1
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
2
|
Rotta G, Prodi E, Seehusen F, Bocci M, Prisco F, Gilardoni E, Comacchio C, Halin C, Puca E, Neri D, Dakhel Plaza S. Combinatorial treatment with upadacitinib abrogates systemic toxicity of a tumor-targeted IL-2 fusion protein. J Immunother Cancer 2025; 13:e010831. [PMID: 40350206 PMCID: PMC12067867 DOI: 10.1136/jitc-2024-010831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/08/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND The administration of recombinant interleukin 2 (IL-2) in oncology is frequently hampered by dose-limiting toxicities, including potentially lethal vascular leak syndrome. Antibody-IL-2 fusion proteins capable of preferential tumor localization have shown encouraging signs of activity in clinical trials; however, they typically cause side effects shortly after intravenous administration, which may limit escalation to curative doses. There is an urgent need to engineer IL-2 products with "activity-on-demand" able to mask on-target off-tumor IL-2 activity without compromising therapeutic efficacy. METHODS To design IL-2 biopharmaceuticals with "activity-on-demand", which would be non-toxic on administration but regain activity at the tumor site, we explored the therapeutic potential of the co-administration of signaling inhibitors with matched pharmacokinetic properties. In this work, we used the tumor-homing F8-IL2 fusion protein, specific to a splice variant of fibronectin, and masked off-tumor toxicity by co-administration of upadacitinib, which rapidly clears from circulation. Vascular leak syndrome was monitored by histopathological analysis, the extent of peripheral edema, and cytokine levels. Immune profiling of the tumors and secondary lymphoid organs was performed by flow cytometry. RESULTS In immunocompetent tumor-bearing mice, the combinatorial treatment significantly improved tolerability without any detectable loss of therapeutic activity, protecting the mice from body weight loss, uncontrolled systemic cytokine release, and severe vascular leak syndrome manifestations, including peripheral edema. F8-IL2 efficiently controlled tumor growth and retained its immunological activity within the neoplastic mass, as evidenced by the massive natural killer and cytotoxic T-cell infiltrates. CONCLUSIONS This study suggests that combinatorial treatments enable the administration of potentially curative doses of targeted IL-2 products while sparing healthy organs from life-threatening toxicities.
Collapse
Affiliation(s)
- Giulia Rotta
- Philochem AG, Otelfingen, Switzerland
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Eleonora Prodi
- Philochem AG, Otelfingen, Switzerland
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Matilde Bocci
- Philochem AG, Otelfingen, Switzerland
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesco Prisco
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | | | - Claudia Comacchio
- Philochem AG, Otelfingen, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Emanuele Puca
- Philochem AG, Otelfingen, Switzerland
- Philogen SpA, Siena, Italy
| | - Dario Neri
- Philochem AG, Otelfingen, Switzerland
- Philogen SpA, Siena, Italy
| | | |
Collapse
|
3
|
Guo P, Zhu B, Bai T, Guo X, Shi D, Jiang C, Kong J, Huang Q, Shi J, Shao D. Nanomaterial-Interleukin Combination for Boosting NK Cell-Based Tumor Immunotherapy. ACS Biomater Sci Eng 2025. [PMID: 40340300 DOI: 10.1021/acsbiomaterials.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The use of natural killer (NK) cell-based immunotherapy has been extensively explored in clinical trials for multiple types of tumors and has surfaced as a promising approach in tumor immunotherapy. Interleukins (ILs), a vital class of cytokines, play a crucial role in regulating several functions of NK cells, thereby becoming a focal point in the advancement of NK cell-based therapies. Nonetheless, the use of ILs as single agents is significantly constrained by their short half-life, limited efficacy, and adverse reactions. Currently, nanomaterials are being progressively employed in the delivery of ILs to enhance NK cell-based immunotherapy. However, there is currently a lack of comprehensive reviews summarizing the design of NK-cell-targeted nanomaterials and related systems for delivery of ILs. Furthermore, certain nanomaterials, either alone or in conjunction with other therapeutics, can also promote the secretion of ILs, representing a promising avenue for further exploration. Accordingly, this review begins by outlining various types of ILs and subsequently discusses the advancements in applying nanomaterials for IL delivery. It also examines the potential of nanomaterials to enhance IL secretion from other immune cells, thereby influencing the NK cell functionality. Lastly, this review addresses the challenges associated with using nanomaterials in these contexts and offers perspectives for future research. This study aims to provide valuable insights into the development of NK cell immunotherapy and innovative nanomaterial-based drug delivery systems.
Collapse
Affiliation(s)
- Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bobo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ting Bai
- School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Xiaojia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dingyu Shi
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qingsheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South Ninth Road, Nanshan District, Shenzhen City, 518063, P. R. China
| |
Collapse
|
4
|
Mushtaq MU, Abdelhakim H, Selby L, Shahzad M, Abhyankar SH, McGuirk JP, Doolittle GC. Reduced dose fludarabine and cyclophosphamide lymphodepletion before tumor-infiltrating lymphocyte therapy in melanoma. Future Oncol 2025:1-7. [PMID: 40343719 DOI: 10.1080/14796694.2025.2498842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/24/2025] [Indexed: 05/11/2025] Open
Abstract
CLINICAL TRIAL REGISTRATION NCT06151847.
Collapse
Affiliation(s)
- Muhammad Umair Mushtaq
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Haitham Abdelhakim
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Luke Selby
- Division of Colorectal and Oncologic Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Moazzam Shahzad
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sunil H Abhyankar
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Joseph P McGuirk
- Division of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gary C Doolittle
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
5
|
Bai L, Liu X, Yuan Z, Xu G, Li X, Wan Z, Zhu M, Liang X, Li P, Lan Q, Yu H, Tang G, Huang M, Peng S, Lin J, Wang X, Luo Y, Wei G. Activation of IL-2/IL-2R pathway by Hedyotis diffusa polysaccharide improves immunotherapy in colorectal cancer. Int J Biol Macromol 2025; 306:141013. [PMID: 39954887 DOI: 10.1016/j.ijbiomac.2025.141013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Colorectal cancer (CRC) is a prevalent and highly malignant tumor with a limited response to immune checkpoint inhibitor-based immunotherapy. There is an urgent need for novel immunomodulatory agents to enhance the immunotherapeutic response in CRC. Hedyotis diffusa, known for its immunomodulatory properties, has long been utilized as an adjunct in cancer treatment, positioning it as a potential source for discovering new tumor immunomodulators. In this study, we identified a polysaccharide derived from Hedyotis diffusa (HDP), comprising six monosaccharides: rhamnose, arabinose, galactose, glucose, xylose, and mannose. When combined with PD-1 and CTLA-4 inhibitors, HDP can boost systemic immunity in mice to enhance the effectiveness of immune checkpoint inhibitors in CRC therapy. HDP significantly increases the infiltration of CD4+ and CD8+ T cells into tumor microenvironment and upregulates the expression of key effector molecules derived from cytotoxic T cells. Mechanistic studies reveal that HDP activates the IL-2/IL-2R axis by upregulating IL-2 production and the expression of IL-2 receptor subunits, thereby promoting T cell proliferation. Collectively, this research introduces an innovative strategy to improve the efficacy of tumor immunotherapy by harnessing the immunomodulatory potential of polysaccharides. It also directs a roadmap for developing HDP as a promising immunomodulator for CRC treatment.
Collapse
Affiliation(s)
- Liangliang Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Ze Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Gaopo Xu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xuan Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Zhongxian Wan
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, China
| | - Mingxuan Zhu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xiaoxia Liang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Peisi Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Qiqian Lan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Huichuan Yu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Guannan Tang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Mingzhe Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Shaoyong Peng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Jinxing Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Yanxin Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| | - Gang Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
6
|
Burga RA, Aksoy BA, Ao Z, Tchaicha JH, Sethi DK, Villasmil Ocando A, Kulkarni GS, Lajoie S, Pedro KD, Tremblay JR, Langley M, Primack B, Young VA, Ross T, Khattar M, Sun D, Li DJ, Subramanian S, Ols M, Ter Meulen J. IL-2-independent expansion, persistence, and antitumor activity in TIL expressing regulatable membrane-bound IL-15. Mol Ther 2025:S1525-0016(25)00310-7. [PMID: 40285351 DOI: 10.1016/j.ymthe.2025.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/07/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Adoptive cell therapy using tumor-infiltrating lymphocytes (TIL) has demonstrated great potential for patients with treatment-refractory metastatic melanoma. However, the need for interleukin-2 (IL-2) co-administration during TIL cell therapy limits patient eligibility and restricts treatment to intensive care units due to the risk of severe side effects. Instead, engineering TIL with membrane-bound interleukin-15 (mbIL15) has the potential to promote TIL expansion, antitumor activity, and persistence of CD8+ T cells, without the use of IL-2. cytoTIL15 cells express mbIL15 fused to a drug-responsive domain (DRD) that is regulated by the Food and Drug Administration-approved small-molecule drug acetazolamide (ACZ). As such, cytoTIL15 cells are manufactured with ACZ instead of IL-2, in the presence of engineered feeder cells. The cytoTIL15 cell product exhibits ACZ dose-dependent expansion and persistence in vitro and in vivo and potent tumor-killing activity in human melanoma models in the absence of IL-2. In patient-derived xenograft (PDX) tumors, spatial profiling revealed infiltrating cytoTIL15 cells to be highly cytotoxic and less exhausted than non-engineered TIL. This novel platform creates a powerful, IL-2-free TIL cell therapy with a potentially improved tolerability and safety profile, while allowing individualized pharmacologic regulation of the TIL product.
Collapse
Affiliation(s)
- Rachel A Burga
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA.
| | | | - Zheng Ao
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Dhruv K Sethi
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Gauri S Kulkarni
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Scott Lajoie
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Kyle D Pedro
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Meghan Langley
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Benjamin Primack
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Violet A Young
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Theresa Ross
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Mithun Khattar
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Dexue Sun
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Dan Jun Li
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | | | - Michelle Ols
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| | - Jan Ter Meulen
- Research and Development, Obsidian Therapeutics, Cambridge, MA, USA
| |
Collapse
|
7
|
Martín-Lluesma S, Dafni U, Vervita K, Karlis D, Dimopoulou G, Tsourti Z, Villacampa G, Galvao V, Lostes J, Muñoz-Couselo E, Rotxés M, Villalobos X, Muñoz S, Haanen JBAG, Svane IM, Piulats JM, Martin-Liberal J, Gros A, Coukos G, Garralda E. Safety of adoptive therapy with tumor-infiltrating lymphocytes and high-dose recombinant interleukin-2 in advanced cutaneous melanoma: a systematic review and meta-analysis. Ann Oncol 2025:S0923-7534(25)00135-8. [PMID: 40210086 DOI: 10.1016/j.annonc.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) has consistently shown efficacy in advanced melanoma. Its combination with non-myeloablative but lymphodepleting (NMA-LD) chemotherapy and high-dose interleukin-2 (HD-IL-2) inevitably lead to severe treatment-related adverse events. The systematic recording of the observed toxicities, which is the aim of the present meta-analysis, will further enhance the implementation and management of this treatment schema. METHODS A comprehensive search was conducted in PubMed up to 29 February 2024. In this meta-analysis we focused on studies of treatment-refractory advanced cutaneous melanoma with TILs administered in combination with NMA-LD chemotherapy and HD-IL-2 (≥600,000 IU/kg). Our primary endpoint was severe adverse events (AEs) of grade 3 or higher. The safety data was consistently coded using Common Terminology Criteria for Adverse Events (CTCAE) v5.0. Findings are synthesized using tables, while pooled estimates for groups of AEs of particular interest are derived from random effect models. RESULTS A total of 12 HD-IL-2 studies, of 670 patients, with available toxicity information were included in this meta-analysis. Blood toxicities were identified as the most common AEs. In the frame of the formal meta-analysis the pooled estimate of the probability of febrile neutropenia was 60% (95%CI: 36%-83%). The total pooled estimate for the probability of severe "immunologic reaction" events, was 4% (95% CI: 1%- 6%), while the respective probability for experiencing a severe AE in MedDRA SOC category 'Infections and infestations' was 8% (95% CI: 4%- 11%). In addition, in total, 9 fatal (grade 5) AEs have been reported, mostly stated as not attributed to the treatment or attributed to NMA/HD-IL-2. CONCLUSIONS TIL-ACT, a new approved and promising therapy for melanoma patients, presents a distinctive toxicity profile that is currently manageable with supportive care methods, with reported toxicities mainly arising from NMA-LD chemotherapy and HD-IL-2, and a low risk of severe immunologic reaction events. Continued systematic recording and publication of adverse events, even the rare ones, and its relation to treatment components, are essential to move the field forward.
Collapse
Affiliation(s)
- S Martín-Lluesma
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - U Dafni
- Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece; Department of Oncology, CHUV, University of Lausanne, Lausanne, Switzerland.
| | - K Vervita
- Scientific Research Consulting Hellas, Statistics Center, Athens, Greece
| | - D Karlis
- Department of Statistics, Athens University of Economics and Business, Athens, Greece
| | - G Dimopoulou
- Scientific Research Consulting Hellas, Statistics Center, Athens, Greece
| | - Z Tsourti
- Scientific Research Consulting Hellas, Statistics Center, Athens, Greece
| | - G Villacampa
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - V Galvao
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J Lostes
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - E Muñoz-Couselo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - M Rotxés
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - X Villalobos
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - S Muñoz
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - J B A G Haanen
- Division of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, Netherlands; Department of Medical Oncology, Leiden University Medical Oncology, Leiden, Netherlands; Melanoma Clinic, CHUV, Lausanne, Switzerland
| | - I M Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev, Denmark
| | - J M Piulats
- Catalan Institute of Oncology (ICO), Barcelona, Spain
| | | | - A Gros
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - G Coukos
- Department of Oncology, Lausanne University Hospital and University of Lausanne Ludwig Institute for Cancer Research Lausanne Branch, Switzerland
| | - E Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
8
|
Dashwood A, Ghodsinia AA, Dooley J, Liston A. Cytokine Couture: Designer IL2 Molecules for the Treatment of Disease. Immunotargets Ther 2025; 14:403-431. [PMID: 40201389 PMCID: PMC11977552 DOI: 10.2147/itt.s500229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Interleukin 2 (IL2) is a dual-acting cytokine, playing important roles in both immune activation and regulation. The role IL2 plays as a potent activator of CD8 T cells saw IL2 become one of the earliest immunotherapies, used for the treatment of cancer. In more recent years refined understanding of IL2, and the potent capacity it has for Treg stimulation, has seen low-dose IL2 therapy trialled for the treatment of auto-immune and inflammatory conditions. However, despite clinical successes, IL2 therapy is not without its caveats. The complicated receptor biology of IL2 gives rise to a narrow therapeutic window, made problematic by its short half-life. Armed with a better understanding of the structure of IL2 in complex with its receptors, many attempts have been made to create designer IL2 molecules which overcome these problems. A wide range of approaches have been used, resulting in >100 designer IL2 molecules. These include antibody complexes, fusion proteins, mutant IL2 molecules and PEGylation, each uniquely modifying the biological activity in an effort to enhance its therapeutic potential. Collectively, designer IL2 molecules form a blueprint outlining modification pathways available to other immunotherapeutics, paving the way for the next generation of immunotherapy.
Collapse
Affiliation(s)
- Amy Dashwood
- Department of Pathology, University of Cambridge, Cambridge, UK
- Immunology Programme, Babraham Institute, Cambridge, UK
| | | | - James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Boixareu C, Taha T, Venkadakrishnan VB, de Bono J, Beltran H. Targeting the tumour cell surface in advanced prostate cancer. Nat Rev Urol 2025:10.1038/s41585-025-01014-w. [PMID: 40169837 DOI: 10.1038/s41585-025-01014-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
Prostate cancer remains a substantial health challenge, with >375,000 annual deaths amongst men worldwide. Most prostate cancer-related deaths are attributable to the development of resistance to standard-of-care treatments. Characterization of the diverse and complex surfaceome of treatment-resistant prostate cancer, combined with advances in drug development that leverage cell-surface proteins to enhance drug delivery or activate the immune system, have provided novel therapeutic opportunities to target advanced prostate cancer. The prostate cancer surfaceome, including proteins such as prostate-specific membrane antigen (PSMA), B7-H3, six transmembrane epithelial antigen of the prostate 1 (STEAP1), delta-like ligand 3 (DLL3), trophoblastic cell-surface antigen 2 (TROP2), prostate stem cell antigen (PSCA), HER3, CD46 and CD36, can be exploited as therapeutic targets, as regulatory mechanisms might contribute to the heterogeneity of expression of these proteins and subsequently affect treatment response and resistance. Specific treatment strategies targeting the surfaceome are in clinical development, including radionuclides, antibody-drug conjugates, T cell engagers and chimeric antigen receptor (CAR) T cells. Ultimately, biomarker development and clinical implementation of these agents will be informed and refined by further understanding of the biology of various targets; the target specificity and sensitivity of different agents; and off-target and toxic effects associated with these agents. Understanding the dynamic nature of cell-surface targets and non-overlapping expression patterns might also lead to future combinational strategies.
Collapse
Affiliation(s)
- Cristina Boixareu
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | - Tarek Taha
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | | | - Johann de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London, UK.
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Saxena K, Hung SH, Ryu E, Singh S, Zhang Tatarata Q, Zeng Z, Wang Z, Konopleva MY, Yee C. BH3 mimetics augment cytotoxic T cell killing of acute myeloid leukemia via mitochondrial apoptotic mechanism. Cell Death Discov 2025; 11:120. [PMID: 40140361 PMCID: PMC11947210 DOI: 10.1038/s41420-025-02375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8+ T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8+ T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, our data suggests that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the mitochondrial apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Kapil Saxena
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Gilead Sciences Inc., Foster City, CA, USA
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Esther Ryu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shailbala Singh
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang Tatarata
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhe Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
11
|
Kottschade L, Rodriguez EW, Harding S, Ranjan S, Mcintyre L, Prieto PA, Gray L, Joseph J, Swank J. Tumor-Infiltrating Lymphocyte Cell Therapy for the Treatment of Advanced Melanoma: From Patient Identification to Posttreatment Management. J Adv Pract Oncol 2025; 16:1-14. [PMID: 40224920 PMCID: PMC11982140 DOI: 10.6004/jadpro.2025.16.7.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025] Open
Abstract
Adoptive cell therapy with tumor-infiltrating lymphocytes (TILs) was recently approved for patients with advanced melanoma (metastatic or unresectable) previously treated with immune checkpoint inhibitors and BRAF/MEK targeted therapies (where appropriate). Tumor-infiltrating lymphocytes isolated from patient-derived tumor tissues enter the tumor microenvironment and recognize tumor-specific antigens, leading to the destruction of tumor cells. The multistep TIL cell therapy journey is led by a multidisciplinary health care team. Patients selected for TIL cell therapy undergo tumor tissue procurement for TIL generation, followed by preparative lymphodepletion before receiving a single-dose infusion of TIL and a short course of high-dose interleukin-2. Successful implementation of TIL cell therapy requires well-established procedures and workflows to select and screen patients, procure tumor tissue, administer TIL cell therapy, and monitor patients during treatment and after discharge. The advanced practice provider plays a central role in a patient's TIL treatment journey by planning and coordinating care across the health-care system, educating patients and staff, and providing direct and supportive patient care. Here, we review the treatment landscape for advanced melanoma and clinical data supporting TIL cell therapy. We also provide guidance related to patient selection, tumor tissue procurement, TIL cell therapy regimen, safety monitoring, symptom management, and post-discharge follow-up.
Collapse
Affiliation(s)
| | | | | | - Smita Ranjan
- UofL Health – Brown Cancer Center, Louisville, Kentucky
| | | | | | - Lissa Gray
- Iovance Biotherapeutics, Inc., San Carlos, California
| | | | | |
Collapse
|
12
|
Ferguson KM, Telfort F, Gochett CG. Tumor-Infiltrating Lymphocyte Therapy for Melanoma: Nursing Considerations. Clin J Oncol Nurs 2025; 29:125-129. [PMID: 40096561 PMCID: PMC12056813 DOI: 10.1188/25.cjon.125-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Clinicians have used commercially available cellular therapy to treat hematologic malignancies since 2017. In February 2024, the U.S. Food and Drug Administration approved the first commercial cellular therapy-lifileucel, a.
Collapse
|
13
|
Julve M, Wong Y, Lim K, Furness A. Solid tumour cellular therapy - principles of toxicity management. IMMUNO-ONCOLOGY TECHNOLOGY 2025; 25:100737. [PMID: 40236329 PMCID: PMC11997557 DOI: 10.1016/j.iotech.2024.100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Following the Food and Drug Administration (FDA) approval of lifileucel and afami-cel for patients with advanced melanoma and synovial sarcoma, respectively, there is a need for improved understanding and guidance regarding the management of toxicity associated with adoptive cellular therapies (ACTs) for solid tumours. Further approvals are expected in coming years, with toxicity management representing a significant consideration for centres looking to implement such advanced therapy medicinal products. Importantly, first-generation tumour-infiltrating lymphocyte therapies are associated with unique toxicities compared with gene-modified T-cell therapies such as chimeric antigen receptor T-cell therapy (CAR T) and T-cell receptor-modified therapy (TCR T), presenting novel challenges for treating healthcare professionals. Extrapolating from experience with CAR T in the field of haemato-oncology, coupled with the historical use of high-dose interleukin-2 in solid tumour therapeutic regimens and more recently lifileucel and afami-cel, has led to the development of core principles for managing toxicity, which is discussed here. Looking to the future, a rapidly developing field with next-generation ACT products, a basic knowledge of such core principles will be an important foundation for healthcare professionals working in this space.
Collapse
Affiliation(s)
- M. Julve
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| | - Y.N.S. Wong
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - K.H.J. Lim
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Advanced Immunotherapy and Cell Therapy Team, Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - A.J.S. Furness
- Department of Medical Oncology, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
14
|
Tseng D, Lee S. Tumor-Infiltrating Lymphocyte Therapy: A New Frontier. Transplant Cell Ther 2025; 31:S599-S609. [PMID: 40089329 DOI: 10.1016/j.jtct.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/22/2024] [Indexed: 03/17/2025]
Abstract
In recent years, the successful use of tumor-infiltrating lymphocyte (TIL) therapy to treat melanoma not only culminated in a landmark Food and Drug Administration approval, but has also fueled the emergence of a new, rapidly growing field in TIL cellular immunotherapy surrounding novel enhancements in TIL design, refined manufacturing strategies to enrich for more potent TIL populations, as well as numerous clinical trials now investigating TIL therapy in additional solid tumor types beyond melanoma. This review provides a summary of the latest advances in TIL therapy and what lies ahead for the field. The first section explores several solid cancers that demonstrate the greatest potential for future indications of TIL therapy. The second section provides insight into the promising innovations for designing the next generation of TIL with greater specificity, persistence, safety, and function.
Collapse
Affiliation(s)
- Diane Tseng
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sylvia Lee
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington.
| |
Collapse
|
15
|
Ye F, Huang J, Cheng X, Chen SC, Huang F, Huang WC, Hua B, Li E, Jiang J, Lin H, Siegel M, Liao E, Wang J, Yue B, Shi W, Xu Y, Wang X, Wang J, Yan Y, He H, Liu E, Lu B, Zhong Z. AWT020: a novel fusion protein harnessing PD-1 blockade and selective IL-2 Cis-activation for enhanced anti-tumor immunity and diminished toxicity. Front Immunol 2025; 16:1537466. [PMID: 40046051 PMCID: PMC11880808 DOI: 10.3389/fimmu.2025.1537466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/03/2025] [Indexed: 05/13/2025] Open
Abstract
Background The clinical success of the immune checkpoint inhibitor (ICI) targeting programmed cell death protein 1 (PD-1) has revolutionized cancer treatment. However, the full potential of PD-1 blockade therapy remains unrealized, as response rates are still low across many cancer types. Interleukin-2 (IL-2)-based immunotherapies hold promise, as they can stimulate robust T cell expansion and enhance effector function - activities that could synergize potently with PD-1 blockade. Yet, IL-2 therapies also carry a significant drawback: they can trigger severe systemic toxicities and induce immune suppression by expanding regulatory T cells. Methods To overcome the challenges of PD-1 blockade and IL-2 therapies while enhancing safety and efficacy, we have engineered a novel fusion protein, AWT020, combining a humanized anti-PD-1 nanobody and an engineered IL-2 mutein (IL-2c). The IL-2c component of AWT020 has been engineered to exhibit no binding to the IL-2 receptor alpha (IL-2Rα) subunit and attenuated affinity for the IL-2 receptor beta and gamma (IL-2Rβγ) complex, aiming to reduce systemic immune cell activation, thereby mitigating the severe toxicity often associated with IL-2 therapies. The anti-PD-1 antibody portion of AWT020 serves a dual purpose: it precisely delivers the IL-2c payload to tumor-infiltrating T cells while blocking the immune-inhibitory signals mediated by the PD-1 pathway. Results AWT020 showed significantly enhanced pSTAT5 signaling in PD-1 expressing cells and promoted the proliferation of activated T cells over natural killer (NK) cells. In preclinical studies using both anti-PD-1-sensitive and -resistant mouse tumor models, the mouse surrogate of AWT020 (mAWT020) demonstrated markedly enhanced anti-tumor efficacy compared to an anti-PD-1 antibody, IL-2, or the combination of an anti-PD-1 antibody and IL-2. In addition, the mAWT020 treatment was well-tolerated, with minimal signs of toxicity. Immune profiling revealed that mAWT020 preferentially expands CD8+ T cells within tumors, sparing peripheral T and NK cells. Notably, this selective tumoral T-cell stimulation enables potent tumor-specific T-cell responses, underscoring the molecule's enhanced efficacy and safety. Conclusion The AWT020 fusion protein offers a promising novel immunotherapeutic strategy by integrating PD-1 blockade and IL-2 signaling, conferring enhanced anti-tumor activity with reduced toxicity.
Collapse
Affiliation(s)
- Fan Ye
- Anwita Biosciences, San Carlos, CA, United States
| | | | - Xiaoli Cheng
- Anwita Biosciences, San Carlos, CA, United States
| | | | - Fang Huang
- Anwita Biosciences, San Carlos, CA, United States
| | | | - Botong Hua
- Anwita Biosciences, San Carlos, CA, United States
| | - Ella Li
- Anwita Biosciences, San Carlos, CA, United States
| | - Jenny Jiang
- Anwita Biosciences, San Carlos, CA, United States
| | - Hanna Lin
- Anwita Biosciences, San Carlos, CA, United States
| | | | - Eric Liao
- Anwita Biosciences, San Carlos, CA, United States
| | - Ji Wang
- Anwita Biosciences, San Carlos, CA, United States
| | - Bella Yue
- Anwita Biosciences, San Carlos, CA, United States
| | - Wenli Shi
- Anwita Biosciences, San Carlos, CA, United States
| | - Yanghua Xu
- Anwita Biosciences, San Carlos, CA, United States
| | - Xin Wang
- Anwita Biosciences, San Carlos, CA, United States
| | - Jiaming Wang
- Anwita Biosciences, San Carlos, CA, United States
| | - Yuyuan Yan
- Anwita Biosciences, San Carlos, CA, United States
| | - Honglin He
- Anwita Biosciences, San Carlos, CA, United States
| | - Eugene Liu
- Anwita Biosciences, San Carlos, CA, United States
| | - Binfeng Lu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Ziyang Zhong
- Anwita Biosciences, San Carlos, CA, United States
| |
Collapse
|
16
|
Champiat S, Garralda E, Galvao V, Cassier PA, Gomez-Roca C, Korakis I, Grell P, Naing A, LoRusso P, Mikyskova R, Podzimkova N, Reinis M, Ouali K, Schoenenberger A, Kiemle-Kallee J, Tillmanns S, Sachse R, Moebius U, Spisek R, Bechard D, Jelinkova LP, Adkins I, Marabelle A. Nanrilkefusp alfa (SOT101), an IL-15 receptor βγ superagonist, as a single agent or with anti-PD-1 in patients with advanced cancers. Cell Rep Med 2025; 6:101967. [PMID: 39933529 PMCID: PMC11866505 DOI: 10.1016/j.xcrm.2025.101967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
Nanrilkefusp alfa (nanril; SOT101) is an interleukin (IL)-15 receptor βγ superagonist that stimulates natural killer (NK) and CD8+ T cells, thereby promoting an innate and adaptive anti-tumor inflammatory microenvironment in mouse tumor models either in monotherapy or combined with an anti-programmed cell death protein 1 (PD-1) antibody. In cynomolgus monkeys, a clinical schedule was identified, which translated into the design of a phase 1/1b clinical trial, AURELIO-03 (NCT04234113). In 51 patients with advanced/metastatic solid tumors, nanril increased the proportions of CD8+ T cells and NK cells in peripheral blood and tumors. It had a favorable safety profile when administered subcutaneously on days 1, 2, 8, and 9 of each 21-day cycle as monotherapy (0.25-15 μg/kg) or combined (1.5-12 μg/kg) with the anti-PD-1 pembrolizumab (200 mg). The most frequent treatment-emergent adverse events were pyrexia, injection site reactions, and chills. Furthermore, early clinical efficacy was observed, including in immune checkpoint blockade-resistant/refractory patients.
Collapse
Affiliation(s)
- Stephane Champiat
- Gustave Roussy, Departement d'Innovation Therapeutique et d'Essais Precoces (DITEP), Universite Paris Saclay, 94805 Villejuif, France.
| | - Elena Garralda
- Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain
| | | | | | - Carlos Gomez-Roca
- Institut Universitaire du Cancer de Toulouse, 31100 Toulouse, France
| | - Iphigenie Korakis
- Institut Universitaire du Cancer de Toulouse, 31100 Toulouse, France
| | - Peter Grell
- Masaryk Memorial Cancer Institute, 602 00 Brno, Czech Republic
| | - Aung Naing
- Department of Lnvestigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Romana Mikyskova
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | | | - Milan Reinis
- Laboratory of Immunological and Tumor Models, Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Kaissa Ouali
- Gustave Roussy, Departement d'Innovation Therapeutique et d'Essais Precoces (DITEP), Universite Paris Saclay, 94805 Villejuif, France
| | | | | | | | | | | | - Radek Spisek
- SOTIO Biotech a.s., 170 00 Prague, Czech Republic
| | | | - Lenka Palova Jelinkova
- SOTIO Biotech a.s., 170 00 Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, 150 06 Prague, Czech Republic
| | - Irena Adkins
- SOTIO Biotech a.s., 170 00 Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, 150 06 Prague, Czech Republic
| | - Aurelien Marabelle
- Gustave Roussy, Departement d'Innovation Therapeutique et d'Essais Precoces (DITEP), Universite Paris Saclay, 94805 Villejuif, France
| |
Collapse
|
17
|
Zhang DKY, Brockman JM, Adu-Berchie K, Liu Y, Binenbaum Y, de Lázaro I, Sobral MC, Tresa R, Mooney DJ. Subcutaneous biodegradable scaffolds for restimulating the antitumour activity of pre-administered CAR-T cells. Nat Biomed Eng 2025; 9:268-278. [PMID: 38831041 DOI: 10.1038/s41551-024-01216-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
The efficacy of adoptive T-cell therapies based on chimaeric antigen receptors (CARs) is limited by the poor proliferation and persistence of the engineered T cells. Here we show that a subcutaneously injected biodegradable scaffold that facilitates the infiltration and egress of specific T-cell subpopulations, which forms a microenvironment mimicking features of physiological T-cell activation, enhances the antitumour activity of pre-administered CAR-T cells. CAR-T-cell expansion, differentiation and cytotoxicity were driven by the scaffold's incorporation of co-stimulatory bound ligands and soluble molecules, and depended on the types of co-stimulatory molecules and the context in which they were presented. In mice with aggressive lymphoma, a single, local injection of the scaffold following non-curative CAR-T-cell dosing led to more persistent memory-like T cells and extended animal survival. Injectable biomaterials with optimized ligand presentation may boost the therapeutic performance of CAR-T-cell therapies.
Collapse
Affiliation(s)
- David K Y Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Joshua M Brockman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kwasi Adu-Berchie
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yutong Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yoav Binenbaum
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Irene de Lázaro
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Miguel C Sobral
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Rea Tresa
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
18
|
Turcotte S, Donia M, Gastman B, Besser M, Brown R, Coukos G, Creelan B, Mullinax J, Sondak VK, Yang JC, Rohaan MW, Marie Svane I, Lotze MT, Haanen JBAG, Goff SL. Art of TIL immunotherapy: SITC's perspective on demystifying a complex treatment. J Immunother Cancer 2025; 13:e010207. [PMID: 39837618 PMCID: PMC11752064 DOI: 10.1136/jitc-2024-010207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
In a first for solid cancers, cellular immunotherapy has entered standard of care in the treatment of patients with metastatic melanoma. The infusion of autologous tumor-infiltrating T lymphocytes (TIL) is capable of mediating durable tumor regression and is now Food and Drug Administration-approved for patients with disease refractory to immune checkpoint inhibitors. Since the advent of chimeric antigen receptor (CAR) T cells for patients with hematological malignancies, a growing network of centers capable of delivering effector T cell products to patients has developed. Administration of TIL can be layered onto that institutional framework, but there are many complex and unique aspects to TIL immunotherapy. The highly multidisciplinary clinical expertise and coordination required to successfully and safely deliver TIL to patients began within the National Cancer Institute Surgery Branch and have been subsequently adopted worldwide. The general steps, most of which require hospital inpatient resources, include a surgical procedure to harvest sufficient tumor for TIL manufacturing, admission for non-myeloablative lymphodepleting chemotherapy followed by TIL, and intravenous interleukin-2 (IL-2, aldesleukin). Here, we provide the principles, practice, and required resources underlying the efficient and safe delivery of TIL immunotherapy derived from the clinical expertise of high-volume centers around the world. This article enhances published clinical practice guidelines by providing underlying clinical rationale and data-driven examples to demystify TIL immunotherapy in order to facilitate uptake and improve patient access to this promising treatment modality in clinical and research settings.
Collapse
Affiliation(s)
- Simon Turcotte
- Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | - Brian Gastman
- Iovance Biotherapeutics, Philadelphia, Pennsylvania, USA
| | - Michal Besser
- Davidoff Center & Samueli Institute, Rabin Medical Center, Petach Tikva, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - George Coukos
- University Hospital of Lausanne, and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Benjamin Creelan
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - John Mullinax
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Vernon K Sondak
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - James C Yang
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy, Copenhagen University Hospital, Herlev, Denmark
| | | | - John B A G Haanen
- Netherlands Cancer Institute, Amsterdam, The Netherlands
- Medical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Leiden University Medical Center, Leiden, The Netherlands
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stephanie L Goff
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
19
|
Yee C, Saxena K, Ryu E, Hung SH, Singh S, Zhang Q, Zeng Z, Wang Z, Konopleva M. BH3 Mimetics Augment Cytotoxic T Cell Killing of Acute Myeloid Leukemia via Mitochondrial Apoptotic Mechanism. RESEARCH SQUARE 2024:rs.3.rs-5307127. [PMID: 39711535 PMCID: PMC11661303 DOI: 10.21203/rs.3.rs-5307127/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8 + T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8 + T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, we found that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the same apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Cassian Yee
- The University of Texas MD Anderson Cancer Center
| | | | - Esther Ryu
- University of Texas MD Anderson Cancer Center
| | | | | | - Qi Zhang
- University of Texas MD Anderson Cancer Center
| | | | - Zhe Wang
- University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
20
|
Han J, Wang H. Cytokine-overexpressing dendritic cells for cancer immunotherapy. Exp Mol Med 2024; 56:2559-2568. [PMID: 39617785 DOI: 10.1038/s12276-024-01353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/11/2024] [Indexed: 12/28/2024] Open
Abstract
Dendritic cells (DCs), the main type of antigen-presenting cells in the body, act as key mediators of adaptive immunity by sampling antigens from diseased cells for the subsequent priming of antigen-specific T and B cells. While DCs can secrete a diverse array of cytokines that profoundly shape the immune milieu, exogenous cytokines are often needed to maintain the survival, proliferation, and differentiation of DCs, T cells, and B cells. However, conventional cytokine therapies for cancer treatment are limited by their low therapeutic benefit and severe side effects. The overexpression of cytokines in DCs, followed by paracrine release or membrane display, has emerged as a viable approach for controlling the exposure of cytokines to interacting DCs and T/B cells. This approach can potentially reduce the necessary dose of cytokines and associated side effects to achieve comparable or enhanced antitumor efficacy. Various strategies have been developed to enable the overexpression or chemical conjugation of cytokines on DCs for the subsequent modulation of DC-T/B-cell interactions. This review provides a brief overview of strategies that enable the overexpression of cytokines in or on DCs via genetic engineering or chemical modification methods and discusses the promise of cytokine-overexpressing DCs for the development of new-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Joonsu Han
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua Wang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois (CCIL), Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carle College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
21
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
22
|
Vaishampayan UN, Muzaffar J, Winer I, Rosen SD, Hoimes CJ, Chauhan A, Spreafico A, Lewis KD, Bruno DS, Dumas O, McDermott DF, Strauss JF, Chu QS, Gilbert L, Chaudhry A, Calvo E, Dalal R, Boni V, Ernstoff MS, Velcheti V. Nemvaleukin alfa, a modified interleukin-2 cytokine, as monotherapy and with pembrolizumab in patients with advanced solid tumors (ARTISTRY-1). J Immunother Cancer 2024; 12:e010143. [PMID: 39567211 PMCID: PMC11580269 DOI: 10.1136/jitc-2024-010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/11/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Nemvaleukin alfa (nemvaleukin, ALKS 4230) is a novel, engineered cytokine that selectively binds to the intermediate-affinity interleukin-2 receptor, preferentially activating CD8+ T cells and natural killer cells, with minimal expansion of regulatory T cells, thereby mitigating the risk of toxicities associated with high-affinity interleukin-2 receptor activation. Clinical outcomes with nemvaleukin are unknown. ARTISTRY-1 investigated the safety, recommended phase 2 dose (RP2D), and antitumor activity of nemvaleukin in patients with advanced solid tumors. METHODS This was a three-part, open-label, phase 1/2 study: part A, dose-escalation monotherapy, part B, dose-expansion monotherapy, and part C, combination therapy with pembrolizumab. The study was conducted at 32 sites in 7 countries. Adult patients with advanced solid tumors were enrolled and received intravenous nemvaleukin once daily on days 1-5 (21-day cycle) at 0.1-10 µg/kg/day (part A), or at the RP2D (part B), or with pembrolizumab (part C). Primary endpoints were RP2D selection and dose-limiting toxicities (part A), and overall response rate (ORR) and safety (parts B and C). RESULTS From July 2016 to March 2023, 243 patients were enrolled and treated (46, 74, and 166 in parts A, B, and C, respectively). The maximum tolerated dose was not reached. RP2D was determined as 6 µg/kg/day. ORR with nemvaleukin monotherapy was 10% (7/68; 95% CI 4 to 20), with seven partial responses (melanoma, n=4; renal cell carcinoma, n=3). Robust CD8+ T and natural killer cell expansion, and minimal regulatory T cell expansion were observed following nemvaleukin treatment. ORR with nemvaleukin plus pembrolizumab was 13% (19/144; 95% CI 8 to 20), with 5 complete and 14 partial responses; 6 responses were in PD-(L)1 inhibitor-approved and five in PD-(L)1 inhibitor-unapproved tumor types. Three responses were in patients with platinum-resistant ovarian cancer. The most common grade 3-4 treatment-related adverse events (TRAEs) in parts B and C, respectively, were neutropenia (49%, 21%) and anemia (10%, 11%); 4% of patients in each part discontinued due to TRAEs. CONCLUSIONS Nemvaleukin was well tolerated and demonstrated promising antitumor activity across heavily pretreated advanced solid tumors. Phase 2/3 studies of nemvaleukin are ongoing. TRIAL REGISTRATION NUMBER NCT02799095.
Collapse
Affiliation(s)
- Ulka N Vaishampayan
- Divison of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jameel Muzaffar
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ira Winer
- Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA
| | - Seth D Rosen
- Hematology Oncology Association of the Treasure Coast, Port St. Lucie, Florida, USA
| | - Christoper J Hoimes
- Phase I Program, Case Comprehensive Cancer Center, University Hospitals, Cleveland, Ohio, USA
- Duke Cancer Institute, Duke University, Durham, North Carolina, USA
| | - Aman Chauhan
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Anna Spreafico
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Karl D Lewis
- University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Debora S Bruno
- Department of Medicine, University Hospitals Cleveland Medical Center, Seidman Cancer Center, Cleveland, Ohio, USA
- Case Western School of Medicine, Cleveland, Ohio, USA
| | - Olivier Dumas
- CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | | | | | - Quincy S Chu
- University of Alberta/Alberta Health Services, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Lucy Gilbert
- Division of Gynecologic Oncology, The Gerald Bronfman Department of Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Rita Dalal
- Mural Oncology, Inc, Waltham, Massachusetts, USA
| | - Valentina Boni
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Marc S Ernstoff
- Division of Cancer Treatment & Diagnosis, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Vamsidhar Velcheti
- Laura and Isaac Perlmutter Cancer Center, New York University, New York, New York, USA
| |
Collapse
|
23
|
Silverberg JI, Rosmarin D, Chovatiya R, Bieber T, Schleicher S, Beck L, Gooderham M, Chaudhry S, Fanton C, Yu D, Levy J, Liu Y, Miyazaki T, Tagliaferri M, Schmitz C, Nirula A, Kotzin B, Zalevsky J. The regulatory T cell-selective interleukin-2 receptor agonist rezpegaldesleukin in the treatment of inflammatory skin diseases: two randomized, double-blind, placebo-controlled phase 1b trials. Nat Commun 2024; 15:9230. [PMID: 39455575 PMCID: PMC11511931 DOI: 10.1038/s41467-024-53384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Regulatory T cell (Treg) impairment is implicated in the pathogenesis of chronic inflammatory diseases, but relatively little is known about the therapeutic potential of Treg restoration. Here we present clinical evidence for the Treg-selective interleukin-2 receptor agonist rezpegaldesleukin (REZPEG) in two randomized, double-blind, placebo-controlled Phase 1b trials in patients with moderate-to-severe atopic dermatitis (AD) (NCT04081350) or chronic plaque psoriasis (PsO) (NCT04119557). Key inclusion criteria for AD included an Eczema Area and Severity Index (EASI) score ≥ 16 and a validated Investigator Global Assessment for Atopic Dermatitis (vIGA-AD) ≥ 3, and for PsO included a Psoriasis Area and Severity Index (PASI) score of ≥ 12 and a static Physician's Global Assessment (sPGA) score of ≥ 3. REZPEG is safe and well-tolerated and demonstrates consistent pharmacokinetics in participants receiving subcutaneous doses of 10 to 12 µg/kg or 24 µg/kg once every 2 weeks for 12 weeks, meeting the primary and secondary objectives, respectively. AD patients receiving the higher dose demonstrate an 83% improvement in EASI score after 12 weeks of treatment. EASI improvement of ≥ 75% (EASI-75) and vIGA-AD responses are maintained for 36 weeks after treatment discontinuation in 71% and 80% of week 12 responders, respectively. These exploratory clinical improvements are accompanied by sustained increases in CD25bright Tregs. REZPEG thus represents a homeostatic approach to cutaneous disease therapy and holds clinical potential in providing long-term, treatment-free disease control.
Collapse
Affiliation(s)
- Jonathan I Silverberg
- Department of Dermatology, George Washington University School of Medicine, Washington, DC, USA
| | - David Rosmarin
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raj Chovatiya
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Center for Medical Dermatology + Immunology Research, Chicago, IL, USA
| | - Thomas Bieber
- Department of Dermatology, University Hospital, Zürich, Switzerland
- Medicine Campus, Davos, Switzerland
| | | | - Lisa Beck
- University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | - Danni Yu
- Nektar Therapeutics, San Francisco, CA, USA
| | | | - Yi Liu
- Nektar Therapeutics, San Francisco, CA, USA
| | | | | | | | - Ajay Nirula
- Recludix Pharma, San Diego, CA, USA, formerly affiliated with Eli Lilly and Company, Indianapolis, IN, USA
| | | | | |
Collapse
|
24
|
Wu J, Bloch N, Chang AY, Bhavsar R, Wang Q, Crawford A, DiLillo DJ, Vazzana K, Mohrs K, Dudgeon D, Patel S, Ahmed H, Garg V, Amatulli M, Antao OQ, Yan Y, Wang S, Ramos W, Krueger P, Adler C, Ni M, Wei Y, Guo C, Macdonald L, Huang T, Ullman E, Hermann A, Yancopoulos GD, Murphy AJ, Davis S, Olson WC, Lin JC, Smith E, Zhang T. A PD-1-targeted, receptor-masked IL-2 immunocytokine that engages IL-2Rα strengthens T cell-mediated anti-tumor therapies. Cell Rep Med 2024; 5:101747. [PMID: 39326410 PMCID: PMC11513833 DOI: 10.1016/j.xcrm.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The clinical use of interleukin-2 (IL-2) for cancer immunotherapy is limited by severe toxicity. Emerging IL-2 therapies with reduced IL-2 receptor alpha (IL-2Rα) binding aim to mitigate toxicity and regulatory T cell (Treg) expansion but have had limited clinical success. Here, we show that IL-2Rα engagement is critical for the anti-tumor activity of systemic IL-2 therapy. A "non-α" IL-2 mutein induces systemic expansion of CD8+ T cells and natural killer (NK) cells over Tregs but exhibits limited anti-tumor efficacy. We develop a programmed cell death protein 1 (PD-1)-targeted, receptor-masked IL-2 immunocytokine, PD1-IL2Ra-IL2, which attenuates systemic IL-2 activity while maintaining the capacity to engage IL-2Rα on PD-1+ T cells. Mice treated with PD1-IL2Ra-IL2 show no systemic toxicities observed with unmasked IL-2 treatment yet achieve robust tumor growth control. Furthermore, PD1-IL2Ra-IL2 can be effectively combined with other T cell-mediated immunotherapies to enhance anti-tumor responses. These findings highlight the therapeutic potential of PD1-IL2Ra-IL2 as a targeted, receptor-masked, and "α-maintained" IL-2 therapy for cancer.
Collapse
Affiliation(s)
- Jiaxi Wu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
| | - Nicolin Bloch
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aaron Y Chang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Qingqing Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | | | - Katja Mohrs
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Supriya Patel
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Hassan Ahmed
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Vidur Garg
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Olivia Q Antao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yuetian Yan
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Shunhai Wang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Willy Ramos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Pamela Krueger
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Yi Wei
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Chunguang Guo
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | | | - Samuel Davis
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - John C Lin
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Tong Zhang
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| |
Collapse
|
25
|
Ma L, Acuff NV, Joseph IB, Ptacin JL, Caffaro CE, San Jose KM, Aerni HR, Carrio R, Byers AM, Herman RW, Pavlova Y, Pena MJ, Chen DB, Buetz C, Ismaili TK, Pham HV, Cucchetti M, Sassoon I, Koriazova LK, Leveque JA, Shawver LK, Mooney JM, Milla ME. A Precision Engineered Interleukin-2 for Bolstering CD8+ T- and NK-cell Activity without Eosinophilia and Vascular Leak Syndrome in Nonhuman Primates. CANCER RESEARCH COMMUNICATIONS 2024; 4:2799-2814. [PMID: 39320047 PMCID: PMC11503527 DOI: 10.1158/2767-9764.crc-24-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
We have created a precisely pegylated IL-2 [SAR-444245 (SAR'245) or pegenzileukin, previously THOR-707] designed for proliferation of target CD8+ T and NK cells for anticancer activity, with minimal expansion of anti-target regulatory CD4+ T cells (Treg) that counter their action, or eosinophils that trigger vascular leak syndrome (VLS). We performed in vivo studies in nonhuman primates (NHP) to monitor the safety of SAR'245, pharmacokinetic profile, and pharmacodynamic parameters including expansion of peripheral CD8+ T and NK cells, and effects on Tregs and eosinophils. Studies included multiple ascending dosing and repeat dosing with different regimens (QW, Q2W, Q3W and Q4W). We also conducted ex vivo studies using human primary cells to further evaluate SAR'245 stimulation of target cells alone and in combination with programmed cell-death 1 (PD-1) checkpoint inhibitors. The pharmacokinetic profile of SAR'245 in NHP demonstrated dose-proportional exposure that was comparable with redosing. It elicited expansion of peripheral CD8+ T and NK cells that was comparable with each dose and with multiple dosing regimens. Once-weekly dosing showed no significant adverse effects, including no hallmark signs of VLS at dosing levels up to 1 mg/kg. Ex vivo, SAR'245 enhanced T-cell receptor responses alone and in combination with PD-1 inhibitors without inducing cytokines associated with cytokine release syndrome or VLS. Results support the clinical development of SAR'245 as a drug candidate for the treatment of solid tumors, alone or in combination with PD-1 inhibitory agents. SIGNIFICANCE SAR-444245 (SAR'245, pegenzileukin) is an extended half-life IL-2 that targets effector CD8+ T and NK cells, with little effect on regulatory T cells. We show that in the nonhuman primate model that closely approximates human immune function and response to IL-2, SAR'245 selectively activates CD8+ T and NK effectors without significant serious side effects (vascular leak syndrome or cytokine release syndrome), suggesting its potential for the treatment of solid tumors in humans.
Collapse
Affiliation(s)
- Lina Ma
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | - Hans R. Aerni
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - Rob W. Herman
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | - David B. Chen
- Synthorx, Inc., A Sanofi Company, La Jolla, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Roser LA, Sommer C, Ortega Iannazzo S, Sakellariou C, Waibler Z, Gogesch P. Revival of recombinant IL-2 therapy - approaches from the past until today. J Immunotoxicol 2024; 21:S38-S47. [PMID: 39655498 DOI: 10.1080/1547691x.2024.2335219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 12/18/2024] Open
Abstract
Interleukin-2 (IL-2) was one of the first cytokines discovered and its central role in T cell function soon led to the notion that the cytokine could specifically activate immune cells to combat cancer cells. Recombinant human IL-2 (recIL-2) belonged to the first anti-cancer immunotherapeutics that received marketing authorization and while it mediated anti-tumor effects in some cancer entities, treatment was associated with severe and systemic side effects. RecIL-2 holds an exceptional therapeutic potential, which can either lead to stimulation of the immune system - favorable during cancer treatment - or immunosuppression - used for treatment of inflammatory diseases such as autoimmunity. Due to these pleiotropic immune effects, recIL-2 therapy is still a hot topic in research and modified recIL-2 drug candidates show ameliorated efficacy and safety in pre-clinical and clinical studies. The Immune Safety Avatar (imSAVAR) consortium aims to systemically assess mechanisms leading to adverse events provoked by recIL-2 immunotherapy as a use case in order to aid safety evaluation of future recIL-2-based therapies. Here, we summarize the historical use of recIL-2 therapy, associated side effects, and describe the molecular basis of the dual role of IL-2. Finally, an overview of new recIL-2 compounds and delivery systems, which are currently being developed, will be given, highlighting a possible comeback of recIL-2 therapy.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt am Main, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | | | - Zoe Waibler
- Paul-Ehrlich-Institut, Division of Immunology, Langen, Germany
| | | |
Collapse
|
27
|
Sriramulu S, Thoidingjam S, Speers C, Nyati S. Present and Future of Immunotherapy for Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:3250. [PMID: 39409871 PMCID: PMC11475478 DOI: 10.3390/cancers16193250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) lacks the expression of estrogen receptors (ERs), human epidermal growth factor receptor 2 (HER2), and progesterone receptors (PRs). TNBC has the poorest prognosis among breast cancer subtypes and is more likely to respond to immunotherapy due to its higher expression of PD-L1 and a greater percentage of tumor-infiltrating lymphocytes. Immunotherapy has revolutionized TNBC treatment, especially with the FDA's approval of pembrolizumab (Keytruda) combined with chemotherapy for advanced cases, opening new avenues for treating this deadly disease. Although immunotherapy can significantly improve patient outcomes in a subset of patients, achieving the desired response rate for all remains an unmet clinical goal. Strategies that enhance responses to immune checkpoint blockade, including combining immunotherapy with chemotherapy, molecularly targeted therapy, or radiotherapy, may improve response rates and clinical outcomes. In this review, we provide a short background on TNBC and immunotherapy and explore the different types of immunotherapy strategies that are currently being evaluated in TNBC. Additionally, we review why combination strategies may be beneficial, provide an overview of the combination strategies, and discuss the novel immunotherapeutic opportunities that may be approved in the near future for TNBC.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Shivani Thoidingjam
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
| | - Corey Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiation Oncology, UH Seidman Cancer Center, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Shyam Nyati
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, MI 48202, USA
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
Stinson JA, Barbosa MMP, Sheen A, Momin N, Fink E, Hampel J, Selting KA, Kamerer RL, Bailey KL, Wittrup KD, Fan TM. Tumor-Localized Interleukin-2 and Interleukin-12 Combine with Radiation Therapy to Safely Potentiate Regression of Advanced Malignant Melanoma in Pet Dogs. Clin Cancer Res 2024; 30:4029-4043. [PMID: 38980919 PMCID: PMC11398984 DOI: 10.1158/1078-0432.ccr-24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
PURPOSE Cytokines IL2 and IL12 exhibit potent anticancer activity but suffer a narrow therapeutic window due to off-tumor immune cell activation. Engineering cytokines with the ability to bind and associate with tumor collagen after intratumoral injection potentiated response without toxicity in mice and was previously safe in pet dogs with sarcoma. Here, we sought to test the efficacy of this approach in dogs with advanced melanoma. PATIENTS AND METHODS This study examined 15 client-owned dogs with histologically or cytologically confirmed malignant melanoma that received a single 9-Gy fraction of radiotherapy, followed by six cycles of combined collagen-anchored IL2 and IL12 therapy every 2 weeks. Cytokine dosing followed a 3 + 3 dose escalation design, with the initial cytokine dose chosen from prior evaluation in canine sarcomas. No exclusion criteria for tumor stage or metastatic burden, age, weight, or neuter status were applied for this trial. RESULTS Median survival regardless of the tumor stage or dose level was 256 days, and 10/13 (76.9%) dogs that completed treatment had CT-measured tumor regression at the treated lesion. In dogs with metastatic disease, 8/13 (61.5%) had partial responses across their combined lesions, which is evidence of locoregional response. Profiling by NanoString of treatment-resistant dogs revealed that B2m loss was predictive of poor response to this therapy. CONCLUSIONS Collectively, these results confirm the ability of locally administered tumor-anchored cytokines to potentiate responses at regional disease sites when combined with radiation. This evidence supports the clinical translation of this approach and highlights the utility of comparative investigation in canine cancers.
Collapse
Affiliation(s)
- Jordan A. Stinson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Allison Sheen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Fink
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jordan Hampel
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Kim A. Selting
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Rebecca L. Kamerer
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Timothy M. Fan
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
29
|
Sommer C, Jacob S, Bargmann T, Shoaib M, Alshaikhdeeb B, Satagopam VP, Dehmel S, Neuhaus V, Braun A, Sewald K. Bridging therapy-induced phenotypes and genetic immune dysregulation to study interleukin-2-induced immunotoxicology. Clin Immunol 2024; 266:110288. [PMID: 38950723 DOI: 10.1016/j.clim.2024.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/03/2024]
Abstract
Interleukin-2 (IL-2) holds promise for the treatment of cancer and autoimmune diseases, but its high-dose usage is associated with systemic immunotoxicity. Differential IL-2 receptor (IL-2R) regulation might impact function of cells upon IL-2 stimulation, possibly inducing cellular changes similar to patients with hypomorphic IL2RB mutations, presenting with multiorgan autoimmunity. Here, we show that sustained high-dose IL-2 stimulation of human lymphocytes drastically reduces IL-2Rβ surface expression especially on T cells, resulting in impaired IL-2R signaling which correlates with high IL-2Rα baseline expression. IL-2R signaling in NK cells is maintained. CD4+ T cells, especially regulatory T cells are more broadly affected than CD8+ T cells, consistent with lineage-specific differences in IL-2 responsiveness. Given the resemblance of cellular characteristics of high-dose IL-2-stimulated cells and cells from patients with IL-2Rβ defects, impact of continuous IL-2 stimulation on IL-2R signaling should be considered in the onset of clinical adverse events during IL-2 therapy.
Collapse
Affiliation(s)
- Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Sophie Jacob
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Tonia Bargmann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Muhammad Shoaib
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Basel Alshaikhdeeb
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Venkata P Satagopam
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany; Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany.
| |
Collapse
|
30
|
Perna G, Pinto E, Spiti A, Torti T, Cucchi M, Caldirola D. Foundations for a Personalized Psycho-Oncology: The State of the Art. J Pers Med 2024; 14:892. [PMID: 39338146 PMCID: PMC11433554 DOI: 10.3390/jpm14090892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Personalized psycho-oncology represents a major challenge for the holistic care of cancer patients. It focuses on individualized psychotherapeutic and psychiatric interventions to address specific psychological needs. This narrative review summarizes the current literature on personalized psycho-oncology and highlights the prevalence and impact of psychiatric/psychological disorders in cancer patients. Personalized approaches, including tailored interventions and interdisciplinary collaboration, have been shown to be effective in improving mental health and overall quality of life. The integration of inflammatory biomarkers into treatment plans is a promising but challenging way to alleviate mental health problems. In addition, there is a need for specific diagnostic tools and treatment guidelines that take into account the specific psychological impact of different types of cancer. Future research should aim to refine these personalized strategies, improve diagnostic accuracy, and evaluate the cost-effectiveness of these interventions to improve both the psychological well-being and treatment outcomes of cancer patients.
Collapse
Affiliation(s)
- Giampaolo Perna
- Department of Biological Sciences, Humanitas University, 20089 Milan, Italy;
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (A.S.); (M.C.)
| | - Eleonora Pinto
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padua, Italy;
| | - Alessandro Spiti
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (A.S.); (M.C.)
| | - Tatiana Torti
- ASIPSE School of Cognitive-Behavioral-Therapy, 20124 Milan, Italy;
| | - Michele Cucchi
- IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (A.S.); (M.C.)
| | - Daniela Caldirola
- Department of Biological Sciences, Humanitas University, 20089 Milan, Italy;
| |
Collapse
|
31
|
Rotta G, Puca E, Cazzamalli S, Neri D, Dakhel Plaza S. Cytokine Biopharmaceuticals with "Activity-on-Demand" for Cancer Therapy. Bioconjug Chem 2024; 35:1075-1088. [PMID: 38885090 DOI: 10.1021/acs.bioconjchem.4c00187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Cytokines are small proteins that modulate the activity of the immune system. Because of their potent immunomodulatory properties, some recombinant cytokines have undergone clinical development and have gained marketing authorization for the therapy of certain forms of cancer. Recombinant cytokines are typically administered at ultralow doses, as many of them can cause substantial toxicity even at submilligram quantities. In an attempt to increase the therapeutic index, fusion proteins based on tumor-homing antibodies (also called "immunocytokines") have been considered, and some products in this class have reached late-stage clinical trials. While antibody-cytokine fusions, which preferentially localize in the neoplastic mass, can activate tumor-resident leukocytes and may be more efficacious than their nontargeted counterparts, such products typically conserve an intact cytokine activity, which may prevent escalation to curative doses. To further improve tolerability, several strategies have been conceived for the development of antibody-cytokine fusions with "activity-on-demand", acting on tumors but helping spare normal tissues from undesired toxicity. In this article, we have reviewed some of the most promising strategies, outlining their potential as well as possible limitations.
Collapse
Affiliation(s)
- Giulia Rotta
- Philochem AG, CH-8112 Otelfingen, Switzerland
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | | | | | - Dario Neri
- Philogen S.p.A, 53100 Siena, Italy
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
32
|
Lu Y, Liu H, Shang J, Mao Y, Meng L, Gao C. Effects of Weizhuan'an on rats with precancerous lesions of gastric cancer based on regulating gastric mucosal microflora and inflammatory factors. Front Pharmacol 2024; 15:1446244. [PMID: 39221149 PMCID: PMC11361960 DOI: 10.3389/fphar.2024.1446244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Objectives This study aimed to observe the intervention of Weizhuan'an prescription on rats with precancerous lesions of gastric cancer (PLGC) as well as its regulation on gastric mucosal microflora and inflammatory factors and explore the pharmacodynamic mechanisms of Weizhuan'an Formula. Methods The rats were classified into the blank control group (BCG); low-, medium-, and high-dose groups of Weizhuan'an prescription (LDG, MDG, and HDG, respectively); and natural recovery group (NRG) at random. The rats in the traditional Chinese medicine (TCM) group were given corresponding doses of Weizhuan'an formula, while the rats in the NRG and BCG were given an equivalent volume of distilled water for 12 weeks. After that, gastric mucosa samples of rats were collected to observe the general and pathological changes in the gastric mucosa; the changes in gastric mucosal microflora were detected by 16S rDNA amplicon sequencing, and the inflammatory factors were analyzed by cytokine antibody microarray and Western blotting. Results The results suggest that compared with the BCG, the pathology of gastric mucosa and gastric mucosal microflora and inflammatory factors in rats with PLGC have changed significantly, while Weizhuan'an formula effectively improved them, especially in the MDG and HDG (p < 0.05). Compared with the NRG, the abundance of probiotics such as Lactobacillus and Veillonella were increased, while the abundance of pathogens such as Proteobacteria and Pseudomonas was decreased (p < 0.05, p < 0.01), and the relative contents of IL-2, IL-4, IL-13, and MCP-1 in gastric mucosa were decreased (p < 0.05). Moreover, it can upregulate the DNA-binding transcriptional regulator, ABC type multidrug transport system, and related enzymes and affect the signaling pathways such as viral protein interaction with cytokine and cytokine receptor and T cell receptor signaling pathway significantly (p < 0.05, p < 0.01), which can promote drug absorption and utilization and repair damaged gastric mucosa. Conclusion The study confirmed that Weizhuan'an prescription can treat rats with PLGC by regulating gastric mucosal microflora and inflammatory factors.
Collapse
Affiliation(s)
- Yuting Lu
- Guangdong Second Provincial General Hospital, Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Medicine, Jinan University, Guangzhou, Guangdong, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huayi Liu
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Jiaju Shang
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yijia Mao
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Lingkai Meng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Digestion, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Changbai Gao
- Department of Nephropathy, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
33
|
Shi X, Wang X, Yao W, Shi D, Shao X, Lu Z, Chai Y, Song J, Tang W, Wang X. Mechanism insights and therapeutic intervention of tumor metastasis: latest developments and perspectives. Signal Transduct Target Ther 2024; 9:192. [PMID: 39090094 PMCID: PMC11294630 DOI: 10.1038/s41392-024-01885-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/04/2024] Open
Abstract
Metastasis remains a pivotal characteristic of cancer and is the primary contributor to cancer-associated mortality. Despite its significance, the mechanisms governing metastasis are not fully elucidated. Contemporary findings in the domain of cancer biology have shed light on the molecular aspects of this intricate process. Tumor cells undergoing invasion engage with other cellular entities and proteins en route to their destination. Insights into these engagements have enhanced our comprehension of the principles directing the movement and adaptability of metastatic cells. The tumor microenvironment plays a pivotal role in facilitating the invasion and proliferation of cancer cells by enabling tumor cells to navigate through stromal barriers. Such attributes are influenced by genetic and epigenetic changes occurring in the tumor cells and their surrounding milieu. A profound understanding of the metastatic process's biological mechanisms is indispensable for devising efficacious therapeutic strategies. This review delves into recent developments concerning metastasis-associated genes, important signaling pathways, tumor microenvironment, metabolic processes, peripheral immunity, and mechanical forces and cancer metastasis. In addition, we combine recent advances with a particular emphasis on the prospect of developing effective interventions including the most popular cancer immunotherapies and nanotechnology to combat metastasis. We have also identified the limitations of current research on tumor metastasis, encompassing drug resistance, restricted animal models, inadequate biomarkers and early detection methods, as well as heterogeneity among others. It is anticipated that this comprehensive review will significantly contribute to the advancement of cancer metastasis research.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Yao
- Department of Urology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Dongmin Shi
- Department of Medical Oncology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xihuan Shao
- The Fourth Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhengqing Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yue Chai
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences; NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Luo Z, Mejia-Cordova M, Hamze N, Berggren E, Chopra S, Safi B, Blixt M, Sandler S, Singh K. Assessing the effectiveness of Interleukin-2 therapy in experimental type 1 diabetes. Endocrine 2024; 85:626-637. [PMID: 38424350 PMCID: PMC11291609 DOI: 10.1007/s12020-024-03753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
AIM Much focus of immunotherapy for type 1 diabetes (T1D) has been devoted on selectively boosting regulatory T (Treg) cells using low dose IL-2 due to their constitutive expression of IL-2Rα, CD25. However, several clinical trials using a low dose of IL-2 only showed a limited improvement of metabolic control. It can therefore be hypothesized that further decreasing IL-2 dosage may increase the selective responsiveness of Treg cells. METHODS We induced experimental T1D using multiple low dose streptozotocin (STZ) injections and treated the mice with an ultra-low dose IL-2 (uIL-2, approximately 7-fold lower than low dose). Immune response was studied using multicolor flow cytometry. RESULTS We found that uIL-2 did not protect STZ mice from developing hyperglycemia. It did neither increase Treg cell proportions, nor did it correct the phenotypic shift of Treg cells seen in T1D. It only partially decreased the proportion of IFN-γ+ T cells. Likewise, uIL-2 also did not protect the dysfunction of regulatory B (Breg) cells. Strikingly, when administered in combination with an anti-inflammatory cytokine IL-35, uIL-2 abrogated IL-35's protective effect. Low dose IL-2, on the other hand, protected half of the STZ mice from developing hyperglycemia. No difference was found in the Treg and Breg response, and it only tended to decrease CD80 expression in macrophages and dendritic cells. CONCLUSION In conclusion, further decreasing IL-2 dosage may not be a suitable approach for T1D therapy, and the limited success suggests that an alternative low dose IL-2 therapy strategy or other immunotherapies should be considered.
Collapse
Affiliation(s)
- Zhengkang Luo
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | - Nour Hamze
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Elin Berggren
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Saloni Chopra
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Bilal Safi
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Martin Blixt
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Stellan Sandler
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Kailash Singh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
35
|
Mehta NK, Rakhra K, Meetze KA, Li B, Momin N, Chang JY, Wittrup KD, Baeuerle PA, Michaelson JS. CLN-617 Retains IL2 and IL12 in Injected Tumors to Drive Robust and Systemic Immune-Mediated Antitumor Activity. Cancer Immunol Res 2024; 12:1022-1038. [PMID: 38842347 PMCID: PMC11292205 DOI: 10.1158/2326-6066.cir-23-0636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/07/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Despite clinical evidence of antitumor activity, the development of cytokine therapies has been hampered by a narrow therapeutic window and limited response rates. Two cytokines of high interest for clinical development are interleukin 2 (IL2) and interleukin 12 (IL12), which potently synergize to promote the activation and proliferation of T cells and NK cells. However, the only approved human IL2 therapy, Proleukin, is rarely used in the clinic due to systemic toxicities, and no IL12 product has been approved to date due to severe dose-limiting toxicities. Here, we describe CLN-617, a first-in-class therapeutic for intratumoral (IT) injection that co-delivers IL2 and IL12 on a single molecule in a safe and effective manner. CLN-617 is a single-chain fusion protein comprised of IL2, leukocyte-associated immunoglobulin-like receptor 2 (LAIR2), human serum albumin (HSA), and IL12. LAIR2 and HSA function to retain CLN-617 in the treated tumor by binding collagen and increasing molecular weight, respectively. We found that IT administration of a murine surrogate of CLN-617, mCLN-617, eradicated established treated and untreated tumors in syngeneic models, significantly improved response to anti-PD1 checkpoint therapy, and generated a robust abscopal response dependent on cellular immunity and antigen cross-presentation. CLN-617 is being evaluated in a clinical trial in patients with advanced solid tumors (NCT06035744).
Collapse
Affiliation(s)
| | - Kavya Rakhra
- Cullinan Therapeutics, Inc., Cambridge, Massachusetts.
| | | | - Bochong Li
- Cullinan Therapeutics, Inc., Cambridge, Massachusetts.
| | - Noor Momin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| | | | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Patrick A. Baeuerle
- Cullinan Therapeutics, Inc., Cambridge, Massachusetts.
- Institute for Immunology, Ludwig Maximilians University, München, Germany.
| | | |
Collapse
|
36
|
Rokade S, Damani AM, Oft M, Emmerich J. IL-2 based cancer immunotherapies: an evolving paradigm. Front Immunol 2024; 15:1433989. [PMID: 39114660 PMCID: PMC11303236 DOI: 10.3389/fimmu.2024.1433989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Discovered over 4 decades ago in the supernatants of activated T cells, interleukin-2 (IL-2) is a potent pleiotropic cytokine involved in the regulation of immune responses. It is required for effector T cell expansion and differentiation as well as for peripheral tolerance induced by regulatory T cells. High-dose IL-2 treatment was the first FDA-approved immunotherapy for renal cell carcinoma and melanoma, achieving single agent complete and durable responses, albeit only in a small proportion of patients. The therapeutic potential of wild type IL-2 is clinically limited by its short half-life and severe vascular toxicity. Moreover, the activation of regulatory T cells and the terminal differentiation of effector T cells on IL-2 pose additional restrictions. To overcome the toxicity of IL-2 in order to realize its full potential for patients, several novel engineering strategies are being developed and IL-2 based immunotherapy for cancer has emerged as a burgeoning field of clinical and experimental research. In addition, combination of IL-2 with PD-1/L1 pathway blockade shows vastly improved anti-tumor efficacy over either monotherapy in preclinical tumor models. In this review we discuss the biological characteristics of IL-2 and its receptors, as well as its efficacy and treatment limiting toxicities in cancer patients. We also explore the efforts aimed at developing novel and safer IL-2 therapies to harness the full therapeutic potential of this cytokine.
Collapse
Affiliation(s)
- Sushama Rokade
- Development Department, Synthekine, Menlo Park, CA, United States
| | | | | | - Jan Emmerich
- Development Department, Synthekine, Menlo Park, CA, United States
| |
Collapse
|
37
|
Beebe KD, Eisner JR, Guo J, Shibata Y, Davison JM, Uronis J, Farhangfar C, Farhangfar F, Mooney J, Milburn MV, White RL, Amin A, Milla ME, Foureau DM. The Immunogenomic Landscape of Peripheral High-Dose IL-2 Pharmacodynamics in Patients with Metastatic Renal Cell Carcinoma: A Benchmark for Next-Generation IL-2-Based Immunotherapies. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:29-39. [PMID: 38767437 DOI: 10.4049/jimmunol.2300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024]
Abstract
High-dose (HD) IL-2 was the first immuno-oncology agent approved for treating advanced renal cell carcinoma and metastatic melanoma, but its use was limited because of substantial toxicities. Multiple next-generation IL-2 agents are being developed to improve tolerability. However, a knowledge gap still exists for the genomic markers that define the target pharmacology for HD IL-2 itself. In this retrospective observational study, we collected PBMC samples from 23 patients with metastatic renal cell carcinoma who were treated with HD IL-2 between 2009 and 2015. We previously reported the results of flow cytometry analyses. In this study, we report the results of our RNA-sequencing immunogenomic survey, which was performed on bulk PBMC samples from immediately before (day 1), during (day 3), and after treatment (day 5) in cycle 1 and/or cycle 2 of the first course of HD IL-2. As part of a detailed analysis of immunogenomic response to HD IL-2 treatment, we analyzed the changes in individual genes and immune gene signatures. By day 3, most lymphoid cell types had transiently decreased, whereas myeloid transcripts increased. Although most genes and/or signatures generally returned to pretreatment expression levels by day 5, certain ones representative of B cell, NK cell, and T cell proliferation and effector functions continued to increase, along with B cell (but not T cell) oligoclonal expansion. Regulatory T cells progressively expanded during and after treatment. They showed strong negative correlation with myeloid effector cells. This detailed RNA-sequencing immunogenomic survey of IL-2 pharmacology complements results of prior flow cytometry analyses. These data provide valuable pharmacological context for assessing PBMC gene expression data from patients dosed with IL-2-related compounds that are currently in development.
Collapse
Affiliation(s)
| | | | - John Guo
- GeneCentric Therapeutics, Inc., Durham, NC
| | | | | | | | | | | | | | | | | | - Asim Amin
- Levine Cancer Institute, Atrium Health, Charlotte, NC
| | | | | |
Collapse
|
38
|
Dixon M, Phan TA, Dallon JC, Tian JP. Mathematical model for IL-2-based cancer immunotherapy. Math Biosci 2024; 372:109187. [PMID: 38575057 PMCID: PMC11193449 DOI: 10.1016/j.mbs.2024.109187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
A basic mathematical model for IL-2-based cancer immunotherapy is proposed and studied. Our analysis shows that the outcome of therapy is mainly determined by three parameters, the relative death rate of CD4+ T cells, the relative death rate of CD8+ T cells, and the dose of IL-2 treatment. Minimal equilibrium tumor size can be reached with a large dose of IL-2 in the case that CD4+ T cells die out. However, in cases where CD4+ and CD8+ T cells persist, the final tumor size is independent of the IL-2 dose and is given by the relative death rate of CD4+ T cells. Two groups of in silico clinical trials show some short-term behaviors of IL-2 treatment. IL-2 administration can slow the proliferation of CD4+ T cells, while high doses for a short period of time over several days transiently increase the population of CD8+ T cells during treatment before it recedes to its equilibrium. IL-2 administration for a short period of time over many days suppresses the tumor population for a longer time before approaching its steady-state levels. This implies that intermittent administration of IL-2 may be a good strategy for controlling tumor size.
Collapse
Affiliation(s)
- Megan Dixon
- Department of Mathematics, Brigham Young University, Provo, UT 84602, USA.
| | - Tuan Anh Phan
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID 83844, USA.
| | - J C Dallon
- Department of Mathematics, Brigham Young University, Provo, UT 84602, USA.
| | - Jianjun Paul Tian
- Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88001, USA.
| |
Collapse
|
39
|
Grigolo S, Filgueira L. Immunotherapy of Clear-Cell Renal-Cell Carcinoma. Cancers (Basel) 2024; 16:2092. [PMID: 38893211 PMCID: PMC11171115 DOI: 10.3390/cancers16112092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Clear-cell Renal-Cell Carcinoma (ccRCC) is the most common type of renal-cell carcinoma (RCC). In many cases, RCC patients manifest the first symptoms during the advanced stage of the disease. For this reason, immunotherapy appears to be one of the dominant treatments to achieve a resolution. In this review, we focus on the presentation of the main immune checkpoint proteins that act as negative regulators of immune responses, such as PD-1, CTLA-4, LAG-3, TIGIT, and TIM-3, and their respective inhibitors. Interleukin-2, another potential component of the treatment of ccRCC patients, has also been covered. The synergy between several immunotherapies is one of the main aspects that unites the conclusions of research in recent years. To date, the combination of several immunotherapies enhances the efficacy of a monotherapy, which often manifests important limitations. Immunotherapy aimed at restoring the anti-cancer immune response in ccRCC, involved in the recognition and elimination of cancer cells, may also be a valid solution for many other types of immunogenic tumors that are diagnosed in the final stages.
Collapse
Affiliation(s)
| | - Luis Filgueira
- Anatomy, University of Fribourg, 1700 Fribourg, Switzerland;
| |
Collapse
|
40
|
Montesinos P, Buccisano F, Cluzeau T, Vennström L, Heuser M. Relapse Prevention in Acute Myeloid Leukemia: The Role of Immunotherapy with Histamine Dihydrochloride and Low-Dose Interleukin-2. Cancers (Basel) 2024; 16:1824. [PMID: 38791903 PMCID: PMC11119683 DOI: 10.3390/cancers16101824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The treatment and management of acute myeloid leukemia (AML) has improved in recent decennia by targeted therapy for subgroups of patients, expanded indications for allogeneic stem cell transplantation (allo-SCT) and surveillance of residual or arising leukemia. However, hematological relapse among patients who have attained complete remission (CR) after the initial courses of chemotherapy remains a significant cause of morbidity and mortality. Here, we review an immunotherapeutic option using histamine dihydrochloride and low-dose interleukin-2 (HDC/LD-IL-2) for remission maintenance in AML. The treatment is approved in Europe in the post-consolidation phase to avoid relapse among patients in CR who are not candidates for upfront allo-SCT. We present aspects of the purported anti-leukemic mechanism of this regimen, including translation of preclinical results into the clinical setting, along with relapse prevention in subgroups of patients. We consider that HDC/LD-IL-2 is a conceivable option for younger adults, in particular patients with AML of normal karyotype and those with favorable responses to the initial chemotherapy. HDC/LD-IL-2 may form an emerging landscape of remission maintenance in AML.
Collapse
Affiliation(s)
- Pau Montesinos
- Hematology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain;
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Thomas Cluzeau
- Department of Hematology, University Hospital Centre of Nice, 06200 Nice, France;
| | - Lovisa Vennström
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, 41345 Goteborg, Sweden;
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
41
|
Zhang R, Zhao Y, Chen X, Zhuang Z, Li X, Shen E. Low-dose IL-2 therapy in autoimmune diseases: An update review. Int Rev Immunol 2024; 43:113-137. [PMID: 37882232 DOI: 10.1080/08830185.2023.2274574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
Regulatory T (Treg) cells are essential for maintaining self-immune tolerance. Reduced numbers or functions of Treg cells have been involved in the pathogenesis of various autoimmune diseases and allograft rejection. Therefore, the approaches that increase the pool or suppressive function of Treg cells in vivo could be a general strategy to treat different autoimmune diseases and allograft rejection. Interleukin-2 (IL-2) is essential for the development, survival, maintenance, and function of Treg cells, constitutively expressing the high-affinity receptor of IL-2 and sensitive response to IL-2 in vivo. And low-dose IL-2 therapy in vivo could restore the imbalance between autoimmune response and self-tolerance toward self-tolerance via promoting Treg cell expansion and inhibiting follicular helper T (Tfh) and IL-17-producing helper T (Th17) cell differentiation. Currently, low-dose IL-2 treatment is receiving extensive attention in autoimmune disease and transplantation treatment. In this review, we summarize the biology of IL-2/IL-2 receptor, the mechanisms of low-dose IL-2 therapy in autoimmune diseases, the application in the progress of different autoimmune diseases, including Systemic Lupus Erythematosus (SLE), Type 1 Diabetes (T1D), Rheumatoid Arthritis (RA), Autoimmune Hepatitis (AIH), Alopecia Areata (AA), Immune Thrombocytopenia (ITP) and Chronic graft-versus-host-disease (GVHD). We also discuss the future directions to optimize low-dose IL-2 treatments.
Collapse
Affiliation(s)
- Ruizhi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| | - Zhuoqing Zhuang
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Sommer C, Cohen JN, Dehmel S, Neuhaus V, Schaudien D, Braun A, Sewald K, Rosenblum MD. Interleukin-2-induced skin inflammation. Eur J Immunol 2024; 54:e2350580. [PMID: 38430129 PMCID: PMC11015984 DOI: 10.1002/eji.202350580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 03/03/2024]
Abstract
Recombinant human IL-2 has been used to treat inflammatory diseases and cancer; however, side effects like skin rashes limit the use of this therapeutic. To identify key molecules and cells inducing this side effect, we characterized IL-2-induced cutaneous immune reactions and investigated the relevance of CD25 (IL-2 receptor α) in the process. We injected IL-2 intradermally into WT mice and observed increases in immune cell subsets in the skin with preferential increases in frequencies of IL-4- and IL-13-producing group 2 innate lymphoid cells and IL-17-producing dermal γδ T cells. This overall led to a shift toward type 2/type 17 immune responses. In addition, using a novel topical genetic deletion approach, we reduced CD25 on skin, specifically on all cutaneous cells, and found that IL-2-dependent effects were reduced, hinting that CD25 - at least partly - induces this skin inflammation. Reduction of CD25 specifically on skin Tregs further augmented IL-2-induced immune cell infiltration, hinting that CD25 on skin Tregs is crucial to restrain IL-2-induced inflammation. Overall, our data support that innate lymphoid immune cells are key cells inducing side effects during IL-2 therapy and underline the significance of CD25 in this process.
Collapse
Affiliation(s)
- Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Jarish N Cohen
- Department of Dermatology, University of California, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, California, USA
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Michael D Rosenblum
- Department of Dermatology, University of California, San Francisco, California, USA
| |
Collapse
|
43
|
Stenger TD, Miller JS. Therapeutic approaches to enhance natural killer cell cytotoxicity. Front Immunol 2024; 15:1356666. [PMID: 38545115 PMCID: PMC10966407 DOI: 10.3389/fimmu.2024.1356666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/05/2024] [Indexed: 04/14/2024] Open
Abstract
Enhancing the cytotoxicity of natural killer (NK) cells has emerged as a promising strategy in cancer immunotherapy, due to their pivotal role in immune surveillance and tumor clearance. This literature review provides a comprehensive overview of therapeutic approaches designed to augment NK cell cytotoxicity. We analyze a wide range of strategies, including cytokine-based treatment, monoclonal antibodies, and NK cell engagers, and discuss criteria that must be considered when selecting an NK cell product to combine with these strategies. Furthermore, we discuss the challenges and limitations associated with each therapeutic strategy, as well as the potential for combination therapies to maximize NK cell cytotoxicity while minimizing adverse effects. By exploring the wealth of research on this topic, this literature review aims to provide a comprehensive resource for researchers and clinicians seeking to develop and implement novel therapeutic strategies that harness the full potential of NK cells in the fight against cancer. Enhancing NK cell cytotoxicity holds great promise in the evolving landscape of immunotherapy, and this review serves as a roadmap for understanding the current state of the field and the future directions in NK cell-based therapies.
Collapse
Affiliation(s)
- Terran D. Stenger
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
44
|
Shehata HM, Dogra P, Gierke S, Holder P, Sanjabi S. Efbalropendekin Alfa enhances human natural killer cell cytotoxicity against tumor cell lines in vitro. Front Immunol 2024; 15:1341804. [PMID: 38515757 PMCID: PMC10954783 DOI: 10.3389/fimmu.2024.1341804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
IL-15 has shown preclinical activity by enhancing the functional maturation of natural killer (NK) cells. Clinical evaluation of the potential anticancer activity of most cytokines, including IL-15, has been limited by low tolerability and rapid in vivo clearance. Efbalropendekin Alfa (XmAb24306) is a soluble IL15/IL15-receptor alpha heterodimer complex fused to a half-life extended Fc domain (IL15/IL15Rα-Fc), engineered with mutations to reduce IL-15 affinity for CD122. Reduced affinity drives lower potency, leading to prolonged pharmacodynamic response in cynomolgus monkeys. We show that in vitro, human NK cells treated with XmAb24306 demonstrate enhanced cytotoxicity against various tumor cell lines. XmAb24306-treated NK cells also exhibit enhanced killing of 3D colorectal cancer spheroids. Daratumumab (dara), a monoclonal antibody (mAb) that targets CD38 results in antibody-dependent cellular cytotoxicity (ADCC) of both multiple myeloma (MM) cells and NK cells. Addition of XmAb24306 increases dara-mediated NK cell ADCC against various MM cell lines in vitro. Because NK cells express CD38, XmAb24306 increases dara-mediated NK cell fratricide, but overall does not negatively impact the ADCC activity against a MM cell line likely due to increased NK cell activity of the surviving cells. These data show that XmAb24306 increases direct and ADCC-mediated human NK cell cytotoxicity in vitro.
Collapse
Affiliation(s)
- Hesham M. Shehata
- Department of Translational Medicine Oncology, Genentech Inc., South San Francisco, CA, United States
| | - Pranay Dogra
- Department of Translational Medicine Oncology, Genentech Inc., South San Francisco, CA, United States
| | - Sarah Gierke
- Department of Pathology, Genentech Inc., South San Francisco, CA, United States
| | - Patrick Holder
- Department of Protein Chemistry, Genentech Inc., South San Francisco, CA, United States
| | - Shomyseh Sanjabi
- Department of Translational Medicine Oncology, Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
45
|
Ji C, Kuang B, Buetow BS, Vitsky A, Xu Y, Huang TH, Chaparro-Riggers J, Kraynov E, Matsumoto D. Pharmacokinetics, pharmacodynamics, and toxicity of a PD-1-targeted IL-15 in cynomolgus monkeys. PLoS One 2024; 19:e0298240. [PMID: 38315680 PMCID: PMC10843171 DOI: 10.1371/journal.pone.0298240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024] Open
Abstract
PF-07209960 is a novel bispecific fusion protein composed of an anti-PD-1 antibody and engineered IL-15 cytokine mutein with reduced binding affinity to its receptors. The pharmacokinetics (PK), pharmacodynamics (PD), and toxicity of PF-07209960 were evaluated following once every other week subcutaneous (SC) or intravenous (IV) administration to cynomolgus monkeys in a repeat-dose PKPD (0.01-0.3 mg/kg/dose) and GLP toxicity study (0.1-3 mg/kg/dose). PF-07209960 showed dose dependent pharmacokinetics with a terminal T1/2 of 8 and 13 hours following IV administration at 0.03 and 0.1 mg/kg, respectively. The clearance is faster than a typical IgG1 antibody. Slightly faster clearance was also observed following the second dose, likely due to increased target pool and formation of anti-drug antibodies (ADA). Despite a high incidence rate of ADA (92%) observed in GLP toxicity study, PD-1 receptor occupancy, IL-15 signaling (STAT5 phosphorylation) and T cell expansion were comparable following the first and second doses. Activation and proliferation of T cells were observed with largest increase in cell numbers found in gamma delta T cells, followed by CD4+ and CD8+ T cells, and then NK cells. Release of cytokines IL-6, IFNγ, and IL-10 were detected, which peaked at 72 hours postdose. There was PF-07209960-related mortality at ≥1 mg/kg. At scheduled necropsy, microscopic findings were generalized mononuclear infiltration in various tissues. Both the no observed adverse effect level (NOAEL) and the highest non severely toxic dose (HNSTD) were determined to be 0.3 mg/kg/dose, which corresponded to mean Cmax and AUC48 values of 1.15 μg/mL and 37.9 μg*h/mL, respectively.
Collapse
Affiliation(s)
- Changhua Ji
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Bing Kuang
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Bernard S. Buetow
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Allison Vitsky
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| | - Yuanming Xu
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | - Tzu-Hsuan Huang
- Cancer Immunology Discovery, Pfizer Inc, San Diego, California, United States of America
| | | | - Eugenia Kraynov
- Biomedical Design, Pfizer Inc, San Diego, California, United States of America
| | - Diane Matsumoto
- Drug Safety Research and Development, Pfizer Inc, San Diego, California, United States of America
| |
Collapse
|
46
|
Mannan A, Kakkar C, Dhiman S, Singh TG. Advancing the frontiers of adaptive cell therapy: A transformative mechanistic journey from preclinical to clinical settings. Int Immunopharmacol 2023; 125:111095. [PMID: 37875038 DOI: 10.1016/j.intimp.2023.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023]
Abstract
Although the concept of using the patient's immune system to combat cancer has been around for a while, it is only in recent times that substantial progress has been achieved in this field. Over the last ten years, there has been a significant advancement in the treatment of cancer through immune checkpoint blockade. This treatment has been approved for multiple types of tumors. Another approach to modifying the immune system to detect tumor cells and fight them off is adaptive cell therapy (ACT). This therapy involves using T cells that have been modified with either T cell receptors (TCR) or chimeric antigen receptors (CAR) to target the tumor cells. ACT has demonstrated encouraging outcomes in different types of tumors, and clinical trials are currently underway worldwide to enhance this form of treatment. This review focuses on the advancements that have been made in ACT from preclinical to clinical settings till now.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
47
|
Yoon AR, Hong J, Jung BK, Ahn HM, Zhang S, Yun CO. Oncolytic adenovirus as pancreatic cancer-targeted therapy: Where do we go from here? Cancer Lett 2023; 579:216456. [PMID: 37940067 DOI: 10.1016/j.canlet.2023.216456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Pancreatic cancer remains one of the deadliest cancers with extremely high mortality rate, and the number of cases is expected to steadily increase with time. Pancreatic cancer is refractory to conventional cancer treatment options, like chemotherapy and radiotherapy, and commercialized immunotherapeutics, owing to its immunosuppressive and desmoplastic phenotype. Due to these reasons, development of an innovative treatment option that can overcome these challenges posed by the pancreatic tumor microenvironment (TME) is in an urgent need. The present review aims to summarize the evolution of oncolytic adenovirus (oAd) engineering and usage as therapeutics (either monotherapy or combination therapy) over the last decade to overcome these hurdles to instigate a potent antitumor effect against desmoplastic and immunosuppressive pancreatic cancer.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea
| | - JinWoo Hong
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Bo-Kyeong Jung
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Hyo Min Ahn
- GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Songnam Zhang
- Department of Medical Oncology, Yanbian University Hospital, Jilin, China
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea; Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology (HY-IBB), Hanyang University, Seoul, Republic of Korea; GeneMedicine Co., Ltd., 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
49
|
Joerger M, Calvo E, Laubli H, Lopez J, Alonso G, Corral de la Fuente E, Hess D, König D, Sanchez Perez V, Bucher C, Jethwa S, Garralda E. Phase 1 first-in-human dose-escalation study of ANV419 in patients with relapsed/refractory advanced solid tumors. J Immunother Cancer 2023; 11:e007784. [PMID: 38243906 PMCID: PMC10668247 DOI: 10.1136/jitc-2023-007784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND ANV419 is a stable antibody-cytokine fusion protein consisting of interleukin-2 (IL-2) fused to an anti-IL-2 monoclonal antibody that sterically hinders binding of IL-2 to the α subunit of its receptor but has selective affinity for the receptor βγ subunits. Thus, ANV419 preferentially stimulates CD8+ effector T cells and natural killer cells which are associated with tumor killing, while minimizing the activation of immunosuppressive regulatory T cells. METHODS ANV419-001 is an open-label, multicenter, phase 1 study to evaluate the safety, tolerability, maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D) of ANV419. Secondary objectives were to characterize the pharmacokinetics, pharmacodynamics and tumor response. Adult patients with advanced solid tumors and disease progression after ≥1 previous line of systemic therapy were enrolled. ANV419 was administered by intravenous infusion once every 2 weeks, with a planned treatment duration of 12 months. The dose escalation part of the study explored doses 3, 6 and 12 µg/kg as single patient cohorts followed by 24-364 µg/kg in a 3+3 design. Interim results are reported here (data cut-off: March 22, 2023). RESULTS Forty patients were enrolled and received at least one dose of ANV419. The MTD and RP2D were determined to be 243 µg/kg. The most common ANV419-related treatment-emergent adverse events were Grade 1 and 2 fever (31 (77.5%)), chills (23 (57.5%), vomiting (14 (35.0%)), cytokine release syndrome and nausea (12 (30.0%) each). Transient and self-limiting lymphopenia due to lymphocyte redistribution was observed in all patients. In the RP2D cohort, Grade ≥3 thrombocytopenia and fever were reported by one patient (12.5%) each. All events were manageable with standard supportive care. At doses of 243 µg/kg (RP2D/MTD), the estimated T1/2 was approximately 12 hours. At ANV419 doses ≥108 µg/kg, 64% of patients had a best response of at least SD (15 SD and 1 confirmed PR). CONCLUSIONS ANV419 at doses up to 243 µg/kg (the RP2D) was well tolerated and showed signs of antitumor activity in a heavily pretreated patient population with advanced solid tumors. TRIAL REGISTRATION NUMBER NCT04855929.
Collapse
Affiliation(s)
- Markus Joerger
- Department of Medical Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - Emiliano Calvo
- START Madrid-CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Heinz Laubli
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Juanita Lopez
- Institute of Cancer Research, Royal Marsden Hospital, London, UK
| | - Guzmán Alonso
- Early Drug Development Unit, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | - Dagmar Hess
- Department of Medical Oncology & Hematology, Cantonal Hospital, St. Gallen, Switzerland
| | - David König
- Department of Medical Oncology, University Hospital Basel, Basel, Switzerland
| | | | | | | | - Elena Garralda
- Early Drug Development Unit, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| |
Collapse
|
50
|
Roser LA, Luckhardt S, Ziegler N, Thomas D, Wagner PV, Damm G, Scheffschick A, Hewitt P, Parnham MJ, Schiffmann S. Immuno-inflammatory in vitro hepatotoxicity models to assess side effects of biologicals exemplified by aldesleukin. Front Immunol 2023; 14:1275368. [PMID: 38045689 PMCID: PMC10693457 DOI: 10.3389/fimmu.2023.1275368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Hepatotoxicity induced by immunotherapeutics is an appearing cause for immune-mediated drug-induced liver injury. Such immuno-toxic mechanisms are difficult to assess using current preclinical models and the incidence is too low to detect in clinical trials. As hepatotoxicity is a frequent reason for post-authorisation drug withdrawal, there is an urgent need for immuno-inflammatory in vitro models to assess the hepatotoxic potential of immuno-modulatory drug candidates. We developed several immuno-inflammatory hepatotoxicity test systems based on recombinant human interleukin-2 (aldesleukin). Methods Co-culture models of primary human CD8+ T cells or NK cells with the hepatocyte cell line HepaRG were established and validated with primary human hepatocytes (PHHs). Subsequently, the HepaRG model was refined by increasing complexity by inclusion of monocyte-derived macrophages (MdMs). The main readouts were cytotoxicity, inflammatory mediator release, surface marker expression and specific hepatocyte functions. Results We identified CD8+ T cells as possible mediators of aldesleukin-mediated hepatotoxicity, with MdMs being implicated in increased aldesleukin-induced inflammatory effects. In co-cultures of CD8+ T cells with MdMs and HepaRG cells, cytotoxicity was induced at intermediate/high aldesleukin concentrations and perforin was upregulated. A pro-inflammatory milieu was created measured by interleukin-6 (IL-6), c-reactive protein (CRP), interferon gamma (IFN-γ), and monocyte chemoattractant protein-1 (MCP-1) increase. NK cells responded to aldesleukin, however, only minor aldesleukin-induced cytotoxic effects were measured in co-cultures. Results obtained with HepaRG cells and with PHHs were comparable, especially regarding cytotoxicity, but high inter-donor variations limited meaningfulness of the PHH model. Discussion The in vitro test systems developed contribute to the understanding of potential key mechanisms in aldesleukin-mediated hepatotoxicity. In addition, they may aid assessment of immune-mediated hepatotoxicity during the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Luise A. Roser
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Sonja Luckhardt
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Nicole Ziegler
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Dominique Thomas
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Pia Viktoria Wagner
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Andrea Scheffschick
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J. Parnham
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Susanne Schiffmann
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|