson
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Laura Ramos Garcia
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Pascal Meier
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Khushwant S Bhullar
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Basil P Hubbard
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Yahya Fiteh
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Harissios Vliagoftis
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Ing Swie Goping
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Dion Brocks
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Peter Hwang
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Carlos A Velázquez-Martínez
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| | - Shairaz Baksh
- Departments of Biochemistry (M.S., G.I.D., A.S., J.M., V.P., I.S.G., P.H., S.B.), Pediatrics (A.Z., R.M., S.F., S.B.), Pharmacology (K.S.B., B.P.H.), Oncology (S.B.) Medicine (Y.F., H.V., P.H.), and Faculty of Pharmacy and Pharmaceutical Sciences (R.A.-O., D.B., C.A.-V.M.), University of Alberta, Edmonton, Alberta, Canada; Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, Mexico (R.A.-O.); Departments of Biochemistry and Medical Genetics and Immunology, University of Manitoba, Winnipeg, Manitoba, Canada (A.R.B., S.B.G.); Breakthrough Breast Cancer Research Center Chester Beatty Laboratories, London, United Kingdom (L.R.G., P.M.); Cancer Research Institute of Northern Alberta, Edmonton, Alberta, Canada (S.B.); and Women and Children's Health Research Institute, Edmonton, Alberta, Canada (S.B.)
| |
Collapse
|
43
|
Discovery of genetic variants of the kinases that activate tenofovir among individuals in the United States, Thailand, and South Africa: HPTN067. PLoS One 2018; 13:e0195764. [PMID: 29641561 PMCID: PMC5895070 DOI: 10.1371/journal.pone.0195764] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/28/2018] [Indexed: 01/12/2023] Open
Abstract
Tenofovir (TFV), a nucleotide reverse transcriptase inhibitor, requires two phosphorylation steps to form a competitive inhibitor of HIV reverse transcriptase. Adenylate kinase 2 (AK2) has been previously demonstrated to phosphorylate tenofovir to tenofovir-monophosphate, while creatine kinase, muscle (CKM), pyruvate kinase, muscle (PKM) and pyruvate kinase, liver and red blood cell (PKLR) each have been found to phosphorylate tenofovir-monophosphate to the pharmacologically active tenofovir-diphosphate. In the present study, genomic DNA isolated from dried blood spots collected from 505 participants from Bangkok, Thailand; Cape Town, South Africa; and New York City, USA were examined for variants in AK2, CKM, PKM, and PKLR using next-generation sequencing. The bioinformatics tools SIFT and PolyPhen predicted that 19 of the 505 individuals (3.7% frequency) carried variants in at least one kinase that would result in a decrease or loss of enzymatic activity. To functionally test these predictions, AK2 and AK2 variants were expressed in and purified from E. coli, followed by investigation of their activities towards tenofovir. Interestingly, we found that purified AK2 had the ability to phosphorylate tenofovir-monophosphate to tenofovir-diphosphate in addition to phosphorylating tenofovir to tenofovir-monophosphate. Further, four of the six AK2 variants predicted to result in a loss or decrease of enzyme function exhibited a ≥30% decrease in activity towards tenofovir in our in vitro assays. Of note, an AK2 K28R variant resulted in a 72% and 81% decrease in the formation of tenofovir-monophosphate and tenofovir-diphosphate, respectively. These data suggest that there are naturally occurring genetic variants that could potentially impact TFV activation.
Collapse
|
44
|
Mingxing F, Landoni G, Zangrillo A, Monaco F, Lomivorotov VV, Hui C, Novikov M, Nepomniashchikh V, Fominskiy E. Phosphocreatine in Cardiac Surgery Patients: A Meta-Analysis of Randomized Controlled Trials. J Cardiothorac Vasc Anesth 2017; 32:762-770. [PMID: 29409711 DOI: 10.1053/j.jvca.2017.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 11/11/2022]
Abstract
OBJECTIVE There is experimental evidence that phosphocreatine (PCr) can decrease ischemia/reperfusion injury of the heart. The authors investigated if PCr would improve heart performance as compared with standard treatment in cardiac surgery. DESIGN Meta-analysis of randomized controlled trials. SETTING Hospitals. PARTICIPANTS Adult and pediatric patients undergoing cardiac surgery. INTERVENTIONS The ability of PCr to improve cardiac outcomes as compared with standard treatment was investigated. MEASUREMENTS AND MAIN RESULTS PubMed/Medline, Embase, Scopus, Cochrane Library, China National Knowledge Infrastructure, WANGFANG DATA, and VIP Paper Check System were searched to March 1 2017. The authors included 26 randomized controlled trials comprising 1,948 patients. Random and fixed-effects models were used to estimate odds ratio (OR) and mean difference (MD) with 95% confidence interval (CI). PCr use was associated with reduced rates of intraoperative inotropic support (27% v 44%; OR 0.47, 95% CI 0.35-0.61; p < 0.001), major arrhythmias (16% v 28%; OR 0.44, 95% CI 0.27-0.69; p < 0.001), as well as increased spontaneous recovery of the cardiac rhythm immediately after aortic declamping (50% v 34%; OR 2.45, 95% CI 1.82-3.30; p < 0.001) as compared with standard treatment. The use of PCr decreased myocardial damage and augmented left ventricular ejection fraction in the postoperative period; however, MD for these outcomes were small and do not seem to be clinically significant. CONCLUSIONS In randomized trials, PCr administration was associated with reduced rates of intraoperative inotropic support and major arrhythmias, and increased spontaneous recovery of the cardiac rhythm after aortic declamping. Large multicenter evidence is needed to validate these findings.
Collapse
Affiliation(s)
- Fang Mingxing
- Department of Intensive Care, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, P.R. China
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University of Milan, Milan, Italy
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University of Milan, Milan, Italy
| | - Fabrizio Monaco
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Vladimir V Lomivorotov
- Department of Anesthesia and Intensive Care, Siberian Biomedical Research Center of the Ministry of Health, Novosibirsk, Russia
| | - Cao Hui
- Department of Intensive Care, The Third Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, P.R. China
| | - Maxim Novikov
- Department of Anesthesia and Intensive Care, Medical Center of Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Valery Nepomniashchikh
- Department of Anesthesia and Intensive Care, Siberian Biomedical Research Center of the Ministry of Health, Novosibirsk, Russia
| | - Evgeny Fominskiy
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Anesthesia and Intensive Care, Siberian Biomedical Research Center of the Ministry of Health, Novosibirsk, Russia.
| |
Collapse
|
45
|
Characterization of a functional recombinant human creatine kinase-MB isoenzyme prepared by tandem affinity purification from Escherichia coli. Appl Microbiol Biotechnol 2017; 101:5639-5644. [DOI: 10.1007/s00253-017-8286-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/01/2017] [Accepted: 04/02/2017] [Indexed: 12/31/2022]
|
46
|
Fagundes RR, Taylor CT. Determinants of hypoxia-inducible factor activity in the intestinal mucosa. J Appl Physiol (1985) 2017; 123:1328-1334. [PMID: 28408694 DOI: 10.1152/japplphysiol.00203.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/28/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022] Open
Abstract
The intestinal mucosa is exposed to fluctuations in oxygen levels due to constantly changing rates of oxygen demand and supply and its juxtaposition with the anoxic environment of the intestinal lumen. This frequently results in a state of hypoxia in the healthy mucosa even in the physiologic state. Furthermore, pathophysiologic hypoxia (which is more severe and extensive) is associated with chronic inflammatory diseases including inflammatory bowel disease (IBD). The hypoxia-inducible factor (HIF), a ubiquitously expressed regulator of cellular adaptation to hypoxia, is central to both the adaptive and the inflammatory responses of cells of the intestinal mucosa in IBD patients. In this review, we discuss the microenvironmental factors which influence the level of HIF activity in healthy and inflamed intestinal mucosae and the consequences that increased HIF activity has for tissue function and disease progression.
Collapse
Affiliation(s)
- Raphael R Fagundes
- Graduate School of Medical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and.,UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Cormac T Taylor
- UCD Conway Institute, Systems Biology Ireland and School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
47
|
Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 2017; 74:1-20. [PMID: 28093238 DOI: 10.1016/j.neubiorev.2017.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
48
|
Wang Z, Lin D, Zhang L, Liu W, Tan H, Ma J. Penehyclidine hydrochloride prevents anoxia/reoxygenation injury and induces H9c2 cardiomyocyte apoptosis via a mitochondrial pathway. Eur J Pharmacol 2017; 797:115-123. [DOI: 10.1016/j.ejphar.2017.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 02/06/2023]
|