1
|
Moreira TB, Silvestrini MMA, Gomes ALDFM, Rangel KK, Costa ÁP, Gomes MS, do Amaral LR, Martins-Filho OA, Salles PGDO, Braga LC, Teixeira-Carvalho A. Neutrophil- and Endothelial Cell-Derived Extracellular Microvesicles Are Promising Putative Biomarkers for Breast Cancer Diagnosis. Biomedicines 2025; 13:587. [PMID: 40149564 PMCID: PMC11940338 DOI: 10.3390/biomedicines13030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/27/2024] [Accepted: 11/27/2024] [Indexed: 03/29/2025] Open
Abstract
Introduction: Breast cancer (BC) is a disease that affects about 2.2 million people worldwide. The prognosis and treatment of these patients depend on clinical and histopathologic staging, in which more aggressive cancers need a less conservative therapeutic approach. Previous studies showed that patients with BC have an increased frequency of systemic microvesicles (MVs) that are associated with invasion, progression, and metastasis, which can be used in liquid biopsy to predict the therapeutic response in individualized treatment. Objective: This study proposes the development of a minimally invasive BC diagnostic panel and follow-up biomarkers as a complementary method to screen patients. Methods: The quantification of circulating MVs in 48 healthy women and 100 BC patients who attended the Mário Penna Institute between 2019 and 2022 was performed by flow cytometry. In addition, the MVs of BC patients were analyzed before treatment and 6, 12, and 24 months post-treatment. Machine learning approaches were employed to determine the performance of MVs to identify BC and to propose BC classifier algorithms. Results: Patients with BC had more neutrophil- and endothelial cell-derived MVs than controls before treatment. After treatment, all MV populations were decreased compared to pre-treatment, but leukocyte- and erythrocyte-derived MVs were increased at 12 months after treatment, before decreasing again at 24 months. Conclusions: Performance analyses and machine learning approaches pointed out that MVs from neutrophils and endothelial cells are the best candidates for BC diagnostic biomarkers. Neutrophil- and endothelial cell-derived MVs are putative candidates for BC biomarkers to be employed as screening tests for BC diagnosis.
Collapse
Affiliation(s)
- Thayse Batista Moreira
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.B.M.); (M.M.A.S.); (O.A.M.-F.)
- Laboratório de Pesquisa Translacional em Oncologia, Instituto de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil;
| | - Marina Malheiros Araújo Silvestrini
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.B.M.); (M.M.A.S.); (O.A.M.-F.)
| | | | - Kerstin Kapp Rangel
- Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (A.L.d.F.M.G.); (K.K.R.); (Á.P.C.)
| | - Álvaro Percínio Costa
- Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil; (A.L.d.F.M.G.); (K.K.R.); (Á.P.C.)
| | - Matheus Souza Gomes
- Laboratório de Bioinformática e Análise Molecular, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Patos de Minas 38701-002, Brazil; (M.S.G.); (L.R.d.A.)
| | - Laurence Rodrigues do Amaral
- Laboratório de Bioinformática e Análise Molecular, Universidade Federal de Uberlândia (UFU), Campus Patos de Minas, Patos de Minas 38701-002, Brazil; (M.S.G.); (L.R.d.A.)
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.B.M.); (M.M.A.S.); (O.A.M.-F.)
| | - Paulo Guilherme de Oliveira Salles
- Laboratório de Pesquisa Translacional em Oncologia, Instituto de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil;
- Laboratório de Anatomia Patológica, Hospital Luxemburgo, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil
| | - Letícia Conceição Braga
- Laboratório de Pesquisa Translacional em Oncologia, Instituto de Ensino, Pesquisa e Inovação, Instituto Mário Penna, Belo Horizonte 30380-420, Brazil;
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou-Fiocruz, Belo Horizonte 30190-002, Brazil; (T.B.M.); (M.M.A.S.); (O.A.M.-F.)
| |
Collapse
|
2
|
Martins B, Pires M, Ambrósio AF, Girão H, Fernandes R. Contribution of extracellular vesicles for the pathogenesis of retinal diseases: shedding light on blood-retinal barrier dysfunction. J Biomed Sci 2024; 31:48. [PMID: 38730462 PMCID: PMC11088087 DOI: 10.1186/s12929-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.
Collapse
Affiliation(s)
- Beatriz Martins
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - Maria Pires
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - António Francisco Ambrósio
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal
| | - Henrique Girão
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
| | - Rosa Fernandes
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal.
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal.
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal.
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal.
| |
Collapse
|
3
|
Irmer B, Chandrabalan S, Maas L, Bleckmann A, Menck K. Extracellular Vesicles in Liquid Biopsies as Biomarkers for Solid Tumors. Cancers (Basel) 2023; 15:cancers15041307. [PMID: 36831648 PMCID: PMC9953862 DOI: 10.3390/cancers15041307] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are ubiquitous in every human body fluid. They are quite heterogeneous with regard to biogenesis, size, and composition, yet always reflect their parental cells with their cell-of-origin specific cargo loading. Since numerous studies have demonstrated that EV-associated proteins, nucleic acids, lipids, and metabolites can represent malignant phenotypes in cancer patients, EVs are increasingly being discussed as valuable carriers of cancer biomarkers in liquid biopsy samples. However, the lack of standardized and clinically feasible protocols for EV purification and characterization still limits the applicability of EV-based cancer biomarker analysis. This review first provides an overview of current EV isolation and characterization techniques that can be used to exploit patient-derived body fluids for biomarker quantification assays. Secondly, it outlines promising tumor-specific EV biomarkers relevant for cancer diagnosis, disease monitoring, and the prediction of cancer progression and therapy resistance. Finally, we summarize the advantages and current limitations of using EVs in liquid biopsy with a prospective view on strategies for the ongoing clinical implementation of EV-based biomarker screenings.
Collapse
Affiliation(s)
- Barnabas Irmer
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Suganja Chandrabalan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Lukas Maas
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- West German Cancer Center, University Hospital Münster, 48149 Munster, Germany
| | - Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University of Münster, 48149 Munster, Germany
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Munster, Germany
- Correspondence:
| |
Collapse
|
4
|
Extracellular Vesicles: New Classification and Tumor Immunosuppression. BIOLOGY 2023; 12:biology12010110. [PMID: 36671802 PMCID: PMC9856004 DOI: 10.3390/biology12010110] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.
Collapse
|
5
|
Craddock VD, Cook CM, Dhillon NK. Exploring extracellular vesicles as mediators of clinical disease and vehicles for viral therapeutics: Insights from the COVID-19 pandemic. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2022; 3:172-188. [PMID: 35929616 PMCID: PMC9348627 DOI: 10.20517/evcna.2022.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has challenged researchers to rapidly understand the capabilities of the SARS-CoV-2 virus and investigate potential therapeutics for SARS-CoV-2 infection. COVID-19 has been associated with devastating lung and cardiac injury, profound inflammation, and a heightened coagulopathic state, which may, in part, be driven by cellular crosstalk facilitated by extracellular vesicles (EVs). In recent years, EVs have emerged as important biomarkers of disease, and while extracellular vesicles may contribute to the spread of COVID-19 infection from one cell to the next, they also may be engineered to play a protective or therapeutic role as decoys or "delivery drivers" for therapeutic agents. This review explores these roles and areas for future study.
Collapse
Affiliation(s)
- Vaughn D Craddock
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, USA
| | - Christine M Cook
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, USA
| | - Navneet K Dhillon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, KS 66160, USA
| |
Collapse
|
6
|
Wardlaw JM, Benveniste H, Williams A. Cerebral Vascular Dysfunctions Detected in Human Small Vessel Disease and Implications for Preclinical Studies. Annu Rev Physiol 2022; 84:409-434. [PMID: 34699267 DOI: 10.1146/annurev-physiol-060821-014521] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cerebral small vessel disease (SVD) is highly prevalent and a common cause of ischemic and hemorrhagic stroke and dementia, yet the pathophysiology is poorly understood. Its clinical expression is highly varied, and prognostic implications are frequently overlooked in clinics; thus, treatment is currently confined to vascular risk factor management. Traditionally, SVD is considered the small vessel equivalent of large artery stroke (occlusion, rupture), but data emerging from human neuroimaging and genetic studies refute this, instead showing microvessel endothelial dysfunction impacting on cell-cell interactions and leading to brain damage. These dysfunctions reflect defects that appear to be inherited and secondary to environmental exposures, including vascular risk factors. Interrogation in preclinical models shows consistent and converging molecular and cellular interactions across the endothelial-glial-neural unit that increasingly explain the human macroscopic observations and identify common patterns of pathology despite different triggers. Importantly, these insights may offer new targets for therapeutic intervention focused on restoring endothelial-glial physiology.
Collapse
Affiliation(s)
- Joanna M Wardlaw
- Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences; UK Dementia Research Institute; and Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom;
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anna Williams
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Felekkis K, Pieri M, Papaneophytou C. Variability in the levels of exosomal miRNAs among human subjects could be explained by differential interactions of exosomes with the endothelium. IUBMB Life 2021; 73:1400-1405. [PMID: 34779101 DOI: 10.1002/iub.2575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022]
Abstract
Exosomes are 30-100 nm endosome-derived membrane vesicles, that contain specific RNA transcripts including mRNAs, and microRNAs (miRNAs) and have been implicated in cell-to-cell communication. Exosomal miRNAs in blood circulation have been attracting major interest as potential diagnostic and prognostic biomarkers in a variety of diseases including stroke, cancer, and inflammatory disorders. Despite the progress made in the utilization of circulating exosomal miRNAs as biomarkers for various human diseases and conditions, there are still difficulties in functionally utilizing such methods in the clinic due to the high variability observed among subjects. Attempts to use miRNA signatures have improved but have not eliminated the problem. Additionally, standardized laboratory practices may partially reduce variability but there is still an unknown biological factor that hinders the proper use of miRNAs as biomarkers. We hypothesize that this variability might be partially attributed to a differential interaction among circulating exosomes carrying those miRNAs with endothelial surface molecules that themselves may vary among individuals due to secondary conditions, for example, inflammation status. This differential interaction could potentially add variability to the level of the examined miRNA that is not directly attributed to the primary condition under study.
Collapse
Affiliation(s)
- Kyriacos Felekkis
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| | - Myrtani Pieri
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| | - Christos Papaneophytou
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
8
|
Krishnamachary B, Cook C, Kumar A, Spikes L, Chalise P, Dhillon NK. Extracellular vesicle-mediated endothelial apoptosis and EV-associated proteins correlate with COVID-19 disease severity. J Extracell Vesicles 2021; 10:e12117. [PMID: 34262673 PMCID: PMC8254805 DOI: 10.1002/jev2.12117] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has lead to a global pandemic with a rising toll in infections and deaths. Better understanding of its pathogenesis will greatly improve the outcomes and treatment of affected patients. Here we compared the inflammatory and cardiovascular disease-related protein cargo of circulating large and small extracellular vesicles (EVs) from 84 hospitalized patients infected with SARS-CoV-2 with different stages of disease severity. Our findings reveal significant enrichment of proinflammatory, procoagulation, immunoregulatory and tissue-remodelling protein signatures in EVs, which remarkably distinguished symptomatic COVID-19 patients from uninfected controls with matched comorbidities and delineated those with moderate disease from those who were critically ill. Specifically, EN-RAGE, followed by TF and IL-18R1, showed the strongest correlation with disease severity and length of hospitalization. Importantly, EVs from COVID-19 patients induced apoptosis of pulmonary microvascular endothelial cells in the order of disease severity. In conclusion, our findings support a role for EVs in the pathogenesis of COVID-19 disease and underpin the development of EV-based approaches to predicting disease severity, determining need for patient hospitalization and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Christine Cook
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Ashok Kumar
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Leslie Spikes
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Prabhakar Chalise
- Department of Biostatistics & Data ScienceUniversity of Kansas Medical CenterKansas CityKansasUSA
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care MedicineDepartment of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| |
Collapse
|
9
|
Detection and Investigation of Extracellular Vesicles in Serum and Urine Supernatant of Prostate Cancer Patients. Diagnostics (Basel) 2021; 11:diagnostics11030466. [PMID: 33800141 PMCID: PMC7998238 DOI: 10.3390/diagnostics11030466] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate Cancer (PCa) is one of the most frequently identified urological cancers. PCa patients are often over-diagnosed due to still not highly specific diagnostic methods. The need for more accurate diagnostic tools to prevent overestimated diagnosis and unnecessary treatment of patients with non-malignant conditions is clear, and new markers and methods are strongly desirable. Extracellular vesicles (EVs) hold great promises as liquid biopsy-based markers. Despite the biological and technical issues present in their detection and study, these particles can be found highly abundantly in the biofluid and encompass a wealth of macromolecules that have been reported to be related to many physiological and pathological processes, including cancer onset, metastasis spreading, and treatment resistance. The present study aims to perform a technical feasibility study to develop a new workflow for investigating EVs from several biological sources. Serum and urinary supernatant EVs of PCa, benign prostatic hyperplasia (BPH) patients, and healthy donors were isolated and investigated by a fast, easily performable, and cost-effective cytofluorimetric approach for a multiplex detection of 37 EV-antigens. We also observed significant alterations in serum and urinary supernatant EVs potentially related to BPH and PCa, suggesting a potential clinical application of this workflow.
Collapse
|
10
|
Krishnamachary B, Cook C, Spikes L, Chalise P, Dhillon NK. The Potential Role of Extracellular Vesicles in COVID-19 Associated Endothelial injury and Pro-inflammation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.08.27.20182808. [PMID: 32909001 PMCID: PMC7480053 DOI: 10.1101/2020.08.27.20182808] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
COVID-19 infection caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in a global pandemic with the number of deaths growing exponentially. Early evidence points to significant endothelial dysfunction, micro-thromboses, pro-inflammation as well as a dysregulated immune response in the pathogenesis of this disease. In this study, we analyzed the cargo of EVs isolated from the plasma of patients with COVID-19 for the identification of potential biomarkers of disease severity and to explore their role in disease pathogenesis. Plasma-derived EVs were isolated from 53 hospitalized patients with COVID infection and compared according to the severity of the disease. Analysis of inflammatory and cardiovascular protein cargo of large EVs revealed significantly differentially expressed proteins for each disease sub-group. Notably, members of the TNF superfamily and IL-6 family were up-regulated in patients on oxygen support with severe and moderate disease. EVs from the severe group were also enhanced with pro-thrombotic/endothelial injury factors (TF, t-PA, vWF) and proteins associated with cardiovascular pathology (MB, PRSS8, REN, HGF). Significantly higher levels of TF, CD163, and EN-RAGE were observed in EVs from severe patients when compared to patients with a moderate disease requiring supplemental O2. Importantly, we also observed increased caspase 3/7 activity and decreased cell survival in human pulmonary microvascular endothelial cells exposed to EVs from the plasma of patients with severe disease compared to healthy controls. In conclusion, our findings indicate alterations in pro-inflammatory, coagulopathy, and endothelial injury protein cargo in large EVs in response to SARS-CoV-2 infection that may be a causative agent in severe illness.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Christine Cook
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Leslie Spikes
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Prabhakar Chalise
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
11
|
Sindi HA, Russomanno G, Satta S, Abdul-Salam VB, Jo KB, Qazi-Chaudhry B, Ainscough AJ, Szulcek R, Jan Bogaard H, Morgan CC, Pullamsetti SS, Alzaydi MM, Rhodes CJ, Piva R, Eichstaedt CA, Grünig E, Wilkins MR, Wojciak-Stothard B. Therapeutic potential of KLF2-induced exosomal microRNAs in pulmonary hypertension. Nat Commun 2020; 11:1185. [PMID: 32132543 PMCID: PMC7055281 DOI: 10.1038/s41467-020-14966-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disorder of lung vasculature that causes right heart failure. Homoeostatic effects of flow-activated transcription factor Krüppel-like factor 2 (KLF2) are compromised in PAH. Here, we show that KLF2-induced exosomal microRNAs, miR-181a-5p and miR-324-5p act together to attenuate pulmonary vascular remodelling and that their actions are mediated by Notch4 and ETS1 and other key regulators of vascular homoeostasis. Expressions of KLF2, miR-181a-5p and miR-324-5p are reduced, while levels of their target genes are elevated in pre-clinical PAH, idiopathic PAH and heritable PAH with missense p.H288Y KLF2 mutation. Therapeutic supplementation of miR-181a-5p and miR-324-5p reduces proliferative and angiogenic responses in patient-derived cells and attenuates disease progression in PAH mice. This study shows that reduced KLF2 signalling is a common feature of human PAH and highlights the potential therapeutic role of KLF2-regulated exosomal miRNAs in PAH and other diseases associated with vascular remodelling.
Collapse
Affiliation(s)
- Hebah A. Sindi
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK ,University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| | - Giusy Russomanno
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Sandro Satta
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Vahitha B. Abdul-Salam
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Kyeong Beom Jo
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Basma Qazi-Chaudhry
- 0000 0001 2322 6764grid.13097.3cDepartment of Physics, King’s College London UK, London, UK
| | - Alexander J. Ainscough
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Robert Szulcek
- Amsterdam UMC, VU University Medical Center, Department of Pulmonary Diseases, Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands
| | - Harm Jan Bogaard
- Amsterdam UMC, VU University Medical Center, Department of Pulmonary Diseases, Amsterdam Cardiovascular Sciences (ACS), Amsterdam, The Netherlands
| | - Claire C. Morgan
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Soni S. Pullamsetti
- grid.452624.3Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, Member of the German Center for Lung Research (DZL), Bad Nauheim, Germany ,0000 0001 2165 8627grid.8664.cDepartment of Internal MedicineUniversities of Giessen and Marburg Lung Center (UGMLC), Member of the DZL, Justus Liebig University, Giessen, Germany
| | - Mai M. Alzaydi
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK ,0000 0000 8808 6435grid.452562.2National Center for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Christopher J. Rhodes
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Roberto Piva
- 0000 0001 2336 6580grid.7605.4Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Christina A. Eichstaedt
- grid.452624.3Centre for Pulmonary Hypertension, Thoraxclinic, Institute for Human Genetics, University of Heidelberg, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany ,0000 0001 2190 4373grid.7700.0Laboratory of Molecular Genetic Diagnostics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Ekkehard Grünig
- grid.452624.3Centre for Pulmonary Hypertension, Thoraxclinic, Institute for Human Genetics, University of Heidelberg, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin R. Wilkins
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| | - Beata Wojciak-Stothard
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
12
|
Battistelli M, Falcieri E. Apoptotic Bodies: Particular Extracellular Vesicles Involved in Intercellular Communication. BIOLOGY 2020; 9:E21. [PMID: 31968627 PMCID: PMC7168913 DOI: 10.3390/biology9010021] [Citation(s) in RCA: 279] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 12/20/2022]
Abstract
In the last decade, a new method of cell-cell communication mediated by membranous extracellular vesicles (EVs) has emerged. EVs, including exosomes, microvesicles, and apoptotic bodies (ApoBDs), represent a new and important topic, because they are a means of communication between cells and they can also be involved in removing cellular contents. EVs are characterized by differences in size, origin, and content and different types have different functions. They appear as membranous sacs released by a variety of cells, in different physiological and patho-physiological conditions. Intringuingly, exosomes and microvesicles are a potent source of genetic information carriers between different cell types both within a species and even across a species barrier. New, and therefore still relatively poorly known vesicles are apoptotic bodies, on which numerous in-depth studies are needed in order to understand their role and possible function. In this review we would like to analyze their morpho-functional characteristics.
Collapse
Affiliation(s)
- Michela Battistelli
- Department of Biomolecular Sciences (DiSB), Urbino University Carlo Bo, 61029 Urbino (PU), Italy;
| | | |
Collapse
|
13
|
Movahed N, Cabanillas DG, Wan J, Vali H, Laliberté JF, Zheng H. Turnip Mosaic Virus Components Are Released into the Extracellular Space by Vesicles in Infected Leaves. PLANT PHYSIOLOGY 2019; 180:1375-1388. [PMID: 31019004 PMCID: PMC6752911 DOI: 10.1104/pp.19.00381] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 05/18/2023]
Abstract
Turnip mosaic virus (TuMV) reorganizes the endomembrane system of the infected cell to generate endoplasmic-reticulum-derived motile vesicles containing viral replication complexes. The membrane-associated viral protein 6K2 plays a key role in the formation of these vesicles. Using confocal microscopy, we observed that this viral protein, a marker for viral replication complexes, localized in the extracellular space of infected Nicotiana benthamiana leaves. Previously, we showed that viral RNA is associated with multivesicular bodies (MVBs). Here, using transmission electron microscopy, we observed the proliferation of MVBs during infection and their fusion with the plasma membrane that resulted in the release of their intraluminal vesicles in the extracellular space. Immunogold labeling with a monoclonal antibody that recognizes double-stranded RNA indicated that the released vesicles contained viral RNA. Focused ion beam-extreme high-resolution scanning electron microscopy was used to generate a three-dimensional image that showed extracellular vesicles in the cell wall. The presence of TuMV proteins in the extracellular space was confirmed by proteomic analysis of purified extracellular vesicles from N benthamiana and Arabidopsis (Arabidopsis thaliana). Host proteins involved in biotic defense and in interorganelle vesicular exchange were also detected. The association of extracellular vesicles with viral proteins and RNA emphasizes the implication of the plant extracellular space in viral infection.
Collapse
Affiliation(s)
- Nooshin Movahed
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
| | - Daniel Garcia Cabanillas
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Québec, H7V 1B7, Canada
| | - Juan Wan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montréal, Québec, H3A 0C7, Canada
- Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, H3A 0C7, Canada
| | - Jean-François Laliberté
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Québec, H7V 1B7, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, Montréal, Québec, H3A 1B1, Canada
| |
Collapse
|
14
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
15
|
Correlative light and electron microscopy is a powerful tool to study interactions of extracellular vesicles with recipient cells. Exp Cell Res 2019; 376:149-158. [DOI: 10.1016/j.yexcr.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/31/2019] [Accepted: 02/09/2019] [Indexed: 12/26/2022]
|
16
|
Banizs AB, Huang T, Nakamoto RK, Shi W, He J. Endocytosis Pathways of Endothelial Cell Derived Exosomes. Mol Pharm 2018; 15:5585-5590. [PMID: 30351959 DOI: 10.1021/acs.molpharmaceut.8b00765] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanosized extracellular vesicles (EVs) possess the natural machinery needed to enter selectively and transmit complex molecular messages efficiently into targeted cells. The intracellular fate of the vesicular cargos depends on the route of internalization. Therefore, understanding the mechanism of attachment and subsequent intake of these vesicles (before and after exerting any modification) is imperative. Here the extent of communication, the uptake kinetics, and the pathways of endothelial EVs into endothelial cells in the presence of specific pharmacological inhibitors were assessed by imaging flow cytometry. The results showed that the uptake of endothelial EVs into endothelial cells was largely an energy-dependent process using predominantly a receptor-mediated, clathrin-dependent pathway.
Collapse
|
17
|
Shah T, Qin S, Vashi M, Predescu DN, Jeganathan N, Bardita C, Ganesh B, diBartolo S, Fogg LF, Balk RA, Predescu SA. Alk5/Runx1 signaling mediated by extracellular vesicles promotes vascular repair in acute respiratory distress syndrome. Clin Transl Med 2018; 7:19. [PMID: 29931538 PMCID: PMC6013417 DOI: 10.1186/s40169-018-0197-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Pulmonary endothelial cells’ (ECs) injury and apoptotic death are necessary and sufficient for the pathogenesis of the acute respiratory distress syndrome (ARDS), regardless of epithelial damage. Interaction of dysfunctional ECs with circulatory extracellular vesicles (EVs) holds therapeutic promise in ARDS. However, the presence in the blood of long-term ARDS survivors of EVs with a distinct phenotype compared to the EVs of non-surviving patients is not reported. With a multidisciplinary translational approach, we studied EVs from the blood of 33 patients with moderate-to-severe ARDS. Results The EVs were isolated from the blood of ARDS and control subjects. Immunoblotting and magnetic beads immunoisolation complemented by standardized flow cytometry and nanoparticles tracking analyses identified in the ARDS patients a subset of EVs with mesenchymal stem cell (MSC) origin (CD73+CD105+Cd34−CD45−). These EVs have 4.7-fold greater counts compared to controls and comprise the transforming growth factor-beta receptor I (TβRI)/Alk5 and the Runx1 transcription factor. Time course analyses showed that the expression pattern of two Runx1 isoforms is critical for ARDS outcome: the p52 isoform shows a continuous expression, while the p66 is short-lived. A high ratio Runx1p66/p52 provided a survival advantage, regardless of age, sex, disease severity or length of stay in the intensive care unit. Moreover, the Runx1p66 isoform is transiently expressed by cultured human bone marrow-derived MSCs, it is released in the EVs recoverable from the conditioned media and stimulates the proliferation of lipopolysaccharide (LPS)-treated ECs. The findings are consistent with a causal effect of Runx1p66 expression on EC proliferation. Furthermore, morphological and functional assays showed that the EVs bearing the Runx1p66 enhanced junctional integrity of LPS-injured ECs and decreased lung histological severity in the LPS-treated mice. Conclusions The expression pattern of Runx1 isoforms might be a reliable circulatory biomarker of ARDS activity and a novel determinant of the molecular mechanism for lung vascular/tissue repair and recovery after severe injury. Electronic supplementary material The online version of this article (10.1186/s40169-018-0197-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trushil Shah
- Pulmonary and Critical Care Medicine, UTSouthwestern Medical Center, Dallas, TX, USA
| | - Shanshan Qin
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Mona Vashi
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Dan N Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Niranjan Jeganathan
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Cristina Bardita
- Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Salvatore diBartolo
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Louis F Fogg
- College of Nursing, Rush Medical College, Chicago, IL, USA
| | - Robert A Balk
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA
| | - Sanda A Predescu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, Rush University Medical Center, 1750W Harrison St. 1535 JS, Chicago, IL, 60612, USA.
| |
Collapse
|
18
|
Vanhamme L, Zouaoui Boudjeltia K, Van Antwerpen P, Delporte C. The other myeloperoxidase: Emerging functions. Arch Biochem Biophys 2018; 649:1-14. [PMID: 29614255 DOI: 10.1016/j.abb.2018.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/07/2018] [Accepted: 03/30/2018] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) is a member of the mammalian peroxidase family. It is mainly expressed in neutrophils, monocytes and macrophages. As a catalyzer of reactive oxidative species and radical species formation, it contributes to neutrophil bactericidal activity. Nevertheless MPO invalidation does not seem to have major health consequences in affected individuals. This suggests that MPO might have alternative functions supporting its conservation during evolution. We will review the available data supporting these non-canonical functions in terms of tissue specific expression, function and enzymatic activity. Thus, we discuss its cell type specific expression. We review in between others its roles in angiogenesis, endothelial (dys-) function, immune reaction, and inflammation. We summarize its pathological actions in clinical conditions such as cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium; Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium.
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB 222 Unit), CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Delporte
- Pharmacognosy, Bioanalysis and Drug Discovery Unit, RD3, and Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|