1
|
Xu X, Dai X, Huang C, Guan X, Zhang C. 17beta-estradiol (E2) Regulates Malignancies and Stemness in Endometrial Carcinoma (EC) via Interacting with ESR1. Reprod Sci 2025:10.1007/s43032-025-01871-1. [PMID: 40342082 DOI: 10.1007/s43032-025-01871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/20/2025] [Indexed: 05/11/2025]
Abstract
Endometrial cancer is one of the most common and fatal gynaecologic malignancies and is associated with the presence of estrogen. Endometrial cancer stem-like cells (ECSCs) are stem-like cell subpopulations endowed with self-renewal and differentiation capacities and are critical for EC progression. However, it is still unknown whether estrogen is involved in regulating stemness in EC and contributes to malignancies. Therefore, we investigated the regulatory effects of E2 treatment on oestrogen receptor-1 (ESR1).ESR1 expression was measured in EC tissues; After ESR1 overexpression of knockdown, the effects of E2 treatment was evaluated, including cell proliferation, sphere formation, invasion and colony formation. Our results indicate that ESR1 is critical for the regulatory effect of E2 on EC cells. After being cultured in serum-free medium, the ECSCs were found to be enriched in stemness markers, including CD133, CD44 and ALDH1. Interestingly, enriched ECSCs presented significantly lower expression levels of these factors than the parental cells. Overexpression of ESR1 slightly affected stemness and malignant potential in ECSCs, and the addition of 2 nM E2 markedly decreased stemness and inhibited malignant behaviours of ECSCs, including proliferation, invasion and tumour formation, in soft agar. Moreover, the addition of E2 significantly inhibited the expression of epithelial-mesenchymal transition (EMT) markers, including ZEB1, ZEB2, and E-cadherin.ESR1 is critical for regulating EC progression in the presence of E2, partially by regulating stemness in ECSCs, indicating that ESR1 might be a potential therapeutic target for EC.
Collapse
Affiliation(s)
- Xiaochao Xu
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610000, Sichuan, China
| | - Xinzhi Dai
- The First Clinical lnstitute, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Cheng Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, 646000, Sichuan, China
| | - Xia Guan
- Department of Pathology, Sichuan Provincial Maternity and Child Health Care Hospital, Chengdu, 610000, Sichu, P.R. China.
| | - Cuiwei Zhang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Li J, Pan J, Wang L, Ji G, Dang Y. Colorectal Cancer: Pathogenesis and Targeted Therapy. MedComm (Beijing) 2025; 6:e70127. [PMID: 40060193 PMCID: PMC11885891 DOI: 10.1002/mco2.70127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 04/29/2025] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent malignant neoplasms globally. A growing body of evidence underscores the pivotal roles of genetic alterations and dysregulated epigenetic modifications in the pathogenesis of CRC. In recent years, the reprogramming of tumor cell metabolism has been increasingly acknowledged as a hallmark of cancer. Substantial evidence suggests a crosstalk between tumor cell metabolic reprogramming and epigenetic modifications, highlighting a complex interplay between metabolism and the epigenetic genome that warrants further investigation. Biomarkers associated with the pathogenesis and metabolic characteristics of CRC hold significant clinical implications. Nevertheless, elucidating the genetic, epigenetic, and metabolic landscapes of CRC continues to pose considerable challenges. Here, we attempt to summarize the key genes driving the onset and progression of CRC and the related epigenetic regulators, clarify the roles of gene expression and signaling pathways in tumor metabolism regulation, and explore the potential crosstalk between epigenetic events and tumor metabolic reprogramming, providing a comprehensive mechanistic explanation for the malignant progression of CRC. Finally, by integrating reliable targets from genetics, epigenetics, and metabolic processes that hold promise for translation into clinical practice, we aim to offer more strategies to overcome the bottlenecks in CRC treatment.
Collapse
Affiliation(s)
- Jingyuan Li
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiashu Pan
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Lisheng Wang
- Department of BiochemistryMicrobiology and ImmunologyFaculty of MedicineUniversity of OttawaOttawaOntarioCanada
- China‐Canada Centre of Research for Digestive DiseasesUniversity of OttawaOttawaOntarioCanada
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive DiseasesLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
3
|
Fuller H, Agasaro OP, Darst BF. Pre-diagnostic circulating metabolomics and prostate cancer risk: A systematic review and meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.27.25321444. [PMID: 40061317 PMCID: PMC11888532 DOI: 10.1101/2025.02.27.25321444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Background Metabolomic dysregulation contributes to prostate cancer (PCa) pathogenesis, and studies suggest that circulating metabolites have strong clinical potential to act as biomarkers. However, evidence of circulating metabolite associations has not been quantitively aggregated. Methods Systematic searches were performed in PubMed and Embase (October 17th, 2024) to identify pre-diagnostic untargeted serum metabolomic studies of PCa risk. After harmonizing metabolite names across studies, restricted maximum likelihood was used to conduct meta-analyses to quantify associations between metabolites and risk of overall PCa, low- to intermediate-risk PCa, high- to very high-risk PCa and lethal PCa, as defined by the NCCN. Statistical significance was defined as FDR-adjusted P<0.05. Enrichment analyses were conducted on significant metabolites to identify biologically relevant pathways. Correlation of effect estimates between PCa outcomes was assessed via Pearson correlation. Results We identified 12 untargeted pre-diagnostic circulating metabolomic studies in a systematic review and meta-analyzed associations between up to 408 metabolites with four PCa outcomes. Three, eleven and nineteen metabolites were significantly associated with risk of overall, high/very high-risk and lethal PCa, respectively. Metabolites associated with high/very high-risk PCa were significantly enriched for lipids. Limited evidence of correlation between metabolite effects across outcomes was identified, highlighting potentially unique metabolite drivers of high-risk and lethal PCa. Follow-up analyses found that 13 of the significant metabolites were drug and/or dietary modifiable. Conclusions These findings suggest the strong potential for metabolites to inform risk of lethal PCa, which could inform risk-stratified screening strategies and facilitate the identification of targets for PCa prevention.
Collapse
Affiliation(s)
- Harriett Fuller
- Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Orietta P. Agasaro
- Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Burcu F. Darst
- Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Tosello V, Di Martino L, Papathanassiu AE, Santa SD, Pizzi M, Mussolin L, Liu J, Van Vlierberghe P, Piovan E. BCAT1 is a NOTCH1 target and sustains the oncogenic function of NOTCH1. Haematologica 2025; 110:350-367. [PMID: 39234857 PMCID: PMC11788623 DOI: 10.3324/haematol.2024.285552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
High levels of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) have been associated with tumor aggressiveness and drug resistance in several cancer types. Nevertheless, the mechanistic role of BCAT1 in T-cell acute lymphoblastic leukemia (T-ALL) remains uncertain. We provide evidence that Bcat1 was over-expressed following NOTCH1-induced transformation of leukemic progenitors and that NOTCH1 directly controlled BCAT1 expression by binding to a BCAT1 promoter. Further, using a NOTCH1 gain-of-function retroviral model of T-ALL, mouse cells genetically deficient for Bcat1 showed defects in developing leukemia. In murine T-ALL cells, Bcat1 depletion or inhibition redirected leucine metabolism towards production of 3-hydroxy butyrate (3-HB), an endogenous histone deacetylase inhibitor. Consistently, BCAT1-depleted cells showed altered protein acetylation levels which correlated with a pronounced sensitivity to DNA damaging agents. In human NOTCH1-dependent leukemias, high expression levels of BCAT1 may predispose to worse prognosis. Therapeutically, BCAT1 inhibition specifically synergized with etoposide to eliminate tumors in patient-derived xenograft models suggesting that BCAT1 inhibitors may have a part to play in salvage protocols for refractory T-ALL.
Collapse
Affiliation(s)
- Valeria Tosello
- Basic and Translational Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua
| | | | | | - Silvia Dalla Santa
- Department of Surgery, Oncology and Gastroenterology, University of Padua
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine - DIMED, University of Padua
| | - Lara Mussolin
- Unit of Onco-hematology, stem cell transplant and gene therapy, Department of Women's and Children's Health, University of Padua
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Erich Piovan
- Department of Surgery, Oncology and Gastroenterology, University of Padua; Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, Padua.
| |
Collapse
|
5
|
Dokduang H, Katenak A, Kittirat Y, Tomacha J, Promraksa B, Taing L, Na Nakorn S, Klanrit P, Namwat N, Titapun A, Loilome W. Chemical composition and anticancer potential of water extracts derived from ground powder of Thai germinated brown rice ( Oryza sativa L.). Nat Prod Res 2025:1-8. [PMID: 39862045 DOI: 10.1080/14786419.2025.2457017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Powdered germinated Thai rice (Oryza sativa L.) is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds. Additionally, GBRE exhibited anticancer properties by effectively inhibiting cancer cell growth, inducing cell cycle arrest, and reducing cell migration. Our findings highlight the nutritional benefits and anticancer potential of germinated brown rice powder in impeding cancer cell progression. This study demonstrates the nutritional benefits and anticancer effects of germinated brown rice powder in inhibiting cancer cell progression. Incorporating germinated brown rice powder for a nutraceutical supplement can be served as a potential strategy for cancer prevention or therapeutic intervention.
Collapse
Affiliation(s)
- Hasaya Dokduang
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
- Biomedical Science Research Unit, Mahasarakham University, Mahasarakham, Thailand
| | - Anukoon Katenak
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Jittima Tomacha
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Bundit Promraksa
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Leakkhaing Taing
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Kampong Speu Institute of Technology, Kampong Speu, Cambodia
| | - Saran Na Nakorn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Poramate Klanrit
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nisana Namwat
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of System Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
6
|
Johansen SU, Goll R, Nordborg A, Vernstad K, Jensen EPH, Florholmen JR, Hansen T. Plasma Levels of Organic Acids Associated with the Gut Microbiome Display Significant Alterations in Neuroendocrine Tumor Patients. Neuroendocrinology 2024; 115:283-294. [PMID: 39715594 DOI: 10.1159/000543247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION The gut microbiome, allegedly involved in both healthy homeostasis and development of disease, is found to be associated with several types of cancer. Short-chain fatty acids (SCFAs), important metabolites derived from the gut microbiota, are described to carry both protective and promoting features in cancer development. Limited research exists on neuroendocrine tumors (NETs) and their association with microbiota-derived SCFAs. The aim of this study was to investigate possible alterations in plasma SCFAs/organic acids in NET patients compared to healthy controls. METHODS We quantified 11 organic acids, including SCFAs, in plasma from 109 NET patients (49 curatively operated patients and 60 patients with distant metastasis) as well as 20 healthy controls. Acids were quantified using liquid chromatography tandem mass spectrometry. RESULTS We found that levels of 3OH-propionic acid, 3OH-butyric acid, lactic acid, formic acid, acetic acid, glyoxylic acid, and glycolic acid were significantly altered in NET patients with metastatic disease, as well as curatively operated NET patients, compared to healthy controls (p < 0.05). In addition, a trend displaying increased acid level alterations from healthy controls in curatively operated patients with future recurrence, compared to patients with no documented recurrent disease, was detected. CONCLUSION Our results demonstrating significantly altered levels of multiple organic acids in NET patients represents a novel finding implicating further research on their role in NET pathophysiology.
Collapse
Affiliation(s)
- Silje Udjus Johansen
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
- Medical Gastroenterology, Division of Internal medicine, University Hospital of North Norway, Tromsø, Norway
| | - Rasmus Goll
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
- Medical Gastroenterology, Division of Internal medicine, University Hospital of North Norway, Tromsø, Norway
| | - Anna Nordborg
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Kai Vernstad
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | | | - Jon Ragnar Florholmen
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
- Medical Gastroenterology, Division of Internal medicine, University Hospital of North Norway, Tromsø, Norway
| | - Terkel Hansen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
- Department of Pharmacy, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Valdés A, Ruiz-Saavedra S, Salazar N, Cifuentes A, Suárez A, Díaz Y, del Rey CG, González S, de los Reyes-Gavilán CG. Faecal Metabolome Profiles in Individuals Diagnosed with Hyperplastic Polyps and Conventional Adenomas. Int J Mol Sci 2024; 25:13324. [PMID: 39769089 PMCID: PMC11676107 DOI: 10.3390/ijms252413324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Colorectal cancer (CRC) development is a gradual process in which progressive histological alterations of the intestinal mucosa damage occur over years. This process can be influenced by modifiable external factors such as lifestyle and diet. Most CRC cases (>80%) originate from conventional adenomas through the adenomatous pathway and usually harbour dysplastic cells, whereas the serrated pathway is less frequent (<20% cases) and comprises hyperplastic polyps and other polyps containing dysplastic cells. The aim of the present work was to shed light on alterations of the faecal metabolome associated with hyperplastic polyps and conventional adenomas. Metabolites were analysed by Reversed-Phase High-Performance Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (RP/HPLC-Q/TOF-MS/MS) and Hydrophilic Interaction Liquid Chromatography-Quadrupole-Time of Flight Mass Spectrometry (HILIC-Q/TOF-MS/MS) and the results were integrated. Comparisons were performed between controls without mucosal lesions and the polyps' group, hyperplastic polyps versus conventional adenomas, and hyperplastic polyps or conventional adenomas versus controls. Alterations of metabolites in specific biochemical modules differentiated hyperplastic polyps and conventional adenomas. The metabolome of the hyperplastic polyps was characterized by an enrichment in glycerophospholipids and an altered metabolism of the degradation pathways of xanthines/purines and pyrimidines, whereas the enrichment in some phenolic compounds and disaccharides, all of them from exogenous origin, was the main differential faecal signature of conventional adenomas. Further research could help to elucidate the contribution of diet and the intestinal microbiota to these metabolomics alterations.
Collapse
Affiliation(s)
- Alberto Valdés
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (A.V.); (A.C.)
| | - Sergio Ruiz-Saavedra
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33011 Oviedo, Spain; (S.R.-S.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33011 Oviedo, Spain; (S.R.-S.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| | - Alejandro Cifuentes
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación (CIAL), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Spain; (A.V.); (A.C.)
| | - Adolfo Suárez
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
- Digestive Service, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain
| | - Ylenia Díaz
- Digestive Service, Carmen and Severo Ochoa Hospital, 33819 Cangas del Narcea, Spain;
| | - Carmen González del Rey
- Department of Anatomical Pathology, Central University Hospital of Asturias (HUCA), 33011 Oviedo, Spain;
| | - Sonia González
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Clara G. de los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), 33011 Oviedo, Spain; (S.R.-S.); (N.S.)
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (DIMISA-ISPA), 33011 Oviedo, Spain;
| |
Collapse
|
8
|
Ye F, Huang Y, Zeng L, Li N, Hao L, Yue J, Li S, Deng J, Yu F, Hu X. The genetically predicted causal associations between circulating 3-hydroxybutyrate levels and malignant neoplasms: A pan-cancer Mendelian randomization study. Clin Nutr 2024; 43:137-152. [PMID: 39378563 DOI: 10.1016/j.clnu.2024.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE The ketogenic diet or exogenous supplementation with 3-hydroxybutyrate (3HB) is progressively gaining recognition as a valuable therapeutic or health intervention strategy. However, the effects of 3HB on cancers have been inconsistent in previous studies. This study aimed to comprehensively investigate the causal effects of circulating 3HB levels on 120 cancer phenotypes, and explore the 3HB mediation effect between liver fat accumulation and cancers. METHODS Univariate Mendelian randomization (UVMR) was used in this study to investigate the causal impact of circulating 3HB levels on cancers. We conducted meta-analyses for 3HB-cancer associations sourced from different exposure data. In multivariate MR(MVMR), the body mass index, alcohol frequency and diabetes were included as covariates to investigate the independent effect of 3HB on cancer risk. Additionally, utilizing mediation MR analysis, we checked the potential mediating role of 3HB in the association between liver fat and cancer. RESULTS Integrating findings from UVMR and MVMR, we observed that elevated circulating 3HB levels were associated with reduced risk of developing diffuse large B-cell lymphoma(DLBCL) (OR[95%CI] = 0.28[0.14-0.57] p = 3.92e-04), biliary malignancies (OR[95%CI] = 0.30[0.15-0.60], p = 7.67e-04), hepatocellular carcinoma(HCC) (OR[95%CI] = 0.25[0.09-0.71], p = 9.33e-03), primary lymphoid and hematopoietic malignancies (OR[95%CI] = 0.76[0.58-0.99], p = 0.045). Further UVMR analysis revealed that an increase in the percent liver fat was associated with reduced 3HB levels (Beta[95%CI] = -0.073[-0.122∼-0.024], p = 0.0034) and enhanced susceptibility to HCC (OR[95%CI] = 13.9[9.76-19.79], p = 3.14e-48), biliary malignancies (OR[95%CI] = 4.04[3.22-5.07], p = 1.64e-33), nasopharyngeal cancer (OR[95%CI] = 3.26[1.10-9.67], p = 0.03), and primary lymphoid and hematopoietic malignancies (OR[95%CI] = 1.27[1.13-1.44], p = 1.04e-4). Furthermore, 3HB fully mediated the effect of liver fat on susceptibility to DLBCL (OR[95%CI] = 1.076[1.01-1.15], p = 0.034). CONCLUSIONS Circulating 3HB is associated with a reduced susceptibility to developing DLBCL, HCC, biliary malignancies, and primary lymphoid and hematopoietic malignancies. The impaired ketogenesis induced by metabolic-dysfunction associated fatty liver disease (MAFLD) contributes to risk of DLBCL.
Collapse
Affiliation(s)
- Fanghang Ye
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yucheng Huang
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Rheumatology and Immunology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liang Zeng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Na Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Liyuan Hao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiayun Yue
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Shenghao Li
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiali Deng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Fei Yu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
9
|
Grube M, Dimmler A, Schmaus A, Saup R, Wagner T, Garvalov BK, Sleeman JP, Thiele W. Ketogenic diet does not promote triple-negative and luminal mammary tumor growth and metastasis in experimental mice. Clin Exp Metastasis 2024; 41:251-266. [PMID: 38066243 PMCID: PMC11213782 DOI: 10.1007/s10585-023-10249-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 06/30/2024]
Abstract
Ketogenic diets (KDs) can improve the well-being and quality of life of breast cancer patients. However, data on the effects of KDs on mammary tumors are inconclusive, and the influence of KDs on metastasis in general remains to be investigated. We therefore assessed the impact of a KD on growth and metastasis of triple negative murine 4T1 mammary tumors, and on the progression of luminal breast tumors in an autochthonous MMTV-PyMT mouse model. We found that KD did not influence the metastasis of 4T1 and MMTV-PyMT mammary tumors, but impaired 4T1 tumor cell proliferation in vivo, and also temporarily reduced 4T1 primary tumor growth. Notably, the ketogenic ratio (the mass of dietary fat in relation to the mass of dietary carbohydrates and protein) that is needed to induce robust ketosis was twice as high in mice as compared to humans. Surprisingly, only female but not male mice responded to KD with a sustained increase in blood β-hydroxybutyrate levels. Together, our data show that ketosis does not foster primary tumor growth and metastasis, suggesting that KDs can be safely applied in the context of luminal breast cancer, and may even be advantageous for patients with triple negative tumors. Furthermore, our data indicate that when performing experiments with KDs in mice, the ketogenic ratio needed to induce ketosis must be verified, and the sex of the mice should also be taken into account.
Collapse
Affiliation(s)
- Meret Grube
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Arno Dimmler
- Institute of Pathology, Vincentius Kliniken Karlsruhe, Karlsruhe, Germany
| | - Anja Schmaus
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Rafael Saup
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Tabea Wagner
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Boyan K Garvalov
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
| | - Jonathan P Sleeman
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany
- Institute for Biological and Chemical Systems, Karlsruhe Institute of Technology (KIT), Campus North, Karlsruhe, Germany
| | - Wilko Thiele
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, TRIDOMUS-Gebäude Haus C, Ludolf-Krehl-Str. 13 - 17, D- 68167, Mannheim, Germany.
| |
Collapse
|
10
|
Fulman-Levy H, Cohen-Harazi R, Levi B, Argaev-Frenkel L, Abramovich I, Gottlieb E, Hofmann S, Koman I, Nesher E. Metabolic alterations and cellular responses to β-Hydroxybutyrate treatment in breast cancer cells. Cancer Metab 2024; 12:16. [PMID: 38812058 PMCID: PMC11134656 DOI: 10.1186/s40170-024-00339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/18/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The ketogenic diet (KD), based on high fat (over 70% of daily calories), low carbohydrate, and adequate protein intake, has become popular due to its potential therapeutic benefits for several diseases including cancer. Under KD and starvation conditions, the lack of carbohydrates promotes the production of ketone bodies (KB) from fats by the liver as an alternative source of metabolic energy. KD and starvation may affect the metabolism in cancer cells, as well as tumor characteristics. The aim of this study is to evaluate the effect of KD conditions on a wide variety of aspects of breast cancer cells in vitro. METHODS Using two cancer and one non-cancer breast cell line, we evaluate the effect of β-hydroxybutyrate (βHb) treatment on cell growth, survival, proliferation, colony formation, and migration. We also assess the effect of KB on metabolic profile of the cells. Using RNAseq analysis, we elucidate the effect of βHb on the gene expression profile. RESULTS Significant effects were observed following treatment by βHb which include effects on viability, proliferation, and colony formation of MCF7 cells, and different effects on colony formation of MDA-MB-231 cells, with no such effects on non-cancer HB2 cells. We found no changes in glucose intake or lactate output following βHb treatment as measured by LC-MS, but an increase in reactive oxygen species (ROS) level was detected. RNAseq analysis demonstrated significant changes in genes involved in lipid metabolism, cancer, and oxidative phosphorylation. CONCLUSIONS Based on our results, we conclude that differential response of cancer cell lines to βHb treatment, as alternative energy source or signal to alter lipid metabolism and oncogenicity, supports the need for a personalized approach to breast cancer patient treatment.
Collapse
Affiliation(s)
- Hadas Fulman-Levy
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Raichel Cohen-Harazi
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Bar Levi
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel
| | - Lital Argaev-Frenkel
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel
| | - Ifat Abramovich
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Eyal Gottlieb
- Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, 3525422, Israel
| | - Sarah Hofmann
- Medical Faculty Mannheim, Heidelberg University, 68167 , Mannheim, Germany
| | - Igor Koman
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| | - Elimelech Nesher
- Department of Molecular Biology, Ariel University, Ariel, 4070000, Israel.
- Institute for Personalized and Translational Medicine, Ariel University, Ariel, 4070000, Israel.
| |
Collapse
|
11
|
Shirian FI, Karimi M, Alipour M, Salami S, Nourbakhsh M, Nekufar S, Safari-Alighiarloo N, Tavakoli-Yaraki M. Beta hydroxybutyrate induces lung cancer cell death, mitochondrial impairment and oxidative stress in a long term glucose-restricted condition. Mol Biol Rep 2024; 51:567. [PMID: 38656394 DOI: 10.1007/s11033-024-09501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and β-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.
Collapse
Affiliation(s)
- Farzad Izak Shirian
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Alipour
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siamak Salami
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Samira Nekufar
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, P.O. Box: 1449614535, Tehran, Iran.
| |
Collapse
|
12
|
Giuliani G, Longo VD. Ketone bodies in cell physiology and cancer. Am J Physiol Cell Physiol 2024; 326:C948-C963. [PMID: 38189128 DOI: 10.1152/ajpcell.00441.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Ketogenic diets (KDs), fasting, or prolonged physical activity elevate serum ketone bodies (KBs) levels, providing an alternative fuel source for the brain and other organs. However, KBs play pleiotropic roles that go beyond their role in energy production. KBs can act as signaling metabolites, influence gene expression, proteins' posttranslational modifications (PTMs), inflammation, and oxidative stress. Here, we explore the impact of KBs on mammalian cell physiology, including aging and tissue regeneration. We also concentrate on KBs and cancer, given the extensive evidence that dietary approaches inducing ketosis, including fasting-mimicking diets (FMDs) and KDs, can prevent cancer and affect tumor progression.
Collapse
Affiliation(s)
- Giacomo Giuliani
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
- IFOM, FIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
13
|
Evin D, Evinová A, Baranovičová E, Šarlinová M, Jurečeková J, Kaplán P, Poláček H, Halašová E, Dušenka R, Briš L, Brožová MK, Sivoňová MK. Integrative Metabolomic Analysis of Serum and Selected Serum Exosomal microRNA in Metastatic Castration-Resistant Prostate Cancer. Int J Mol Sci 2024; 25:2630. [PMID: 38473877 DOI: 10.3390/ijms25052630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) remains a lethal disease due to the absence of effective therapies. A more comprehensive understanding of molecular events, encompassing the dysregulation of microRNAs (miRs) and metabolic reprogramming, holds the potential to unveil precise mechanisms underlying mCRPC. This study aims to assess the expression of selected serum exosomal miRs (miR-15a, miR-16, miR-19a-3p, miR-21, and miR-141a-3p) alongside serum metabolomic profiling and their correlation in patients with mCRPC and benign prostate hyperplasia (BPH). Blood serum samples from mCRPC patients (n = 51) and BPH patients (n = 48) underwent metabolome analysis through 1H-NMR spectroscopy. The expression levels of serum exosomal miRs in mCRPC and BPH patients were evaluated using a quantitative real-time polymerase chain reaction (qRT-PCR). The 1H-NMR metabolomics analysis revealed significant alterations in lactate, acetate, citrate, 3-hydroxybutyrate, and branched-chain amino acids (BCAAs, including valine, leucine, and isoleucine) in mCRPC patients compared to BPH patients. MiR-15a, miR-16, miR-19a-3p, and miR-21 exhibited a downregulation of more than twofold in the mCRPC group. Significant correlations were predominantly observed between lactate, citrate, acetate, and miR-15a, miR-16, miR-19a-3p, and miR-21. The importance of integrating metabolome analysis of serum with selected serum exosomal miRs in mCRPC patients has been confirmed, suggesting their potential utility for distinguishing of mCRPC from BPH.
Collapse
Affiliation(s)
- Daniel Evin
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
- Clinic of Nuclear Medicine, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Andrea Evinová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Eva Baranovičová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Miroslava Šarlinová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Jana Jurečeková
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Peter Kaplán
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Hubert Poláček
- Clinic of Nuclear Medicine, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Erika Halašová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Róbert Dušenka
- Clinic of Urology, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Lukáš Briš
- Clinic of Urology, Jessenius Faculty of Medicine in Martin, University Hospital in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Martina Knoško Brožová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Monika Kmeťová Sivoňová
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia
| |
Collapse
|
14
|
Demicco M, Liu XZ, Leithner K, Fendt SM. Metabolic heterogeneity in cancer. Nat Metab 2024; 6:18-38. [PMID: 38267631 DOI: 10.1038/s42255-023-00963-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2023] [Indexed: 01/26/2024]
Abstract
Cancer cells rewire their metabolism to survive during cancer progression. In this context, tumour metabolic heterogeneity arises and develops in response to diverse environmental factors. This metabolic heterogeneity contributes to cancer aggressiveness and impacts therapeutic opportunities. In recent years, technical advances allowed direct characterisation of metabolic heterogeneity in tumours. In addition to the metabolic heterogeneity observed in primary tumours, metabolic heterogeneity temporally evolves along with tumour progression. In this Review, we summarize the mechanisms of environment-induced metabolic heterogeneity. In addition, we discuss how cancer metabolism and the key metabolites and enzymes temporally and functionally evolve during the metastatic cascade and treatment.
Collapse
Affiliation(s)
- Margherita Demicco
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Xiao-Zheng Liu
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium.
| |
Collapse
|
15
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
16
|
He Y, Cheng X, Zhou T, Li D, Peng J, Xu Y, Huang W. β-Hydroxybutyrate as an epigenetic modifier: Underlying mechanisms and implications. Heliyon 2023; 9:e21098. [PMID: 37928021 PMCID: PMC10623287 DOI: 10.1016/j.heliyon.2023.e21098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/09/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Previous studies have found that β-Hydroxybutyrate (BHB), the main component of ketone bodies, is of physiological importance as a backup energy source during starvation or induces diabetic ketoacidosis when insulin deficiency occurs. Ketogenic diets (KD) have been used as metabolic therapy for over a hundred years, it is well known that ketone bodies and BHB not only serve as ancillary fuel substituting for glucose but also induce anti-oxidative, anti-inflammatory, and cardioprotective features via binding to several target proteins, including histone deacetylase (HDAC), or G protein-coupled receptors (GPCRs). Recent advances in epigenetics, especially novel histone post-translational modifications (HPTMs), have continuously updated our understanding of BHB, which also acts as a signal transduction molecule and modification substrate to regulate a series of epigenetic phenomena, such as histone acetylation, histone β-hydroxybutyrylation, histone methylation, DNA methylation, and microRNAs. These epigenetic events alter the activity of genes without changing the DNA structure and further participate in the pathogenesis of related diseases. This review focuses on the metabolic process of BHB and BHB-mediated epigenetics in cardiovascular diseases, diabetes and complications of diabetes, neuropsychiatric diseases, cancers, osteoporosis, liver and kidney injury, embryonic and fetal development, and intestinal homeostasis, and discusses potential molecular mechanisms, drug targets, and application prospects.
Collapse
Affiliation(s)
- Yanqiu He
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Xi Cheng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Juan Peng
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
| |
Collapse
|
17
|
Udumula MP, Singh H, Rashid F, Poisson L, Tiwari N, Dimitrova I, Hijaz M, Gogoi R, Swenor M, Munkarah A, Giri S, Rattan R. Intermittent fasting induced ketogenesis inhibits mouse epithelial ovarian cancer by promoting antitumor T cell response. iScience 2023; 26:107839. [PMID: 37822507 PMCID: PMC10562806 DOI: 10.1016/j.isci.2023.107839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023] Open
Abstract
In various cancer models, dietary interventions have been shown to inhibit tumor growth, improve anticancer drug efficacy, and enhance immunity, but no such evidence exists for epithelial ovarian cancer (EOC), the most lethal gynecologic cancer. The anticancer immune responses induced by 16-h intermittent fasting (IF) were studied in mice with EOC. IF consistently reduced metabolic growth factors and cytokines that stimulate tumor growth, creating a tumor-hostile environment. Immune profiling showed that IF dramatically alters anti-cancer immunity by increasing CD4+ and CD8+ cells, Th1 and cytotoxic responses, and metabolic fitness. β-hydroxy butyrate (BHB), a bioactive metabolite produced by IF, partially imitates its anticancer effects by inducing CD8+ effector function. In a direct comparison, IF outperformed exogenous BHB treatment in survival and anti-tumor immune response, probably due to increased ketogenesis. Thus, IF and one of its metabolic mediators BHB suppress EOC growth and sustain a potent anti-tumor T cell response.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Harshit Singh
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Faraz Rashid
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Laila Poisson
- Department of Public Health Services and Center for Bioinformatics and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Nivedita Tiwari
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Irina Dimitrova
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Miriana Hijaz
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Radhika Gogoi
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI, USA
| | - Margaret Swenor
- Department of Lifestyle and Functional Medicine, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Adnan Munkarah
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
| | - Shailendra Giri
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI, USA
- Department of Oncology, Wayne State University, Detroit, MI, USA
- Department of Ob/Gyn, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
18
|
AlHilli MM, Rhoades EE, Chau D, Tewari S, Reich A, Myers A, Lindner DJ, Lathia JD, Zhang R, Willard B, Cresci G, Berger NA, Reizes O. Unrestricted Ketogenic Diet Feeding Enhances Epithelial Ovarian Cancer Growth In Vivo. Nutrients 2023; 15:2730. [PMID: 37375634 DOI: 10.3390/nu15122730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The ketogenic diet (KD) is hypothesized to impact tumor progression by altering tumor metabolism. In this study, we assessed the impact of an unrestricted KD on epithelial ovarian cancer (EOC) tumor growth, gene expression, and metabolite concentration in a mouse model. ID8 EOC cells, which were syngeneic with C57Bl/6J mouse strain and transfected with luciferase (ID8-luc), were injectedand monitored for tumor development. Female mice were fed either a strict KD, a high fat/low carbohydrate (HF/LC) diet, or a low fat/high carbohydrate (LF/HC) diet (n = 10 mice per group) ad libitum. EOC tumor growth was monitored weekly, and tumor burden was determined based on luciferase fluorescence (photons/second). At the endpoint (42 days), tumors were collected and processed for RNA sequencing. Plasma and tumor metabolites were evaluated using LC-MS. The KD-fed mice exhibited a statistically significant increase in tumor progression in comparison to the HF/LC- and LF/HC-fed groups (9.1 vs. 2.0 vs. 3.1-fold, respectively, p < 0.001). The EOC tumors of the KD-fed mice exhibited significant enrichment of the peroxisome proliferator-activated receptor (PPAR) signaling and fatty acid metabolism pathways based on the RNA sequencing analysis when compared to the LF/HC- and HF/LC-fed mice. Thus, unrestricted KD diet enhanced tumor progression in our mouse EOC model. KD was associated with the upregulation of fatty acid metabolism and regulation pathways, as well as enrichment of fatty acid and glutamine metabolites.
Collapse
Affiliation(s)
- Mariam M AlHilli
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Emily E Rhoades
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Danielle Chau
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Surabhi Tewari
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Adrian Reich
- Department of Bioinformatics, Florida Research and Innovations Center, Cleveland Clinic, Port St. Lucie, FL 34987, USA
| | - Alex Myers
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Daniel J Lindner
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Department of Translational Hematology Oncology Research, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Renliang Zhang
- Proteomics and Metabolic Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Belinda Willard
- Proteomics and Metabolic Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Gail Cresci
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
| | - Nathan A Berger
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Medicine, Division of Hematology and Oncology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Udumula MP, Singh H, Faraz R, Poisson L, Tiwari N, Dimitrova I, Hijaz M, Gogoi R, Swenor M, Munkarah A, Giri S, Rattan R. Intermittent Fasting induced ketogenesis inhibits mouse epithelial ovarian tumors by promoting anti-tumor T cell response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531740. [PMID: 36945428 PMCID: PMC10028914 DOI: 10.1101/2023.03.08.531740] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Epithelial Ovarian Cancer (EOC) is the most lethal gynecologic cancer with limited genetic alterations identified that can be therapeutically targeted. In tumor bearing mice, short-term fasting, fasting mimicking diet and calorie restriction enhance the activity of antineoplastic treatment by modulating systemic metabolism and boosting anti-tumor immunity. We tested the outcome of sixteen-hour intermittent fasting (IF) on mouse EOC progression with focus on fasting driven antitumor immune responses. IF resulted in consistent decrease of tumor promoting metabolic growth factors and cytokines, recapitulating changes that creates a tumor antagonizing environment. Immune profiling revealed that IF profoundly reshapes anti-cancer immunity by inducing increase in CD4+ and CD8+ cells, paralleled by enhanced antitumor Th1 and cytotoxic responses, by enhancing their metabolic fitness. Metabolic studies revealed that IF generated bioactive metabolite BHB which can be a potential substitute for simulating the antitumor benefits of IF. However, in a direct comparison, IF surpassed exogenous BHB therapy in improving survival and activating anti-tumor immune response. Thus, our data provides strong evidence for IF and its metabolic mediator BHB for ameliorating EOC progression and as a viable approach in maintaining and sustaining an effective anti-tumor T cell response.
Collapse
Affiliation(s)
- Mary Priyanka Udumula
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Harshit Singh
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Rashid Faraz
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
| | - Laila Poisson
- Department of Public Health Services and Center for Bioinformatics and Henry Ford Cancer Institute, Detroit, MI
| | - Nivedita Tiwari
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Irina Dimitrova
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Miriana Hijaz
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Radhika Gogoi
- Department of Gynecology Oncology, Barbara Ann Karmanos Cancer Institute and Wayne State University, Detroit, MI
| | - Margaret Swenor
- Department of Lifestyle and Functional Medicine, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Adnan Munkarah
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
| | - Shailendra Giri
- Metabolomics Core, Department of Neurology, Henry Ford Hospital, Detroit, MI 48202
| | - Ramandeep Rattan
- Department of Women’s Health Services, Henry Ford Hospital and Henry Ford Cancer Institute, Detroit, MI
- Department of Oncology, Wayne State University, Detroit, MI
| |
Collapse
|
20
|
Furukawa T, Tabata S, Minami K, Yamamoto M, Kawahara K, Tanimoto A. Metabolic reprograming of cancer as a therapeutic target. Biochim Biophys Acta Gen Subj 2023; 1867:130301. [PMID: 36572257 DOI: 10.1016/j.bbagen.2022.130301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Our understanding of metabolic reprogramming in cancer has tremendously improved along with the technical progression of metabolomic analysis. Metabolic changes in cancer cells proved much more complicated than the classical Warburg effect. Previous studies have approached metabolic changes as therapeutic and/or chemopreventive targets. Recently, several clinical trials have reported anti-cancer agents associated with metabolism. However, whether cancer cells are dependent on metabolic reprogramming or favor suitable conditions remains nebulous. Both scenarios are possibly intertwined. Identification of downstream molecules and the understanding of mechanisms underlying reprogrammed metabolism can improve the effectiveness of cancer therapy. Here, we review several examples of the metabolic reprogramming of cancer cells and the therapies targeting the metabolism-related molecules as well as discuss practical approaches to improve the next generation of cancer therapies focused on the metabolic reprogramming of cancer.
Collapse
Affiliation(s)
- Tatsuhiko Furukawa
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| | - Sho Tabata
- Laboratory for Cell Systems, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kentaro Minami
- Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara Kiyotake cho, Miyazaki 889-1692, Japan
| | - Masatatsu Yamamoto
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kohichi Kawahara
- Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Akihide Tanimoto
- Department of Pathology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan; Center for the Research of Advanced Diagnosis and Therapy of Cancer, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
21
|
Whatley EG, Truong TT, Harvey AJ, Gardner DK. Acetoacetate and β-hydroxybutyrate reduce mouse embryo viability via differential metabolic and epigenetic mechanisms. Reprod Biomed Online 2023; 46:20-33. [PMID: 36283935 DOI: 10.1016/j.rbmo.2022.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
RESEARCH QUESTION Does the ketone acetoacetate (AcAc) alone, or combined with β-hydroxybutyrate (βOHB), impact mouse embryo development, metabolism, histone acetylation and viability? DESIGN Pronucleate mouse oocytes were cultured in vitro in G1/G2 media supplemented with ketones (AcAc or AcAc + βOHB) at concentrations representing those in maternal serum during pregnancy (0.04 mmol/l AcAc, 0.1 mmol/l βOHB), standard diet consumption (0.1 mmol/l AcAc, 0.25 mmol/l βOHB), ketogenic diet consumption (0.8 mmol/l AcAc, 2 mmol/l βOHB) and diabetic ketoacidosis (2 mmol/l AcAc, 4 mmol/l βOHB). Day 5 blastocysts were assessed for cell allocation, glucose metabolism and histone acetylation. Day 4 blastocysts exposed to 0.8 mmol/l AcAc + 2 mmol/l βOHB were transferred to standard-fed recipient females, and E14.5 fetal and placental development assessed. RESULTS Exposure to 2 mmol/l AcAc or 0.8 mmol/l AcAc + 2 mmol/l βOHB did not impair blastocyst development, but significantly increased glucose consumption (P = 0.001 each), lowered glycolytic flux (P = 0.01, P < 0.001) and elevated trophectoderm (TE) histone 3 lysine 27 acetylation (H3K27ac; P < 0.001 each) compared with unexposed controls. Preimplantation AcAc + βOHB exposure reduced post-implantation fetal development by 25% (P = 0.037), and delayed female-specific fetal limb development (P = 0.019) and estimated fetal age (P = 0.019) compared with controls. CONCLUSION Preimplantation exposure to ketones affects underlying metabolism and histone acetylation in blastocysts that are associated with persistent, female-specific perturbations in fetal development. A periconceptional diet that elevates ketone concentrations may impair human embryonic viability.
Collapse
Affiliation(s)
- Emma G Whatley
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville Victoria, Australia.
| |
Collapse
|
22
|
Baranovicova E, Racay P, Zubor P, Smolar M, Kudelova E, Halasova E, Dvorska D, Dankova Z. Circulating metabolites in the early stage of breast cancer were not related to cancer stage or subtypes but associated with ki67 level. Promising statistical discrimination from controls. Mol Cell Probes 2022; 66:101862. [PMID: 36162596 DOI: 10.1016/j.mcp.2022.101862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 12/30/2022]
Abstract
It was documented that the presence of malignancy in an organism causes metabolomic alterations in blood plasma which applies also to breast cancer. Breast cancer is a heterogeneous disease and there are only limited known relations of plasma metabolomic signatures with the tumour characteristics in early BC and knowing them would be of great advantage in noninvasive diagnostics. In this study, we focused on the metabolic alterations in early BC in blood plasma with the aim to identify metabolomic characteristics of BC subtypes. We used 50 early BC patients (FIGO stage I and II), where no additional metabolomic changes from metastatically changed remote organs were to be expected. We compared plasma levels of metabolites against controls and among various molecular and histological BC subtypes. BC patients showed decreased plasma levels of branched-chain amino acids BCAAs (and related keto-acids), histidine pyruvate and alanine balanced with an increased level of 3-hydroxybutyrate. The levels of circulating metabolites were not related to BC molecular subtypes (luminal A/luminal B), histological finding or grade, eventually stage, which indicate that in early BC, the BC patients share common metabolomics fingerprint in blood plasma independent of grade, stage or molecular subtype of BC. We observed statistically significant correlations between tumour proliferation marker Ki-67 level and circulating metabolites: alanine, citrate, tyrosine, glutamine, histidine and proline. This may point out the metabolites those levels could be associated with tumour growth, and conversely, the rate of tumour proliferation could be potentially estimated from plasma metabolites. When analyzing metabolomic changes in BC, we concluded that some of them could be associated with the metabolomic features of cancer cells, but the other observed alterations in blood plasma are the results of the complex mutual biochemical pathways in the comprehensive inter-organ metabolic exchange and communication. In the end, statistical discrimination against controls performed with AUC >0.91 showed the very promising potential of plasma metabolomics in the search for biomarkers for oncologic diseases.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Peter Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Pavol Zubor
- OBGY Health & Care, Ltd., 01001, Zilina, Slovak Republic; Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379, Oslo, Norway; Department of Obstetrics and Gynecology, The University Hospital of North Norway, 8516, Narvik, Norway; Vi Kan helse -Metro legesenter AS, 1473, Lørenskog, Norway.
| | - Marek Smolar
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 036 01, Martin, Slovakia.
| | - Eva Kudelova
- Clinic of Surgery and Transplant Centre, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 036 01, Martin, Slovakia.
| | - Erika Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University Bratislava, Mala Hora 4, 036 01, Martin, Slovakia.
| |
Collapse
|
23
|
Suk FM, Wu CY, Chiu WC, Chien CY, Chen TL, Liao YJ. HMGCS2 Mediation of Ketone Levels Affects Sorafenib Treatment Efficacy in Liver Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228015. [PMID: 36432116 PMCID: PMC9697984 DOI: 10.3390/molecules27228015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Primary liver cancer is the fifth leading death of cancers in men, and hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver cancer cases. Sorafenib is a first-line drug for advanced-stage HCC patients. Sorafenib is a multi-target kinase inhibitor that blocks tumor cell proliferation and angiogenesis. Despite sorafenib treatment extending survival, some patients experience side effects, and sorafenib resistance does occur. 3-Hydroxymethyl glutaryl-CoA synthase 2 (HMGCS2) is the rate-limiting enzyme for ketogenesis, which synthesizes the ketone bodies, β-hydroxybutyrate (β-HB) and acetoacetate (AcAc). β-HB is the most abundant ketone body which is present in a 4:1 ratio compared to AcAc. Recently, ketone body treatment was found to have therapeutic effects against many cancers by causing metabolic alternations and cancer cell apoptosis. Our previous publication showed that HMGCS2 downregulation-mediated ketone body reduction promoted HCC clinicopathological progression through regulating c-Myc/cyclin D1 and caspase-dependent signaling. However, whether HMGCS2-regulated ketone body production alters the sensitivity of human HCC to sorafenib treatment remains unclear. In this study, we showed that HMGCS2 downregulation enhanced the proliferative ability and attenuated the cytotoxic effects of sorafenib by activating expressions of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-P38, and p-AKT. In contrast, HMGCS2 overexpression decreased cell proliferation and enhanced the cytotoxic effects of sorafenib in HCC cells by inhibiting ERK activation. Furthermore, we showed that knockdown HMGCS2 exhibited the potential migratory ability, as well as decreasing zonula occludens protein (ZO)-1 and increasing c-Myc expression in both sorafenib-treated Huh7 and HepG2 cells. Although HMGCS2 overexpression did not alter the migratory effect, expressions of ZO-1, c-Myc, and N-cadherin decreased in sorafenib-treated HMGCS2-overexpressing HCC cells. Finally, we investigated whether ketone treatment influences sorafenib sensitivity. We showed that β-HB pretreatment decreased cell proliferation and enhanced antiproliferative effect of sorafenib in both Huh7 and HepG2 cells. In conclusion, this study defined the impacts of HMGCS2 expression and ketone body treatment on influencing the sorafenib sensitivity of liver cancer cells.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Ying Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Department of Nutrition, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Chia-Ying Chien
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Tzu-Lang Chen
- Department of Family Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3333)
| |
Collapse
|
24
|
de Wit S, Glen C, de Boer RA, Lang NN. Mechanisms shared between cancer, heart failure, and targeted anti-cancer therapies. Cardiovasc Res 2022; 118:3451-3466. [PMID: 36004495 PMCID: PMC9897696 DOI: 10.1093/cvr/cvac132] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Heart failure (HF) and cancer are the leading causes of death worldwide and accumulating evidence demonstrates that HF and cancer affect one another in a bidirectional way. Patients with HF are at increased risk for developing cancer, and HF is associated with accelerated tumour growth. The presence of malignancy may induce systemic metabolic, inflammatory, and microbial alterations resulting in impaired cardiac function. In addition to pathophysiologic mechanisms that are shared between cancer and HF, overlaps also exist between pathways required for normal cardiac physiology and for tumour growth. Therefore, these overlaps may also explain the increased risk for cardiotoxicity and HF as a result of targeted anti-cancer therapies. This review provides an overview of mechanisms involved in the bidirectional connection between HF and cancer, specifically focusing upon current 'hot-topics' in these shared mechanisms. It subsequently describes targeted anti-cancer therapies with cardiotoxic potential as a result of overlap between their anti-cancer targets and pathways required for normal cardiac function.
Collapse
Affiliation(s)
- Sanne de Wit
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Claire Glen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Centre Groningen, University of Groningen, PO Box 30.001, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | | |
Collapse
|
25
|
Whatley EG, Truong TT, Wilhelm D, Harvey AJ, Gardner DK. β-hydroxybutyrate reduces blastocyst viability via trophectoderm-mediated metabolic aberrations in mice. Hum Reprod 2022; 37:1994-2011. [PMID: 35856159 PMCID: PMC9433850 DOI: 10.1093/humrep/deac153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/31/2022] [Indexed: 11/15/2022] Open
Abstract
STUDY QUESTION What is the effect of the ketone β-hydroxybutyrate (βOHB) on preimplantation mouse embryo development, metabolism, epigenetics and post-transfer viability? SUMMARY ANSWER In vitro βOHB exposure at ketogenic diet (KD)-relevant serum concentrations significantly impaired preimplantation mouse embryo development, induced aberrant glycolytic metabolism and reduced post-transfer fetal viability in a sex-specific manner. WHAT IS KNOWN ALREADY A maternal KD in humans elevates gamete and offspring βOHB exposure during conception and gestation, and in rodents is associated with an increased time to pregnancy, and altered offspring organogenesis, post-natal growth and behaviour, suggesting a developmental programming effect. In vitro exposure to βOHB at supraphysiological concentrations (8–80 mM) perturbs preimplantation mouse embryo development. STUDY DESIGN, SIZE, DURATION A mouse model of embryo development and viability was utilized for this laboratory-based study. Embryo culture media were supplemented with βOHB at KD-relevant concentrations, and the developmental competence, physiology, epigenetic state and post-transfer viability of in vitro cultured βOHB-exposed embryos was assessed. PARTICIPANTS/MATERIALS, SETTING, METHODS Mouse embryos were cultured in vitro with or without βOHB at concentrations representing serum levels during pregnancy (0.1 mM), standard diet consumption (0.25 mM), KD consumption (2 mM) and diabetic ketoacidosis (4 mM). The impact of βOHB exposure on embryo development (blastocyst formation rate, morphokinetics and blastocyst total, inner cell mass and trophectoderm (TE) cell number), physiology (redox state, βOHB metabolism, glycolytic metabolism), epigenetic state (histone 3 lysine 27 β-hydroxybutyrylation, H3K27bhb) and post-transfer viability (implantation rate, fetal and placental development) was assessed. MAIN RESULTS AND THE ROLE OF CHANCE All βOHB concentrations tested slowed embryo development (P < 0.05), and βOHB at KD-relevant serum levels (2 mM) delayed morphokinetic development, beginning at syngamy (P < 0.05). Compared with unexposed controls, βOHB exposure reduced blastocyst total and TE cell number (≥0.25 mM; P < 0.05), reduced blastocyst glucose consumption (2 mM; P < 0.01) and increased lactate production (0.25 mM; P < 0.05) and glycolytic flux (0.25 and 2 mM; P < 0.01). Consumption of βOHB by embryos, mediated via monocarboxylate transporters, was detected throughout preimplantation development. Supraphysiological (20 mM; P < 0.001), but not physiological (0.25–4 mM) βOHB elevated H3K27bhb levels. Preimplantation βOHB exposure at serum KD levels (2 mM) reduced post-transfer viability. Implantation and fetal development rates of βOHB-treated embryos were 50% lower than controls (P < 0.05), and resultant fetuses had a shorter crown-rump length (P < 0.01) and placental diameter (P < 0.05). A strong sex-specific effect of βOHB was detected, whereby female fetuses from βOHB-treated embryos weighed less (P < 0.05), had a shorter crown-rump length (P < 0.05), and tended to have accelerated ear development (P < 0.08) compared with female control fetuses. LIMITATIONS, REASONS FOR CAUTION This study only assessed embryo development, physiology and viability in a mouse model utilizing in vitro βOHB exposure; the impact of in vivo exposure was not assessed. The concentrations of βOHB utilized were modelled on blood/serum levels as the true oviduct and uterine concentrations are currently unknown. WIDER IMPLICATIONS OF THE FINDINGS These findings indicate that the development, physiology and viability of mouse embryos is detrimentally impacted by preimplantation exposure to βOHB within a physiological range. Maternal diets which increase βOHB levels, such as a KD, may affect preimplantation embryo development and may therefore impair subsequent viability and long-term health. Consequently, our initial observations warrant follow-up studies in larger human populations. Furthermore, analysis of βOHB concentrations within human and rodent oviduct and uterine fluid under different nutritional states is also required. STUDY FUNDING/COMPETING INTEREST(S) This work was funded by the University of Melbourne and the Norma Hilda Schuster (nee Swift) Scholarship. The authors have no conflicts of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Emma G Whatley
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Thi T Truong
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia.,Melbourne IVF, East Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Shah UA, Iyengar NM. Plant-Based and Ketogenic Diets As Diverging Paths to Address Cancer: A Review. JAMA Oncol 2022; 8:1201-1208. [PMID: 35797039 PMCID: PMC10184023 DOI: 10.1001/jamaoncol.2022.1769] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Importance As the incidence of cancer and metabolic disorders, such as obesity, concurrently rise, there has been increasing awareness of the pervasive effect of nutrition. The whole foods plant-based diet (WFPBD) and ketogenic diet (KD) have gained popularity in oncology, and this topic is increasingly permeating clinical dialogue. Observations Dietary intake is associated with multiple pathways involved in carcinogenesis and tumor progression. Consumption of a plant-enriched diet is associated with reduced cancer incidence and is recommended by dietary guidelines for cancer prevention. Despite a starkly different nutrient composition, a WFPBD and KD can be associated with weight loss, decreased inflammation, and decreased insulin levels. In addition, a WFPBD is associated with increased fiber, phytochemicals, and butyrate levels and decreased insulin-like growth factor 1 levels, whereas a KD exerts potential anticancer effects by increasing β hydroxybutyrate levels. A KD may be of interest in select, less common settings, such as tumors treated with phosphatidylinositol 3-kinase inhibitors, which induce hyperinsulinemia and hyperglycemia. Completed interventional trials have focused on increasing fruit and vegetable intake or reducing fat intake but have not specifically tested WFPBD or KD for cancer prevention or treatment. Currently available data support plant-based diets as opposed to KD as part of a lifestyle associated with reduced cancer risk. In the postdiagnosis setting, there are currently no rigorously tested approaches that support the recommendation of any diet to treat cancer. Conclusions and Relevance The results of this review suggest that the collective evidence supports plant-enriched diets vs KD for the reduction of cancer risk and the improvement of metabolic disorders in survivors. Additional prospective randomized clinical trials are needed to encourage use of dietary modification across the cancer continuum. Rigorous trial designs that adapt classical oncologic end points may identify populations that are likely to benefit from starkly contrasting diets. Current data support prioritization of plant-based diets, and future data could further personalize dietary recommendations in cancer populations.
Collapse
Affiliation(s)
- Urvi A Shah
- Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Neil M Iyengar
- Department of Medicine, Weill Cornell Medical College, New York, New York.,Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
27
|
Devericks EN, Carson MS, McCullough LE, Coleman MF, Hursting SD. The obesity-breast cancer link: a multidisciplinary perspective. Cancer Metastasis Rev 2022; 41:607-625. [PMID: 35752704 PMCID: PMC9470704 DOI: 10.1007/s10555-022-10043-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose tissue and that consider genetic, structural, and social determinants of the obesity–breast cancer link. Finally, we detail the evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer are urgently needed.
Collapse
Affiliation(s)
- Emily N Devericks
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Michael F Coleman
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen D Hursting
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, NC, USA. .,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
28
|
Zuo Q, Park NH, Lee JK, Madak Erdogan Z. Liver Metastatic Breast Cancer: Epidemiology, Dietary Interventions, and Related Metabolism. Nutrients 2022; 14:2376. [PMID: 35745105 PMCID: PMC9228756 DOI: 10.3390/nu14122376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
The median overall survival of patients with metastatic breast cancer is only 2-3 years, and for patients with untreated liver metastasis, it is as short as 4-8 months. Improving the survival of women with breast cancer requires more effective anti-cancer strategies, especially for metastatic disease. Nutrients can influence tumor microenvironments, and cancer metabolism can be manipulated via a dietary modification to enhance anti-cancer strategies. Yet, there are no standard evidence-based recommendations for diet therapies before or during cancer treatment, and few studies provide definitive data that certain diets can mediate tumor progression or therapeutic effectiveness in human cancer. This review focuses on metastatic breast cancer, in particular liver metastatic forms, and recent studies on the impact of diets on disease progression and treatment.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Nicole Hwajin Park
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
| | - Jenna Kathryn Lee
- Department of Neuroscience, Northwestern University, Evanston, IL 60208, USA;
| | - Zeynep Madak Erdogan
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; (Q.Z.); (N.H.P.)
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Gouirand V, Gicquel T, Lien EC, Jaune‐Pons E, Da Costa Q, Finetti P, Metay E, Duluc C, Mayers JR, Audebert S, Camoin L, Borge L, Rubis M, Leca J, Nigri J, Bertucci F, Dusetti N, Lucio Iovanna J, Tomasini R, Bidaut G, Guillaumond F, Vander Heiden MG, Vasseur S. Ketogenic HMG-CoA lyase and its product β-hydroxybutyrate promote pancreatic cancer progression. EMBO J 2022; 41:e110466. [PMID: 35307861 PMCID: PMC9058543 DOI: 10.15252/embj.2021110466] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that β-hydroxybutyrate (βOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while βOHB stimulates metastatic dissemination to the liver. These findings suggest that βOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.
Collapse
|
30
|
Mondal A, Bhattacharya A, Singh V, Pandita S, Bacolla A, Pandita RK, Tainer JA, Ramos KS, Pandita TK, Das C. Stress Responses as Master Keys to Epigenomic Changes in Transcriptome and Metabolome for Cancer Etiology and Therapeutics. Mol Cell Biol 2022; 42:e0048321. [PMID: 34748401 PMCID: PMC8773053 DOI: 10.1128/mcb.00483-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From initiation through progression, cancer cells are subjected to a magnitude of endogenous and exogenous stresses, which aid in their neoplastic transformation. Exposure to these classes of stress induces imbalance in cellular homeostasis and, in response, cancer cells employ informative adaptive mechanisms to rebalance biochemical processes that facilitate survival and maintain their existence. Different kinds of stress stimuli trigger epigenetic alterations in cancer cells, which leads to changes in their transcriptome and metabolome, ultimately resulting in suppression of growth inhibition or induction of apoptosis. Whether cancer cells show a protective response to stress or succumb to cell death depends on the type of stress and duration of exposure. A thorough understanding of epigenetic and molecular architecture of cancer cell stress response pathways can unveil a plethora of information required to develop novel anticancer therapeutics. The present view highlights current knowledge about alterations in epigenome and transcriptome of cancer cells as a consequence of exposure to different physicochemical stressful stimuli such as reactive oxygen species (ROS), hypoxia, radiation, hyperthermia, genotoxic agents, and nutrient deprivation. Currently, an anticancer treatment scenario involving the imposition of stress to target cancer cells is gaining traction to augment or even replace conventional therapeutic regimens. Therefore, a comprehensive understanding of stress response pathways is crucial for devising and implementing novel therapeutic strategies.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Shruti Pandita
- Division of Hematology and Medical Oncology, St. Louis University, St. Louis, Missouri, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Raj K. Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Tej K. Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| |
Collapse
|
31
|
Abstract
Ketone bodies play significant roles in organismal energy homeostasis, serving as oxidative fuels, modulators of redox potential, lipogenic precursors, and signals, primarily during states of low carbohydrate availability. Efforts to enhance wellness and ameliorate disease via nutritional, chronobiological, and pharmacological interventions have markedly intensified interest in ketone body metabolism. The two ketone body redox partners, acetoacetate and D-β-hydroxybutyrate, serve distinct metabolic and signaling roles in biological systems. We discuss the pleiotropic roles played by both of these ketones in health and disease. While enthusiasm is warranted, prudent procession through therapeutic applications of ketogenic and ketone therapies is also advised, as a range of metabolic and signaling consequences continue to emerge. Organ-specific and cell-type-specific effects of ketone bodies are important to consider as prospective therapeutic and wellness applications increase.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA; ,
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA; , .,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
32
|
Icard P, Loi M, Wu Z, Ginguay A, Lincet H, Robin E, Coquerel A, Berzan D, Fournel L, Alifano M. Metabolic Strategies for Inhibiting Cancer Development. Adv Nutr 2021; 12:1461-1480. [PMID: 33530098 PMCID: PMC8321873 DOI: 10.1093/advances/nmaa174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
The tumor microenvironment is a complex mix of cancerous and noncancerous cells (especially immune cells and fibroblasts) with distinct metabolisms. These cells interact with each other and are influenced by the metabolic disorders of the host. In this review, we discuss how metabolic pathways that sustain biosynthesis in cancer cells could be targeted to increase the effectiveness of cancer therapies by limiting the nutrient uptake of the cell, inactivating metabolic enzymes (key regulatory ones or those linked to cell cycle progression), and inhibiting ATP production to induce cell death. Furthermore, we describe how the microenvironment could be targeted to activate the immune response by redirecting nutrients toward cytotoxic immune cells or inhibiting the release of waste products by cancer cells that stimulate immunosuppressive cells. We also examine metabolic disorders in the host that could be targeted to inhibit cancer development. To create future personalized therapies for targeting each cancer tumor, novel techniques must be developed, such as new tracers for positron emission tomography/computed tomography scan and immunohistochemical markers to characterize the metabolic phenotype of cancer cells and their microenvironment. Pending personalized strategies that specifically target all metabolic components of cancer development in a patient, simple metabolic interventions could be tested in clinical trials in combination with standard cancer therapies, such as short cycles of fasting or the administration of sodium citrate or weakly toxic compounds (such as curcumin, metformin, lipoic acid) that target autophagy and biosynthetic or signaling pathways.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Medical School, CHU de Caen, Caen, France
- Normandie Université, UNICAEN, INSERM U1086, Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer Centre François Baclesse, Caen, France
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Mauro Loi
- Radiotherapy Department, Humanitas Cancer Center, Rozzano, Milan, Italy
| | - Zherui Wu
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Antonin Ginguay
- Service de Biochimie, Hôpital Cochin, Hôpitaux Universitaires Paris-Centre, AP-HP, Paris, France
- EA4466 Laboratoire de Biologie de la Nutrition, Faculté de Pharmacie de Paris, Université Paris-Descartes, Sorbonne Paris Cité, Paris, France
| | - Hubert Lincet
- INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
- ISPB, Faculté de Pharmacie, Université Lyon 1, Lyon, France
| | - Edouard Robin
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Antoine Coquerel
- INSERM U1075, Comete “Mobilités: Attention, Orientation, Chronobiologie”, Université Caen, Caen, France
| | - Diana Berzan
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris-Descartes University, Paris, France
- INSERM U1138, Integrative Cancer Immunology, Paris, France
| |
Collapse
|
33
|
Understanding the Central Role of Citrate in the Metabolism of Cancer Cells and Tumors: An Update. Int J Mol Sci 2021; 22:ijms22126587. [PMID: 34205414 PMCID: PMC8235534 DOI: 10.3390/ijms22126587] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Citrate plays a central role in cancer cells’ metabolism and regulation. Derived from mitochondrial synthesis and/or carboxylation of α-ketoglutarate, it is cleaved by ATP-citrate lyase into acetyl-CoA and oxaloacetate. The rapid turnover of these molecules in proliferative cancer cells maintains a low-level of citrate, precluding its retro-inhibition on glycolytic enzymes. In cancer cells relying on glycolysis, this regulation helps sustain the Warburg effect. In those relying on an oxidative metabolism, fatty acid β-oxidation sustains a high production of citrate, which is still rapidly converted into acetyl-CoA and oxaloacetate, this latter molecule sustaining nucleotide synthesis and gluconeogenesis. Therefore, citrate levels are rarely high in cancer cells. Resistance of cancer cells to targeted therapies, such as tyrosine kinase inhibitors (TKIs), is frequently sustained by aerobic glycolysis and its key oncogenic drivers, such as Ras and its downstream effectors MAPK/ERK and PI3K/Akt. Remarkably, in preclinical cancer models, the administration of high doses of citrate showed various anti-cancer effects, such as the inhibition of glycolysis, the promotion of cytotoxic drugs sensibility and apoptosis, the neutralization of extracellular acidity, and the inhibition of tumors growth and of key signalling pathways (in particular, the IGF-1R/AKT pathway). Therefore, these preclinical results support the testing of the citrate strategy in clinical trials to counteract key oncogenic drivers sustaining cancer development and resistance to anti-cancer therapies.
Collapse
|
34
|
Mierziak J, Burgberger M, Wojtasik W. 3-Hydroxybutyrate as a Metabolite and a Signal Molecule Regulating Processes of Living Organisms. Biomolecules 2021; 11:biom11030402. [PMID: 33803253 PMCID: PMC8000602 DOI: 10.3390/biom11030402] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023] Open
Abstract
3-hydroxybutyrate (3-HB) as a very important metabolite occurs in animals, bacteria and plants. It is well known that in animals, 3-HB is formed as a product of the normal metabolism of fatty acid oxidation and can therefore be used as an energy source in the absence of sufficient blood glucose. In microorganisms, 3-HB mainly serves as a substrate for the synthesis of polyhydroxybutyrate, which is a reserve material. Recent studies show that in plants, 3-HB acts as a regulatory molecule that most likely influences the expression of genes involved in DNA methylation, thereby altering DNA methylation levels. Additionally, in animals, 3-HB is not only an intermediate metabolite, but also an important regulatory molecule that can influence gene expression, lipid metabolism, neuronal function, and overall metabolic rate. Some of these effects are the direct effects of 3-HB itself, while others are indirect effects, regulated by the metabolites into which 3-HB is converted. One of the most important regulatory functions of 3-HB is the inhibition of the activity of histone deacetylases and thus the epigenetic regulation of many genes. Due to the number of functions of this compound, it also shows promising therapeutic properties.
Collapse
|
35
|
Alherz M, Lee D, Alshangiti A, Roddy D, O'Keeffe G, White R, Barry D. The Growth Response to Beta-Hydroxybutyrate in SH-SY5Y Neuroblastoma Cells is Suppressed by Glucose and Pyruvate Supplementation. Neurochem Res 2021; 46:701-709. [PMID: 33389384 DOI: 10.1007/s11064-020-03203-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Neuroblastoma (NB) is a childhood malignancy of the sympathetic nervous system and is commonly studied using the SH-SY5Y cell line. Its neoplastic and neurodevelopmental manifestations are characterised by a high glucose demand which maintains its high proliferative capacity. This metabolic phenotype may be utilised in dietary therapies such as the ketone diet which alter substrate availability and thus starve NB cells of their preferred biosynthetic requirements. However, the effects of ketone metabolism on cancer growth remain poorly understood due to the involvement of other metabolic substrates in experimental paradigms and complexities underlying the Warburg effect. We investigated how the primary ketone body beta-hydroxybutyrate (βOHB) affects the growth of SH-SY5Y NB cells in the presence or absence of culture metabolic substrates. We demonstrated that while glucose deprivation reduced the growth and viability of SH-SY5Y cells, they proliferated and were initially unaffected by the addition of βOHB. However, a growth response to βOHB was subsequently revealed in media containing low levels of glucose, as well as in glucose and pyruvate deprived conditions. These data shed light on the roles of metabolic substrate availability as key determinants of the responses of SH-SY5Y NB cells to ketone supplementation.
Collapse
Affiliation(s)
- Mohammad Alherz
- Department of Anatomy, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - David Lee
- Department of Anatomy, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Amnah Alshangiti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Darren Roddy
- Department of Anatomy, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Gerard O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Robin White
- Department of Biology, Westfield State University, Westfield, MA, 01086, USA
| | - Denis Barry
- Department of Anatomy, Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Labanca E, Bizzotto J, Sanchis P, Anselmino N, Yang J, Shepherd PDA, Paez A, Antico-Arciuch V, Lage-Vickers S, Hoang AG, Tang X, Raso MG, Titus M, Efstathiou E, Cotignola J, Araujo J, Logothetis C, Vazquez E, Navone N, Gueron G. Prostate cancer castrate resistant progression usage of non-canonical androgen receptor signaling and ketone body fuel. Oncogene 2021; 40:6284-6298. [PMID: 34584218 PMCID: PMC8566229 DOI: 10.1038/s41388-021-02008-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 02/08/2023]
Abstract
Prostate cancer (PCa) that progresses after androgen deprivation therapy (ADT) remains incurable. The underlying mechanisms that account for the ultimate emergence of resistance to ADT, progressing to castrate-resistant prostate cancer (CRPC), include those that reactivate androgen receptor (AR), or those that are entirely independent or cooperate with androgen signaling to underlie PCa progression. The intricacy of metabolic pathways associated with PCa progression spurred us to develop a metabolism-centric analysis to assess the metabolic shift occurring in PCa that progresses with low AR expression. We used PCa patient-derived xenografts (PDXs) to assess the metabolic changes after castration of tumor-bearing mice and subsequently confirmed main findings in human donor tumor that progressed after ADT. We found that relapsed tumors had a significant increase in fatty acids and ketone body (KB) content compared with baseline. We confirmed that critical ketolytic enzymes (ACAT1, OXCT1, BDH1) were dysregulated after castrate-resistant progression. Further, these enzymes are increased in the human donor tissue after progressing to ADT. In an in silico approach, increased ACAT1, OXCT1, BDH1 expression was also observed for a subset of PCa patients that relapsed with low AR and ERG (ETS-related gene) expression. Further, expression of these factors was also associated with decreased time to biochemical relapse and decreased progression-free survival. Our studies reveal the key metabolites fueling castration resistant progression in the context of a partial or complete loss of AR dependence.
Collapse
Affiliation(s)
- Estefania Labanca
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Juan Bizzotto
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Pablo Sanchis
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Nicolas Anselmino
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jun Yang
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Peter D. A. Shepherd
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Alejandra Paez
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina ,grid.7345.50000 0001 0056 1981Unidad de Transferencia Genética, Instituto de Oncología “Angel H Roffo”, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Antico-Arciuch
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Sofia Lage-Vickers
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Anh G. Hoang
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ximing Tang
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Maria Gabriela Raso
- grid.240145.60000 0001 2291 4776Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Mark Titus
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Eleni Efstathiou
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Javier Cotignola
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - John Araujo
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Christopher Logothetis
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Elba Vazquez
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| | - Nora Navone
- grid.240145.60000 0001 2291 4776Department of Genitourinary Medical Oncology and the David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Geraldine Gueron
- grid.7345.50000 0001 0056 1981Laboratorio de Inflamación y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina ,grid.7345.50000 0001 0056 1981CONICET-Universidad de Buenos Aires. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, CP1428 Argentina
| |
Collapse
|
37
|
Guillaumond F, Vasseur S. Nutriments et cancer : alliés ou ennemis ? CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2020; 55:276-294. [DOI: 10.1016/j.cnd.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
38
|
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer. J Clin Invest 2020; 130:5074-5087. [PMID: 32870818 PMCID: PMC7524491 DOI: 10.1172/jci137552] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) and the HIF-dependent cancer hallmarks angiogenesis and metabolic rewiring are well-established drivers of breast cancer aggressiveness, therapy resistance, and poor prognosis. Targeting of HIF and its downstream targets in angiogenesis and metabolism has been unsuccessful so far in the breast cancer clinical setting, with major unresolved challenges residing in target selection, development of robust biomarkers for response prediction, and understanding and harnessing of escape mechanisms. This Review discusses the pathophysiological role of HIFs, angiogenesis, and metabolism in breast cancer and the challenges of targeting these features in patients with breast cancer. Rational therapeutic combinations, especially with immunotherapy and endocrine therapy, seem most promising in the clinical exploitation of the intricate interplay of HIFs, angiogenesis, and metabolism in breast cancer cells and the tumor microenvironment.
Collapse
Affiliation(s)
- Ellen C. de Heer
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Mathilde Jalving
- University of Groningen, University Medical Center Groningen, Department of Medical Oncology, Groningen, Netherlands
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Madhu B, Uribe-Lewis S, Bachman M, Murrell A, Griffiths JR. Apc Min/+ tumours and normal mouse small intestines show linear metabolite concentration and DNA cytosine hydroxymethylation gradients from pylorus to colon. Sci Rep 2020; 10:13616. [PMID: 32788746 PMCID: PMC7423954 DOI: 10.1038/s41598-020-70579-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022] Open
Abstract
Topographical variations of metabolite concentrations have been reported in the duodenum, jejunum and ileum of the small intestine, and in human intestinal tumours from those regions, but there are no published metabolite concentrations measurements correlated with linear position in the mouse small intestine or intestinal tumours. Since DNA methylation dynamics are influenced by metabolite concentrations, they too could show linear anatomical variation. We measured metabolites by HR-MAS 1H NMR spectroscopy and DNA cytosine modifications by LC/MS, in normal small intestines of C57BL/6J wild-type mice, and in normal and tumour samples from ApcMin/+ mice. Wild-type mouse intestines showed approximately linear, negative concentration gradations from the pylorus (i.e. the junction with the stomach) of alanine, choline compounds, creatine, leucine and valine. ApcMin/+ mouse tumours showed negative choline and valine gradients, but a positive glycine gradient. 5-Hydroxymethylcytosine showed a positive gradient in the tumours. The linear gradients we found along the length of the mouse small intestine and in tumours contrast with previous reports of discrete concentration changes in the duodenum, jejunum and ileum. To our knowledge, this is also the first report of a systematic measurement of global levels of DNA cytosine modification in wild-type and ApcMin/+ mouse small intestine.
Collapse
Affiliation(s)
- Basetti Madhu
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Santiago Uribe-Lewis
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Martin Bachman
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.,Discovery Science and Technology, Medicines Discovery Catapult, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Adele Murrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.,Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - John R Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| |
Collapse
|
40
|
Khodabakhshi A, Akbari ME, Mirzaei HR, Seyfried TN, Kalamian M, Davoodi SH. Effects of Ketogenic metabolic therapy on patients with breast cancer: A randomized controlled clinical trial. Clin Nutr 2020; 40:751-758. [PMID: 32703721 DOI: 10.1016/j.clnu.2020.06.028] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ketogenic metabolic therapy (KMT) using ketogenic diets (KD) is emerging as viable alternative or complementary strategy for managing cancer; however, few clinical trials have been reported. The present study aimed to evaluate the effects of a KD in patients with locally advanced and metastatic breast cancer receiving chemotherapy. METHODS A total of 80 patients undergoing treatment with chemotherapy were randomly assigned to KD or control group for 12 weeks. Concurrent with the admission, midway point, and at 12 weeks, fasting blood samples were collected for evaluation of insulin, IGF-1, CEA, CA15-3, ESR, CRP, IL-10, and TNF-α. Sonography for patients with locally advanced disease and CT or MRI scans for patients with metastatic disease were done on admission and at 12 weeks. At the completion of the chemotherapy, patients with locally advanced disease underwent surgery and stage was recalculated. Also patients with metastases were evaluated for response rate. RESULTS TNF-α decreased significantly after 12 weeks of treatment (MD: 0.64 [CI 95%: -3.7, 5] P < 0.001), while IL-10 increased (MD: 0.95 [CI 95%: -1,3] P < 0.001) in the intervention compared to the control group. Patients in the KD group had lower adjusted serum insulin compared to the control group (MD:-1.1 [CI 95%: -3,1] p < 0.002). KD lead to a reduction in tumor size in the KD compared to the control (27 vs 6 mm, P = 0.01). Stage decreased significantly in patients with locally advanced disease in the KD group after 12 weeks (P < 0.01). No significant differences in response rate were observed in patients with metastatic disease. CONCLUSIONS KMT in breast cancer patients might exert beneficial effects through decreasing TNF-α and insulin and increasing IL-10. KD may result in a better response through reductions in tumor size and downstaging in patients with locally advanced disease; however, more studies are needed to elucidate the potential beneficial effects of KD in patients with metastases. TRIAL REGISTRATION This trial has been registered on Iranian Registry of Clinical Trials (IRCT) under the identification code: IRCT20171105037259N2. https://www.irct.ir/trial/30755.
Collapse
Affiliation(s)
- Adeleh Khodabakhshi
- Department of Nutrition, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Mirzaei
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thomas N Seyfried
- Department of Biology, Boston College, Chestnut Hill, MA, United States
| | | | - Sayed Hossein Davoodi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Abstract
The concept that dietary changes could improve the response to cancer therapy is extremely attractive to many patients, who are highly motivated to take control of at least some aspect of their treatment. Growing insight into cancer metabolism is highlighting the importance of nutrient supply to tumor development and therapeutic response. Cancers show diverse metabolic requirements, influenced by factors such as tissue of origin, microenvironment, and genetics. Dietary modulation will therefore need to be matched to the specific characteristics of both cancers and treatment, a precision approach requiring a detailed understanding of the mechanisms that determine the metabolic vulnerabilities of each cancer.
Collapse
Affiliation(s)
- Mylène Tajan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
42
|
Qi Y, Tan M, Zheng M, Jin S, Wang H, Liu J, Wang P, Nie X, Gao L, Lin B. Estrogen/estrogen receptor promotes the proliferation of endometrial carcinoma cells by enhancing hMOF expression. Jpn J Clin Oncol 2020; 50:241-253. [PMID: 31990345 PMCID: PMC7061248 DOI: 10.1093/jjco/hyz174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/11/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study aims to analyse the expression of human MOF in endometrial carcinoma cells and its relationship with estrogen and estrogen receptor and to investigate the effect of estrogen-human MOF on the malignant biological behaviours of endometrial carcinoma cells. METHODS The expression of human MOF was detected in different endometrial tissues by immunohistochemistry. The effects of human MOF, human MOF combined with estrogen stimulation and estrogen plus anti-human MOF antibody blocking on the proliferation of endometrial carcinoma cells were evaluated by western blotting, real-time polymerase chain reaction, cell proliferation assay and cell cycle distribution. Bioinformatics was used to identify the correlations of human MOF and estrogen and involved pathways. RESULTS The expression levels of human MOF in endometrial carcinoma tissues were significantly higher than that in atypical hyperplasia and normal endometrial tissues. High expression of human MOF was associated with late-stage cancer, lymph node metastasis and short survival time, and it was also an independent prognostic risk factor for endometrial carcinoma. After human MOF knockdown, the proliferation, migration and invasive capacity of Ishikawa cells decreased and cell apoptosis increased. After stimulation with estrogen, the PI3K/Akt and Ras-Raf-MEK-ERK signalling pathways were activated, and the expression of the human MOF protein was increased. human MOF (KAT8) expression showed a positive correlation with ESR1 expression, and KAT8-associated genes were enriched in the cell cycle pathways and splicing pathways. CONCLUSION Human MOF was highly expressed in endometrial carcinoma and associated with proliferation. Estrogen/estrogen receptor enhanced human MOF expression; promoted the proliferation, migration and invasion of Ishikawa cells; and inhibited cell apoptosis by activating the PI3K/Akt and Ras-Raf-MEK-ERK signalling pathways.
Collapse
Affiliation(s)
- Yue Qi
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Mingzi Tan
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China.,Department of Gynecology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Mingjun Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Shan Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Huimin Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China.,Department of Gynecology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Juanjuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Peiyao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Xin Nie
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Lingling Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
43
|
Icard P, Ollivier L, Forgez P, Otz J, Alifano M, Fournel L, Loi M, Thariat J. Perspective: Do Fasting, Caloric Restriction, and Diets Increase Sensitivity to Radiotherapy? A Literature Review. Adv Nutr 2020; 11:1089-1101. [PMID: 32492154 PMCID: PMC7490158 DOI: 10.1093/advances/nmaa062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
Caloric starvation, as well as various diets, has been proposed to increase the oxidative DNA damage induced by radiotherapy (RT). However, some diets could have dual effects, sometimes promoting cancer growth, whereas proposing caloric restriction may appear counterproductive during RT considering that the maintenance of weight is a major factor for the success of this therapy. A systematic review was performed via a PubMed search on RT and fasting, or caloric restriction, ketogenic diet (>75% of fat-derived energy intake), protein starvation, amino acid restriction, as well as the Warburg effect. Twenty-six eligible original articles (17 preclinical studies and 9 clinical noncontrolled studies on low-carbohydrate, high-fat diets popularized as ketogenic diets, representing a total of 77 patients) were included. Preclinical experiments suggest that a short period of fasting prior to radiation, and/or transient caloric restriction during treatment course, can increase tumor responsiveness. These regimens promote accumulation of oxidative lesions and insufficient repair, subsequently leading to cancer cell death. Due to their more flexible metabolism, healthy cells should be less sensitive, shifting their metabolism to support survival and repair. Interestingly, these regimens might stimulate an acute anticancer immune response, and may be of particular interest in tumors with high glucose uptake on positron emission tomography scan, a phenotype associated with poor survival and resistance to RT. Preclinical studies with ketogenic diets yielded more conflicting results, perhaps because cancer cells can sometimes metabolize fatty acids and/or ketone bodies. Randomized trials are awaited to specify the role of each strategy according to the clinical setting, although more stringent definitions of proposed diet, nutritional status, and consensual criteria for tumor response assessment are needed. In conclusion, dietary interventions during RT could be a simple and medically economical and inexpensive method that may deserve to be tested to improve efficiency of radiation.
Collapse
Affiliation(s)
- Philippe Icard
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Inserm U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Centre de Lutte Contre le Cancer, Centre François Baclesse, Caen, France,Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,Address correspondence to PI (e-mail: )
| | - Luc Ollivier
- Centre Hospitalier de Brest, Université de Bretagne Occidentale, Brest, France,Centre François Baclesse, Radiotherapy Unit, Caen, France
| | - Patricia Forgez
- INSERM UMR-S 1124, Cellular Homeostasis and Cancer, Paris-Descartes University, Paris, France
| | - Joelle Otz
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Marco Alifano
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Ludovic Fournel
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, Paris, France,INSERM U1138, Integrative Cancer Immunology, University Paris Descartes, Paris, France
| | - Mauro Loi
- Department of Radiation Oncology, Paris Est University Hospitals, AP-HP, Paris, France
| | - Juliette Thariat
- Université Caen Normandie, Normandie University, UNICAEN, Medical School, CHU de Caen, Caen, France,Centre François Baclesse, Radiotherapy Unit, Caen, France,Laboratoire de Physique Corpusculaire, IN2P3, Normandie University/UNICAEN/CNRS, Caen, France
| |
Collapse
|
44
|
Park JS, Kim YJ. Anti-Aging Effect of the Ketone Metabolite β-Hydroxybutyrate in Drosophila Intestinal Stem Cells. Int J Mol Sci 2020; 21:ijms21103497. [PMID: 32429095 PMCID: PMC7278929 DOI: 10.3390/ijms21103497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023] Open
Abstract
Age-related changes in tissue-resident adult stem cells may be closely linked to tissue aging and age-related diseases, such as cancer. β-Hydroxybutyrate is emerging as an important molecule for exhibiting the anti-aging effects of caloric restriction and fasting, which are generally considered to be beneficial for stem cell maintenance and tissue regeneration. The effects of β-hydroxybutyrate on adult stem cells remain largely unknown. Therefore, this study was undertaken to investigate whether β-hydroxybutyrate supplementation exerts beneficial effects on age-related changes in intestinal stem cells that were derived from the Drosophila midgut. Our results indicate that β-hydroxybutyrate inhibits age- and oxidative stress-induced changes in midgut intestinal stem cells, including centrosome amplification (a hallmark of cancers), hyperproliferation, and DNA damage accumulation. Additionally, β-hydroxybutyrate inhibits age- and oxidative stress-induced heterochromatin instability in enterocytes, an intestinal stem cells niche cells. Our results suggest that β-hydroxybutyrate exerts both intrinsic as well as extrinsic influence in order to maintain stem cell homeostasis.
Collapse
Affiliation(s)
- Joung-Sun Park
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-3908; Fax: +82-51-513-9258
| | - Yung-Jin Kim
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
45
|
Kant S, Kesarwani P, Prabhu A, Graham SF, Buelow KL, Nakano I, Chinnaiyan P. Enhanced fatty acid oxidation provides glioblastoma cells metabolic plasticity to accommodate to its dynamic nutrient microenvironment. Cell Death Dis 2020; 11:253. [PMID: 32312953 PMCID: PMC7170895 DOI: 10.1038/s41419-020-2449-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
Despite advances in molecularly characterizing glioblastoma (GBM), metabolic alterations driving its aggressive phenotype are only beginning to be recognized. Integrative cross-platform analysis coupling global metabolomic and gene expression profiling on patient-derived glioma identified fatty acid β-oxidation (FAO) as a metabolic node in GBM. We determined that the biologic consequence of enhanced FAO is directly dependent upon tumor microenvironment. FAO serves as a metabolic cue to drive proliferation in a β-HB/GPR109A dependent autocrine manner in nutrient favorable conditions, while providing an efficient, alternate source of ATP only in nutrient unfavorable conditions. Rational combinatorial strategies designed to target these dynamic roles FAO plays in gliomagenesis resulted in necroptosis-mediated metabolic synthetic lethality in GBM. In summary, we identified FAO as a dominant metabolic node in GBM that provides metabolic plasticity, allowing these cells to adapt to their dynamic microenvironment. Combinatorial strategies designed to target these diverse roles FAO plays in gliomagenesis offers therapeutic potential in GBM.
Collapse
Affiliation(s)
- Shiva Kant
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Pravin Kesarwani
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Antony Prabhu
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Stewart F Graham
- Department of Metabolomics and Obstetrics/Gynecology, Beaumont Research Institute, Beaumont Health, Royal Oak, MI, USA
| | - Katie L Buelow
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Alabama, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA. .,Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA.
| |
Collapse
|
46
|
Seyfried TN, Mukherjee P, Iyikesici MS, Slocum A, Kalamian M, Spinosa JP, Chinopoulos C. Consideration of Ketogenic Metabolic Therapy as a Complementary or Alternative Approach for Managing Breast Cancer. Front Nutr 2020; 7:21. [PMID: 32219096 PMCID: PMC7078107 DOI: 10.3389/fnut.2020.00021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/21/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains as a significant cause of morbidity and mortality in women. Ultrastructural and biochemical evidence from breast biopsy tissue and cancer cells shows mitochondrial abnormalities that are incompatible with energy production through oxidative phosphorylation (OxPhos). Consequently, breast cancer, like most cancers, will become more reliant on substrate level phosphorylation (fermentation) than on oxidative phosphorylation (OxPhos) for growth consistent with the mitochondrial metabolic theory of cancer. Glucose and glutamine are the prime fermentable fuels that underlie therapy resistance and drive breast cancer growth through substrate level phosphorylation (SLP) in both the cytoplasm (Warburg effect) and the mitochondria (Q-effect), respectively. Emerging evidence indicates that ketogenic metabolic therapy (KMT) can reduce glucose availability to tumor cells while simultaneously elevating ketone bodies, a non-fermentable metabolic fuel. It is suggested that KMT would be most effective when used together with glutamine targeting. Information is reviewed for suggesting how KMT could reduce systemic inflammation and target tumor cells without causing damage to normal cells. Implementation of KMT in the clinic could improve progression free and overall survival for patients with breast cancer.
Collapse
Affiliation(s)
| | - Purna Mukherjee
- Biology Department, Boston College, Chestnut Hill, MA, United States
| | - Mehmet S. Iyikesici
- Medical Oncology, Kemerburgaz University Bahcelievler Medical Park Hospital, Istanbul, Turkey
| | - Abdul Slocum
- Medical Oncology, Chemo Thermia Oncology Center, Istanbul, Turkey
| | | | | | | |
Collapse
|
47
|
NRF2-driven redox metabolism takes center stage in cancer metabolism from an outside-in perspective. Arch Pharm Res 2020; 43:321-336. [PMID: 32130657 DOI: 10.1007/s12272-020-01224-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
Cancer development is a process of somatic clonal evolution. Darwinian principles of evolution emphasize the interaction between heritable individual variability and selective pressure from the environment. However, the current prevailing concept of cancer evolution mostly focuses on the alterations of genes, signaling, and metabolism inside cells, which underestimates the impact of environmental pressure in selecting the adapted cells. Recently, unsuccessful outcomes and many concerns raised in targeting those alterations inside cells have cast doubt on the current "cell-centric" paradigm of cancer formation, which necessitates a paradigm shift to an outside-in direction that considers environmental changes as a driver in determining the characteristics of selected cells. In the tumor microenvironment, reactive oxygen species (ROS) are one of the most abundant chemical constituents generated by inflammatory and hypoxic conditions. Because of their cytotoxicity when present at high levels, ROS should be the pressure that selects cells with a high capacity for ROS metabolism and antioxidant defense, both of which are referred to as redox metabolism. Cancer genome analyses have found that nuclear factor E2-related factor 2 (NRF2), which plays an indispensable role in redox metabolism, is frequently activated in many types of cancer, particularly lung cancer. This suggests that an ROS-rich microenvironment drives the selection, survival, and growth of cells with high NRF2 activity. Thus, NRF2-driven redox metabolism should be the most crucial part of cancer metabolism, proposing NRF2 inhibitor as an attractive therapeutic target for cancer.
Collapse
|
48
|
Metabolomic studies of breast cancer in murine models: A review. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165713. [PMID: 32014550 DOI: 10.1016/j.bbadis.2020.165713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/06/2019] [Accepted: 01/29/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metabolomic strategies have been extensively used to search for biomarkers of disease, including cancer, in biological complex mixtures such as cells, tissues and biofluids. In breast cancer research, murine models are of great value and metabolomics has been increasingly applied to characterize tumor or organ tissues, or biofluids, for instance to follow-up metabolism during cancer progression or response to specific therapies. SCOPE OF REVIEW This review briefly introduces the different murine models used in breast cancer research and proceeds to present the metabolomic studies reported so far to describe the deviant metabolic behavior associated to breast cancer, in each type of model: xenografts (cell- or patient-derived), spontaneous (naturally-occurring or genetically engineered) and carcinogen-induced. The type of sample and strategies followed are identified, as well as the main findings from of study. MAJOR CONCLUSIONS Metabolomics has gradually become relevant in characterizing murine models of breast cancer, using either Nuclear Magnetic Resonance (NMR) or Mass Spectromety (MS). Both tissue and biofluids are matrixes of interest in this context, although in some type of models, reports have focused primarily on the former. The aims of tissue studies have comprised the search for mechanistic knowledge of carcinogenesis, metastasis development and response/resistance to therapies. Biofluid metabolomics has mainly aimed at finding non-invasive biomarkers for early breast cancer detection or prognosis determination. GENERAL SIGNIFICANCE Metabolomics provides exquisite detail on murine tumor and systemic metabolism of breast cancer. This knowledge paves the way for the discovery of new biomarkers, potentially translatable to in vivo non-invasive patient follow-up.
Collapse
|
49
|
Rodríguez-Tomàs E, Arguís M, Arenas M, Fernández-Arroyo S, Murcia M, Sabater S, Torres L, Baiges-Gayà G, Hernández-Aguilera A, Camps J, Joven J. Alterations in plasma concentrations of energy-balance-related metabolites in patients with lung, or head & neck, cancers: Effects of radiotherapy. J Proteomics 2019; 213:103605. [PMID: 31841666 DOI: 10.1016/j.jprot.2019.103605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023]
Abstract
We investigated the alterations in the plasma concentrations of energy-balance-related metabolites in patients with lung (LC) or head & neck (HNC) cancer and the changes on these parameters induced by radiotherapy. The study was conducted in 33 patients with non-small cell LC and 28 patients with HNC. We analyzed the concentrations of 17 metabolites involved in glycolysis, citric acid cycle and amino acid metabolism using targeted gas chromatography coupled to quadrupole time-of-flight mass spectrometry. For comparison, a control group of 50 healthy individuals was included in the present study. Patients with LC or HNC had significant alterations in the plasma levels of several energy-balance-related metabolites. Radiotherapy partially normalized these alterations in patients with LC, but not in those with HNC. The measurement of plasma glutamate concentration was an excellent predictor of the presence of LC or HNC, with sensitivity >90% and specificity >80%. Also, associations with disease prognosis were observed with plasma glutamate, amino acids and β-hydroxybutyrate concentrations. SIGNIFICANCE: This study analyzed the changes produced in the plasma concentrations of energy-balance-related metabolites in patients with lung cancer or head and neck cancer. The results obtained identified glutamate as the parameter with the highest discrimination capacity between patients and the control group. The relationships between various metabolites and clinical outcomes were also analyzed. These results extend the knowledge of metabolic alterations in cancer, thus facilitating the search for biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus, Tarragona, Spain; Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Josep Laporte s/n, 43204 Reus, Tarragona, Spain
| | - Mònica Arguís
- Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Josep Laporte s/n, 43204 Reus, Tarragona, Spain
| | - Meritxell Arenas
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus, Tarragona, Spain; Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Josep Laporte s/n, 43204 Reus, Tarragona, Spain.
| | - Salvador Fernández-Arroyo
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus, Tarragona, Spain
| | - Mauricio Murcia
- Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Josep Laporte s/n, 43204 Reus, Tarragona, Spain
| | - Sebastià Sabater
- Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Josep Laporte s/n, 43204 Reus, Tarragona, Spain
| | - Laura Torres
- Department of Radiation Oncology, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Av. Josep Laporte s/n, 43204 Reus, Tarragona, Spain
| | - Gerard Baiges-Gayà
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus, Tarragona, Spain
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus, Tarragona, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus, Tarragona, Spain.
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, C. Sant Joan s/n, 43201 Reus, Tarragona, Spain
| |
Collapse
|
50
|
Cheng Z, Li X, Hou S, Wu Y, Sun Y, Liu B. K-Ras-ERK1/2 accelerates lung cancer cell development via mediating H3 K18ac through the MDM2-GCN5-SIRT7 axis. PHARMACEUTICAL BIOLOGY 2019; 57:701-709. [PMID: 31613681 PMCID: PMC6807650 DOI: 10.1080/13880209.2019.1672756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
Context: H3K18ac is linked to gene expression and DNA damage. Nevertheless, whether H3K18ac participates in regulating Ras-ERK1/2-affected lung cancer cell phenotypes remains unclear. Objective: We explored the effects of H3K18ac on Ras-ERK1/2-affected lung cancer cell phenotypes. Material and methods: NCI-H2126 cells were transfected with, pEGFP-K-RasWT and pEGFP-K-RasG12V/T35S plasmids for 48 h, and transfection with pEGFP-N1 served as a blank control. Then H3K18ac and AKT and ERK1/2 pathways-associated factors were examined. Different amounts of the H3K18Q (0.5, 1, and 2 μg) plasmids and RasG12V/T35S were co-transfected into NCI-H2126 cells, cell viability, cell colonies and migration were analyzed for exploring the biological functions of H3K18ac in NCI-H2126 cells. The ERK1/2 pathway downstream factors were detected by RT-PCR and ChIP assays. The regulatory functions of SIRT7, GCN5 and MDM2 in Ras-ERK1/2-regulated H3K18ac expression were finally uncovered. Results: RasG12V/T35S transfection decreased the expression of H3K18ac about 2.5 times compared with the pEGFP-N1 transfection group, and activated ERK1/2 and AKT pathways. Moreover, H3K18ac reduced cell viability, colonies, migration, and altered ERK1/2 downstream transcription in NCI-H2126 cells. Additionally, SIRT7 knockdown increased H3K18ac expression and repressed cell viability, migration and the percentage of cells in S phase by about 50% compared to the control group, as well as changed ERK1/2 downstream factor expression. Besides, Ras-ERK1/2 decreased H3K18ac was linked to MDM2-regulated GCN5 degradation. Conclusion: These observations disclosed that Ras-ERK1/2 promoted the development of lung cancer via decreasing H3K18ac through MDM2-mediated GCN5 degradation. These findings might provide a new therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Ziming Cheng
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Xiufeng Li
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Shizhen Hou
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Yubing Wu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Yi Sun
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Bing Liu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| |
Collapse
|