1
|
Wang Z, Lu J, Liu X, Liu J, Li J. Identification of key exosomes-related genes in hepatitis B virus-related hepatocellular carcinoma. Technol Health Care 2025; 33:1343-1357. [PMID: 40331539 DOI: 10.1177/09287329241296353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
One of the primary risk factors for hepatocellular carcinoma (HCC) is the hepatitis B virus (HBV). Exosomes have a significant impact on the dissemination of HBV-infected HCC. This study aimed to screen HBV exosome-related hub genes in HCC for a better understanding of the HCC pathogenic mechanism. First, multiple HBV-induced HCC datasets were collected from the Gene Expression Omnibus (GEO) database, and the exosome-related gene set was obtained from relevant literature. Nine HBV-related HCC exosome hub genes (HP, C9, APOA1, PON1, TTR, LPA, FCN2, FCN3, and MBL2) were selected through differential analysis and network analysis. An analysis of the receiver operation characteristic (ROC) revealed that these genes had good diagnostic value. These hub genes were primarily enriched in biological processes such as the citrate cycle tca cycle, phenylalanine metabolism, and fatty acid metabolism, according to gene set enrichment analysis (GSEA). Furthermore, this study predicted the miRNA (hsa-miR-590-5p) targeting LPA, as well as 12 lncRNAs (AL121655, SAP30-DT, LINC00472, etc.) targeting hsa-miR-590-5p. Finally, nelarabine, methylprednisolone, and methylprednisolone were predicted to be possible medications that target the hub gene based on the CellMiner database. To sum up, this work was crucial for discovering new biomarkers and comprehending the function of exosome-related genes in the growth of HBV-infected HCC.
Collapse
Affiliation(s)
- Zhuoyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jianfang Lu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Xiangyan Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jingfeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| | - Jianhui Li
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College of Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
2
|
Akki AJ, Nanduri S, Patil SV, Das KK, Parvatikar P. Exploring the microRNA-mitochondrial nexus in hepatocellular carcinoma. Mitochondrion 2025; 84:102045. [PMID: 40286975 DOI: 10.1016/j.mito.2025.102045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
MicroRNAs (miRNAs) are double-edged swords in hepatocellular carcinoma (HCC) that play a dual role in disease progression and suppression. The pivotal role of miRNAs in gene regulation emphasizes their potential to disrupt critical cellular processes, including mitochondrial function. Given the indispensable role of mitochondria in energy production, apoptosis, and metabolic control, all of which are central to HCC progression, understanding the miRNA-mitochondria axis is crucial. MiRNAs emerge as pivotal regulators of mitochondrial function, exerting profound influence over HCC progression. This comprehensive review delves into the multifaceted roles of miRNAs in modulating mitochondrial biogenesis, dynamics, and apoptosis. MiRNA impacts key metabolic pathways, including energy metabolism, fatty acid metabolism, and oxidative stress. The intricate interplay between miRNAs and mitochondrial function extends to the regulation of mitophagy and ferroptosis. By exploring the microRNA-mitochondrial axis, this review offers insights for identifying novel diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Ali Jawad Akki
- Department of Biotechnology, School of Applied Science and Technology, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Shankargouda V Patil
- Department of Biotechnology, School of Applied Science and Technology, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India; Department of Pediatrics, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India
| | - Kusal K Das
- Laboratory of Vascular Physiology & Medicine, Department of Physiology, Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India
| | - Prachi Parvatikar
- Department of Biotechnology, School of Applied Science and Technology, BLDE (Deemed to be University), Vijayapura 586103 Karnataka, India.
| |
Collapse
|
3
|
Zarrella S, Miranda MR, Covelli V, Restivo I, Novi S, Pepe G, Tesoriere L, Rodriquez M, Bertamino A, Campiglia P, Tecce MF, Vestuto V. Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites 2025; 15:221. [PMID: 40278350 PMCID: PMC12029571 DOI: 10.3390/metabo15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Endoplasmic reticulum (ER) stress occurs when ER homeostasis is disrupted, leading to the accumulation of misfolded or unfolded proteins. This condition activates the unfolded protein response (UPR), which aims to restore balance or trigger cell death if homeostasis cannot be achieved. In cancer, ER stress plays a key role due to the heightened metabolic demands of tumor cells. This review explores how metabolomics can provide insights into ER stress-related metabolic alterations and their implications for cancer therapy. Methods: A comprehensive literature review was conducted to analyze recent findings on ER stress, metabolomics, and cancer metabolism. Studies examining metabolic profiling of cancer cells under ER stress conditions were selected, with a focus on identifying potential biomarkers and therapeutic targets. Results: Metabolomic studies highlight significant shifts in lipid metabolism, protein synthesis, and oxidative stress management in response to ER stress. These metabolic alterations are crucial for tumor adaptation and survival. Additionally, targeting ER stress-related metabolic pathways has shown potential in preclinical models, suggesting new therapeutic strategies. Conclusions: Understanding the metabolic impact of ER stress in cancer provides valuable opportunities for drug development. Metabolomics-based approaches may help identify novel biomarkers and therapeutic targets, enhancing the effectiveness of antitumor therapies.
Collapse
Affiliation(s)
- Salvatore Zarrella
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Verdiana Covelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Ignazio Restivo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Sara Novi
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 28, 90123 Palermo, Italy; (I.R.); (L.T.)
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Napoli, Italy; (V.C.); (M.R.)
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Mario Felice Tecce
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (S.Z.); (M.R.M.); (S.N.); (G.P.); (A.B.); (P.C.); (M.F.T.)
| |
Collapse
|
4
|
Bathe OF. Tumor metabolism as a factor affecting diversity in cancer cachexia. Am J Physiol Cell Physiol 2025; 328:C908-C920. [PMID: 39870605 DOI: 10.1152/ajpcell.00677.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes. Importantly, these features often occur independently, with their combined presence exacerbating poor prognoses. Tumor plays a pivotal role in driving these host changes, either by acting as a metabolic parasite or by releasing mediators that disrupt normal tissue function. This review explores the diversity of tumor metabolism. It highlights the potential for tumor-specific metabolic phenotypes to influence systemic effects, including fat redistribution and sarcopenia. Addressing this tumor-host metabolic interplay requires personalized approaches that disrupt tumor metabolism while preserving host health. Promising strategies include targeted pharmacological interventions and anticachexia agents like growth differentiation factor 15 (GDF-15) inhibitors. Nutritional modifications such as ketogenic diets and omega-3 fatty acid supplementation also merit further investigation. In addition to preserving muscle, these therapies will need to be evaluated for their capability to improve survival and quality of life. This review underscores the need for further research into tumor-driven metabolic effects on the host and the development of integrative treatment strategies to address the interconnected challenges of cancer progression and cachexia.
Collapse
Affiliation(s)
- Oliver F Bathe
- Department of Surgery and Oncology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Xu D, Liu B, Wang L. MiR-365-3p inhibits lung cancer proliferation and migration via CPT1A-mediated fatty acid oxidation. Sci Rep 2025; 15:7076. [PMID: 40016582 PMCID: PMC11868381 DOI: 10.1038/s41598-025-91665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
The relationship between abnormal lipid acid metabolism and the progression of lung cancer is increasingly evident. Carnitine palmitoyltransferase 1A (CPT1A), a rate-limiting enzyme in fatty acid oxidation, has been implicated in the advancement of various cancers. However, the role of CPT1A in lung cancer and the regulatory mechanisms of microRNAs on CPT1A-mediated fatty acid oxidation remain largely unknown. In our study, we demonstrate that miR-365-3p inhibits CPT1A expression by targeting its 3'-untranslated region in lung cancer cells. The inhibition of CPT1A by miR-365-3p leads to increased lipid droplet accumulation, diminished ATP production, and a decrease in fatty acid oxidation levels. Furthermore, the disruption of fatty acid oxidation attenuates the ability of the miR-365-3p/CPT1A axis to modulate lung cancer cell proliferation and migration both in vitro and in vivo. Clinical data reveal that CPT1A expression is significantly upregulated while miR-365-3p is markedly downregulated. Additionally, there exists a negative correlation between miR-365-3p and CPT1A expression, and both are predictive of clinical outcome in lung cancer patients. Collectively, our findings shed light on the function and mechanistic pathway of the miR-365-3p/CPT1A axis in lung cancer, which might provide a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Dan Xu
- Beihua University Affiliated Hospital, Jilin, 132013, China
| | - Bohong Liu
- Department of Chest Medicine, Changchun Tumor Hospital, Changchun, 130012, China
| | - Lingling Wang
- Beihua University Affiliated Hospital, Jilin, 132013, China.
- Department of Neurology, Beihua University Affiliated Hospital, No. 12 Jiefang Middle Road, Jilin city, 132013, Jilin Province, China.
| |
Collapse
|
6
|
Rodríguez-Rodríguez R, Baena M, Zagmutt S, Paraiso WK, Reguera AC, Fadó R, Casals N. International Union of Basic and Clinical Pharmacology: Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes. Pharmacol Rev 2025; 77:100051. [PMID: 40106976 DOI: 10.1016/j.pharmr.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel Baena
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Sebastián Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - West Kristian Paraiso
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Ana Cristina Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
7
|
Zhang Y, Yang Z, Liu Y, Pei J, Li R, Yang Y. Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment. Lipids Health Dis 2025; 24:12. [PMID: 39806478 PMCID: PMC11727729 DOI: 10.1186/s12944-024-02426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function. Standard treatments for PC such as surgical resection, chemotherapy, and radiotherapy. However, these therapies often face significant challenges, including biochemical recurrence and drug resistance.Given these limitations, new therapeutic approaches are being developed to target tumor metabolism. Dysregulation of cholesterol biosynthesis and alterations in fatty acids (FAs), such as palmitate, stearate, omega-3, and omega-6, have been observed in pancreatic cancer. These lipids serve as energy sources, signaling molecules, and essential components of cell membranes. Their accumulation fosters an immunosuppressive tumor microenvironment that supports cancer cell proliferation and metastasis.Moreover, lipid metabolism dysregulation within immune cells, particularly T cells, impairs immune surveillance and weakens the body's defenses against cancer. Abnormal lipid metabolism also contributes to drug resistance in PC. Despite these challenges, targeting lipid metabolism may offer a promising therapeutic strategy. By enhancing lipid peroxidation, the induction of ferroptosis-a form of regulated cell death-could impair the survival of PC cells and hinder disease progression.
Collapse
Affiliation(s)
- Yanyan Zhang
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Zhichao Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Yuchen Liu
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Jinjin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, Qinling, Hanzhong, 723001, China
| | - Ruojie Li
- Interventional Therapy Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, P.R. China.
| | - Yanhui Yang
- Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.
| |
Collapse
|
8
|
Liu D, Guo P, Wang Y, Li W. Regulation of adult neurogenesis: the crucial role of astrocytic mitochondria. Front Mol Neurosci 2024; 17:1516119. [PMID: 39649104 PMCID: PMC11621070 DOI: 10.3389/fnmol.2024.1516119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024] Open
Abstract
Neurogenesis has emerged as a promising therapeutic approach for central nervous system disorders. The role of neuronal mitochondria in neurogenesis is well-studied, however, recent evidence underscores the critical role of astrocytic mitochondrial function in regulating neurogenesis and the underlying mechanisms remain incompletely understood. This review highlights the regulatory effects of astrocyte mitochondria on neurogenesis, focusing on metabolic support, calcium homeostasis, and the secretion of neurotrophic factors. The effect of astrocytic mitochondrial dysfunction in the pathophysiology and treatment strategies of Alzheimer's disease and depression is discussed. Greater attention is needed to investigate the mitochondrial autophagy, dynamics, biogenesis, and energy metabolism in neurogenesis. Targeting astrocyte mitochondria presents a potential therapeutic strategy for enhancing neural regeneration.
Collapse
Affiliation(s)
| | | | | | - Weihong Li
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
9
|
Li D, Yuan X, Ma J, Lu T, Zhang J, Liu H, Zhang G, Wang Y, Liu X, Xie Q, Zhou L, Xu M. Morusin, a novel inhibitor of ACLY, induces mitochondrial apoptosis in hepatocellular carcinoma cells through ROS-mediated mitophagy. Biomed Pharmacother 2024; 180:117510. [PMID: 39341077 DOI: 10.1016/j.biopha.2024.117510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVE Morusin (Mor), a prenylated flavonoid isolated from the root bark of Morus alba L., exhibits potent anti-tumour effects; however, the molecular target of Mor is still not entirely clear. This study aimed to elucidate the mechanism of Mor against hepatocellular carcinoma (HCC) and identify potential molecular targets. METHODS Mitochondrial function was assessed by measuring the mitochondrial membrane potential, mitochondrial ultrastructure, oxygen consumption, and ATP levels. Mor-induced mitophagy was confirmed using western blotting, immunofluorescence, and fluorescent probes. Transcriptomics, flow cytometry, western blotting, qRT-PCR and biochemical assays were used to reveal the molecular mechanisms and targets of Mor against HCC. We further validated the interaction between Mor and the target proteins using molecular docking and biolayer interferometry (BLI). The inhibitory effect of Mor in vivo was evaluated using a Hep3B murine xenograft model. RESULTS Mor significantly reduced the ATP citrate lyase (ACLY) expression and inhibited ACLY activity in HCC cells. BLI analysis demonstrated a direct interaction between Mor and the ACLY active domain. Mor-induced ACLY inhibition led to ROS accumulation in HCC cells, which caused mitochondrial damage, triggered PINK1/Parkin-mediated mitophagy, and ultimately induced mitochondrial apoptosis. We further verified that ROS is crucial in the apoptotic action of Mor through experiments regarding an ROS scavenger. Mor also significantly inhibited tumour xenograft growth in vivo. In addition, analysis of human liver cancer clinical samples revealed elevated ACLY levels positively correlated with histologic grade. CONCLUSION Collectively, our findings highlight Mor as a potent bioactive inhibitor of ACLY and a promising candidate for HCC therapy.
Collapse
Affiliation(s)
- Desheng Li
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoqing Yuan
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jianjun Ma
- Department of Oncology, 970 Hospital of the PLA Joint Logistic Support Force, Yantai, Shandong 264002, PR China
| | - Tao Lu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jinjin Zhang
- Medical Research Center, Binzhou Medical University, Yantai 264003, PR China
| | - Huan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Guanqing Zhang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Yue Wang
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaohan Liu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Qiqiang Xie
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Ling Zhou
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| | - Maolei Xu
- The Key Laboratory of Traditional Chinese Medicine Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
10
|
Duan Y, Liu J, Li A, Liu C, Shu G, Yin G. The Role of the CPT Family in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:892. [PMID: 39596847 PMCID: PMC11592116 DOI: 10.3390/biology13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Along with abnormalities in glucose metabolism, disturbances in the balance of lipid catabolism and synthesis have emerged as a new area of cancer metabolism that needs to be studied in depth. Disturbances in lipid metabolic homeostasis, represented by fatty acid oxidation (FAO) imbalance, leading to activation of pro-cancer signals and abnormalities in the expression and activity of related metabolically critical rate-limiting enzymes, have become an important part of metabolic remodeling in cancer. The FAO process is a metabolic pathway that facilitates the breakdown of fatty acids into CO2 and H2O and releases large amounts of energy in the body under aerobic conditions. More and more studies have shown that FAO provides an important energy supply for the development of cancer cells. At the same time, the CPT family, including carnitine palmitoyltransferase 1 (CPT1) and carnitine palmitoyltransferase 2 (CPT2), are key rate-limiting enzymes for FAO that exert a pivotal influence on the genesis and progression of neoplastic growth. Therefore, we look at molecular structural properties of the CPT family, the roles they play in tumorigenesis and development, the target drugs, and the possible regulatory roles of CPTs in energy metabolism reprogramming to help understand the current state of CPT family research and to search for new therapeutic strategies.
Collapse
Affiliation(s)
- Yanxia Duan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Ailin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Chang Liu
- School of Basic Medical Sciences, Central South University, Changsha 410000, China;
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha 410000, China
| |
Collapse
|
11
|
Guo F, Li H, Wang J, Wang J, Zhang J, Kong F, Zhang Z, Zong J. MicroRNAs in Hepatocellular Carcinoma: Insights into Regulatory Mechanisms, Clinical Significance, and Therapeutic Potential. Cancer Manag Res 2024; 16:1491-1507. [PMID: 39450194 PMCID: PMC11499618 DOI: 10.2147/cmar.s477698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transformation (EMT), invasion, metastasis, metabolism, and drug resistance are the main factors affecting the development and treatment of tumors. MiRNAs play crucial roles in almost all major cellular biological processes. Studies have been carried out on miRNAs as biomarkers and therapeutic targets. Their dysregulation contributes to the progression and prognosis of HCC. This review aims to explore the molecular cascades and corresponding phenotypic changes caused by aberrant miRNA expression and their regulatory mechanisms, summarize and analyze novel biomarkers from somatic fluids (plasma/serum/urine), and highlight the latent capacity of miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Fenfen Guo
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Hong Li
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jingjing Wang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jiangfeng Wang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jinling Zhang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Fanfang Kong
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Zemin Zhang
- Departments of Infectious Disease, Qingdao Women and Children’s Hospital, Qingdao, People’s Republic of China
| | - Jinbao Zong
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| |
Collapse
|
12
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Mahboobnia K, Beveridge DJ, Yeoh GC, Kabir TD, Leedman PJ. MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2024; 25:9393. [PMID: 39273339 PMCID: PMC11395074 DOI: 10.3390/ijms25179393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Hepatocellular carcinoma (HCC) presents a significant global health burden, with alarming statistics revealing its rising incidence and high mortality rates. Despite advances in medical care, HCC treatment remains challenging due to late-stage diagnosis, limited effective therapeutic options, tumor heterogeneity, and drug resistance. MicroRNAs (miRNAs) have attracted substantial attention as key regulators of HCC pathogenesis. These small non-coding RNA molecules play pivotal roles in modulating gene expression, implicated in various cellular processes relevant to cancer development. Understanding the intricate network of miRNA-mediated molecular pathways in HCC is essential for unraveling the complex mechanisms underlying hepatocarcinogenesis and developing novel therapeutic approaches. This manuscript aims to provide a comprehensive review of recent experimental and clinical discoveries regarding the complex role of miRNAs in influencing the key hallmarks of HCC, as well as their promising clinical utility as potential therapeutic targets.
Collapse
Affiliation(s)
- Khadijeh Mahboobnia
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Dianne J Beveridge
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - George C Yeoh
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Tasnuva D Kabir
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Peter J Leedman
- Laboratory for Cancer Medicine, Harry Perkins Institute of Medical Research, QEII Medical Centre, Perth, WA 6009, Australia
- Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
14
|
Zhang J, Zhang Z, Wu Z, Wang Y, Zhang Z, Xia L. The switch triggering the invasion process: Lipid metabolism in the metastasis of hepatocellular carcinoma. Chin Med J (Engl) 2024; 137:1271-1284. [PMID: 38738689 PMCID: PMC11191009 DOI: 10.1097/cm9.0000000000003144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 05/14/2024] Open
Abstract
ABSTRACT In humans, the liver is a central metabolic organ with a complex and unique histological microenvironment. Hepatocellular carcinoma (HCC), which is a highly aggressive disease with a poor prognosis, accounts for most cases of primary liver cancer. As an emerging hallmark of cancers, metabolic reprogramming acts as a runaway mechanism that disrupts homeostasis of the affected organs, including the liver. Specifically, rewiring of the liver metabolic microenvironment, including lipid metabolism, is driven by HCC cells, propelling the phenotypes of HCC cells, including dissemination, invasion, and even metastasis in return. The resulting formation of this vicious loop facilitates various malignant behaviors of HCC further. However, few articles have comprehensively summarized lipid reprogramming in HCC metastasis. Here, we have reviewed the general situation of the liver microenvironment and the physiological lipid metabolism in the liver, and highlighted the effects of different aspects of lipid metabolism on HCC metastasis to explore the underlying mechanisms. In addition, we have recapitulated promising therapeutic strategies targeting lipid metabolism and the effects of lipid metabolic reprogramming on the efficacy of HCC systematical therapy, aiming to offer new perspectives for targeted therapy.
Collapse
Affiliation(s)
- Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhicheng Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
15
|
Cheng Y, He J, Zuo B, He Y. Role of lipid metabolism in hepatocellular carcinoma. Discov Oncol 2024; 15:206. [PMID: 38833109 DOI: 10.1007/s12672-024-01069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Hepatocellular carcinoma (HCC), an aggressive malignancy with a dismal prognosis, poses a significant public health challenge. Recent research has highlighted the crucial role of lipid metabolism in HCC development, with enhanced lipid synthesis and uptake contributing to the rapid proliferation and tumorigenesis of cancer cells. Lipids, primarily synthesized and utilized in the liver, play a critical role in the pathological progression of various cancers, particularly HCC. Cancer cells undergo metabolic reprogramming, an essential adaptation to the tumor microenvironment (TME), with fatty acid metabolism emerging as a key player in this process. This review delves into intricate interplay between HCC and lipid metabolism, focusing on four key areas: de novo lipogenesis, fatty acid oxidation, dysregulated lipid metabolism of immune cells in the TME, and therapeutic strategies targeting fatty acid metabolism for HCC treatment.
Collapse
Affiliation(s)
- Yulin Cheng
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jun He
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Zuo
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Cyrus Tang Hematology Center, Soochow University, Suzhou, Jiangsu, 215006, China.
- MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
16
|
Zhao H, Cheng X, Yan L, Mi F, Wang W, Hu Y, Liu X, Fan Y, Min Q, Wang Y, Zhang W, Wu Q, Zhan Q. APC/C-regulated CPT1C promotes tumor progression by upregulating the energy supply and accelerating the G1/S transition. Cell Commun Signal 2024; 22:283. [PMID: 38783346 PMCID: PMC11112774 DOI: 10.1186/s12964-024-01657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In addition to functioning as a precise monitoring mechanism in cell cycle, the anaphase-promoting complex/cyclosome (APC/C) is reported to be involved in regulating multiple metabolic processes by facilitating the ubiquitin-mediated degradation of key enzymes. Fatty acid oxidation is a metabolic pathway utilized by tumor cells that is crucial for malignant progression; however, its association with APC/C remains to be explored. METHODS Cell cycle synchronization, immunoblotting, and propidium iodide staining were performed to investigate the carnitine palmitoyltransferase 1 C (CPT1C) expression manner. Proximity ligation assay and co-immunoprecipitation were performed to detect interactions between CPT1C and APC/C. Flow cytometry, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H-tetrazolium, inner salt (MTS) assays, cell-scratch assays, and transwell assays and xenograft transplantation assays were performed to investigate the role of CPT1C in tumor progression in vitro and in vivo. Immunohistochemistry was performed on tumor tissue microarray to evaluate the expression levels of CPT1C and explore its potential clinical value. RESULTS We identified CPT1C as a novel APC/C substrate. CPT1C protein levels exhibited cell cycle-dependent fluctuations, peaking at the G1/S boundary. Elevated CPT1C accelerated the G1/S transition, facilitating tumor cell proliferation in vitro and in vivo. Furthermore, CPT1C enhanced fatty acid utilization, upregulated ATP levels, and decreased reactive oxygen species levels, thereby favoring cell survival in a harsh metabolic environment. Clinically, high CPT1C expression correlated with poor survival in patients with esophageal squamous cell carcinoma. CONCLUSIONS Overall, our results revealed a novel interplay between fatty acid utilization and cell cycle machinery in tumor cells. Additionally, CPT1C promoted tumor cell proliferation and survival by augmenting cellular ATP levels and preserving redox homeostasis, particularly under metabolic stress. Therefore, CPT1C could be an independent prognostic indicator in esophageal squamous cell carcinoma.
Collapse
Affiliation(s)
- Huihui Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xinxin Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Liping Yan
- Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Fang Mi
- State Key Laboratory of Molecular Oncology, National Cancer center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenqing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuying Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xingyang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yuyan Fan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Peking University International Cancer Institute, Beijing, 100142, China.
- Soochow University Cancer Institute, Suzhou, 215000, China.
| |
Collapse
|
17
|
Azimi Y, Hajibabaei S, Azimi G, Rahimi-Jamnani F, Azizi M. Inhibitory effect of miR-377 on the proliferative and invasive behaviors of prostate cancer cells through the modulation of MYC mRNA via its interaction with BCL-2/Bax, PTEN, and CDK4. Genes Cancer 2024; 15:28-40. [PMID: 38756697 PMCID: PMC11098572 DOI: 10.18632/genesandcancer.236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
The MYC gene is a regulatory and proto-oncogenic gene that is overexpressed in the majority of prostate cancers (PCa). Numerous studies have indicated that aberrant expression of microRNAs is involved in the initiation and progression of prostate cancer. In this investigation, we assessed the impact of miR-377 on MYC through luciferase assay. Real-time PCR was employed to determine whether miR-377 could reduce the levels of MYC mRNA in transfected PCa cell lines (PC-3 and DU145) and change in the mRNA levels of BCL-2/Bax, PTEN, and CDK4 as a consequence of MYC downregulation. Moreover, we analyzed the effects of miR-377 on apoptosis, proliferation, cell cycle, and wound healing. Our findings demonstrate that miR-377 effectively targets MYC mRNA, as confirmed by luciferase assay and Real-time PCR. We observed a significant reduction in BCL-2 and CDK4 expression, along with an increase in Bax and PTEN, in prostate cancer cell lines upon MYC suppression. Additionally, elevated levels of miR-377 in PCa cell lines induced apoptosis, inhibited proliferation and migration, and arrested the cell cycle. Taken together, these results unveil the inhibitory role of miR-377 in MYC function within PCa, thereby suggesting its potential as a therapeutic target for the treatment of this malignancy.
Collapse
Affiliation(s)
- Yasamin Azimi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Hajibabaei
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ghazal Azimi
- Department of Nanotechnology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Masoumeh Azizi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
18
|
Lu F, Yao LP, Gao DD, Alinejad T, Jiang XQ, Wu Q, Zhai QC, Liu M, Zhu SM, Qian MX, Xu LF, Chen CS, Zhang F. MicroRNA-377-3p exacerbates chronic obstructive pulmonary disease through suppressing ZFP36L1 expression and inducing lung fibroblast senescence. Respir Res 2024; 25:67. [PMID: 38317146 PMCID: PMC10840170 DOI: 10.1186/s12931-024-02696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading aging related cause of global mortality. Small airway narrowing is recognized as an early and significant factor for COPD development. Senescent fibroblasts were observed to accumulate in lung of COPD patients and promote COPD progression through aberrant extracellular matrix (ECM) deposition and senescence-associated secretory phenotype (SASP). On the basis of our previous study, we further investigated the the causes for the increased levels of miR-377-3p in the blood of COPD patients, as well as its regulatory function in the pathological progression of COPD. We found that the majority of up-regulated miR-377-3p was localized in lung fibroblasts. Inhibition of miR-377-3p improved chronic smoking-induced COPD in mice. Mechanistically, miR-377-3p promoted senescence of lung fibroblasts, while knockdown of miR-377-3p attenuated bleomycin-induced senescence in lung fibroblasts. We also identified ZFP36L1 as a direct target for miR-377-3p that likely mediated its pro senescence activity in lung fibroblasts. Our data reveal that miR-377-3p is crucial for COPD pathogenesis, and may serve as a potential target for COPD therapy.
Collapse
Affiliation(s)
- Fang Lu
- Department of Respiratory and Critical Care, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China
| | - Li-Peng Yao
- Wenzhou Medical University, Wenzhou, 325035, China
- Ningbo College of Health Sciences, Ningbo, 315000, China
| | - Dan-Dan Gao
- Wenzhou Medical University, Wenzhou, 325035, China
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, Centre of Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325015, China
| | - Xin-Qing Jiang
- Zhejiang Chinese Medical University the 2 nd Clinical Medical College, Hangzhou, 310053, China
| | - Qi Wu
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China
| | - Qiao-Cheng Zhai
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China
| | - Ming Liu
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China
| | - Sheng-Mei Zhu
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China
| | - Mao-Xiang Qian
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China
- Institute of Pediatrics, Department of Hematology and Oncology, Institutes of Biomedical Sciences, National Children's Medical Center, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Li-Feng Xu
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| | - Cheng-Shui Chen
- Department of Respiratory and Critical Care, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, Centre of Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| | - Feng Zhang
- Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, 324000, China.
| |
Collapse
|
19
|
Wang DH, Fujita Y, Dono A, Rodriguez Armendariz AG, Shah M, Putluri N, Pichardo-Rojas PS, Patel CB, Zhu JJ, Huse JT, Parker Kerrigan BC, Lang FF, Esquenazi Y, Ballester LY. The genomic alterations in glioblastoma influence the levels of CSF metabolites. Acta Neuropathol Commun 2024; 12:13. [PMID: 38243318 PMCID: PMC10799404 DOI: 10.1186/s40478-024-01722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/31/2023] [Indexed: 01/21/2024] Open
Abstract
Cerebrospinal fluid (CSF) analysis is underutilized in patients with glioblastoma (GBM), partly due to a lack of studies demonstrating the clinical utility of CSF biomarkers. While some studies show the utility of CSF cell-free DNA analysis, studies analyzing CSF metabolites in patients with glioblastoma are limited. Diffuse gliomas have altered cellular metabolism. For example, mutations in isocitrate dehydrogenase enzymes (e.g., IDH1 and IDH2) are common in diffuse gliomas and lead to increased levels of D-2-hydroxyglutarate in CSF. However, there is a poor understanding of changes CSF metabolites in GBM patients. In this study, we performed targeted metabolomic analysis of CSF from n = 31 patients with GBM and n = 13 individuals with non-neoplastic conditions (controls), by mass spectrometry. Hierarchical clustering and sparse partial least square-discriminant analysis (sPLS-DA) revealed differences in CSF metabolites between GBM and control CSF, including metabolites associated with fatty acid oxidation and the gut microbiome (i.e., carnitine, 2-methylbutyrylcarnitine, shikimate, aminobutanal, uridine, N-acetylputrescine, and farnesyl diphosphate). In addition, we identified differences in CSF metabolites in GBM patients based on the presence/absence of TP53 or PTEN mutations, consistent with the idea that different mutations have different effects on tumor metabolism. In summary, our results increase the understanding of CSF metabolites in patients with diffuse gliomas and highlight several metabolites that could be informative biomarkers in patients with GBM.
Collapse
Affiliation(s)
- Daniel H Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W. Holcombe Blvd., Suite 910, Houston, TX, 77030, USA
| | - Yoko Fujita
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6400 Fannin St., Suite 2800, Houston, TX, 77030, USA
| | - Antonio Dono
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6400 Fannin St., Suite 2800, Houston, TX, 77030, USA
| | - Ana G Rodriguez Armendariz
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Av. Ignacio Morones Prieto 3000, Sertoma, Monterrey, N.L, 64710, Mexico
| | - Mauli Shah
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W. Holcombe Blvd., Suite 910, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Advanced Technology Core, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Pavel S Pichardo-Rojas
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6400 Fannin St., Suite 2800, Houston, TX, 77030, USA
| | - Chirag B Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 1002, BSRB S5.8116b, Houston, TX, 77030, USA
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6400 Fannin St., Suite 2800, Houston, TX, 77030, USA
- Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA
| | - Jason T Huse
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W. Holcombe Blvd., Suite 910, Houston, TX, 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Brittany C Parker Kerrigan
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd., Room FC7.2000, Unit 442, Houston, TX, 77030, USA
| | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd., Room FC7.2000, Unit 442, Houston, TX, 77030, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, 6400 Fannin St., Suite 2800, Houston, TX, 77030, USA
- Memorial Hermann Hospital-Texas Medical Center, Houston, TX, 77030, USA
- Center for Precision Health, McGovern Medical School, The University of Texas Health Science Center at Houston, 7000 Fannin St., Suite 600, Houston, TX, 77030, USA
| | - Leomar Y Ballester
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W. Holcombe Blvd., Suite 910, Houston, TX, 77030, USA.
- Department of Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
- Neuropathology and Molecular Genetic Pathology, Department of Pathology, Department of Translational Molecular Pathology, 1515 Holcombe Blvd, Unit 85, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Song Y, Li X, Wu H, Xu Y, Jin D, Ping S, Jia J, Han C. RNF183 Promotes Colon Cancer Cell Stemness through Fatty Acid Oxidation. Nutr Cancer 2024; 76:215-225. [PMID: 38044546 DOI: 10.1080/01635581.2023.2286700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Colon cancer (COAD) is a prevalent gastrointestinal tumor, composed of a few cancer stem cells (CSCs). High expression of RNF183 drives colorectal cancer metastasis, but its role in COAD cell stemness is still unclear. Bioinformatics analyzed expression and enriched pathway of RNF183 in COAD tissue. IHC analyzed RNF183 protein expression in tumor tissue. CD133 + CD44+ CSCs were sorted by flow cytometry, and RNF183 expression in COAD cells or CSCs was detected by qPCR, western blot and immunofluorescence. CCK-8 assay assessed cell viability, and sphere formation assay tested cell sphere-forming ability. Western blot measured protein expression of stem cell markers. qPCR assayed expression of fatty acid oxidation genes. The ability of fatty acid oxidation was analyzed by detecting fatty acid metabolism. RNF183 was highly expressed in COAD and CD133 + CD44+ CSCs, and was enriched in fatty acid metabolism pathway. RNF183 expression was positively correlated with enzymes involved in fatty acid oxidation. RNF183 could promote COAD stemness and fatty acid oxidation. Rescue experiments showed that Orlistat (a fatty acid oxidation inhibitor) reversed stimulative impact of RNF183 overexpression on COAD stemness. RNF183 promoted COAD stemness by affecting fatty acid oxidation, which may be a new therapeutic target for inhibiting COAD development.
Collapse
Affiliation(s)
- Yingming Song
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaolin Li
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, China
| | - Huiping Wu
- Department of Medical Oncology, Elderly Nursing Home YingKang, Changzhi, Shanxi, China
| | - Yanjun Xu
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Dayi Jin
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, China
| | - Shimin Ping
- Department of Medical Oncology, Elderly Nursing Home YingKang, Changzhi, Shanxi, China
| | - Junling Jia
- Department of Medical Oncology, Elderly Nursing Home YingKang, Changzhi, Shanxi, China
| | - Chao Han
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
21
|
Wang J, Jin X. Analysis of the impact of fatty acid metabolism on immunotherapy for hepatocellular carcinoma. Ann Hepatol 2023; 28:101148. [PMID: 37643716 DOI: 10.1016/j.aohep.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatocellular carcinoma (HCC), a malignancy with a very dismal prognosis, has drawn a lot of attention, particularly in East Asia, where morbidity and mortality are higher. Although new information about the role of fatty acids (FAs) in HCC is constantly being discovered, it is still vital to investigate how FA metabolism affects the prognosis, immune microenvironment, and responsiveness of HCC to immunotherapy as a whole. MATERIALS AND METHODS To determine the significance of FA metabolism in HCC immunotherapy, we first evaluated HCC samples from the single-cell dataset GSE151530. The TCGA-LIHC cohort and GSE140901 were further studied to identify the impact of FA metabolism on prognosis, immune microenvironment, drug sensitivity, and immunotherapy response by developing a fatty acid prediction index (FPI). The heterogeneity and similarity of the involvement of FA metabolism in pan-cancer is also investigated. RESULTS Combining single-cell and bulk analyses, we confirmed that FA metabolism regulates tumor malignancy, prognosis, immune microenvironment, drug sensitivity, and immunotherapy response in patients with HCC. Moreover, it can have a considerable impact on the physiological activities of hepatocellular cancer. In addition, we demonstrate that FA metabolism has a comparable or same role in many malignancies. CONCLUSIONS Our investigation shows the crucial regulatory role of FA metabolism in HCC and suggests a potential therapeutic method for HCC patients, which may improve their survival.
Collapse
Affiliation(s)
- Jinhuan Wang
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xinmin Jin
- Qingdao University Medical College, Qingdao 266000, China.
| |
Collapse
|
22
|
Li J, Bao H, Huang Z, Liang Z, Wang M, Lin N, Ni C, Xu Y. Little things with significant impact: miRNAs in hepatocellular carcinoma. Front Oncol 2023; 13:1191070. [PMID: 37274242 PMCID: PMC10235484 DOI: 10.3389/fonc.2023.1191070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has developed into one of the most lethal, aggressive, and malignant cancers worldwide. Although HCC treatment has improved in recent years, the incidence and lethality of HCC continue to increase yearly. Therefore, an in-depth study of the pathogenesis of HCC and the search for more reliable therapeutic targets are crucial to improving the survival quality of HCC patients. Currently, miRNAs have become one of the hotspots in life science research, which are widely present in living organisms and are non-coding RNAs involved in regulating gene expression. MiRNAs exert their biological roles by suppressing the expression of downstream genes and are engaged in various HCC-related processes, including proliferation, apoptosis, invasion, and metastasis. In addition, the expression status of miRNAs is related to the drug resistance mechanism of HCC, which has important implications for the systemic treatment of HCC. This paper reviews the regulatory role of miRNAs in the pathogenesis of HCC and the clinical applications of miRNAs in HCC in recent years.
Collapse
Affiliation(s)
- Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Mei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ning Lin
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
| | - Chunjie Ni
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
23
|
Guo Z, Liang J. Role of ubiquitin regulatory X domain‑containing protein 3B in the development of hepatocellular carcinoma (Review). Oncol Rep 2023; 49:57. [PMID: 36799187 PMCID: PMC9942258 DOI: 10.3892/or.2023.8494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
The majority of new cases and fatalities from hepatocellular carcinoma (HCC) occur in China; however, the overall morbidity and mortality rates are decreasing. A major risk factor due to the evolving epidemiology is improper lipid metabolism. Although investigations on aberrant lipid metabolism are numerous, there are only a limited number of studies available on proteasomal degradation processes. The degradation process is mainly involved in endoplasmic reticulum stabilization, the balance of lipid metabolism, and physiological functions of Golgi apparatus, endoplasmic reticulum, lysosomes and other organelles, however, this process has been little studied in the development of tumorigenesis. In order to provide some theoretical support for future research on ubiquitin regulatory X domain‑containing protein 3B (UBXN3B), the present review focuses on the role of UBXN3B, which is involved in the stabilization of the endoplasmic reticulum and the maintenance of lipid homeostasis, as well as in the promotion and development of non‑alcoholic fatty liver disease and HCC.
Collapse
Affiliation(s)
- Ziwei Guo
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Jun Liang
- Department of Medical Oncology, Peking University International Hospital, Beijing 102206, P.R. China,Correspondence to: Professor Jun Liang, Department of Medical Oncology, Peking University International Hospital, Life Park Road, Life Science Park of Zhong Guancun Chang Ping, Beijing 102206, P.R. China, E-mail:
| |
Collapse
|
24
|
Fadó R, Zagmutt S, Herrero L, Muley H, Rodríguez-Rodríguez R, Bi H, Serra D, Casals N. To be or not to be a fat burner, that is the question for cpt1c in cancer cells. Cell Death Dis 2023; 14:57. [PMID: 36693836 PMCID: PMC9873675 DOI: 10.1038/s41419-023-05599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
There is an urgent need to identify reliable genetic biomarkers for accurate diagnosis, prognosis, and treatment of different tumor types. Described as a prognostic marker for many tumors is the neuronal protein carnitine palmitoyltransferase 1 C (CPT1C). Several studies report that CPT1C is involved in cancer cell adaptation to nutrient depletion and hypoxia. However, the molecular role played by CPT1C in cancer cells is controversial. Most published studies assume that, like canonical CPT1 isoforms, CPT1C is a mediator of fatty acid transport to mitochondria for beta-oxidation, despite the fact that CPT1C has inefficient catalytic activity and is located in the endoplasmic reticulum. In this review, we collate existing evidence on CPT1C in neurons, showing that CPT1C is a sensor of nutrients that interacts with and regulates other proteins involved in lipid metabolism and transport, lysosome motility, and the secretory pathway. We argue, therefore, that CPT1C expression in cancer cells is not a direct regulator of fat burn, but rather is a regulator of lipid metabolic reprograming and cell adaptation to environmental stressors. We also review the clinical relevance of CPT1C as a prognostic indicator and its contribution to tumor growth, cancer invasiveness, and cell senescence. This new and integrated vision of CPT1C function can help better understand the metabolic plasticity of cancer cells and improve the design of therapeutic strategies.
Collapse
Affiliation(s)
- Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Cerdanyola del Vallès, Spain
| | - Sebastian Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, E-08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Helena Muley
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Huichang Bi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, E-08028, Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195, Sant Cugat del Vallès, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
25
|
Muley H, Valencia K, Casas J, Moreno B, Botella L, Lecanda F, Fadó R, Casals N. Cpt1c Downregulation Causes Plasma Membrane Remodelling and Anthracycline Resistance in Breast Cancer. Int J Mol Sci 2023; 24:ijms24020946. [PMID: 36674468 PMCID: PMC9864098 DOI: 10.3390/ijms24020946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Breast cancer (BC) is the most common malignancy in women worldwide. While the main systemic treatment option is anthracycline-containing chemotherapy, chemoresistance continues to be an obstacle to patient survival. Carnitine palmitoyltransferase 1C (CPT1C) has been described as a poor-prognosis marker for several tumour types, as it favours tumour growth and hinders cells from entering senescence. At the molecular level, CPT1C has been associated with lipid metabolism regulation and important lipidome changes. Since plasma membrane (PM) rigidity has been associated with reduced drug uptake, we explored whether CPT1C expression could be involved in PM remodelling and drug chemoresistance. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) lipid analysis of PM-enriched fractions of MDA-MB-231 BC cells showed that CPT1C silencing increased PM phospholipid saturation, suggesting a rise in PM rigidity. Moreover, CPT1C silencing increased cell survival against doxorubicin (DOX) treatment in different BC cells due to reduced drug uptake. These findings, further complemented by ROC plotter analysis correlating lower CPT1C expression with a lower pathological complete response to anthracyclines in patients with more aggressive types of BC, suggest CPT1C as a novel predictive biomarker for BC chemotherapy.
Collapse
Affiliation(s)
- Helena Muley
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Karmele Valencia
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Josefina Casas
- Research Unit on Bioactive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Spanish National Research Council (CSIC), 08034 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Bea Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
| | - Luis Botella
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Fernando Lecanda
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, 31008 Pamplona, Spain
| | - Rut Fadó
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
- Correspondence: (R.F.); (N.C.); Tel.: +34-935042000
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.F.); (N.C.); Tel.: +34-935042000
| |
Collapse
|
26
|
Chen P, Tian J, Zhou Y, Chen Y, Zhang H, Jiao T, Huang M, Zhang H, Huang P, Yu AM, Gonzalez FJ, Bi H. Metabolic Flux Analysis Reveals the Roles of Stearate and Oleate on CPT1C-mediated Tumor Cell Senescence. Int J Biol Sci 2023; 19:2067-2080. [PMID: 37151873 PMCID: PMC10158022 DOI: 10.7150/ijbs.80822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/16/2023] [Indexed: 05/09/2023] Open
Abstract
Cellular senescence is a state of proliferative arrest, and the development of carcinoma can be suppressed by conferring tumor cell senescence. Recently, we found that carnitine palmitoyltransferase 1C (CPT1C) controls tumor cell proliferation and senescence via regulating lipid metabolism and mitochondrial function. Here, 13C-metabolic flux analysis (13C-MFA) was performed and the results revealed that CPT1C knockdown in MDA-MB-231 cells significantly induced cellular senescence accompanied by altered fatty acid metabolism. Strikingly, stearate synthesis was decreased while oleate was increased. Furthermore, stearate significantly inhibited proliferation while oleate reversed the senescent phenotype induced by silencing CPT1C in MDA-MB-231 cells as well as PANC-1 cells. A939572, an inhibitor of stearoyl-Coenzyme A desaturase 1, had the same effect as stearate to inhibit cellular proliferation. These results demonstrated that stearate and oleate are involved in CPT1C-mediated tumor cellular senescence, and the regulation of stearate/oleate rate via inhibition of SCD-1 could be an additional strategy with depletion of CPT1C for cancer therapy.
Collapse
Affiliation(s)
- Panpan Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Department of Pharmacy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Jingyu Tian
- Guangdong University of Technology, Guangzhou 510006, China
- Sun Yat-Sen University Cancer Center, Guangzhou 510275, China
| | - Yanying Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Huizhen Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingying Jiao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Zhang
- Guangdong University of Technology, Guangzhou 510006, China
- Sun Yat-Sen University Cancer Center, Guangzhou 510275, China
- ✉ Corresponding authors: Dr. Huichang Bi and Dr. Hui Zhang, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai Nan Rd, Baiyun District, Guangzhou 510515, P. R. China. ; Tel: +86-20-61648530
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, Guangzhou 510275, China
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- ✉ Corresponding authors: Dr. Huichang Bi and Dr. Hui Zhang, School of Pharmaceutical Sciences, Southern Medical University, 1023 Shatai Nan Rd, Baiyun District, Guangzhou 510515, P. R. China. ; Tel: +86-20-61648530
| |
Collapse
|
27
|
Guo Z, Liang J. Characterization of a lipid droplet and endoplasmic reticulum stress related gene risk signature to evaluate the clinical and biological value in hepatocellular carcinoma. Lipids Health Dis 2022; 21:146. [PMID: 36581927 PMCID: PMC9798721 DOI: 10.1186/s12944-022-01759-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Lipid metabolism and endoplasmic reticulum (ER) stress play an important role in the progression and metastasis of hepatocellular carcinoma (HCC). We aimed to establish lipid droplet (LD)-associated and ER stress-related gene risk signature as prognostic indicators. MATERIALS AND METHODS Literature searches for LD-associated proteins was screened and validated in The Cancer Genome Atlas (TCGA) and International Cancer Genome Collaboratory (ICGC) databases. A total of 371 samples were enrolled from the TCGA RNA-seq dataset (training cohort) and 240 samples from IGGC RNA-seq dataset (validation cohort). A 10-gene risk signature was established by the last absolute shrinkage and selection operator (LASSO) regression analysis. The prognostic value of the risk signature was evaluated by Cox regression, Kaplan-Meier and ROC Curve analyses. Biological features associated with LD and ER stress-related factors were explored by functional analysis and in vitro experiment. RESULTS Based on the medical literatures, 124 lipid droplet-associated proteins were retrieved, and three genes failed to establish a valid prognostic model. ER stress was considered as an important component by functional analysis. A 10-gene risk signature compared the clinicopathology characteristics, immunosuppressive events and a nomogram in HCC patients. CONCLUSION LD-associated and ER stress-related gene risk signatures highlighted poor prognosis for clinicopathological features, positively correlate with macrophages and T cell immunoglobulin and mucin-3 (TIM-3) expression in the tumor microenvironment, and might act as independent prognostic factors.
Collapse
Affiliation(s)
- Ziwei Guo
- grid.449412.ePeking University International Hospital, Beijing, China ,grid.412474.00000 0001 0027 0586Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Liang
- grid.449412.ePeking University International Hospital, Beijing, China ,grid.412474.00000 0001 0027 0586Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
28
|
Yin H, Shan Y, Xia T, Ji Y, Yuan L, You Y, You B. Emerging Roles of Lipophagy in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14184526. [PMID: 36139685 PMCID: PMC9496701 DOI: 10.3390/cancers14184526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Metastasis is the main cause of death in patients with malignant tumors worldwide. Mounting evidence suggests lipid droplet metabolism is involved in the process of metastasis. As a mechanism to selectively degrade lipid droplets, the current research on lipophagy and tumor metastasis is quite limited. This review summarizes the crosstalk among lipophagy, tumor lipid metabolism and cancer metastasis, which will provide a new reference for the development of effective targeted drugs. Abstract Obesity is a prominent risk factor for certain types of tumor progression. Adipocytes within tumor stroma contribute to reshaping tumor microenvironment (TME) and the metabolism and metastasis of tumors through the production of cytokines and adipokines. However, the crosstalk between adipocytes and tumor cells remains a major gap in this field. Known as a subtype of selective autophagy, lipophagy is thought to contribute to lipid metabolism by breaking down intracellular lipid droplets (LDs) and generating free fatty acids (FAs). The metastatic potential of cancer cells closely correlates with the lipid degradation mechanisms, which are required for energy generation, signal transduction, and biosynthesis of membranes. Here, we discuss the recent advance in the understanding of lipophagy with tumor lipid metabolism and review current studies on the roles of lipoghagy in the metastasis of certain human malignancies. Additionally, the novel candidate drugs targeting lipophagy are integrated for effective treatment strategies.
Collapse
Affiliation(s)
- Haimeng Yin
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ying Shan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
| | - Tian Xia
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
| | - Yan Ji
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Ling Yuan
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
| | - Yiwen You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Correspondence: (Y.Y.); (B.Y.)
| | - Bo You
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Medical School, Nantong University, Qixiu Road 19, Nantong 226001, China
- Department of Otorhinolaryngology Head and Neck surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, China
- Correspondence: (Y.Y.); (B.Y.)
| |
Collapse
|
29
|
Zhu XR, Zhu JQ, Chen YF, Liu YY, Lu JJ, Sun J, Peng SQ, Chen MB, Du YP. Bioinformatics analysis and experimental verification of the prognostic and biological significance mediated by fatty acid metabolism related genes for hepatocellular carcinoma. Front Oncol 2022; 12:972744. [PMID: 35982956 PMCID: PMC9378871 DOI: 10.3389/fonc.2022.972744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background Liver cancer is among the leading causes of death related to cancer around the world. The most frequent type of human liver cancer is hepatocellular carcinoma (HCC). Fatty acid (FA) metabolism is an emerging hallmark that plays a promoting role in numerous malignancies. This study aimed to discover a FA metabolism-related risk signature and formulate a better model for HCC patients’ prognosis prediction. Methods We collected mRNA expression data and clinical parameters of patients with HCC using the TCGA databases, and the differential FA metabolism-related genes were explored. To create a risk prognostic model, we carried out the consensus clustering as well as univariate and multivariate Cox regression analyses. 16 genes were used to establish a prognostic model, which was then validated in the ICGC dataset. The accuracy of the model was performed using receiver operating characteristic (ROC) analyses, decision curve analysis (DCA) and nomogram. The immune cell infiltration level of risk genes was evaluated with single-sample GSEA (ssGSEA) algorithm. To reflect the response to immunotherapy, immunophenoscore (IPS) was obtained from TCGA-LIHC. Then, the expression of the candidate risk genes (p < 0.05) was validated by qRT-PCR, Western blotting and single-cell transcriptomics. Cellular function assays were performed to revealed the biological function of HAVCR1. Results According to the TCGA-LIHC cohort analysis, the majority of the FA metabolism-related genes were expressed differentially in the HCC and normal tissues. The prognosis of patients with high-risk scores was observed to be worse. Multivariate COX regression analysis confirmed that the model can be employed as an independent prognosis factor for HCC patients. Furthermore, ssGSEA analysis revealed a link between the model and the levels of immune cell infiltration. Our model scoring mechanism also provides a high predictive value in HCC patients receiving anti-PDL1 immunotherapy. One of the FA metabolism-related genes, HAVCR1, displays a significant differential expression between normal and HCC cell lines. Hepatocellular carcinoma cells (Huh7, and HepG2) proliferation, motility, and invasion were all remarkably inhibited by HAVCR1 siRNA. Conclusion Our study identified a novel FA metabolism-related prognostic model, revealing a better potential treatment and prevention strategy for HCC.
Collapse
Affiliation(s)
- Xiao-Ren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Department of Medical Oncology, Affiliated Kunshan Hospital of Jiangsu University, Medical School of Jiangsu University, Kunshan, China
| | - Jia-Qi Zhu
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Yu-Fei Chen
- Department of Hepatology, Infectious Diseases Hospital Affiliated with Soochow University, Suzhou, China
| | - Yuan-Yuan Liu
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jing-Jing Lu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Jun Sun
- Department of Medical Oncology, Affiliated Kunshan Hospital of Jiangsu University, Medical School of Jiangsu University, Kunshan, China
| | - Shi-Qing Peng
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- Department of Medical Oncology, Affiliated Kunshan Hospital of Jiangsu University, Medical School of Jiangsu University, Kunshan, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- *Correspondence: Min-Bin Chen, ; Yi-Ping Du,
| | - Yi-Ping Du
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
- *Correspondence: Min-Bin Chen, ; Yi-Ping Du,
| |
Collapse
|
30
|
Zhang C, Zhao Y, Yu M, Qin J, Ye B, Wang Q. Mitochondrial Dysfunction and Chronic Liver Disease. Curr Issues Mol Biol 2022; 44:3156-3165. [PMID: 35877442 PMCID: PMC9319137 DOI: 10.3390/cimb44070218] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are generally considered the powerhouse of the cell, a small subcellular organelle that produces most of the cellular energy in the form of adenosine triphosphate (ATP). In addition, mitochondria are involved in various biological functions, such as biosynthesis, lipid metabolism, oxidative phosphorylation, cell signal transduction, and apoptosis. Mitochondrial dysfunction is manifested in different aspects, like increased mitochondrial reactive oxygen species (ROS), mitochondrial DNA (mtDNA) damage, adenosine triphosphate (ATP) synthesis disorder, abnormal mitophagy, as well as changes in mitochondrial morphology and structure. Mitochondrial dysfunction is related to the occurrence and development of various chronic liver diseases, including hepatocellular carcinoma (HCC), viral hepatitis, drug-induced liver injury (DILI), alcoholic fatty liver (AFL), and non-alcoholic fatty liver (NAFL). In this review, we summarize and discuss the role and mechanisms of mitochondrial dysfunction in chronic liver disease, focusing on and discussing some of the latest studies on mitochondria and chronic liver disease.
Collapse
Affiliation(s)
- Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yabin Zhao
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengli Yu
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jianru Qin
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Bingyu Ye
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| | - Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China; (C.Z.); (Y.Z.); (M.Y.); (J.Q.)
- Henan International Joint Laboratory of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
- Institute of Biomedical Science, Henan Normal University, Xinxiang 453007, China
- Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Correspondence: (B.Y.); (Q.W.)
| |
Collapse
|