1
|
Ren X, Jin C, Li Q, Fu C, Fang Y, Xu Z, Liang Z, Wang T. Fatty acid binding proteins-mediated mitochondrial dysfunction in the development of age-related diseases: A review. Int J Biol Macromol 2025; 309:142913. [PMID: 40203912 DOI: 10.1016/j.ijbiomac.2025.142913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/11/2025]
Abstract
Fatty acid-binding proteins (FABPs) act as lipid chaperones and play a role in the pathological processes of various lipid signaling pathways. Mitochondria are crucial for the regulation of lipid metabolism. As an aging marker, lipid-mediated mitochondrial dysfunction has been observed in the etiology of numerous diseases, including neurodegenerative diseases, metabolic syndromes, cardiovascular diseases, and tumorigenesis. Members of the FABP family have been identified to regulate mitochondrial function. Targeting FABPs specifically may provide a promising approach to improve mitochondrial function and treat age-related diseases. This review summarizes the connection between FABPs and mitochondrial function and highlights certain FABPs involved in age-related diseases that hold significant therapeutic promise.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Chaoyuan Jin
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai 201508, China
| | - Qilin Li
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Congyi Fu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Yu Fang
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zihang Xu
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200125, China
| | - Zi Liang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Tianshi Wang
- Department of Nephrology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201207, China.
| |
Collapse
|
2
|
Di Giovannantonio M, Hartley F, Elshenawy B, Barberis A, Hudson D, Shafique HS, Allott VES, Harris DA, Lord SR, Haider S, Harris AL, Buffa FM, Harris BHL. Defining hypoxia in cancer: A landmark evaluation of hypoxia gene expression signatures. CELL GENOMICS 2025; 5:100764. [PMID: 39892389 PMCID: PMC11872601 DOI: 10.1016/j.xgen.2025.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Tumor hypoxia drives metabolic shifts, cancer progression, and therapeutic resistance. Challenges in quantifying hypoxia have hindered the exploitation of this potential "Achilles' heel." While gene expression signatures have shown promise as surrogate measures of hypoxia, signature usage is heterogeneous and debated. Here, we present a systematic pan-cancer evaluation of 70 hypoxia signatures and 14 summary scores in 104 cell lines and 5,407 tumor samples using 472 million length-matched random gene signatures. Signature and score choice strongly influenced the prediction of hypoxia in vitro and in vivo. In cell lines, the Tardon signature was highly accurate in both bulk and single-cell data (94% accuracy, interquartile mean). In tumors, the Buffa and Ragnum signatures demonstrated superior performance, with Buffa/mean and Ragnum/interquartile mean emerging as the most promising for prospective clinical trials. This work delivers recommendations for experimental hypoxia detection and patient stratification for hypoxia-targeting therapies, alongside a generalizable framework for signature evaluation.
Collapse
Affiliation(s)
- Matteo Di Giovannantonio
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Fiona Hartley
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Badran Elshenawy
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Alessandro Barberis
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Dan Hudson
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK; The Rosalind Franklin Institute, Didcot, UK
| | | | | | | | - Simon R Lord
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Syed Haider
- Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Adrian L Harris
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK
| | - Francesca M Buffa
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK; CompBio Lab, Department of Computing Sciences, Bocconi University, Milan, Italy; AI and Systems Biology Lab, IFOM - Istituto Fondazione di Oncologia Molecolare ETS, Milan, Italy.
| | - Benjamin H L Harris
- Computational Biology and Integrative Genomics Lab, Department of Oncology, University of Oxford, Oxford, UK; St. Catherine's College, University of Oxford, Oxford, UK; Cutrale Perioperative and Ageing Group, Imperial College London, London, UK.
| |
Collapse
|
3
|
George Warren W, Osborn M, Yates A, O'Sullivan SE. The emerging role of fatty acid binding protein 7 (FABP7) in cancers. Drug Discov Today 2024; 29:103980. [PMID: 38614160 DOI: 10.1016/j.drudis.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Fatty acid binding protein 7 (FABP7) is an intracellular protein involved in the uptake, transportation, metabolism, and storage of fatty acids (FAs). FABP7 is upregulated up to 20-fold in multiple cancers, usually correlated with poor prognosis. FABP7 silencing or pharmacological inhibition suggest FABP7 promotes cell growth, migration, invasion, colony and spheroid formation/increased size, lipid uptake, and lipid droplet formation. Xenograft studies show that suppression of FABP7 inhibits tumour formation and tumour growth, and improves host survival. The molecular mechanisms involve promotion of FA uptake, lipid droplets, signalling [focal adhesion kinase (FAK), proto-oncogene tyrosine-protein kinase Src (Src), mitogen-activated protein kinase kinase/p-extracellular signal-regulated kinase (MEK/ERK), and Wnt/β-catenin], hypoxia-inducible factor 1-alpha (Hif1α), vascular endothelial growth factor A/prolyl 4-hydroxylase subunit alpha-1 (VEGFA/P4HA1), snail family zinc finger 1 (Snail1), and twist-related protein 1 (Twist1). The oncogenic capacity of FABP7 makes it a promising pharmacological target for future cancer treatments.
Collapse
Affiliation(s)
| | - Myles Osborn
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | - Andrew Yates
- Artelo Biosciences Limited, Alderley Park, Cheshire, UK
| | | |
Collapse
|
4
|
Russegger A, Fischer SM, Debruyne AC, Wiltsche H, Boese AD, Dmitriev RI, Borisov SM. Tunable Self-Referenced Molecular Thermometers via Manipulation of Dual Emission in Platinum(II) Pyridinedipyrrolide Complexes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11930-11943. [PMID: 38390631 PMCID: PMC10921383 DOI: 10.1021/acsami.3c19226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
Optical temperature sensors based on self-referenced readout schemes such as the emission ratio and the decay time are crucial for a wide range of applications, with the former often preferred due to simplicity of instrumentation. This work describes a new group of dually emitting dyes, platinum(II) pincer complexes, that can be used directly for ratiometric temperature sensing without an additional reference material. They consist of Pt(II) metal center surrounded by a pyridinedipyrrolide ligand (PDP) and a terminal ligand (benzonitrile, pyridine, 1-butylimidazol or carbon monoxide). Upon excitation with blue light, these complexes exhibit green to orange emission, with quantum yields in anoxic toluene at 25 °C ranging from 13% to 86% and decay times spanning from 8.5 to 97 μs. The emission is attributed to simultaneous thermally activated delayed fluorescence (TADF) and phosphorescence processes on the basis of photophysical investigations and DFT calculations. Rather uniquely, simple manipulations in substituents of the PDP ligand and alteration of the terminal ligand allow fine-tuning of the ratio between TADF and phosphorescence from almost 100% TADF emission (Pt(MesPDPC6F5(BN)) to over 80% of phosphorescence (Pt(PhPDPPh(BuIm)). Apart from ratiometric capabilities, the complexes also are useful as decay time-based temperature indicators with temperature coefficients exceeding 1.5% K-1 in most cases. Immobilization of the dyes into oxygen-impermeable polyacrylonitrile produces temperature sensing materials that can be read out with an ordinary RGB camera or a smartphone. In addition, Pt(PhPDPPh)Py can be incorporated into biocompatible RL100 nanoparticles suitable for cellular nanothermometry, as we demonstrate with temperature measurements in multicellular colon cancer spheroids.
Collapse
Affiliation(s)
- Andreas Russegger
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Susanne M. Fischer
- Physical
and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, Graz 8010, Austria
| | - Angela C. Debruyne
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medical and Health Sciences, Ghent University, C.
Heymanslaan 10, Ghent 9000, Belgium
| | - Helmar Wiltsche
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - A. Daniel Boese
- Physical
and Theoretical Chemistry, Institute of Chemistry, University of Graz, Heinrichstrasse 28/IV, Graz 8010, Austria
| | - Ruslan I. Dmitriev
- Tissue
Engineering and Biomaterials Group, Department of Human Structure
and Repair, Faculty of Medical and Health Sciences, Ghent University, C.
Heymanslaan 10, Ghent 9000, Belgium
- Ghent
Light Microscopy Core, Ghent University, Ghent 9000, Belgium
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| |
Collapse
|
5
|
Yu X, Shi M, Wu Q, Wei W, Sun S, Zhu S. Identification of UCP1 and UCP2 as Potential Prognostic Markers in Breast Cancer: A Study Based on Immunohistochemical Analysis and Bioinformatics. Front Cell Dev Biol 2022; 10:891731. [PMID: 35874806 PMCID: PMC9300932 DOI: 10.3389/fcell.2022.891731] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Uncoupling protein 1 (UCP1) and UCP2 are associated with tumor metabolism and immunity. However, the prognostic value and molecular mechanisms underlying their action in breast cancer (BC) remain unclear.Materials and methods: In TCGA-BRCA cohort, we investigated the expression characteristics of UCP mRNAs, analyzed their prognostic value by Kaplan-Meier survival analysis, their potential molecular functions by gene set enrichment analysis, and their relationship with immune infiltrating cell types using TIMER and CIBERSORT, along with the assessment of their association with mutational profiles. Kaplan-Meier survival analysis was performed for UCPs in our cohort and their association with BC thermogenesis was assessed by thermal tomography.Results: High expression of UCP1 and UCP2 were positive prognostic markers for BC. UCP1 was associated with the impaired glucose metabolism, while UCP2 with enhanced anti-tumor immunity. High expressions of UCP1 and UCP2 were associated with CDH1 mutations. High UCP1 expression was associated with a high rate of thermogenesis in BC.Conclusions: These results implied a key role of UCP1 and UCP2 in prognosis, metabolism, and immune infiltration in BC. Further investigation of the relevant molecular mechanisms may provide new strategies for BC treatment.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Manman Shi
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Tongji University Cancer Center, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wen Wei
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Shengrong Sun, ; Shan Zhu,
| | - Shan Zhu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Shengrong Sun, ; Shan Zhu,
| |
Collapse
|
6
|
Gregorio JD, Petricca S, Iorio R, Toniato E, Flati V. MITOCHONDRIAL AND METABOLIC ALTERATIONS IN CANCER CELLS. Eur J Cell Biol 2022; 101:151225. [DOI: 10.1016/j.ejcb.2022.151225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 02/07/2023] Open
|
7
|
Ye T, Li J, Feng J, Guo J, Wan X, Xie D, Liu J. The subtype-specific molecular function of SPDEF in breast cancer and insights into prognostic significance. J Cell Mol Med 2021; 25:7307-7320. [PMID: 34191390 PMCID: PMC8335683 DOI: 10.1111/jcmm.16760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/30/2021] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer (BC) is a molecular diverse disease which becomes the most common malignancy among women worldwide. There are four BC subtypes (Luminal A, Luminal B, HER2‐enriched and Basal‐like) robustly established following gene expression pattern‐based characterization, behave significant differences in terms of their incidence, risk factors, prognosis and therapeutic sensitivity. Thus, there is an urgent need to provide mechanism research, treatment strategies and/or prognosis evaluation based on the patient stratification of BC subtypes. The prostate‐derived ETS factor SPDEF was first identified as an activator of prostate specific antigen, and then, the involvements in many aspects of BC have been proposed. However, the subtype‐specific molecular function of SPDEF in BC and insights into prognostic significance have not been clearly elucidated. This study demonstrated for the first time that SPDEF may play a diversity role in the expression levels, clinicopathologic importance, biological function and prognostic evaluation in BC via bioinformatics and experimental evidence, which mainly depends on different BC subtyping. In summary, our findings would help to better understand the possible mechanisms of various BC subtypes and to find possible candidate genes for prognostic and therapeutic usage.
Collapse
Affiliation(s)
- Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jinglan Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| |
Collapse
|
8
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
9
|
Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, Thomas CJ, Spranger S, Matheson NJ, Vander Heiden MG. Increased demand for NAD + relative to ATP drives aerobic glycolysis. Mol Cell 2020; 81:691-707.e6. [PMID: 33382985 DOI: 10.1016/j.molcel.2020.12.012] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/30/2020] [Accepted: 12/02/2020] [Indexed: 01/10/2023]
Abstract
Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is associated with proliferation across many organisms and conditions. To better understand that association, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the NAD+/NADH ratio. This change in NAD+/NADH is caused by increased mitochondrial membrane potential that impairs mitochondrial electron transport and NAD+ regeneration. Uncoupling respiration from ATP synthesis or increasing ATP hydrolysis restores NAD+/NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when demand for NAD+ to support oxidation reactions exceeds the rate of ATP turnover in cells, NAD+ regeneration by mitochondrial respiration becomes constrained, promoting fermentation, despite available oxygen. This argues that cells engage in aerobic glycolysis when the demand for NAD+ is in excess of the demand for ATP.
Collapse
Affiliation(s)
- Alba Luengo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhaoqi Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Y Gui
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucas B Sullivan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Maria Zagorulya
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Adi Naamati
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Craig J Thomas
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas J Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Cancer Stem Cell-Associated Pathways in the Metabolic Reprogramming of Breast Cancer. Int J Mol Sci 2020; 21:ijms21239125. [PMID: 33266219 PMCID: PMC7730588 DOI: 10.3390/ijms21239125] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming of cancer is now considered a hallmark of many malignant tumors, including breast cancer, which remains the most commonly diagnosed cancer in women all over the world. One of the main challenges for the effective treatment of breast cancer emanates from the existence of a subpopulation of tumor-initiating cells, known as cancer stem cells (CSCs). Over the years, several pathways involved in the regulation of CSCs have been identified and characterized. Recent research has also shown that CSCs are capable of adopting a metabolic flexibility to survive under various stressors, contributing to chemo-resistance, metastasis, and disease relapse. This review summarizes the links between the metabolic adaptations of breast cancer cells and CSC-associated pathways. Identification of the drivers capable of the metabolic rewiring in breast cancer cells and CSCs and the signaling pathways contributing to metabolic flexibility may lead to the development of effective therapeutic strategies. This review also covers the role of these metabolic adaptation in conferring drug resistance and metastasis in breast CSCs.
Collapse
|
11
|
Kawashima M, Bensaad K, Zois CE, Barberis A, Bridges E, Wigfield S, Lagerholm C, Dmitriev RI, Tokiwa M, Toi M, Papkovsky DB, Buffa FM, Harris AL. Correction to: Disruption of hypoxia-inducible fatty acid binding protein 7 induces beige fat-like differentiation and thermogenesis in breast cancer cells. Cancer Metab 2020; 8:18. [PMID: 32789015 PMCID: PMC7418190 DOI: 10.1186/s40170-020-00224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
[This corrects the article DOI: 10.1186/s40170-020-00219-4.].
Collapse
Affiliation(s)
- Masahiro Kawashima
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507 Japan
| | - Karim Bensaad
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Christos E. Zois
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Alessandro Barberis
- Department of Oncology, Computational Biology and Integrative Genomics Lab, CRUK/MRC Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosvelt Drive, Oxford, OX3 7DQ UK
| | - Esther Bridges
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Simon Wigfield
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Christoffer Lagerholm
- Wolfson Imaging Centre, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| | - Ruslan I. Dmitriev
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, 1.28, College Road, Cork, Ireland
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State University, Moscow, Russian Federation
| | - Mariko Tokiwa
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507 Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606 8507 Japan
| | - Dmitri B. Papkovsky
- School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, 1.28, College Road, Cork, Ireland
| | - Francesca M. Buffa
- Department of Oncology, Computational Biology and Integrative Genomics Lab, CRUK/MRC Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosvelt Drive, Oxford, OX3 7DQ UK
| | - Adrian L. Harris
- Department of Oncology, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS UK
| |
Collapse
|